Odhadování cen jízdného v taxislužbě pomocí strojového učení

DSpace Repository

Language: English čeština 

Odhadování cen jízdného v taxislužbě pomocí strojového učení

Show simple item record

dc.contributor.advisor Šenkeřík, Roman
dc.contributor.author Bian Theke, Pierre Pascal
dc.date.accessioned 2024-07-23T13:15:58Z
dc.date.available 2024-07-23T13:15:58Z
dc.date.issued 2023-11-05
dc.identifier Elektronický archiv Knihovny UTB
dc.identifier.uri http://hdl.handle.net/10563/55136
dc.description.abstract This master's thesis focuses on the use of Artificial Intelligence (AI) algorithms for estimating taxi fares. By estimating fares in different zones of a city using these algorithms, the synchronization of the taxi fleet can be improved, which in turn would reduce waiting times. The thesis specifically analyzes the application of the Random Forest machine learning approach for this purpose. A literature review is presented on the development of AI in market analysis and price estimation. It emphasizes the shift towards machine learning for comprehensive market surveys. The process of developing accurate predictive models involves handling complex datasets and avoiding overfitting. To achieve this, the methodology includes configuring the model and justifying its architecture. Implementing the model involves pre- TBU in Zlín, Faculty of Applied Informatics 6 processing the data, training and validating it, and analyzing its performance in different scenarios. The thesis concludes by critically evaluating the accuracy of the Random Forest model and its interpretability, as well as its effectiveness in estimating fares. It highlights the ability of AI to change pricing strategies in the taxi industry.
dc.format 84 p.
dc.language.iso en
dc.publisher Univerzita Tomáše Bati ve Zlíně
dc.rights Bez omezení
dc.subject Artificial Intelligence cs
dc.subject Machine Learning cs
dc.subject Random Forest Algorithm cs
dc.subject Taxi Fare Prediction cs
dc.subject Market Analysis cs
dc.subject Price Estimation cs
dc.subject Data Acquisition cs
dc.subject Model Configuration cs
dc.subject Hyperparameter Selection cs
dc.subject Data Pre-processing cs
dc.subject Fare Estimation Effectiveness cs
dc.subject Taxi Industry Revolution cs
dc.subject Artificial Intelligence en
dc.subject Machine Learning en
dc.subject Random Forest Algorithm en
dc.subject Taxi Fare Prediction en
dc.subject Market Analysis en
dc.subject Price Estimation en
dc.subject Data Acquisition en
dc.subject Model Configuration en
dc.subject Hyperparameter Selection en
dc.subject Data Pre-processing en
dc.subject Fare Estimation Effectiveness en
dc.subject Taxi Industry Revolution en
dc.title Odhadování cen jízdného v taxislužbě pomocí strojového učení
dc.title.alternative Estimating Taxi Fares Using Machine Learning
dc.type diplomová práce cs
dc.contributor.referee Kotyrba, Martin
dc.date.accepted 2024-06-06
dc.description.abstract-translated This master's thesis focuses on the use of Artificial Intelligence (AI) algorithms for estimating taxi fares. By estimating fares in different zones of a city using these algorithms, the synchronization of the taxi fleet can be improved, which in turn would reduce waiting times. The thesis specifically analyzes the application of the Random Forest machine learning approach for this purpose. A literature review is presented on the development of AI in market analysis and price estimation. It emphasizes the shift towards machine learning for comprehensive market surveys. The process of developing accurate predictive models involves handling complex datasets and avoiding overfitting. To achieve this, the methodology includes configuring the model and justifying its architecture. Implementing the model involves pre- TBU in Zlín, Faculty of Applied Informatics 6 processing the data, training and validating it, and analyzing its performance in different scenarios. The thesis concludes by critically evaluating the accuracy of the Random Forest model and its interpretability, as well as its effectiveness in estimating fares. It highlights the ability of AI to change pricing strategies in the taxi industry.
dc.description.department Ústav informatiky a umělé inteligence
dc.thesis.degree-discipline Information Technologies cs
dc.thesis.degree-discipline Information Technologies en
dc.thesis.degree-grantor Univerzita Tomáše Bati ve Zlíně. Fakulta aplikované informatiky cs
dc.thesis.degree-grantor Tomas Bata University in Zlín. Faculty of Applied Informatics en
dc.thesis.degree-name Ing.
dc.thesis.degree-program Engineering Informatics cs
dc.thesis.degree-program Engineering Informatics en
dc.identifier.stag 66696
dc.date.submitted 2024-05-13


Files in this item

Files Size Format View Description
bian theke_2024_dp.pdf 2.466Mb PDF View/Open None
bian theke_2024_op.pdf 217.7Kb PDF View/Open None
bian theke_2024_vp.pdf 153.3Kb PDF View/Open None

This item appears in the following Collection(s)

Show simple item record

Find fulltext

Search DSpace


Browse

My Account