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ABSTRACT 

 
This work is focused on stability modification of the degradation extent and 

rate of biodegradable polyesters such as polylactide (PLA), its copolymers and 
polycaprolactone (PCL) with the motivation to expand their applicability range. 
The theoretical part summarizes the current state of the art of PLA-based 
materials, including   their associated properties, application and degradation 
mechanisms. The experimental section brings authentic research results of the 
dissertation aimed at stability modification of PLA and PCL by non-toxic and 
environmentally friendly additive extracted from waste biomass. Second study is 
focused on chemical modifications of PLA structure by means of 
copolymerization reactions with the acrylic acid. Such alteration accelerated the 
process of polymer degradation, additionally supported and correlated by 
incorporating an inorganic filler. The results were as anticipated, revealing that a 
beneficial effect had been exerted on the degradation mechanisms of polylactide, 
as confirmed by various analytical techniques.  

 
Key words: biodegradable polymer, polylactide, modification of polymers, 

additives, degradation, stability 
 

 
 

ABSTRAKT 

 
Tato práce se zaměřuje na modifikaci stability, která ovlivňuje především  

rychlost degradace vybraných biodegradabilních polyesterů, jako je polylaktid 
(PLA), jeho kopolymery a polykaprolakton (PCL) za účelem rozšíření 
aplikačního rozsahu. Teoretická část shrnuje u materiálu na bázi PLA současný 
stav jeho vlastností,  dosud dostupné modifikace, aplikační potenciál a také 
degradační mechanizmus za různých podmínek. Experimentální část nabízí nové 
možnosti modifikace degradační stability polymeru PLA s výsledky výzkumu 
zaměřené na netoxické a ekologicky šetrné aditiva. V první části je srovnáván vliv 
aditiva z odpadni biomasy v polymerech PLA a PCL. Druhá studie je zaměřena 
na chemické modifikace struktury PLA pomocí kopolymeračních reakcí s 
kyselinou akrylovou. Pro zvýšení tohoto efektu a korelaci dalších vybraných 
vlastností byla současně provedena úprava pomocí anorganického nanoplniva. 
Výsledky prokázaly požadovaný vliv na degradační mechanizmus sledovaného 
polymeru dle typů aditiva, které bylo potvrzeno jednotlivými analýzami. 

 
Klíčová slova: biorozložitelný polymer, polylaktid, modifikace polymerů, 

aditiva, degradace, stabilita  
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INTRODUCTION 
Polymers have become indispensable to modern life for their broad spectrum 

of applicability. Despite boasting wide-ranging properties, being easy to process 
and proving relatively inexpensive, a major drawback to them is they originate 
from non-renewable sources, especially fossil fuels. As a consequence, energy 
and materials unsustainable for the environment are utilized during the 
production, processing and recycling of them [1]. 

The notion of turning to biodegradable plastics instead is interesting, 
particularly with respect to avoiding the undesirable accumulation of waste 
matter. This has led to research efforts being made to develop degradable 
biomaterials that would minimize environmental pollution, with the aim of 
eventually replacing traditional petroleum-based plastics. Biodegradable 
alternatives can be formulated from either natural or synthetic resins. Noteworthy 
examples of biodegradable polyesters that are now commercially available 
include polyhydroxyalkanoates (PHA), polyhydroxyhexanoates (PHH), 
polyhydroxybutyrate (PHB), polyhydroxyvalerate (PHV), polylactic acid (PLA), 
polycaprolactone (PCL), polybutylene succinate (PBS) and polybutylene 
succinate adipate (PBSA) [2].  

PLA has proven especially suitable in this regard. A biodegradable recyclable 
polyester, it is produced from renewable feedstock or waste products rich in 
polysaccharides, i.e. starch primarily sourced from the agricultural sector. Lactic 
acid as its precursor is produced by fermentation of glucose or sucrose and is 
refined to a high purity. High-molecular-weight PLA is prominent in the 
manufacture of disposable goods for consumers, whereas polymers of low or 
medium molecular weight are typically applied in modern medicine, such as in 
controlled drug release systems or implants [3]. 

It is also advantageous to target the end groups of PLA and chemically modify 
them. This approach allows the desired functionality to be introduced into the 
PLA macromolecules while maintaining the properties of the matrix. A notable 
effect is achieved with PLA of low and medium molar mass, wherein the end 
groups constitute a significant part of the macromolecules; an aspect which 
pertains to the supramolecular chemistry of PLA, as reported in the literature [3], 
[4].  

Although PLA shows promise as an alternative to conventional plastic 
materials, limitations exist in relation to its properties. For instance, it is weak 
when it comes to bending, gas impermeability and impact strength. A proven 
means of combating these issues is to utilize specific additives and fillers. Another 
limitation relates to the rate of degradation, which transpires too quickly for some 
applications, examples being products intended for the automotive industry and 
in certain packaging materials. Conversely, the rapid onset of degradation 
processes is an advantage for disposable packaging and pharmaceutical items. The 
degradation mechanism of PLA tends to be dependent on the nature of the end 
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group and the external environment. Applying and incorporating fillers and 
additives is a possibility, however, they have to be compatible with PLA and meet 
overall biodegradability and safety requirements [1], [3]. 

This thesis summarizes the current knowledge of PLA, as well as innovative 
and proven options for its modification and applicability. Attention is paid to the 
degradation mechanism of this biodegradable polymer and the primary factors 
that influence it. Novel means of modifying PLA are subsequently presented, 
potentially broadening the scope of its application. The experimental part focuses 
on the effects exerted by naturally and synthetically derived additives on the 
properties and stability of PLA (e.g. its degradation kinetics) under abiotic and/or 
biotic conditions.   
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1. THEORETICAL BACKGROUND 
 
1.1. Polylactic acid (PLA) 

PLA represents one of the most common and commercially applied forms of 
bioplastic. Production of it is rising globally to meet significant growth in demand. 
At present, biodegradable plastics account for more than 64% (over 1.5 million 
tons) of related manufacturing capacity globally. Production of them is expected 
to ramp up to almost 5.3 million tons by 2026 in connection with the development 
of polymers such as PBAT (polybutylene adipate terephthalate) and PBS, as well 
as the greater demand for PLA [5]. 

The latter of these is a biodegradable polyester with a monomer of lactic acid. 
Obtained by fermenting carbohydrates from renewable crops like sugar beet, corn 
and other forms of biomass, lactic acid (2-hydroxypropanoic acid) occurs in two 
optically active configurations of D(−) and L(+) enantiomers. These can be 
produced either by bacteria or a chemical process, potentially giving rise to a 
racemic mixture of both enantiomers [6], [7].  

An amorphous or semi-crystalline polymer, PLA typically has a melting point 
(Tm) of 160 ‒ 190 °C and glass transition temperature (Tg) of 55 ‒ 65 °C. In terms 
of mechanical properties, it is known as a brittle material for its high tensile 
modulus (3 GPa) and yield strength (50 ‒ 70 MPa), with low elongation at break 
(5 ‒ 7 %) [8], [9]. PLA is a thermoplastic polymer that is characterized by 
biocompatibility and biodegradability, while processing of it is relatively simple, 
requiring just standard equipment and technology to produce fibres, films or thin 
sheet and 3D filament by blowing, extrusion or electrospinning techniques [10], 
[11], [12].   
 

 
PLA synthesis routes 
Three primary methods exist for PLA synthesis (Figure 1): direct condensation 

polymerization; ring-opening polymerization (ROP) of lactide; and azeotropic 
dehydrative polycondensation. A less common alternative to the first of these is 
azeotropic distillation, wherein water formed during polycondensation is removed 
by an azeotropic solvent and subsequent esterification gives rise to high-
molecular-weight PLA. Mitsui Toatsu Chemicals patented this process in 1994 
[9], [13]. 
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Figure 1. Methods for PLA synthesis [14]. 

 
The raw input material for the production of PLA is lactic acid, obtained either 

by bacterial fermentation or chemical synthesis. The latter involves the 
hydrolysis of lactonitrile into lactic acid in the presence of sulphuric acid. The 
lactic acid is esterified with methanol to give methyl lactate, which is distilled off 
and hydrolysed with water in the presence of an acid catalyst, resulting in lactic 
acid and methanol. During fermentation, anaerobic bacterial conversion of 
sugars takes place, e.g. by lactic acid bacteria, during which other products (acetic 
acid, ethanol) can be formed in addition to lactic acid [15], [16]. 

 
 Direct polycondensation 

 A relatively inexpensive option is direct polycondensation, bringing about 
PLA of low molecular weight (up to 10,000 Da). The hydroxyl groups (-OH) and 
carboxyl (-COOH) in the lactic acid permit direct conversion of the acid into 
polyester through a polycondensation reaction. Distillation of water is carried out, 
affecting the molecular weight of the product. The conditions required comprise 
high temperature (120 ‒ 200 °C), a catalyst/initiator (often Tin (II) 2-
ethylhexanoate (Sn (Oct2)) or methanesulphonic acid (MSA)) and reduced 
pressure over an extended period [7], [17], [18]. 

 
 Ring-opening polymerization (ROP) 

Applied on an industrial scale, ROP affords superior control over the reaction 
and produces PLA of high molecular weight. ROP synthesis involves the 
polymerization of lactide, cyclic dimer of lactic acid and ring-opening procedure. 
Three reaction mechanisms exist:  anionic, cationic and coordination. The 
predominant of these is the latter, coordination polymerization, especially in the 
context of metal catalysts (e.g. alkoxides), which engender a product of high 
molecular weight with great optical purity. Anionic reactions prevent chain 
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propagation, while undesirable side reactions are likely to occur during cationic 
polymerization. An alternative to utilizing a metal catalyst in lactone ring-opening 
polymerization is application of a lipase catalyst instead. Findings reported in the 
literature describe the formation of PLA of high molecular weight (126 ‒ 270 
kDa) from Candida antarctica or Pseudomonas fluorescens [19], [20]. 

 
The properties of PLA resulting from a reaction are affected by these aspects: 
 The purity of the lactide, as impurities in it diminish both the rate of 

polymerization and molecular weight. 
 The conditions under which the reaction takes place (temperature, the 

catalyst used and time) which lead to racemization, i.e. the formation of 
variable stereoisomers. 

 The content of lactide upon completion of the polycondensation reaction, 
triggering degradation in properties when processing the polymer [7], [20]. 

 
 

Application of PLA 
The primary method for fabricating PLA at present is ROP, as it engenders 

high-molecular-weight PLA suitable for various processing techniques, e.g. 
extrusion, injection moulding and electrospinning. Materials that combine PLA 
with polyethylene terephthalate (PET) or polystyrene (PS) possess similar 
properties and have broad applicability. Figure 2 summarizes the preparation of 
PLA and its applications [21]. 

Referred to as a carbon-neutral life-cycle material, PLA can be produced not 
only from starch, but also food-related waste, such as fish, rice bran, sludge from 
winemaking, soy protein hydrolysates and unpolished, mature rice. It is possible 
to fully recycle PLA at the end of its useful life. Notable in this regard is chemical 
recycling, an alternative means of obtaining the monomer needed for fabricating 
virgin biopolymers. This procedure takes place at the end of the life cycle of PLA 
and contributes to its circular economic value [22], [23]. 
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Figure 2. Schematic diagram of the general preparation of PLA and its most common 

applications [24]. 

 
From an environmental perspective, the PLA biopolymer has a lot to offer. The 

consumption of fossil fuels is lower than for other materials during production, to 
the extent of approximately 25 ‒ 55 %. The carbon dioxide (CO2) released at the 
end point of its life cycle (e.g. by incineration or composting) equals the amount 
of CO2 absorbed by the plants grown that constitute its raw materials. The 
greenhouse gas emissions for PLA (1 600 kg CO2/metric tonne) are sometimes 
far lower than for PET or nylon (4 140 and 7 150 kg CO2/metric tonne, 
respectively). Moreover, less water is needed for its manufacture [25], [26].  

 
 Packaging 

Plastics are primarily employed for this application, and over 335 million 
tonnes per year are produced for this purpose worldwide. The food industry stands 
out in the regard, as up to 40% of packaging takes the form of disposable 
tableware items, including cutlery, foil and bags [27]. 

Biodegradable PLA clearly shows potential as an alternative to petroleum-
based plastics, and it has been widely studied for use in food packaging. Showing 
excellent biocompatibility and good physical properties, such as high strength, 
thermoplasticity, processability and non-toxicity, it is considered by the Food and 
Drug Administration (FDA) as Generally Recognized as Safe (GRAS), paving the 
way for its application in food packaging. It does possess certain drawbacks that 
have limited its uptake in this regard, though, relating to low flexibility, poor 
dimensional stability and ineffective barrier properties [24],[27],[28].  
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Although the European Commission (EC) supports projects and activities that 
encourage the use of green materials, including PLA composites, a question mark 
hangs over the fate of oxo-biodegradable polymers. The core issue relates to 
associated recycling practices, as they usually end up dumped in landfill sites that 
lack suitable conditions for biodegradation, thereby significantly extending the 
duration of decomposition. Poor degradation in a marine environment is another 
reason, as fauna and flora in the oceans are impacted by their presence. A 
legislative regulation is currently being amended in EU that restricts or bans the 
use of disposable products made from biodegradable polymers. This forthcoming 
legislation will stipulate exceptions, yet customers and producers in the European 
market are already being discouraged from manufacturing such polymers [24]. 

 
 Medical applications 

The aforementioned properties, including the possibility of sterilization by 
irradiation, for example, facilitates biomedical applications for PLA. The breadth 
of options in this context is wide, from deployment in regenerative tissue 
engineering to orthopaedic, cardiac and dental items. The first study on the 
biocompatibility of poly (L-lactic acid) (PLLA) in rodents (guinea pigs and rats) 
was published as early as 1966 [29], [30]. Subsequent research has made 
substantial gains, and now PLA-based medical products (pins, rods, studs, screws 
and inserts produced on 3D printers) feature in customized tissue engineering 
scaffolds and rapidly fabricated medical equipment, such as personal protective 
equipment. Other common examples include implants in the form of membranes 
and those for arthroscopic purposes or spinal surgery [31].  

A notable use of PLA is as a pharmaceutical drug-delivery system. The FDA 
has approved fifteen products for direct human contact that employ a biological 
liquid PLA carrier for controlled administration of medication; e.g. anticancer, 
antidiarrhoeal, antipsychotic, antibiotic, anti-inflammatory and antidiabetic drugs 
and opioid antagonists. Controlled adsorption and drug release is facilitated by 
the adjustable pore size and pore connectivity of such PLA-based, solid scaffolds. 
The same principle governs the function of nanofibers, wherein greater thickness 
leads to rise in porosity. Disadvantages exist, however, as PLA exhibits reduced 
cell adhesion and a low rate of degradation, attributed to its hydrophobicity, 
biological inertness. As a result, inflammation can arise in vivo, which occurs in 
the presence of acidic degradation products. Bacterial adhesion, biofilm formation 
or even complications associated with necrosis also occur [32], [33], [34]. 

 
 Agriculture 

Another key sector for PLA application is agriculture. With the aim of 
protecting the environment, it is important to deploy eco-friendly materials 
capable of being placed in soil and aqueous environments safely. In this context, 
PLA could replace high-density polyethylene (HDPE) plant protection structures, 
which serve as a non-chemical means of creating a physical barrier between pests 
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and crops [35], [36]. It has also found favour as part of a PLA with drugs for plant 
treatment system, whereby drugs are gradually released in earth, as well as in 
containers, flower pots and planters [37]. For the most part, such items employed 
in commercial cropping activities (made from polypropylene (PP), polyethylene 
(PE) or PS comprise oil-based, disposable plant containers that excel in durability, 
size and shape. An alternative is to opt for a planter constructed from natural fibres 
(e.g. coconut), though these are structurally inferior to conventional plastic items 
and seep water through their side walls, hence higher costs are incurred when 
growing crops. Plant containers made of PLA have the advantage of possessing 
similar properties (thermal and mechanical) to petroleum-based plastic units, 
while also sharing the same infrastructure for manufacture by injection or blow 
moulding. Moreover, PLA is non-toxic and biodegradable. A downside of the 
material is poor biodegradation in soil, with the effect of slowing down the growth 
of plants. The roots are unable to penetrate the walls of the PLA container and 
cannot take in sufficient moisture and nutrients. In order to combat this issue, 
flower pots with modifications in their walling have been designed that permit 
parts to break off easily, thereby facilitating root growth and the action of 
biocomposites for accelerated decomposition of the container [35], [38], [39].  

 

 Automotive 
The automotive industry has been gradually veering away from parts made of 

metal and metal alloys and often replacing them with light plastic ones instead. 
Manufacturers state this decision has been taken in order to reduce the weight of 
vehicles so their fuel consumption is lower, thereby cutting the emission of 
greenhouse gases. They also place emphasis on safety and protecting the 
environment, hence consideration is paid to the use of biodegradable polymers, 
especially PLA. Not only are the internal parts of vehicles now made of plastic, 
but also external elements, such as bumpers, body panels, laminated safety glass, 
mouldings and a host of others, accounting for approximately 18% of the weight 
of a vehicle on average. The most commonly employed polymers in the 
automotive sector comprise the following: PP, in items like bumpers and fuel 
systems; polyamide (PA), in seats and electrical components; poly (methyl) 
methacrylate (PMMA) and polyurethane (PUR), for lighting elements; and 
polycarbonate (PC), in bumpers, dashboards and trim sections for interiors and 
exteriors, usually in combination with acrylate butadiene styrene (ABS) [40], 
[41].  

Toyota was the first to adopt PLA, in 2003, followed by Ford and Mazda, which 
applied the material in doors and other interior parts in 2006. Deployment has 
since gone beyond upholstery components and ceiling mat surfaces, to encompass 
(in combination with PP) interior trim, air filters, engine covers and headlight 
elements. However, the applicability of the polymer in the automotive sector is 
hindered by certain disadvantageous mechanical properties, such as brittleness, 
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degradation at high temperatures and humidity and low chemical resistance [42], 
[43]. 
 

 Textiles 
The global trend in the textile industry is also to promote an image of being 

green marketing by returning to a natural, ecological approach. There has been a 
rise in the quantity of textile-related waste, i.e. polymeric materials consisting of 
synthetic fibres of polyester, nylon and polypropylene. Approximately one 
million tonnes of fabric for garments are produced in Europe annually, in which 
by spinning the yarn comprises natural fibres (e.g. cotton or wool) combined with 
synthetic fibres. Such combinations of fibres possess heightened properties but 
complicate recycling activities [44]. 

PLA fibres offer clear advantages over alternatives in textile applications. 
Moisture recovery is lower and moisture transport more rapid, similar to 
polyester. For example, even the process for manufacturing rayon generates 
toxins that present a threat to the natural environment. PLA fibres are produced 
in a non-toxic manner, in contrast, and retain a level of biological resistance, in 
addition to exhibiting good parameters in relation to fire retardation and UV 
resistance. Maintenance of clothing containing PLA fibres presents an issue, 
though, as such materials have a low glass transition temperature and poor 
impediment of hydrolysis, restricting their exposure to temperature and pH. In 
this regard, ironing garments at a high temperature risks damaging the fibres and 
causing the fabric to harden. Another limitation concerns washing conditions, 
recommended at temperatures of 35 ‒ 55 °C and pH 8 or 10, and subsequent 
drying should not involve the use of a tumble dryer [44], [45].  
 

 Further applications 
PLA shows potential as a conductive fibre for 3D printing purposes. Neat PLA 

serves as an effective insulator in applications involving low voltage and 
temperature. This makes it ideal as a covering or insulation material for double-
extruded 3D prints when used in conjunction with low-resistance conductive 
PLA, Nylon, PC or ABS fibres. Composites containing a conductive powder, 
based on carbon or metal (e.g. brass and copper), predominate in this context. 
Conductive PLA is a composite comprising a fundamental  matrix of 
thermoplastic with black carbon particles [46], [47].  

Construction is another area where efforts are being made to create sustainable 
buildings that impact the environment to a lesser degree. PLA composites have 
been employed as thermal insulators, within the reinforcements of partition walls 
and as flame-retardant, non-woven fabrics, the latter being a composite 
supplemented with ammonium polyphosphate and lignin [24], [48], [49]. 
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Modifications to the PLA matrix 
PLA is characterized by properties that resemble those of conventional 

petroleum-based plastics, so has the potential to supersede the latter. This is 
precisely why the polymer is commonplace today in items such as lunchboxes, 
bags, flower pots and non-woven fabrics. On the other hand, the SWOT analysis 
(strengths, weaknesses, opportunities, and threats) reveals (Fig. 3) that PLA also 
has undesirable properties, e.g. brittleness, poor melt strength and reduced 
stability at high temperature. Possible solutions exist to rectify these issues, 
however, including modifying PLA through techniques like copolymerization, 
blending, compounding and supplementation with additives [20], [50]. 

 

 
Figure 3. SWOT analysis of biodegradable polymers in packaging [51], [52], [53]. 

 

 Copolymerization 
 
PLA modification methods are generally divided into chemical and physical 

forms. Chemical modification primarily consists of introducing various functional 
side groups (e.g. carboxyl, amine and hydroxyl) [54]. Under direct PLA 
polymerization conditions, it is possible to add in monomers that attach to the –
OH or –COOH end groups.  

Ring-opening polymerization produces a cyclic monomeric lactide, which 
undergoes coordination ring-opening polymerization upon reaction with a 
catalyst. It is assumed that propagation takes place by coordination of the 
monomer with active substances, and then by inserting the monomer into the 
metal-oxygen bond by rearrangement of electrons. The reaction is terminated by 
hydrolysis to form a hydroxyl end group with functional alkoxy-substituted 
initiators. Macromers with active end groups are also produced that assist in the 
fabrication of high-molecular-weight polymers during post-polymerization 
reactions [55]. 

 Intermolecular transesterification reactions modify the polylactide sequences, 
preventing the formation of block copolymers. The resultant products comprise 
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PLA copolymers of different types that vary structurally and in their given 
properties [55]. 

 Significantly supporting the strength, toughness and hydrophilic, controlled 
degradable properties of PLA, this process concurrently gives rise to a multitude 
of new macromolecular architectures (linear, branched, stellar and dendritic) 
which emerge. The most common of these are the copolymers of poly(lactic-co-
polyethylene glycol(PLA-co-PEG) and poly-lactide-co-poly-ε-caprolactone 
(PLA-co-PCL) (see Fig. 4), as well as a type of poly(lactic-co-glycolic acid) 
(PLGA) [20]. Most of the copolymers mentioned herein possess a linear structure, 
yet specific branched structures also exist, e.g. star-shaped forms. Only a few 
reports in the literature describe the synthesis of star-shaped PLA by the 
polycondensation method. Such star-shaped polymers usually exhibit relatively 
low molar masses (Mn < 4 700 g∙mol−1), and these have attracted attention in 
various spheres of chemistry, biochemistry and engineering. Containing more 
chain ends than linear counterparts with the same molar mass, the greater 
quantities of terminal groups in them have the effect of heightening solubility and 
inducing differences in hydrodynamic volume. During the polycondensation of 
D, L-lactic acid with pyrimidine-2,4,5,6-tetramine (PTA), a star-shaped form of 
PLA was obtained (Fig. 5), which shows potential as a polymeric flame-retardant 
material [56].  
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Figure 5. Star-shaped PLA [56]. 

 
Copolymerization facilitates the formation of block polymeric structures, i.e. 

macromolecules composed of two or more chemically different chains connected 
by covalent bonds. A variety of molecular architectures can be generated, e.g. AB 
diblock, ABA triblock and multiblock copolymers, which differ in structure and 
method of synthesis. The most common are diblock and triblock forms induced 
by polyethylene glycol (PEG) or poly(glycolic acid) (PGA). Such copolymers are 
synthesized with the aim of increasing the hydrophobicity of PLA or instigating 
faster degradation, properties desirable for drug delivery applications in the 
human body [50], [58], [59]. 

Another chemical method of modification involves grafting a polymer chain 
onto a solid surface. Two techniques for this currently exist, referred to as 
“grafting from” and “grafting to”. In the “grafting to” method, the pre-synthesized 
terminal functional chains of PLA are chemically linked to another system via its 
amino or hydroxyl functional groups, whereas, in the “grafting from” method, 
ROP of the lactide monomer is performed in the latter from functional groups. 
The nature of the changes exerted in properties depends on the type of graft 
monomer utilized, the percentage and method of grafting, and the distribution of 
the grafted chain in the parent polymer. Polylactide graft copolymers are formed 
in combination with chitosan, cellulose, starch, PEG, vinyl-based polymers, 
lignin, dextran, methyl methacrylate, maleic anhydride and graphene oxide [20], 
[60], [61]. 
 

 PLA blending 
Categorized as physical modification, blending primarily consists of altering 

the mechanical, optical and thermal properties of PLA. Supplementation with 
plasticizers, nanomaterials and solid fillers is possible during the procedure, and 
changes in orientation can also be made. It gives rise to mixed systems with 
different structures and properties suitable for numerous applications. 

The miscibility of mixtures is governed by the law of thermodynamics, wherein 
the free energy of mixing has to be negative. An aspect of this is that bio-based 
materials containing substances such as PE and low density polyethylene (LDPE) 
are formed, which enhance the mechanical properties of polylactide in terms of 
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elongation and reduction in brittleness. An economical and convenient strategy, 
blending PLA with other polymers improve the toughness and elasticity of the 
resultant material. For instance, adding the polymer polypropylene carbonate 
(PPC) into such a mixture has the effect of increasing elongation from 6% (0 wt%) 
to 173% (30 wt%) [62]. 

Bio-based materials suffer from the disadvantages of poor degradability and 
recyclability, though. A recent trend in research has been to prepare completely 
biodegradable materials containing PLLA, PDLA, hyaluronic acid (HA), PCL or 
PHA, with the intention of tackling these drawbacks. Other examples include 
elastomers, thermoplastic starch, PEG and tributyl citrate (TBC). However, in the 
case of low-molecular-weight plasticizers such as PEG or TBC, phase separation 
of the plasticizer occurs in proportion to the given temperature. It only takes a few 
days for an unwanted change to occur in the packaging, in connection with 
plasticizers being released onto the surface of the film. This impacts the foodstuffs 
within the packaging, not only since the plasticizers migrate in this way, but also 
because alterations transpire in relation to the barrier and shape of the material 
[9], [13], [20]. 

A targeted improvement in the thermal stability of PLA can be obtained by 
mixing two of its different optical isomer types, improves the extent of 
crystallization and consequently improving the heat resistance of PLA. 

An alternative means of modifying PLA involves the preparation of 
composites, whereby two or more disparate components are combined. The 
matrix constitutes the main part of the binder, evenly distributing forces 
throughout the composite. It additionally contains reinforcing fibres and particles, 
which not only increase the stiffness and tensile strength of the matrix, but also 
contribute to reduction in the costs of the final product and enable alterations in 
physical, rheological, optical or other properties [9], [63]. Since an 
environmentally friendly system is still preferred, supplementary components of 
natural origin are incorporated in this kind of widely applicable PLA 
biocomposite, which preserve the properties of the given biomaterial [64]. 

The most commonly applied plant-derived bio-fibres in biocomposites with 
natural, organic reinforcements such as flax, hemp, jute, sisal, kenaf and coir, 
generally classified as bast, leaf or seed fibres. Synthetic examples include carbon 
fibres and tubes or graphene, which are capable of maintaining desirable thermal, 
conductive and mechanical properties, albeit at a high price. Inorganic 
biocomposites are based on minerals such as bentonite, talc, calcium carbonate, 
barium sulphate, montmorillonite, silicates and mica. Supplementation is possible 
with metal oxide nanoparticles, e.g. iron(III) oxide (Fe2O3), aluminium(III) oxide 
(Al2O3), zinc oxide (ZnO) and titanium(III) oxide (Ti2O3). Inorganic 
reinforcements like these support the crystallinity of PLA, while also enhancing 
antibacterial, barrier and thermal properties; however, heightened abrasiveness 
and poor dispersibility may be evident, too [63], [65], [66]. Table 1 details popular 
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fillers known to influence the behaviour of PLA and the properties associated with 
them. 
 

Table 1. Examples of suitable fillers that form PLA biocomposites. 

Filler Observed effect Reference 
Bio-fibres 

Enhanced mechanical properties 
[64] 

Chitin [67] 
Starch Accelerated degradation  [68] 
Nisin 

Antimicrobial agents 
[69] 

Chitosan [70] 
Clay Enhanced thermal and mechanical 

properties 
[71] 

Silicates [72] 

CaCO3 
Heightened crystallinity and 
enhancement in mechanical properties 

[73] 

Metal oxides Antimicrobial agents [74] 
 
 

 Modification of PLA by additives 
Lastly, supplementing PLA with additives results in alteration in the properties 

of the material. A wide assortment exists for this purpose, the most common of 
which rank as antioxidants, compatibilizers, heat stabilizers, plasticizers, dyes and 
pigments, blowing agents, biocides, flame retardants, hardeners or aroma/smell 
modifiers, and so on [75]. The prevailing forms of additives applicable for PLA 
are detailed below. 

Additives include a) antioxidants as preservatives used in food, but also in 
polymers. Contribute to the inhibition or deceleration of oxidation reactions 
caused by free radicals, such as singlet oxygen, superoxides, peroxyl radicals, 
hydroxyl radicals and peroxynitrite. Although these tend to slow down the ageing 
process of the given polymer, consequent changes in its properties limit 
application somewhat. In polymers, the main representatives are butylated 
hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), which have 
carcinogenic effects [76], [77].  

Dyes referred to as b) colourants are employed in a wide variety of technical 
and industrial applications, including in lasers, organic light-emitting diodes 
(OLEDs), liquid crystal displays (LCDs), optical data storage and fluorescent 
labels. Widely used representatives among the large number of dye categories are 
triphenylmethane, azo, anthraquinone, perylene and indigoid dyes. Azo is 
frequently applied in PLA, since all colour shades are available and it has proven 
suitable for numerous applications, e.g. in dyeing fibres and food or drug 
packaging [78], [79].  

c) Compatibilizers are effective at modifying the properties of 
morphologically immiscible polymer mixtures and improving their manipulation. 
They create adhesion between phases, reduce interfacial tension and stabilize 
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morphology. Comprising two constituent parts, both of these prove compatible 
with one or the other of two polymers undergoing compatibilization. They are 
either classified as reactive, i.e. those that combine with polymers, or non-
reactive, which are miscible with polymers. A reactive compatibilizer performs 
the function of an acrylic, for instance, when maleic anhydride or glycidyl 
methacrylate is grafted onto a polyolefin. Non-reactive compatibilizers are 
copolymers of ethylene-ethyl acrylate, ethylene-butyl acrylate and ethylene 
methacrylate [80], [81]. A styrene-acrylic, multifunctional, epoxy copolymer is 
usually applied as a chain extender to increase the thermal stability of polyesters. 
The latter type constitutes a compatibilizer for PLA to a greater extent in 
PLA/PBAT blend systems in the fabrication of packaging or similar commodity 
items [82].  

Added to plastics to provide protection against thermal stress during the 
processing stage of a product, as well as in its subsequent storage and use, d) heat 
stabilizers function as thermal stabilizers which safeguard polymers from the 
effects of chemical degradation at high temperatures, in addition to combatting 
decomposed products arising from oxidation. Heat stabilizers are primarily 
employed industrially in the production of polyvinyl chloride (PVC). Another 
important application concerns recycled materials, wherein they inhibit 
degradation and promote the restabilization of former plastic waste. Notable 
examples include metallic salts (barium-zinc and calcium-zinc) and 
organometallic (organotin) and non-metallic organic stabilizers (bisphenol-type 
epoxy resin and hydrolyzed polyvinyl) [83], [84]. Polycarbodiimide is 
particularly suitable for PLA, which reacts with the carboxyl group present to 
initiate chain formation and thus hamper the thermal degradation and hydrolysis 
of PLA. Common products manufactured in this way include containers, labels 
and forms of textile [85]. 

e) Plasticizers are low-volatile organic substances added to plastic compounds 
to enhance certain qualities, such as flexibility, extensibility and processability. 
They induce reductions in the melt viscosity, second-order glass transition 
temperature and modulus of elasticity of a polymer. Physical interaction with the 
polymer leads to release of the strength of intermolecular forces between the 
macromolecules, lending the macromolecules or related segments greater 
flexibility. Primary plasticizers exert the effect of gelling the polymer within the 
normal range of processing temperatures, but should not be excluded from the 
resultant plasticized material. Secondary plasticizers, which exhibit a lesser 
capacity for gelation and limited polymer compatibility. The most commonly 
utilized plasticizers comprise esters of phthalic acid (dioctyl phthalate). 
Emollients also exist, derived from adipic, sebacic and azelaic acids esterified 
with linear or branched monofunctional alcohols that are short to medium in chain 
length; e.g. dioctyl adipate (DOA; bis(2-ethylhexyl) adipate), diisononyl adipate 
(DINA) and di(n-butyl) sebacate (DBS) [83],[84], [86].  
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Plastic made with f) blowing agents has a foam-like appearance. Benefiting 
from reduced weight for convenient transportation, such materials are used as 
packing for the protection of items and as thermal insulators. Materials referred 
to as polyurethane foam (PUR) and polyisocyanurate foam polymer, and to a 
lesser extent extruded PS or phenolic foam, constitute important industrial 
commodities. There are two types of blowing agents, chemical blowing agents 
that release the blowing agent through a chemical reaction, or physical blowing 
agents, i.e. blowing agents that are released by evaporation or pressure release. 
The former of the two are either solid organic or inorganic compounds that emit 
a propellant gas, usually N2 and/or CO2, at a specific processing temperature. 
Among the best known are the compounds of azodicarbonamide (ADC), 4,4'-
oxybis(benzenesulfonyl hydrazide) (OBSH), 5-phenyltetrazole (5-PT) and 
sodium bicarbonate [84]. PLA can be produced as foam in several ways like PS 
(extrusion foaming, foam injection, bead foaming), with supercritical carbon 
dioxide attracting the most attention at present [87]. The stability and uniformity 
of such foam is enhanced by adding fillers that function as nucleating agents at 
the beginning of the process. Today, these PLA-based foam materials are 
gradually replacing PS foams alternatives since they represent an 
environmentally-friendly option in packaging, including of foodstuffs. The 
portfolio of commercial insulation materials for buildings has also broadened 
through their inclusion, while combinations of PLA and microcellulose fibrils 
(MCF) have been devised  [88].  

Eco-friendly additives applicable for use with PLA exist, too. Examples include 
the biodegradable emollients of citrate ester, ethyl acetate and triethyl citrate 
(TEC). These plasticizers integrate well with PLA via specific molecular 
interactions that arise through intermolecular hydrogen bonds, positively 
affecting the qualities of the material by raising the rate of crystallization and 
enhancing mechanical properties [89], [90].  

Noteworthy alternatives are types of epoxidized vegetable oil and the epoxide 
esters of fatty acids (also called epoxide acids), which function as non-gelatinizing 
secondary plasticizers benefiting from the additional quality of migration 
resistance. They also have the purpose as heat stabilizers. Epoxidized soybean oil 
is widely deployed in industry as a stabilizer and plasticizer in PVC matrices. A 
highly common procedure to engender the epoxidation of vegetable oils is to 
utilize organic peracids in combination with mineral acids or enzymes as 
catalysts. A reaction takes place between the organic peracids and unsaturated 
fatty acids, with an oxygen atom being subsequently added into the double bonds 
(C=C) alongside the formation of epoxide groups (or oxirane rings) in the 
molecular structure of the fatty acid [91]. Vegetable oils show potential as 
renewable plasticizers since they are readily available, biodegradable and have 
low toxicity, making them suitable for PLA. A paper by Arkadiusz Zych et al. 
(2021) described adding a type of epoxidized soybean oil methyl ester into PLA 
to discern its suitability as a plasticizer in packaging applications. An 



22 
 

improvement in toughness and elongation at break was reported therein, as well 
as a reduced glass transition temperature, yet identical barrier properties were 
retained [92].  

Consequently, we can also meet with additives exist based on essential oils 
(thymol, cinnamon) that have antibacterial properties, as do natural colourants 
from plants (turmeric, beetroot). Decelerating the ageing process of a PLA 
material is also possible with the aid of an antioxidant. For instance, the 
widespread utilization of BHT, a common synthetic compound, could be 
superseded by employing polyphenols from cinnamon, coffee or cocoa instead 
[20], [93], [94]. 
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1.2. Degradation of PLA 

One of the main properties of PLA, which is often disadvantageous, is its 
tendency to undergo degradation already during processing, especially when the 
material is not dried. This degradation leads to loss of properties. This degradation 
mechanism occurs naturally by the simple hydrolysis of ester bonds. Upon 
complete degradation, PLA decomposes into water, carbon dioxide and biomass. 
The rate of degradation is affected by biological, physical and chemical factors, 
including pH, humidity, oxygen, the isomer ratio, the temperature of hydrolysis 
and shape and size of the material. Other aspects in this context include 
crystallinity, porosity, purity, morphology, the presence of terminal carboxyl or 
hydroxyl groups, crosslinking and resistance to electromagnetic radiation, 
bacteria and the inorganic filler substances deployed. Increase in the concentration 
of the carboxylic acid end groups in the degradation medium becomes a self-
catalyzing, autonomous process. Degradation in amorphous regions is also 
preferentially accelerated, rather than in crystalline ones [95], [96]. 

 
 Thermal degradation 

PET is one of the most common forms of thermoplastic polyester and boasts a 
wealth of applications. Consumer PET has become a global problem due to the 
immense volumes of it produced and the complexity involved in associated 
recycling and disposal processes, which is subject to thermal degradation even at 
high temperatures (300 – 1000 °C) and low pressure (1.01 bar). Products are 
formed at such temperatures, e.g. carbon monoxide (CO), CO2, ethylene-
acetylene, acetaldehyde, benzene, benzoic acid, vinyl benzoate, divinyl 
terephthalate, acetophenone and p-acetyl vinyl benzoate. Analogous to PET, PLA 
degradation typically occurs either by hydrolysis, thermal oxidation or photo-
oxidation [97], [98]. The thermal degradation of PE takes place at high 
temperatures during pyrolysis. PE, together with PP and PS represent candidates 
for creating good calorific values and liquid oil yields. However, toxic gases are 
produced during incomplete combustion, much like other types of solid municipal 
waste. These gases contain dioxins (C4H8O2), CO, hydrogen sulphide (H2S), 
polycyclic aromatic hydrocarbons (PAH) and furans (C4H4O), and can cause 
serious health problems [99].  

Thermal degradation is a highly controlled process that occurs in PLA during 
processing. It not only affects mechanical properties, but also reduces the ability 
of PLA to recycle. Structural changes in PLA become evident at Tg (60°C), which 
modify the mobility and volume of the polymer chains, but. The primary 
degradation temperature at processing temperature equals ca 190°C, though, 
when its molecular weight decreases by 70% in melt spinning and injection by 14 
‒ 40 %. At 230°C or less, the cleavage of the polymer backbone in PLA mainly 
results from non-radical intramolecular transesterification, contributing to the 
formation of oligomeric rings, acetaldehyde and oxide units as by-products. At 
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270°C or above (not considered normal processing temperatures), cis-elimination 
and radical reactions occur, which promote the further development of carbon 
dioxide and methyl ketene. Thermal decomposition is affected by several external 
factors, e.g. residual metal catalysts, the processing temperature, moisture 
content, oxygen environment, duration of exposure to natural weathering and the 
surfactant present in the reinforcements. The thermal degradation of PLA is 
initiated by hydrolysis associated with moisture during processing. Prevention of 
this could involve supplementation with a chain extender, or precipitation and 
acid treatment to remove monomers, oligomers and residual catalysts from the 
matrix. Antioxidants typical for conventional polymers are also applied to stop 
degradation [57], [100], [101]. 

 
 Photodegradation 

In the natural environment, PET can be degraded not only by thermal oxidation, 
but also by hydrolytic cleavage and photo-oxidation initiated by UV light. 
However, slow photooxidation in the environment most often occurs, and then 
they are accompanied by others. In addition, these processes are accelerated in an 
acidic and humid environment. Other representatives of frequently used polymers 
include polyolefin PE, which is inert and decomposes slowly in the natural 
environment (polyethylene lacks chromophores). PE-based films usually contain 
the antioxidant BHT, and this prolongs the rate of degradation. Furthermore, the 
bonds of this polymer are exclusively C‒C, which are not easily hydrolyzed and 
resist photo-oxidative degradation. Small amounts of vinyl or vinylidene groups 
may be present in the material, however, and these are easily oxidizable. The free 
radicals formed during decomposition further react with oxygen to form peroxy 
radicals (RCOO·) followed by peroxides, which are converted into compounds in 
the decomposition process that support the decomposition and release of 
plasticizers and other additives into soil and water [97], [102].  

This degradation of PLA normally occurs upon exposure to outdoor conditions. 
It is primarily strong solar radiation (around 245 – 400 nm), which includes 
invisible UV radiation of lower wavelengths and higher energy. In general, the 
carbonyl groups (C = O) in the PLA molecule absorb UV radiation of around 220‒
280 nm due to the transition of n-π* electrons, and this energy can give rise to a 
chemical reaction in which double bonds of C‒C and ‒COOH groups form 
through long-term exposure to UV radiation. Another possibility is the formation 
of anhydride groups or photolysis of the ester bond on the backbone, or the 
formation of hydroperoxide derivatives and their subsequent degradation into 
compounds containing carboxylic acid and diketone end groups. Figure 6 
summarizes the products of both mentioned PLA degradation mechanisms. UV 
radiation also affects the mechanical properties of PLA undergoing 
photodegradation, much the same as in thermal degradation. Specifically, in this 
regard, tensile strength induces a reduction in the integrity of the polymer and 
eventually turns it into a brittle, white solid. Furthermore, changes in the Mw of 
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the polymer, reduction in stress and stress at break also take place. Heightened 
temperature and relative humidity (RH) in combination with UV radiation 
additionally cause significant reduction in the mechanical properties of the 
polyester and accelerate its degradation. Prolonged exposure to UV radiation 
impacts the ability of such materials to biodegrade, though [100], [103], [104]. 
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Figure 6. Simple schematic diagram of the photo-oxidation and thermal degradation 

of polylactic acid, alongside products typical of these processes (R and R1 are polymer 

chains of different lengths) [98].  

 
These degradation processes can be split into two main groups - abiotic 

hydrolysis and biodegradation. Abiotic and biotic processes often follow on from 
each other, with abiotic degradation converting larger molecules into smaller 
ones, which are subsequently mineralized by microorganisms and enzymes.  
 

 Abiotic hydrolysis of PLA 
Abiotic hydrolysis consists of degradation by physical factors, especially in an 

aqueous medium where hydrolytic cleavage to poly (α-hydroxyl) esters occurs. 
At temperatures of at least 30°C, slow hydrolysis of the ester bonds in PLA 
transpires, leading to the release of smaller oligomers and monomers (Fig. 7). The 
rate of degradation depends on the crystalline phase of the polymer. Degradation 
of semi-crystalline PLA in an aqueous medium takes place in two steps. The first 
phase begins with the diffusion of water into the amorphous areas, which are less 
organized and allow water to penetrate more easily. The second phase begins once 
most of the amorphous regions have been degraded, and continues to the centre 
of the crystalline domains. If the diffusion of water is faster than the hydrolytic 
reactions, however, hydrolysis occurs randomly throughout the polymer. This 
aspect leads to overall and uniform loss in molecular weight. The resulting 
oligomers and monomers diffuse outwardly and cause gradual erosive effects 
until a balance between diffusion and chemical kinetics is reached [57], [98], 
[105], [106], [107]. 
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Figure 7. Hydrolytic degradation of PLA in the presence of water [108].  

In large PLA chain, though, carboxylic acid groups are concentrated in the 
polymer at the end. This gives rise to a pH gradient (neutral) with consequent 
decelerated degradation of the surface of the polymer matrix compared to the 
centre. A level of critical osmotic pressure has to be created in the centre of the 
matrix first, followed by surface degradation [103]. 

The effect of pH is crucial in the case of PLA degradation. Exposure to an 
acidic environment brings about accelerated degradation via autocatalysis. The 
rapid cleavage of the chain at low pH catalyses the formation of monomers, which 
are carboxylic acids (lactic acid), leading to accelerated degradation and decrease 
in pH. Mention has to be made of the molecular weight of the polymer in this 
context [98]. 

 
 Biodegradation  

As previously mentioned, PLA is a biodegradable polymer. The distinction 
between being “biodegradable” and “biodegradable plastic” has to be clarified in 
legislation. ASTM D883-12 determines the difference between these terms. 
Decomposed plastic is defined as undergoing a significant change in its chemical 
structure under specific environmental conditions, leading to the loss of some 
properties. This standard also defines biodegradable plastic as plastic material 
with a degradation mechanism induced by the actions of naturally occurring 
microorganisms such as bacteria, fungi and algae [109], [110]. 

PLA currently complies with this legislation and it is possible to compost it, 
although no composting facilities have yet been set up for this purpose. In 
connection with degradability in uncontrolled conditions, it takes far longer than 
under composting conditions, for example. The literature shows that simulations 
were performed at low temperatures by anaerobic biodegradation. The 
experiments were carried out under accelerated, optimal landfill conditions, and 
biodegradation was observed over a time frame of 100 years. These tests were 
performed at 21°C (390 days) and 35°C (170 days). The results showed that in 
the case of semi-crystalline PLA, a slight presence of biogas was recorded at up 
to 35°C, also appearing in small amounts at the same temperature in amorphous 
PLA [111], [112]. 

Recovering these polymers through recycling would be beneficial from an 
environmental perspective, but this does not always prove advantageous in terms 
of energy consumption. Therefore, it is currently preferable to compost PLA at 
the end of its life cycle. The phase of initial hydrolysis is crucial to biodegradation 
under the given conditions, which follows microbial and enzymatic activity in 
tandem [113].  
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In the case of PE, which appears to be an inert polymer with respect to 
biodegradability, as a consequence of the minimal reactivity of the C ̶ C bond in 
the backbone and its high molecular weight. It is in widespread use, nevertheless, 
in all sectors from the food industry to agriculture. Buried in landfills in relatively 
high humidity, it undergoes a slight loss in weight over a period of 12  ̶  32 years. 
It exerts an impact against soil and water, though, causing deterioration in the 
quality of earth and nutrients, in addition to representing a threat to animals. 
Processes exist that can improve the microbial degradation of PE, thankfully. A 
well-known method involves nitric acid, which supports the fragmentation of PE 
films or thermo-UV pretreatment. Special species of microorganisms are also 
needed, belonging to genera like Pseudomonas, Ralstonia, Stenotrophomonas, 
Klebsiella and Acinetobacter; in addition to Rhodococcus, Staphylococcus, 
Streptococcus, Streptomyces, Bacillus and several genera of fungi including 
Aspergillus, Cladosporium, Fusarium, Penicillium and Phanerochaete. Even 
under favourable conditions, however, the extent of decomposition only reaches 
1  ̶ 3 % in 40  ̶  60 days. It is also important to ensure suitable abiotic factors that 
increase efficiency, which is also negatively affected by any additives present in 
PE. Recent research on biodegradation has observed the effects of larvae of 
Galleria mellonella and Plodia interpunctella. These worms have the ability to 
metabolize beeswax, which possesses similarities to PE. It was found that 
approximately 100 G. mellonella worms caused weight within 12 hours by means 
due to mechanical combined with enzymatic digestion. It is not possible to comply 
with composting limits in relation to PE, unfortunately, and biodegradation in 
natural conditions takes place very slowly. In addition, the quality of the compost 
deteriorates and endangers the creatures in the immediate environment of polymer 
particles that bind to each other, e.g. polychlorinated biphenyls [114], [115].  

Similar issues are posed by PET. Decisive factors in this regard comprise the 
flexibility of the polymer chain, crystallinity and surface hydrophobicity. 
Research has revealed that it is more efficient to utilize hydrolase enzymes for 
cleavage of the ester bonds. These enzymes contain cutinases that exhibit 
hydrolytic activities for both insoluble triglycerides (typical substrates for lipases) 
and soluble esters (substrates for esterases). Other known microorganisms 
boasting such degradation action include the filamentous fungi Fusarium 
oxysporum and Fusarium solani. One species of the genus Ideonella, namely I. 
sakaiensis 201-F6, shows promise and possesses a unique capacity for degrading 
PET as the main source of carbon and energy for its growth. While PET 
decomposition by hydrolases rarely occurs in microbial environment, it does 
serve as an inspiration for those in biotechnology [116], [117].  

 
 Microbial degradation of PLA 

Microbial activity against PLA commences once a polymer is fragmented into 
oligomers and has a molecular weight of ca 10,000, a process accompanied by 
biofilm formation on the surface of the material. The fragmented molecules are 
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then mineralized in compost to CH4, CO2 and H2O. This process is amplified by 
a higher decomposition temperature (40 ‒ 60 °C). The best environment for PLA 
biodegradation is provided at industrial composting plants. They function at the 
optimal temperature (58°C) and humidity (70%), thereby heightening the activity 
of aerobic microorganisms. Under these conditions, it is possible to observe loss 
in molecular weight over 17 days from 150 to 4.5 kDa [118]. Constituting the 
most abundant and recognized forms of microbial life in soil, are bacteria that are 
also able to degrade PLA, gram-positive bacteria of the order Actinobacteria.  One 
of a few microorganisms with the potential to degrade the polymer, 26 species in 
11 genera are known to exist. Most of these Actinobacteria belong to the family 
Pseudonocardiaceae, other taxa include members of the family 
Micromonosporaceae, Streptomycetaceae, Streptosporangiaceae and 
Thermomonosporaceae. The dominant form of PLA-degrading Actinobacteria 
comprise members of the genus Amycolatopsis (strains HT-32, K104-1, HT-41 or 
orientalis) of the order Pseudonocardiaceae. Members of the genus 
Amycolatopsis are commonly found in dry soils, and discerned as the originators 
of secondary metabolites that could serve further biotechnological applications. 
Other known bacteria include Bacillus brevis, Bacillus stearothermophilus and 
Geobacillus thermocatenulatus [119],[120],[121]. 

Besides bacteria, fungi also have the potential to degrade PLA. Fungi help 
reduce the hydrophobicity of the polymer by forming various chemical bonds, 
such as carbonyl, carboxyl and ester functional groups. Characterized by their 
wide distribution and strong reproductive ability, fungi support the conversion 
and circulation of substances. Some are able to utilize polymer residues as a 
source of carbon. Very few fungal strains possess the capacity to biodegrade PLA, 
though. Fusarium moniliforme and Penicillium roqueforti are well-known for 
their ability to assimilate lactic acid and the racemic oligomeric products of PLA, 
but no degradable action has been observed against the polymer itself. 
Tritirachium album or viride is the only fungus ever reported to degrade PLA. Its 
efficiency increased after adding gelatin to the culture medium. The worst 
environment for PLA decomposition is seawater for reasons of low temperature 
and the presence of few bacteria. This reinforces the need to switch to PLA 
copolymers instead on an industrial scale, and adding a substance such as glycolic 
acid (PLGA) speeds up decomposition even more, with samples showing a 
complete loss of mass after just 270 days [112], [122]. 

 
 

 Enzymatic degradation of PLA 
Biodegradation constitutes a more complex process as it involves enzymatic 

activity by microorganisms. An optimal presence of cations and coenzymes 
synthesized by microorganisms is also required. Enzymes help accelerate the 
degradation of PLA, and a wide range of them exists, e.g. lipases, serine proteases, 
cutinases, carboxylesterase and esterases. Enzymes function as biocatalysts and 
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attack amorphous regions first, followed by crystalline ones. Enzymatic activity 
is environmentally dependent, and lipases are highly versatile in this regard as 
they possess heightened resistance to external environments. They are also 
capable of synthesizing numerous substrates with high stereospecificity and 
enantioselectivity. The origins of lipases applied in polyester synthesis tend to be 
mammalian (porcine pancreatic lipase), fungal (Candida antarctica lipase B) or 
bacterial (Pseudomonas cepacia). Lipases are only able to catalyse PLA 
degradation to a limited extent, however, whereas proteinases seem more suited 
to this purpose [123]. 

The first report on enzymatic degradation by PLA proteinase K from 
Tritirachium album was published in 1981. Proteinase K prioritize the hydrolysis 
of ester linkages connecting L-lactyl units over D-lactyl ones. Another 56 
commercially available proteases have appeared in the year since then. The most 
suitable of those appears to be alkaline, which produces a considerable amount of 
lactic acid from PLA, although its application is restricted for reasons of 
sensitivity to the natural environment. It is possible to hydrolyse PLA in two steps 
with the aid of an important enzyme - serine protease, a process which transpires 
in the presence of actinobacteria of the genus Amycolatopsis. In the first step, 
enzymes from microorganisms adhering to the surface of the PLA are released, 
and the substrate binds to the surface of the serine protease at the active site. The 
second step involves, cleavage of the bonds in the PLA occurs via a reaction of 
catalytic amino acids (Ser, Asp and His) in the presence of water [120], [124]. 

Lipases as well as polyurethane esterase have been investigated for the 
degradation of low-molecular weight PLA. A few enzymes have also been 
discovered with the capability of degrading high-molecular weight PLA, a recent 
group comprising purified enzymes. These enzymes are derived from the bacteria 
Amycolatopsis orientalis ssp. orientalis and are named PLAase I, II and III. Under 
optimal conditions (50 ‒ 60 °C and pH 9.5 ‒ 10.5), PLA was observed to degrade 
by 80% within 8 days; the high-molecular-weight, transparent, PLA film under 
test constituted the sole source of carbon [125], [126]. 
 

 Biodegradation mechanisms of other biodegradable polymers 
In this work, it is also appropriate to mention the general mechanism of 

degradation of other biodegradable polymers such as polycaprolactone (PCL), 
polybutyl succinate (PBS) and poly-3-hydroxybutyrate (P3HB). All these 
aliphatic polymers are dominated by biodegradability, which is initiated by 
random chain scission and erosion, for which both abiotic and biotic hydrolysis is 
responsible [127]. 

Due to its semi-crystalline and hydrophobic nature, PCL is a slow-degrading 
polymer, typically requiring 2 to 3 years for complete degradation. PCL 
degradation is usually a two-step process like PLA. First, there is a degradation 
of the amorphous phase, which is accompanied by an increase in crystallinity, and 
then a degradation of the crystalline phase. Hydrolysis of PCL produces 6-
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hydroxycaproic acid, which is subsequently metabolized. Acceleration is aided 
by an increase in temperature in the presence of air, when the oxidation of 
hydroxyl groups begins, but also by the presence of bacteria of the genera 
Pseudomonas and Lactobacillus and or fungi of the genera Aspergillus, Candida, 
Mucor, Rhizopus and Thermomyces [127], [128],[129].  

PBS is a thermoplastic, synthesized from 1-4-butanediol and succinic acid, with 
properties similar to PP. It can naturally decompose into water and carbon 
dioxide. The decomposition time of PBS is similar to that of PLA. However, the 
onset is slower and even after 90 days the success rate of complete degradation is 
not 100%. To increase effectiveness, the fungi Aspergillus fumigatus, Acidovorax 
delafieldii or Aspergillus oryzae and their enzymes (lipases) can be applied [130], 
[131]. 

P3HB is a thermoplastic polymer with thermal and mechanical properties 
similar to PP. P3HB is also very crystalline polymer and this reduces the 
degradation rate, for this purpose it is advantageous to copolymerize with 3-
hydroxyvalerate. This is also helped by the formation of depolymerase, which can 
be secreted by some microorganisms, which hydrolyse ester bonds into water-
soluble oligomers and monomers. A polymer modified in this way can easily 
degrade even under conditions where other biopolymers are almost resistant. In 
the marine environment, where approximately 40% weight loss occurs after 160 
days. In an artificially created marine environment with microbial inoculum, even 
in 40 days by 70% [127], [132].  

From the group of polyhydroxyalkanoates biopolymers, we can also mention 
the alternative poly(3-hydroxybutyrate-co-3hydroxvalverate) (PHBV). Diffusion 
of water in this polymer is a slow process and therefore surface erosion prevails. 
As with the other mentioned polymers, many factors matter here. However, it is 
known that the chemical nature of the chain, molecular weight and distribution 
are also important here. PHBV is characterized by a higher molar content of HV 
groups, which accelerate the hydrolysis process and reduce the crystallinity of the 
material. For that reason, enzymatic degradation is also faster than with P3HB 
homopolymers [133]. 

Although, each of the listed polymers has different optimal decomposition 
conditions, it is not possible to create the same standards for a suitable 
comparison. It can be different temperatures, pH of the environment and 
decomposition time or the presence of suitable microorganisms [127]. 

 
 

 Impact of products on the environment 
In addition to awareness of the PLA biopolymer itself, i.e. its production, 
processing, potential applications and degradation mechanism, study has to be 
made of the environmental impacts of its degradation products. In connection with 
this, conducting a life cycle assessment (LCA) method can be used, which can 
calculate the impact on the environment by means of analyses directly related to 
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pre-production (the extraction and production of raw materials), manufacture, 
distribution, usage, recycling and disposal. As a consequence, it possible to define 
the scope of an issue within the framework of an inventory analysis, quantifying 
the energy consumed and hazardous substances emitted by a product during its 
life cycle [134].  

The ISO 14040:2006 and ISO 14044:2006 standards stipulate the principles 
and methodology required for carrying out LCA studies [135].   

Studies in the literature have compared LCAs for conventional PET water 
bottles to PLA alternatives. Therein it was reported that PET bottles exerted a 
lesser environmental impact than PLA bottles, since agricultural burdens and 
issues are associated with the latter, i.e. growing suitable crops, the global 
warming potential (GWP), water, eutrophication, acidification, particulates and 
the inevitable land use. In light of the fact that non-renewable resources are 
dwindling and recycling processes are limited in their extent, it is only possible to 
view this finding as temporary. The studies also recommend optimizing the 
production of PLA, especially regarding fermentation, improving cultivation 
procedures and utilizing renewable energy sources. PLA demonstrates clear 
advantages over PET from a long-term perspective in terms of non-renewable 
resource consumption and issues surrounding global warming, but neither option 
is currently ideal [136], [137], [138].  

The European Union is counting on the development of sustainable, recyclable 
plastics, while also addressing the opportunities and risks of such biodegradable 
materials. Research on biodegradable polymers has been on the rise for several 
years in connection with medical applications and foodstuffs. However, if we take 
the issue of plastics globally, where recycling processes are not developed and are 
disposed of in an uncontrolled manner, we still run into the problem of 
accumulation of plastic waste. In the environment, commodity plastic is going to 
accrue in the environment for decades (e.g. PET), and bottles made of it have an 
estimated life cycle of up to 93 years (at 100% relative humidity). This PET waste 
is particularly prevalent in locations where drinking water is not available, hence 
the latter is sold in bottled form. One way of tackling the issue may be to ban 
certain plastic products or supersede the commodity polymer with an alternative 
material, e.g. paper or a biodegradable polymer. On the other hand, the term 
"biodegradable" is used in many cases today without any evidence or degradation 
tests. Therefore, it is necessary step shall be to perform degradation tests that 
encompass aspects like composting in a home setting or commercially 
composting tests. Simulating composting conditions in a laboratory is practically 
possible, with experiments encompassing a phytotoxicity test, wherein the growth 
of plants is determined in containers filled with a mixture of compost and 
decomposing bioplastic. Plants represent primary producers with a key role in 
regulating the functions of an ecosystem. In the case of plastics, ecotoxicological 
studies have been carried out inter alia on the effects of plastic particles on seed 
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germination, biomass growth (total biomass, root biomass, shoot biomass) and 
root elongation [139], [140]. 

Analyses of carbon and nitrogen content and associated ratio are also 
performed (C/N). Table 2 details some examples of waste commonly found in 
composting plants. The core technology for breaking down waste from 
biodegradable sources is composting, and commercial facilities turn out huge 
amounts of first-rate organic fertilizers and substrates. Spreading mature compost 
on agronomic soil contributes to greater crop yields, due to its high content of 
plant nutrients and moisture retention properties. Applying immature compost to 
soil can decelerate plant growth, conversely, for reasons of nitrogen deficiency, 
anaerobic conditions and the phytotoxicity of NH3 and organic acids. The optimal 
C/N ratio for high quality compost is 25 ‒ 30, although a lower C/N ratio of 15 is 
possible under certain, circumstances, e.g. lengthy durations of plant growth 
[141], [142]. 

 
 

Table 2. Average C/N ratio in composting materials [143]. 

Waste material C/N ratio 
City garbage 49‒105 
House refuse 30‒75 
Layer manure 4‒12 

Leaves 35‒70 
Grass clippings 10‒30 

 
A crucial aspect to determine is the quantities of hazardous substances present, 

e.g. heavy metals (As, Pb, Cd, Cu, Hg) and zinc (300 ‒ 1200 mg/kg compost). 
Values for individual elements are set out in Decree No. 474/2000 Coll. 
“stipulating requirements for fertilizers”. Agricultural compost has to possess a 
wide ratio of C/N nutrients, a stable form of nitrogen, a primarily alkaline pH, soil 
microorganisms and also contains macro-elements of phosphorus (P), potassium 
(K), calcium (Ca) and magnesium (Mg), and other components. Phosphorus and 
potassium are essential for plant photosynthesis, seed maturation and crop yields. 
The former of the two facilitates the transport of energy and aids root 
development, while the latter heightens resistance to disease. Calcium contributes 
to the strong formation of shoots and roots, and acts as a signal when the plant is 
stressed. Mention should also be made of sulphur (S), which not only is a building 
block of other essential compounds, but also makes crops more resistant to cold, 
for instance. Minor amounts of iron (Fe), boron (B) and manganese (Mn) are also 
important for photosynthesis, the regulation of nutrients or help with metabolizing 
nitrogen [144], [145], [146]. 
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1.3. Natural-based pro-degradation stability modifiers 

PLA degradation follows a natural course, albeit somewhat inappropriate for 
any corresponding processing or storage. Conditions and influences affecting its 
properties have been described above in this text. The properties of PLA are 
modified to suit specific industrial applications, especially in relation to products 
with a long life cycle, as demanded by the automotive, construction and 
electronics sectors. Various methods are employed in efforts to delay, mitigate or 
prevent the onset of degradation processes. However, the requirement exists for 
this material to biodegrade rapidly once it has reached the end of its useful life. 
PLA can be supplemented with a host of additives of synthetic or natural origin, 
yet the impact such a mixture shall ultimately have on the environment has to be 
anticipated. Therefore, emphasis is placed on using as many environmentally-
friendly and natural resources as possible. 
 

 Stability of PLA 
When employing PLA in applications necessitating durability, it is important 

to know in advance how environmental conditions will affect the degradation 
behaviour of the material and to determine its intended life cycle. Other crucial 
factors comprise what is expected of the material in terms of processing and 
mechanical (toughness, elasticity), thermal or barrier properties. Carrying out 
modifications to PLA with the aim of enhancing them may even turn out to have 
an opposing effect [147].  

The primary means of preventing PLA degradation processes is to eliminate a 
hydrolytic reaction. Increasing the degree of crystallinity and crystallization is 
additionally necessary in order to reduce the amorphous phase, i.e. the cause of 
its low-thermal stability. Various methods exist for stabilizing PLA: (i) by 
crosslinking amorphous regions; (ii) applying a chain extender; (iii) 
increasing the degree of crystallinity (iii); and (iv) adding an antioxidant 
[147],[148], [149]. 

 
1) Crosslinking PLA 
Various methods can be conducted to obtain a PLA networking structure, one 

of which being irradiation. PLA is predominantly degraded by direct ionizing 
radiation, therefore, polyfunctional monomers (PFM) are applicable for inducing 
crosslinking in this degradable type of polymer. PFMs are characterized by high 
reactivity and their ability to react with the polymer. They give rise to a 
crosslinked structure, hence have been widely utilized as crosslinking agents in 
polyolefins and vinyl monomers. The crosslinking of linear PLA macromolecules 
without double bonds in the main chain is achieved by applying high-energy 
radiation to create free valence forces through the impact of hydrogen atoms from 
the main chain. For example, γ-irradiation and electron beam irradiation constitute 
typical means for PLA crosslinking, preferably in the presence of PFM, and often 



34 
 

with a tiny amount of triallyl isocyanurate (TAIC) as a crosslinking agent (Fig. 8) 
[148], [150].  
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Figure 8. Schematic diagram of the chemical crosslinking reaction of TAIC for two 

PLA molecules [151].  

 

Other common PFMs comprise trimethallyl isocyanurate (TMAIC), 
trimethylolpropane triacrylate (TMPTA), trimethylolpropane trimethacrylate 
(TMPTMA), 1,6-hexanediol diacrylate (HDDA) and ethylene glycol bis (pentakis 
(glycidyl allyl ether)) ether [152]. 

 
It is reported in the literature that the most optimal conditions for the 

introduction of crosslinking are ca 3% TAIC and an irradiation dose of 30‒50 
kGy. In the referenced study, crosslinked PLA films demonstrated superior 
thermal stability and mechanical properties. The irradiated PLA samples became 
harder and more brittle at low temperatures, yet rubbery, soft and stable at higher 
temperatures, even over 200°C. The degradation behaviour of the irradiated, 
crosslinked PLA samples was also significantly slower. Although this method is 
effective, there is the disadvantage of this method lies in its expense. Moreover, 
PLA samples can only be in the form of thin plates to ensure sufficient radiation 
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energy for the crosslinking reactions, severely limiting the practicability of this 
method [152], [153]. 

Another possibility is the application of chemical crosslinking to implement 
crosslinking structures in PLA, with peroxide crosslinking representing one of the 
largest applicable curing groups. All such methods involve peroxide-induced 
radical crosslinking. Ensuring an optimal amount of peroxide and free radicals are 
just two criteria that have to be met to achieve the greatest efficiency. These are 
not only responsible for the crosslinking reaction, but also for cleavage of the 
chains, causing a loss in mechanical properties. These phenomena can be 
mitigated by utilizing organic peroxides (lauroyl peroxide or dicumyl peroxide) 
with multifunctional co-agents (epoxy natural rubber, triallyl trimesate). 
Treatment with peroxide has also had the effect of enhancing the compatibility 
between polymers [153], [154]. 

The third option is referred to as photo-initiated crosslinking, which has 
proven particularly well suited to biomedical applications, as it allows rapid 
crosslinking under mild, solvent-free, reaction conditions. The procedure has 
other benefits, too - it does not involve the use of high temperatures, is safe for 
living systems and the associated costs are reasonable. First, PLA is 
functionalized at the chain ends by double bonds and then exposed to UV or 
visible radiation, inducing radical polymerization. Photoactive additives such as 
substituted phenylacetophenone (“Irgacure”, a so-called photoinitiator) or 
camphorquinone are then added to initiate free radical polymerizat [152]. 

 
2) Chain extension 
The chain length and its number of entanglements relate to the stability of the 

polymer under thermal stress. Alongside increase in these properties, a parallel 
rise is evident in melt viscosity and operating temperature. This phenomenon can 
be obtained with a chain extender that connects the polymer chains and raises 
thermal stability, while also functioning as a compatibilizer to some extent. Such 
multifunctional chain extenders contain epoxy groups that interact with the ‒OH 
and ‒COO groups of polyester chain ends. In general, the chain extender may 
possess bi- or higher functional groups; e.g. diisocyanate, dianhydride and 
diamine; and epoxies, such as tris (nonylphenyl) phosphite (TNPP), 
polycarbodiimide (PCDI) and “Joncryl” (see below) [148], [155], [156]. 

The most commonly employed chain extender is the multifunctional, styrene-
acrylic oligomer sold under the trademarked name of Joncryl. It was designed for 
post-industrial recycled or consumer recycled polyesters, such as PET, 
polybutylene terephthalate (PBT), polyamides (PA) and thermoplastic 
polyurethanes (TPU). Widely applied to polymers and PLA in particular, several 
types of Joncryl with special functions exist, examples being ADR (a chain 
extender), ADF (a flow modifier), ADP (a plasticizer) and ADD (a dispersant). 
Figure 9 displays the structure of the Joncryl ADR chain extender and illustrates 
its reaction with PLA. Joncryl contains the groups R1-R5, i.e. H, CH3 and higher 
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alkyl groups or combinations thereof, and R6, an alkyl group. Joncryl ADR is a 
low-molecular-weight oligomer (Mn < 3,000, PDI > 3) based on epoxy styrene 
acrylate. In addition to linear chain elongation, it is commonplace for branching 
and even crosslinking to occur [82], [155], [157]. 
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Figure 9. Reaction between the epoxy group of Joncryl and the terminal hydroxyl 

group of PLA [157]. 

 
3) Increase in the degree of crystallinity of PLA  
A PLA monomer is characterized by its chirality, which exists in two forms ‒ 

D- and L-, resulting in three configurations. By combining enantiomeric content, 
modifications are made that affect crystallization kinetics and thus other 
properties (mechanical, thermal and so on). The cohesiveness of the 
homopolymer bonds in the stereocomplex is brought about through Van der 
Waals forces. For higher operating temperatures, stereoblocks-PLA are applied, 
wherein these two forms are combined. Consequently, during the post-processing 
cooling stage, stereocomplexes develop that act as nucleating agents to support 
the crystalline regions. Crucial factors comprise the amount of D-form, processing 
temperature and period of time given over to cooling. Optimal development of the 
crystalline structure happens when fabrication occurs at 100°C for a period of 35 
seconds, thereby enhancing the thermal stability of PLA. Crystalline forms of 
PLA, α, β and γ are created; during the crystallization stage, the alpha form and 
γ-form grow, triggered by epitaxial crystallization [148], [158]. 

A more commonly used method involves the direct application of a nucleating 
agent within the PLA processing procedure. There are several types of nucleating 
agents, which are generally divided into  inorganic, organic or inorganic-
organic hybrid materials [159]. 
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Of the common inorganic fillers, mainly mineral agents are used. Talc is a 
typical choice as it has a high efficiency (6% by weight, up to 500x increased 
nucleation density). The higher nucleation effect of talc has been reported as the 
formation of orthotropic crystalline textures caused by the presence of specific 
interfacial interactions between talc and PLA. Furthermore, common clay is also 
known to improve selected properties, and consists of calcium carbonate, carbon 
nanotubes or graphene oxide. Then there are organic compounds that are 
characterized by their good dispersion and miscibility in polymer matrices; e.g. 
derivatives of sorbitol, organic salts and compounds (sodium stearate and sodium 
benzoate), aromatic phosphonates and aromatic sulfonates. Polyhedral oligomeric 
silsesquioxanes and their derivatives have been employed, too, defined as hydride 
materials composed of an internal, rigid, siliceous cage structure surrounded by 
more flexible organic groups, such as PEG. Finally, nucleating agents can take 
the form of starch, lignin or nanocrystalline celluloses [159], [160], [161]. 

 
4) Antioxidants 
The general role of antioxidants (AOs) is to balance reactive oxygen species 

(ROS) and nitrogenous substances (RNS). Free radical scavenging does not just 
concern biological systems, but also numerous industrial applications prone to 
oxidative degradation, including most polymers (PP or PE). The thermooxidative 
degradation of polyolefins pertains to an autocatalytic chain reaction of free 
radicals, constituting stages of initiation, propagation and termination. Alkyl, 
alkoxy, peroxyl and hydroxyl radicals are all involved in these processes. Adding 
an antioxidant prolongs the life cycle of a material, and if combined with an 
antimicrobial activity, the pertinence of it for food packaging and biomedical 
applications is obvious. The most common class of antioxidants are polyphenols 
(8,000 phenolic structures have been identified in plants), but not all exhibit the 
required action. The principle behind the antioxidant effect of polyphenols is the 
ability to donate a phenolic hydrogen to the generated free radical. The resulting 
phenoxyl radicals are resonantly stabilized and react with other free radicals. 
Stabilization packages added to the polymer contain polyolefins that function as 
a primary antioxidant and a secondary stabilizer, e.g. a hydroperoxide decomposer 
of phosphorus or sulphurous type, which significantly enhances the 
thermooxidative stability of the polymer melt The purpose of secondary 
stabilizers is to reduce hydroperoxides to harmless alcohols. The incorporation of 
an antioxidant into materials takes place through hydrogen bonds, metal 
coordination or covalent interactions [162], [163], [164]. 

The foremost compound associated with polyphenols is α-tocopherol, while 
lignin has attracted the greatest attention of the phenolic varieties. Each year, 70 
million tons of lignin are generated as a by-product of the pulp and paper industry. 
A biocompatible, high-molecular, polyphenolic, amorphous substance with 
antioxidant activity, lignin is capable of absorbing UV-light and functions as a 
barrier of such radiation. In a study by Boarino Alice et al. (2022), it was found 
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that just 1 wt.% of lignin particles could resist the penetration of 280 nm of UV 
radiation; notably, the transparency of the PLA film was maintained [165]. Figure 
10 illustrates the antioxidant activity of lignin during UV-irradiation. 
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Figure 10. Antioxidant activity of lignin [165]. 

Related substances are extracted from red wine, green tea and citrus fruits, 
whereas ginger, pepper or fennel constitute sources of phenolic polymers. Lignin 
is present in the cell walls of vascular plants. There are also carotenoids in carrots, 
mint or sweet potatoes, and curcuminoids in turmeric. Lycopene, an extract of 
tomato, improves the processing stability of PP via the efficient capture of alkyl 
radicals. The extract increased the level of activation energy needed for the 
thermal decomposition of PP in nitrogen, yet significantly reduces it in an oxygen 
atmosphere. The last to feature in this list are tannins found in exotic fruits or 
grape skin and seeds. Natural antioxidants are less widely utilized than their 
synthetic alternatives for several reasons. A higher dosage is required for 
polymers and they are more prone to degradation, while price and availability also 
pose problems. As a consequence, the tendency is to use synthetic AOs include 
BHA, BHT and tert-butylhydroquinone (TBHQ) [164], [166]. 
 
 

 Pro-degradation of PLA 
Although PLA is one of the most widely applied biodegradable polymers, it 

often encounters problems with its slow or insufficient degradation. Like any 
plastic material, it should be properly sorted and processed once it has served its 
post-consumption. The recommendation for consumers is to deposit it in brown 
organic waste bins, whereupon it goes to municipal composting facilities with 
optimal conditions for its decomposition. The aim of research is to facilitate the 
quickest possible onset of the degradation mechanism commencing with 
hydrolysis, thereby accelerating the degradation of PLA. In this context, a great 
many studies have investigated methods for hastening such biodegradation further 
with the aid of environmentally-friendly fillers, the resultant material being 
referred to as a “green composite” [167]. 

An option is employ an inorganic filler, examples including carbon nanotubes, 

zinc oxide, magnesium oxide, calcium oxide or a small amount of a nanoclay, for 
instance, montmorillonite. Total homogenization of these in the polymer matrix 
is essential for accelerated hydrolysis. Beyond seeking ways of speeding up 



39 
 

degradation in soil or compost, researchers have been investigating the 
physiological environment for medical purposes. In connection with this, 
applying Mg in combination with PLLA accelerates the degradation behaviour of 
the composite; the mechanism involving the release of Mg in the physiological 
system, whereupon magnesium hydroxide (Mg(OH)2) is formed in order to 
consume acidic PLA products [103], [168], [169]. 

 Certain kinds of plant-based matter are also applicable, such as fibres (hemp, 
flax), wood flour or modified cellulose nanocrystals. Hemp fibres are finding 
favour in the automotive, construction and furniture-making sectors, serving as a 
substitute for glass or carbon fibre in the reinforcement of thermoplastic matrices. 
They have the advantage of being inexpensive, low in density, safe to handle and 
non-abrasive, so do not cause damage to mixing and moulding equipment. An 
issue arises with regard to vegetable fibres in manufacturing processes at high 
temperature, though. In combination with residual moisture and mechanical 
stress, degradation is promoted, hence mechanical performance is reduced [167], 
[170], [171]. 

Copolymers or compounds can be incorporated to support and accelerate PLA 
degradation. Performed by introducing additional monomers with different 
chemical structures into PLA chains, copolymerization lends copolymer 
molecules lower regularity, increased fluidity and greater hydrophilicity. A 
known copolymer of lactic and glycolic acids is PLGA, now a frequently 
deployed polymer in medical applications (sutures, microparticles and implants). 
Another example, a composition of PLA/PEG, serves as both a plasticizer and 
accelerator of degradation. The PEG in it induces degradation of the chain, which 
contains short segments of PLA, through the action of randomly cleaving the ester 
bonds along the PLA blocks. This is also the case with PBS in combination with 
PLA, the gaps between the PLA matrix and the dispersed PBS particles providing 
a path for water diffusion, thereby accelerated hydrolytic degradation. 
Supplementation with a polymeric additive such as poly(aspartic acid-co-lactide) 
(PAL) is also possible. PAL has a unique branched structure composed of 
polysuccinimide (PSI) and PLA segments, and can easily be converted into the 
hydrophilic copolymer poly(sodium aspartate-co-lactide) (PALNa) in a reaction 
with aqueous NaOH [172], [173], [174].  
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Figure 11. Schematic diagram of the structure of PAL and PALNa copolymers [174]. 

 
A further option is to utilize microorganisms that promote the degradation of 

PLA polymer. A study has reported on employing proteases, including proteinase 
K, pronase and bromelain, which increase the rate of PLA degradation. In this 
regard, the actinomycete Amycolatopsis sp. and fungus Tritirachium album are 
capable of being applied from 30°C [175]. 

Beyond the consideration of adding a filler to a PLA composite, attention 
should be paid to providing optimal conditions for degradation, which include 
temperature, humidity and pH. The earlier sections of this manuscript detail such 
circumstances for both initial hydrolysis and microorganisms, whereby the 
complete disintegration of a sample is enabled [68]. 
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2. AIMS OF THE WORK 
 

This dissertation describes the effects exerted by additives of natural and synthetic 
origin on the degradation mechanisms of biodegradable polymers. The 
experimental part is split into two sections on the following topics:  
 

1. Examining the stabilizing influence of an antioxidant derived from 
agricultural produce. 
 

‒ Extracting and stabilizing antioxidants from agricultural produce, i.e. 
crops of low quality. 

‒ Developing a methodology to characterize the antioxidants extracted. 
‒ Proposing a suitable method for incorporating a stabilized antioxidant 

in the given biodegradable polymer − PLA 
‒ Discerning a suitable means for characterizing biosystems, with an 

emphasis on aspects that affect the stabilization of the polymers, i.e. 
their mechanical, thermal, chemical and morphological properties. 

‒ Evaluation of results. 
 

 
2. Investigating the synergistic effects of nanofillers and hydrophilic polymers 

on the mechanical properties and degradation kinetics of PLA-based systems.  
 

‒ Synthesizing and characterizing the chemical additive PLA-g-PAA. 
‒ Preparing PLA composites supplemented with an HNT nanofiller and 

PLA-g-PAA. 
‒ Determining the physical properties of the materials by SEM, TGA and 

FTIR. 
‒ Researching the effects of natural abiotic and biotic ageing on the 

materials. 
‒ Evaluation of results. 
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3. EXPERIMENTAL PART 
 
The prior chapter of this work summarizes the physical and chemical properties 

of a widely used biodegradable polymer − PLA. It provides a comprehensive 
overview of how this material could be variously adopted industrially. 
Description is given of its degradation mechanism and external factors that 
influence it, divided into abiotic and biotic sections. It also discourses on the latest 
options for modification of the material that alter its stability. This experimental 
part reports on practical research related to supplementing PLA with additives, 
with the aim of potentially modifying and improving its degradation properties of 
PLA for a range of applications. In this regard, emphasis is placed on testing 
natural, readily-available additives suited to incorporation in the polymer matrix, 
along with maintaining the overall biodegradability of the materials. 

The first part focused on the preparation of a composite supplemented with an 
inorganic filler and natural antioxidant. The filler functioned as both a carrier and 
stabilizer for the antioxidant component. Since the current trend is to opt for 
alternative, environmentally-friendly resources, research concentrated on natural 
antioxidants applicable for biodegradable polymers that could substitute for 
conventional synthetic products. Antioxidants found in beetroot were selected for 
this purpose, a choice informed by data in the literature. To this end, samples of 
PLA composites were fabricated by the casting method. Chemical and physical 
changes to them were monitored during an artificial ageing test, followed by 
analysis of their thermal, mechanical and morphological and colour properties.  

The second and last part describes modifying PLA to bring about accelerated 
hydrolysis and degradation. This was achieved with a copolymer produced in the 
laboratory comprising PLA and polyacrylic acid, PLA-g-PAA. An inorganic filler 
(halloysite) was also added into it to support and accelerate the degradation. The 
properties of this composite material were characterized in general, though work 
focused more on comprehensively studying the degradation processes that 
occurred during abiotic and biotic hydrolysis, as well as under laboratory 
composting conditions. This research offers an optimal amount of selected 
additives to accelerate biodegradation. However, it also offers the potential for 
disposable packaging materials, for which no further recycling processes can be 
carried out and the material has to be processed in technical composting plants. 
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3.1. Effect of an antioxidant based on red beetroot extract on the 
abiotic stability of polylactide and polycaprolactone 

 
Material and chemicals 

Commercial PLA (2003D) from NatureWorks (Minnetonka, MN, USA) and 
PCL from Sigma-Aldrich (Saint Louis, MO, USA) were employed in the 
experiments. Fresh red beetroot (BR) was obtained from a local farm (Ostrozska 
Nova Ves, Czech Republic). Bentonite was sourced from local wine producers at 
the particle size of >20 μm. Ethanol (99.8%) was purchased from BC-Chemservis 
(Roznov pod Radhostem, Czech Republic). The acetone (99.88%) utilized was 
from Chromservis (Prague, Czech Republic). Folin-Ciocâlteu′s phenol reagent (2 
M), gallic acid (97.5%), ascorbic acid (reagent grade), sodium carbonate 
(anhydrous, Emsure™ACS, ISO, Reag. Ph Eur), and 1,1-diphenyl-2-(2,4,6-
trinitrophenyl) hydrazyl came from Merck (Darmstadt, Germany) and Sigma-
Aldrich (Saint Louis, MO, USA). Tetrahydrofuran was supplied by Carl Roth 
Rotisolv® HPLC (Karlsruhe, Germany) and chloroform by Penta (Prague, Czech 
Republic). Water and Acetonitrile Chromasolv™ Plus solvents for HPLC and LC-
MS were bought from Honeywell GmhB (Seelze, Germany), and formic acid for 
LC-MS LiChropur™ obtained from Sigma Aldrich (Saint Louis, MO, USA). 

 
Preparation of the beetroot extract and film  

The authors lyophilized fresh BR, employing a CoolSafe 110-4 PRO freeze 
dryer for this purpose (Lynge, Denmark). 

There is a simple and efficient preparation of the extract, which is based on the 
preparation of 250 mg of homogenised and freeze-dried BR with 10 ml of 
extraction solvent (70% ethanol) was added into a centrifuge tube, and this 
homogenate then stirred on a Vortex device (IKA® MS 3 basic, Staufen, 
Germany) for 2 minutes at 500 rpm. The subsequent extract was centrifuged 
(Thermo Scientific™, Heraeus Multifuge X1R, Osterode, Germany) for 15 
minutes, at 9,000 rpm. The supernatant (7 g) was collected with a Pasteur pipette 
and applied to the bentonite (BE) (5 g) as a carrier. After mixing, the samples 
were lyophilized. Immobilization in this way simplifies handling of the additive 
and proves advantageous for technological processing. 

Films were cast by dissolving the polymer and adding bentonite with the 
incorporated beetroot extract (BRE) (5% w/w, based on the weight of the 
polymer) in chloroform. The solution was stirred at room temperature for 8 hours 
to completely distribute the antioxidant in the polymer matrix. The polymer 
solution was then poured into Petri dishes of 140 mm diameter. Evaporation of 
the chloroform took place in a fume hood in darkness for 24 hours at 25°C. The 
resultant films were dried in a vacuum oven (Memmert VO400, Frankfurt, 
Germany) at 25°C for 5 hours to remove any residual solvent prior to being stored 
in a refrigerator. The eventual thickness of each film was 0.35 ± 0.05 mm. Neat 



44 
 

PLA and PCL films and composites containing bentonite (BE 5% w/w) were 
prepared as reference samples for comparison with the BRE films. This procedure 
for formulating the polymer composites is illustrated in Figure 12, while the 
composition and names of the tested formulations are given in Table 3. 

 
 

 
Figure 12. Method for fabrication of the samples. 

 
Table 3. Composition of the prepared samples. 

 
Process for accelerated ageing 
Accelerated ageing was performed in a climatic chamber (QUV UV tester, 

Westlake, USA) set to the temperature of 45°C and 70% relative humidity under 
UV irradiation for 720 hours. The experiment was devised in accordance with EN 
ISO 4892-3[176]. The chamber was fitted with 8 fluorescent lamps (UVB 313) of 
313 nm in wavelength. Samples were placed directly under the lamps 
(perpendicular to the UV source) and, following the accelerated ageing test, 
denoted with the suffix -UV (added to the names in Table 3). 
 

Name Composition 

PLA Neat PLA  

PLA-BE PLA+ 5% w/w bentonite 

PLA-BRE PLA + 5% w/w bentonite with beetroot extract 

PCL Neat PCL  

PCL-BE PCL+ 5% w/w bentonite 

PCL-BRE PCL + 5% w/w bentonite with beetroot extract 



45 
 

Antioxidant activity and polyphenol content of BRE 
The Folin-Ciocâlteu reagent method (FCM) was adopted to determine the 

polyphenol content in the BRE. The principle behind it is reduction of the Folin-
Ciocâlteu reagent (FCR) that contains a mixture of phosphotungstic acid and 
phosphomolybdic acid. This is reduced to a mixture of blue tungsten oxide(s) and 
molybdenum by oxidizing the phenols in the sample. The blue hue demonstrates 
maximum light absorption at the wavelength range of 750 ‒ 760 nm, the intensity 
of this absorption being directly proportional to the total amount of phenolic 
compounds present. The resulting value is declared as the equivalent quantity of 
gallic acid. 

The BRE supernatant at the amount of 0.1 ml was added into 1 ml of freshly 
prepared 10% FCR. The mixture was allowed to equilibrate for 5 minutes in 
darkness and then treated with 1 ml of 10% sodium carbonate solution. After 
incubation at room temperature for 15 minutes, the absorbance of the mixture was 
read at 750 nm, applying an appropriate solvent as a blank. The results were 
expressed as mg equivalents of gallic acid per 100 g of BR. 

The antioxidant activity of BRE was determined by a basic method involving 
the scavenging of free radicals with DPPH. The principle behind it relates to the 
reaction of AOs (polyphenols) with the stable DPPH radical, thereby reducing the 
radical to form DPPH-H (2,2-diphenyl-1-picrylhydrazine). The reaction is 
observed by spectrophotometry at the wavelength of 515 nm, corresponding to 
the maximum absorbance of the radical, evidenced by intense change in its colour. 

0.1 ml of BRE was mixed with 1 mL of 0.1 M acetate buffer (pH 5.5) and 1.9 
ml of 0.2 mM DPPH. The sample was kept at room temperature in darkness for 
60 minutes. A blank counterpart consisted of 1 ml of 0.1 M acetate buffer (pH 
5.5), 1.9 ml of 0.2 mM DPPH and 1.9 ml of 70% ethanol, formulated for 60 
minutes in darkness at room temperature. The results were expressed as mg 
equivalents of ascorbic acid per 100 g of BR. 

 
HPLC-ESI-MS/MS analysis 
HPLC analysis of the beetroot extract was performed on a 1260 Infinity LC 

system (Agilent Technologies, Santa Clara, USA). Chromatographic separation 
of the samples was carried out on a ZORBAX Extend C18 column (50 mm × 2.1 
mm, 1.8 µm; Agilent Technologies, Santa Clara, USA) at a flow rate of 0.3 
mlmin‒1 maintained at 35°C. The mobile phase consisted of 0.1% formic acid in 
HPLC grade water (eluent A) and acetonitrile (eluent B). The following gradient 
was applied: 0.0 ‒ 1.0 min, held at 10% B; 1.0 ‒ 2.0 min, linear gradient from 
10% to 50% B; 2.0 ‒ 6.5 min, held at 50% B; 6.5 ‒ 10.0 min, linear gradient from 
50% to 90% B; 10.0 ‒ 17.0 min, held at 90% B; and the post-run lasted 3 minutes. 
The total running time was 17 minutes for each sample, for which the injection 
volume equalled 2 µl.   

Detection was performed on quadrupole time-of-flight mass spectrometer 
(6530 Q-TOF, Agilent Technologies, Santa Clara, USA), employing a source of 
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electrospray ionization (ESI) set to positive ion mode. The mass spectrometer 
operated under the following parameters: capillary voltage 3500 V, nebulizer 
pressure 40 psi, drying gas 8 l∙min‒1 and gas temperature 300°C. Mass spectra 
were acquired over the m/z 100 – 1,500 range at a scan rate of 3 scan·s‒1. Accurate 
mass measurements were obtained by means of a calibration solution, involving 
internal reference masses (purine (C5H4N4) at m/z 121.050873, and HP-0921 
[hexakis-(1H,1H,3H-tetrafluoropentoxy)-phosphazene] (C18H18O6N3P3F24) at 
m/z 922.009798). Data were recorded and processed in MassHunter software 
v.B.05.01 (Agilent Technologies).  

 
Characterization techniques 
Thermal properties 
Thermal analyses were performed to discern the oxidizing capacity of the BRE 

polymer films, the techniques comprising differential scanning calorimetry (DSC) 
and thermogravimetry (TGA). The DSC tests were conducted to determine the 
glass transition temperatures (Tg), cold crystallization temperature (Tcc), melting 
temperature (Tm) and enthalpy change (∆Hm) of all the materials; the device used 
was a Mettler Toledo DSC1 STARe System (Schwerzenbach, Switzerland) 
operated under a nitrogen atmosphere (at the flow rate of 50 ml·min‒1). The 
samples (~8 mg) were sealed in an aluminium pan and heated from ‒20 to 300 
°C, then cooled to 20°C and reheated to 300°C at the same cooling-heating rates. 

Further DSC measurements were obtained by analysing the thermal stability of 
the samples, conducted in the presence of an oxygen atmosphere at temperatures 
from 20 to 400 °C and the heating rate of 20 ml·min‒1. Temperatures from the 
DSC curves are referred to as initial degradation temperatures (Tonset), peak 
temperatures (Tpeak) and internal enthalpy (∆H). 

Samples of 8 mg in weight were prepared for TGA measurement and 
investigated on a TA Q500 thermogravimetric analyser (TA Instruments, 
Delaware, USA), running TA Universal Analyser 2000 version 4.5A. software 
(TA Instruments —Waters LLC, Delaware, USA), set to a heating rate of 10 
K·min‒1 from 0 to 800 °C under a nitrogen atmosphere. Data on temperatures at 
the maximum rate of weight loss of the samples (Tmax) were collected. 

 
Mechanical properties 
Mechanical tests characterized the stability of the samples as regards material 

strength when ageing. To this end, their tensile strengths were gauged on a 
universal tester (M350-5 CT Materials Testing Machine, Testometric, Lancashire, 
UK), under modified conditions based on EN ISO 527-3 [177]. Prior to this the 
specimens had been conditioned according to the ISO standard at 23°C and 50% 
humidity for 24 hours. Tensile testing was conducted at a constant rate of uniaxial 
deformation of 50 mm·min‒1 until the samples ruptured, with a minimum of 8 
specimens from each group undergoing such observation. The factor of ageing 
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(Af) was calculated concurrently for them based on Equation 4 below [179]: 
     

Af = (σ  ε)before ageing/(σ  ε)after ageing (4)  

where Af is the coefficient for ageing (-), σ represents tensile strength (MPa) 
and ε corresponds to elongation at break (%). 

 
Colorimetry 
Optical examination of the samples by colour measurement was performed 

prior to and after the ageing test by on a portable spectrophotometer (Lovibond 
RT850i colourimeter, Tintometer Ltd, Amesbury, UK). The CIELab scale was 
applied to measure lightness, L*, and the chromaticity parameters of a* (red–
green) and b* (yellow–blue). Values for colour difference (ΔE), the whiteness 
index (Wi) and chroma (Cab) were calculated according to Equations 5 – 7. These 
parameters afford estimation of change in the colour of the polymer after 
incorporating the natural AOs into the matrix of the polyester blend [181].  

 

∆𝐸 = ඥ(∆𝑎ଶ) + (∆𝑏ଶ) + (∆𝐿ଶ) (5) 

𝑊 = 100 − ඥ𝑎ଶ + 𝑏ଶ + (100 − 𝐿ଶ) (6) 

𝐶 = ඥ𝑎ଶ + 𝑏ଶ (7) 
 
Fourier Transform Infrared Spectroscopy (FTIR) 
Fourier transform infrared-attenuated total reflectance (FTIR-ATR) was 

employed to obtain spectra for all the polymer films (Nicolet iS5, Thermo Fisher 
Scientific, Waltham, USA). The unit was fitted a Ge crystal to determine 
structural alteration in chemical bonds under ageing conditions; it was set to the 
range of 600 – 4000 cm‒1 and the resolution of 4 and 64 scans, with analysis in 
OMNIC software (Thermo Fisher Scientific, Waltham, USA). 
 

Morphology 
The cryo-fracture surfaces and the surfaces of the samples were gauged in a 

high vacuum environment at a test operating voltage of 10 kV by scanning 
electron microscopy. A Phenom Pro desktop scanning electron microscope 
(SEM) was employed for this purpose, fitted with a BSE detector (Phenom-World 
B.V., Eindhoven, Netherlands). 
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3.2. Comparative degradation study of a biodegradable 
composite based on polylactide with halloysite nanotubes 
and a polyacrylic acid copolymer 

 
Materials and Reagents 
Commercial PLA (Ingeo 2003D) from NatureWorks (Minnetonka, MN, USA) 

was deployed in the experiments. Halloysite (HNT) was purchased from Sigma-
Aldrich (Germany). Tetrahydrofuran was obtained from Carl Roth Rotisolv® 
HPLC (Karlsruhe, Germany). The solvents acetone, methanol, acetic acid and 
ethanol (all analytical grade) were bought from PENTA s.r.o. (Prague, Czech 
Republic). Methanesulphonic acid (MSA, ≥ 95%), poly (acrylic acid) (PAA) 50% 
solution (Mw = 2,000 gmol−1) were supplied by Sigma Aldrich (Steinheim, 
Germany).  

 
Synthesis of PLA-g-PAA 
The procedure for polymer synthesis followed a method described by 

Kucharczyk et al. [180]. The process was performed as follows: 50 mL of L-LA 
was added to a 250 mL double-necked flask equipped with a Teflon stirrer. The 
flask was connected to a laboratory apparatus for distillation under reduced 
pressure and placed in an oil bath. Dehydration ensued afterwards in all instances 
(160°C, 200 mBar, 4 hours, 180 rpm). Once complete, the reactor was 
disconnected from the vacuum pump, and the appropriate amount (0.5 wt.%) of 
MSA and PAA (5 wt.%) were added dropwise under continuous stirring. After an 
hour, the pressure was lowered to 20 kPa (165°C; with application of an oil pump) 
and water distilled out. An hour later the pressure was reduced to 1 kPa, and the 
reaction continued for a further 20 hours. The resulting product was allowed to 
cool down to room temperature and dissolved in acetone. The polymer solution 
obtained was precipitated into a mixture of chilled methanol and distilled water at 
the ratio of 1:10 (v/v) and filtered. Finally, the product was dried in an oven at 
40°C for 48 hours. Table 4 summarizes the properties of the derived prepolymer 
in the form of a white powder. 

 
Table 4. Characterization of the prepared additive PLA-g-PAA. 

Sample 
label 

PAA 
(wt.%) 

Mw
a 

(gmol‒1) 
Đb 
(-) 

Tg 
(°C) 

Tm 
(°C) 

PLA-g-PAA 5 28,000 2.8 52.6 136.2 

where Mw
a is the molecular weight and Đb the polydispersity index (Ð = 

Mw/Mn), as determined by gel permeation chromatography (GPC). 
 
Preparation of samples 
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 The PLA was dried at 60°C for 24 hours prior to being processed. Neat PLA 
and PLA composites were obtained by melt blending on a Brabender mixer 
(Plastograph® EC plus, Mixer 50EHT32, Duisburg, Germany). Samples were 
prepared under the following conditions: heat was applied at 190°C and the mixer 
set to an operating speed of 100 rpm; the mixture emanating from the extruder 
was cut into small pieces and subsequently pressed into foils at 190°C for 5 
minutes and cooled. The designations given to the prepared samples and their 
compositions are detailed in Table 5. 

 
Table 5. Designations and compositions of the samples. 

No. of 

sample 

PLA 

(wt.%) 

HNT 

(wt.%) 

PLA-g-PAA 

(wt.%) 
Designation 

1 100 - - PLA 

2 95 5 - PLA/5H 

3 80 20 - PLA/20H 

4 95 - 5 PLA/5PLA-g-PAA 

5 80 - 20 PLA/20PLA-g-PAA 

6 75 20 5 PLA/20H/5PLA-g-PAA 

7 75 5 20 PLA/5H/20PLA-g-PAA 

 

Methods for characterizing the properties of the composite samples 
The conditions for preparing the PLA-g-PAA additive via a direct 

polycondensation reaction were optimized through experimentation. Samples 
with various compositions were fabricated to discern improvement in the 
behaviour of the PLA modified with PLA-g-PAA and supplemented with HNT. 
The techniques described below were applied to select the best performing, 
optimized sample for the accelerated degradation experiment. 

 
Gel Permeation Chromatography (GPC) 
GPC analysis was conducted on a PL-GPC 220 chromatographic system 

(Agilent Technologies, Santa Clara, USA), equipped with dual detection system 
(refractive index and viscometric detectors). The samples were dissolved in THF 
(2 – 3 mgml−1), stabilized with butylated hydroxytoluene (BHT) (125 ppm) and 
filtered by a syringe filter (0.45 μm). Separation was carried out on a series of gel-
mixed bed columns (Polymer Laboratories Ltd., Amherst, UK), comprising 1 
each of the following: a PLgel-Mixed-A bed column (300 × 7.8 mm, 20 µm), a 
PLgel-Mixed-B bed column (300 × 7.8 mm, 10 µm) and a PLgel-Mixed-D bed 
column (300 × 7.8 mm, 5 µm). The mobile phase contained the THF stabilized 
with BHT at 40°C, for which the flow rate of the mobile phase was set to 1.0 
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mLmin‒1 and the injection volume equalled 100 µl. The GPC system was 
calibrated with polystyrene standards for molecular weight within the range of 
580 ‒ 6,000,000 gmol‒1 (Polymer Laboratories Ltd., Amherst, UK). The average 
molar mass (or molecular weight, Mw), number average molar mass (Mn) and 
polydispersity index (Ð = Mw/Mn) of the tested samples were determined from 
peaks corresponding to the polymer fraction, in accordance with the universal 
calibration method. All data were processed in Cirrus software (Agilent 
Technologies, Santa Clara, CA, USA). 

 
Scanning Electron Microscopy (SEM) 
A Phenom Pro unit (Phenom-World BV, Eindhoven, Netherlands) was 

employed for SEM analysis, set to an electron accelerating voltage of 5 kV. 
Research focussed on the cryo-fractured parts of the neat PLA film and 
composites, with the aim of evaluating the degree of homogeneity and gaining 
insight into the internal structures of the composites. 

 
Fourier transform infrared spectroscopy 
The functional groups present in the thin polymeric films tested for robust 

degradation were determined by Fourier transform infrared spectroscopy (FTIR). 
A Nicolet iS5 unit (Thermo Fisher Scientific, Waltham, MA, USA) fitted with a 
Ge crystal was employed for this purpose. Analysis took place at ambient 
temperature and the settings of 64 scans, a resolution of 4 and measurement range 
of 600 ‒ 4,000 cm-1, with subsequent data processing in OMNIC software 
(Thermo Fisher Scientific, Waltham, MA, USA). 

 
Differential Scanning Calorimetry (DSC) 
The thermal properties of the materials were investigated on a DSC1 STAR 

System (Mettler Toledo AG, Analytical, Greinfensee, Schwerzenbach) under a 
nitrogen atmosphere (50 mlmin‒1). Samples of ca 8 ‒ 10 mg of material was 
testing in aluminium pans. Heating/cooling cycles occurred at the rate of 
10°C∙min‒1 and temperature range of 25 ‒ 180 °C. The data obtained from the 
first heating cycle comprised the melting point temperature (Tm), region of glass 
transition temperature (Tg), melting enthalpy (ΔHm) and the exothermic response 
to cold crystallization (Tc).  

          
Thermogravimetric Analysis 
Thermogravimetric analysis (TGA) was carried out on a TGA Q500 device 

(TA Instruments, Wilmington, DE, USA) and analysed by a TA Universal 
Analyzer 2000 (version 4.5A, TA Instruments‒Waters LLC, Wilmington, DE, 
USA). Samples of ca 10 mg in weight were placed in a platinum pan and, 
following equilibration, exposed to temperatures ranging between 25°C and 
600°C. Analysis took place in a nitrogen atmosphere, at the heating rate of 10 
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K∙min‒1 and constant flow rate of 100 ml∙min‒1. A data set was calculated from 
the percentage of additives remaining in each tested film after processing. 

 
 
 
Tensile testing 
Mechanical properties were investigated on a universal tensile testing device, 

the M350-5 CT Materials Testing Machine (Testometric Company, Lancashire, 
UK). This was set to the crosshead speed of 10 mmmin−1 in accordance with the 
standard EN ISO 527-3 [177]. Specimens with specific dimensions (100 × 10 × 
0.5 mm) were cut from the various compression moulded films. Prior to testing, 
the samples were kept under the conditions of 22°C in temperature and 50% 
relative humidity for 48 hours. A minimum of eight specimens from each group 
were investigated. 

 
Contact angles 
Values for the contact angles of the neat PLA and their composites were 

determined on a Surface Energy Evaluation System (SEE System, Advex 
Instruments, Brno, Czech Republic). A set of seven samples was tested with three 
liquids (water, ethylene glycol and diiodomethane), drop of 5 µl in volume. Each 
contact angle was measured approximately a second after the drop had fallen from 
the micropipette. The free surface energy of the samples was gauged according to 
the Owen-Went model, and the arithmetic means of five measurements were 
calculated. 

 
Abiotic Hydrolysis (TOC-L, GPC) 
The rate of PLA hydrolysis was observed for 60 days at a steady temperature 

of 58°C. For this experiment the PLA film samples (50 mg) were cut into 0.5 × 
0.5 cm specimens and suspended in 50 ml of sodium phosphate buffer (Na-PB, 
0.1 moll−1, pH 7) amended with a microbial growth-inhibiting substance (NaN3, 
0.2 wt.%). Testing was carried out in triplicate for each type of sample. The 
supernatants were analysed for dissolved organic carbon on a TOC-L Analyzer 
(Shimadzu, Kyoto, Japan). In parallel, at appropriate intervals, the materials were 
also evaluated by GPC. Three parallel measurements for each sample were 
performed. 

 
Biodegradation under Composting Conditions 
The composting test was performed according to ISO 14855-1:2012 [178], a 

standard applicable for determining the ultimate aerobic biodegradability of 
plastic materials. The amount of carbon dioxide (CO2) released is measured, along 
with the degree of decomposition of the given material at the end of the 
assessment period. Study was made herein of the CO2 released from PLA samples 
placed in a 500 ml reagent bottle equipped with septa mounted on the stoppers. In 
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addition to a sample (50 mg), each bottle contained natural compost (5 g of dry 
weight) and perlite (5 g). The flasks were incubated at 58°C for 48 days. 
Headspace gas was sampled at appropriate intervals through the septum with a 
gas tight syringe (100 μl), and then injected manually into a Agilent 7890 GC 
instrument (Agilent Technologies, Santa Clara, CA, USA) equipped with a 
Porapak Q (1.829 m length, 80/100 MESH) and 5A molecular sieve (1.829 m 
length, 60/80 MESH); the apparatus also comprised packed columns connected 
in series and a thermal conductivity detector (carrier gas helium, flow 53 
mlmin−1, column temperature 60°C). From the data gathered, it was possible to 
calculate the percentage of biodegradation, representing the theoretical quantity 
of CO2 produced and the amount of oxygen consumed in each flask. From the 
CO2 concentration thus determined, the percentage of mineralization related to 
the carbon content in the initial sample was calculated. The initial extent of carbon 
content in the samples was determined on a TOC-L Analyzer (SSM-5000A, 
Shimadzu, Kyoto, Japan). 

 
Degradation kinetics 
Komilis (2006) developed a first-order mathematical model based on Monod 

kinetics to describe the course of degradation of solid carbon into carbon dioxide 
under composting conditions (Eq. 8), which is also applicable for calculating 
hydrolysis kinetics [182]. Some modification to it was necessary to describe 
merely the first phase of the degradation process, i.e. the conversion of dry solid 
carbon to water-soluble transition carbon. The rate constant kaq (day‒1), expressing 
the mineralization of water-soluble carbon into carbon dioxide, was excluded as 
a consequence (Eq. 9). The process for change in molecular weight (MW) during 
abiotic hydrolysis was modelled via an existing first-order kinetics equation 
(Vieira et al., 2011). Equation 10 expresses an analytical solution for the model 
[183], [184], [185]. 

 

𝐶்,௧ = ൜𝐶, ∙ ൫1 − 𝑒ିೌ(௧ି)൯ + 𝐶, ∙ ൬1 −
ೌ

ೌିೝ
𝑒ିೝ(௧ି) +

                                
ೝ

ೌିೝ
𝑒ିೌ(௧ି)൰൨ൠ       (8) 

 

𝐶aq,௧ = 𝐶aq, + 𝐶, ⋅ ൫1 − 𝑒ିhr(௧ି)൯   (9) 
 

𝑀௪,௧ = 𝑀௪, ∙ 𝑒ି௨௧     (10) 
 
Finding a solution to Equation 11 permits calculation of total CO2 production 

(in per cent, CT,t or Caq,t) at time t (days); Caq,0 relates to the initial percentage of 
water-soluble carbon and Ch,0 the solid carbon content at the outset.  The kinetic 
parameter khr (day‒1) represents the rate constant of first-order solid carbon 
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hydrolysis. Parameter c denotes the dwell time (in days) of the initial 
decomposition phase, prior to the commencement of CO2 production [183], [185].  

In the kinetics equation pertaining to mechanical degradation exerted by change 
in Mw, Mw,t and Mw,0 constitute values for final and initial means of Mw at time t 
(t = 0). The rate constant for abiotic hydrolysis is denoted in the equation by the 
parameter u (day‒1). 

The assumed mathematical constraints needed to derive a valid model are given 
below: 

 
 CC,0 = Caq,0 + Ch,0                                 (11) 

CC, final = Caq, final + Ch, final 
All the parameters are positive 

Ch,t, Caq,t and CT,t = 0 for t ≤ c 
 
where CC,0 and CC are percentages for the total and eventual initial carbon 

present [183], [185]. 
 
Evaluations of data from degradation processes were investigated by applying 

appropriate kinetic models. Parameters for all the models were optimized in the 
solver utility program of MS Excel, thereby minimizing the sum of squares of 
residues between the measured data and the interpolated values provided by the 
models. Their adequacy was compared by the coefficient of determination (R2). 
An analytical solution pertaining to the proposed model was reported by Stloukal 
et al. [183].  
 

Hydrolysis 
Water-soluble carbon was observed during abiotic hydrolysis by TOC analysis 

and was recorded at the same time changes in the molecular weight (Mw) of the 
solid sample. The kinetic model for Mw describes the mechanism of random 
cleavage during hydrolysis. First-order kinetics were applied to discern Mw, 
wherein Caq,0 (%) is the initial percentage of water-soluble carbon, Ch,0 (%) 
represents the initial content of hydrolyzable solid carbon, khr (day‒1) denotes the 
rate constant of first-order hydrolysis for the hydrolyzable solid carbon, and c is 
the duration of the lag phase (days) during the initial phase of biodegradation 
before the onset of CO2 production.  The rate constant khr was excluded for 
mineralization in an aqueous medium. The parameters for change in Mw in the 
aquatic environment are Mw,0 (gmol‒1) is average initial weight at time t = 0 and 
u (day‒1) stands for the rate constant of abiotic hydrolysis. 

 
Biodegradation 
The kinetic model was adjusted according to the biodegradation conditions and 

evaluated from the amount of organic carbon released from the solid sample. The 
related parameters, wherein Cr,0 (%) represents the initial content of hydrolyzable 
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solid carbon and Caq,0 (%) is the initial percentage of water-soluble carbon. The 
kinetic parameter khr (day‒1) represents the respective rate constant of first-order 
hydrolysis for the hydrolyzable solid carbon; kaq (day‒1) expresses the rate 
constant for the mineralization (biodegradation) of water-soluble carbon to carbon 
dioxide; and c is the duration of the delay (days) in the initial phase of 
biodegradation prior to the commencement of CO2 production. 
 

Composting test 
The experiment on the disintegration of samples under composting conditions 

was performed according to ISO 20200:2015 [186]. The plastic reactors were 
equipped with a composting medium mixed with water at the ratio of 45:55, the 
former comprising 40% sawdust (sourced from a local carpenter), 30% rabbit feed 
(Versele-Laga, Deinze, Belgie), 10% ripe compost (Central Composting Plant, 
Brno, Czech Republic), 10% corn starch (RUF Lebensmittelwerk KG, Essen, 
Germany), 5% sugar (Tereos TTD, České Meziříčí, Czech Republic), 4% 
sunflower oil (Bunge, Chesterfield, MO, USA) and 1% urea (Ing. Petr Švec – 
PENTA s.r.o., Prague, Czech Republic). Samples were prepared (25 mm x 25 
mm, thickness ≤ 5 mm) and buried approximately 2 cm below the surface. The 
reactors (PP boxes, 9.0 x 26.0 x 19.5 cm) were placed in a climatic chamber 
(Climacell 440, BMT Medical Technology Ltd., Brno, Czech Republic) wherein 
conditions were set to 58 ± 2 °C and RH 80%. During the 45 days, which the test 
was performed, the reactors were weighed and the pH and temperature inside the 
reactor were measured, then more water was added. Some reactors were also set 
aside to be sampled for GPC and DSC analysis and photographs were taken. At 
the end of the test the composting media from the reactors were dried, sieved and 
the remaining content of polymer residue weighed. Determination was made of 
the ash present in the composting medium, and the quantities of C/N and elements 
stemming from the leachate were gauged by elemental analysis (TOC-L, 
Shimadzu, Kyoto, Japan) and EDX (ARL QuantX ED-XRF spectrometer, 
Thermo Scientific, Ecublens, Switzerland). 

According to the stated standard, the degree of decomposition (D) is 
determined by the percentage of particles trapped on a 2 mm sieve, which are 
washed and dried to constant weight. Loss in weight is expressed according to 
Equation 12: 

 

𝐷(%) = ቀ
ିೝ


ቁ ∙ 100    (12) 

 
where mi corresponds to the initial dry weight of the samples, and mr represents 

the dry weight of pieces of the samples obtained by sieving. 
 
The test also requires the decrease in content of volatile solids (R) to be 

determined, relating to the difference in amounts of original synthetic waste and 
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compost obtained at the close, which has to equal or exceed 30%. R was calculated 
according to Equation 13: 

 

𝑅(%) = ቂ
(∙ெ∙ௌ)ି൫∙ெ∙ௌ൯

(∙ெ∙ௌ)
ቃ ∙ 100    (13) 

 
where mi is the initial mass of the wet synthetic waste matrix, DMi is the initial 

dry mass of the synthetic waste matrix and VSi is the initial content of volatile 
solids in the synthetic waste matrix. Mf, DMf and VSf represent the final weight, 
dry weight and volatile solids of the compost, DM and VS are expressed as a 
percentage divided by 100. 

Upon completion of the composting test, the extent of phytotoxicity was 
gauged to determine the properties of the compost for plant growth and 
development. An experiment was conducted to calculate the germination index 
(IK), wherein leachate from the compost was applied (1 ml) to filter paper in a 
Petri dish (diameter 5 cm) with a distribution of watercress seeds (Lepidium 
sativum). Incubation occurred at 28°C in the dark for 24 hours. Each sample was 
replicated and investigated 10 times (80 seeds in total), alongside a blank (distilled 
water). This phytotoxicity test of degraded samples in compost with watercress 
seeds was developed by the RIAE (Research Institute of Agricultural Engineering 
in Prague), where it is regularly carried out for analytical purposes [187]. 

 

                          𝐼𝐾(%) = 100 ∙
ೡ∙ೡ

ೖ∙ೖ
        (14) 

 
Where kv represents the germination of a watercress seedling (%) and kk is the 

germination of the control plant (%), while lv corresponds to the mean length of 
the roots of the watercress seedling (in mm) and lk the mean length of the roots of 
the control specimen (in mm). 
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4. RESULTS AND DISCUSSION 
The results given herein are presented in accordance with how topics appear in 

the chapters above. Each part summarizes research efforts relating to the 
introduction, results and discussion sections, and conclusions. The various 
findings originate from the entire period of the doctoral study, and have either 
been published in relevant professional journals or as contributions to projects 
detailed in patents or utility models. 

 
The section is entitled as follows: 
 
 Effect of an antioxidant based on red beetroot extract on the abiotic stability 

of polylactide and polycaprolactone  
(published in Molecules, 2021, 26, 5190) 
 

 Comparative degradation study of a biodegradable composite based on 
polylactide with halloysite nanotubes and a polyacrylic acid copolymer 
(published in Materials Today Communications, 2022, 33, 104400) 
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4.1. Effect of an antioxidant based on red beetroot extract 
on the abiotic stability of polylactide and polycaprolactone  

 
Motivation 

Beetroot (Beta vulgaris subsp. vulgaris conditiva) belongs to the family 
Chenopodiaceae and is an herbaceous, flowering, biennial plant. Its root is utilized 
as both a foodstuff and a source of a natural dye. Originating in the Middle East, 
numerous colour variations now exist globally [188]. The betacyanins and 
betaxanthins (betalains) present in it - heterocyclic, hydrophilic, nitrogen-based 
pigments - lend the tuber of the vegetable its characteristic colouring. Its earthy, 
mushy taste and aroma stem from geosmin, a volatile, bicyclic, tertiary alcohol. 
Other than the role it plays in the food industry, beetroot has recently been adopted 
in the production of biodegradable, edible, smart, active, intelligent packaging 
films. Beetroot (BR) extract in polymer films serves as a natural additive and 
alters certain properties (modulated physical, mechanical, functional, barrier and 
structural). The primary benefit is the antioxidant activity exhibited, caused by 
phenolic compounds, betanin, betacyanins and betaxanthins, which help scavenge 
free radicals and chelate metal ions [189], [190].  

These bioactive compounds also help to combat bacterial contamination by 
fungi and mesophilic aerobic or anti-colloidal bacteria, aiding extension of the 
shelf life of a product. Besides these antibacterial and antioxidant properties, BR 
contains natural betacyanin (a red-purple pigment) that ranks alongside 
betaxanthins (yellow-orange pigments) as dyes of plant origin referred to as 
betalains, which change colour in reaction to pH. It is possible to apply substances 
such as synthetic or natural antimicrobial agents or antioxidants to packaging 
materials, e.g. nisin, chitosan, herbal essential oils, rosemary (Rosmarinus 
officinalis), oregano (Origanum vulgare), sage (Salvia officinalis), rose hips and 
medicinal and aromatic plants. Tocopherol (vitamin E) is the most common 
antioxidant, adopted by the food industry as a preservative and as a component in 
packaging materials, with the aim of prolonging the shelf life of packaged foods. 
A multitude of commercially available synthetic AOs have been developed, and 
limited amounts of them are deployed for packaging purposes, especially in active 
packaging; popular examples include BHA, BHT and TBHQ [191], [192], [193]. 

Furtherance in the production of plastic materials continues to be led by 
manufacturers of packaging for foodstuffs. Several polymers have proven suitable 
for this application, namely petroleum-based ones (PE, PS, PP and PET).  While 
these possess physical and mechanical properties highly suited to this purpose, 
they have obvious drawbacks. Fossil fuel resources are unsustainable, their 
utilization exerts a carbon footprint, exacerbated by inadequate recycling 
practices, and such polymers do not biodegrade naturally. Therefore, efforts are 
being made to supersede them with suitable biodegradable alternatives. Starch 
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and cellulose constitute options in this regard, though PLA and PCL are common, 
widely applicable and possess favourable properties [192], [194]. 

A growing awareness exists amongst consumers about caring for the 
environment, stimulating the demand for biodegradable polymers. A clear 
preference for PLA has emerged, attracting attention for its short life cycle, 
transparency, high modulus and stiffness at room temperature, biocompatibility 
and non-toxicity. Unlike PET, which is similar in relation to certain properties, 
PLA requires only a small amount of energy for its manufacture, being derived 
biochemically from renewable sources like sugar, starch and cellulose [195], 
[196]. PCL is a biodegradable polyester with two stages of fabrication. Therein, 
carbohydrates are converted to ethanol and acetic acid by fermentation, followed 
by the transformation of ethanol into cyclohexanone by chromic acid, resulting in 
a product which undergoes Bayer-Villiger oxidation to give caprolactone [197], 
[198]. Hydrolysis of PLA and PCL occurs through the ester bonds. Unfortunately, 
these polymers are subject to premature and undesirable degradation processes, 
restricting their practicability. For example, abiotic factors arise under storage 
conditions, e.g. light, temperature, UV radiation and, notably, oxygen, which act 
synergistically with humidity. This affects the physical and chemical integrity of 
the materials, altering their mechanical, thermal, barrier and optical properties. 
Stabilizers and AOs are employed as countermeasures to prevent such abiotic 
processes. The function of an AO is to eliminate reactive oxygen and nitrogen 
species by providing hydrogen to them from a hydroxyl group [25], [199]. 

Natural antioxidants (e.g. carotenoids and betalains) are influenced by various 
conditions, not only storage, manifested by loss in colour caused by UV radiation 
and oxygen, and a subsequent reaction with peroxides and the chemical quenching 
of singlet oxygen [164]. 

Awareness of impacts to the natural environment and the unsustainable 
consumption of oil have generated interest in environmentally-friendly materials. 
In this context, the research presented herein focused on improving the polymers 
PLA and PCL by supplementing them with a natural, inexpensive and readily 
available AO obtained from beetroot (Beta vulgaris). Such AOs usually need to 
be stabilized, so study was made as to incorporating the AO in a common inert 
carrier (bentonite). PLA and PCL polymer composites were mixed with the 
stabilized AO, and subsequently characterized for their thermal, chemical and 
structural stability under abiotic conditions, especially UV radiation and 
temperature. 
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Results and discussion 
 
Determination of antioxidant activity and polyphenol content in the extract of BR 
(BRE) 

DPPH is a principal and common method for determining the antiradical 
activity of pure and mixed samples. The main attribute of an AO concerns the 
absorption of radicals, i.e. their ability to provide hydrogen. The reducing ability 
of DPPH radicals was determined spectrophotometrically at an absorbance of 517 
nm, the result being indicated by the discolouration of the solution. Ascorbic acid 
was employed as a standard. Subsequent measurements revealed that the 
antioxidant activity of the BRE corresponded to 114 mg per the equivalent amount 
of 100 g of ascorbic acid. The value for such antioxidant activity by BRE, herein 
converted to the amount of ascorbic acid, is variously influenced by aspects 
relating to BR, e.g. the type of storage, the given conditions, the environment of 
its cultivation and the technique for preparing the extract. This explains the wide 
variance reported in the literature, i.e. from 20 to 170 mg (expressed in mg as the 
ascorbic acid equivalent per 100 g of BRE) [200], [201], [202]. 

The Folin–Ciocâlteu spectrophotometric method (FCM), also referred to as the 
Gallic acid equivalent (GAE), is normally used to assess the sum of phenolic 
compounds in plant extracts and juices. Gallic acid serves as the standard. Herein, 
the polyphenol content of the extract was quantified by FCM, an assay being 
performed for the entire BR bulb. The data obtained were evaluated in accordance 
with the prepared calibration series and application of the gallic acid standard. 
The extract was derived in 70% ethanol, which actually contained 93 mg 
(expressed in mg as the gallic acid equivalent per 100 g of BRE). The content of 
polyphenolic substances in the BRE reached similar values as those reported in 
the literature. The BRE remained stable during storage at low temperature (4‒8 
°C) in darkness for at least one month, without exhibiting any significant change 
in polyphenol content [203], [204]. 
 
Determination of AO by HPLC analysis of the BRE  

Figure 13 shows a representative, total ion chromatogram (TIC) for the BRE 
determined by mass spectrometry in positive ion mode. Upon integration, the TIC 
exhibited several peaks evaluated as ms/ms fragmentation obtained as a 
consequence of collision-induced dissociation. The point at 2.98 minutes, a 
[M+H]+ molecular peak of m/z 549.1336, presented a fragment of m/z 387.0809 
and was consistent with previous findings on the fragmentation of neobetanin 
(Figure 14, part A) stated in references [205], [206]. The molecular ion at 2.49 
minutes had a value for m/z of 551.1509, which yielded fragments after 
dissociation of m/z 389.0976 (Figure 14, part B) typical for betanin or isobetanin 
(2.61 minutes) [205], [206], [207]. In coelution with betanin and isobetanin, the 
following were identified: 2´-O-glucosyl-betanin (tR = 2.52 minutes; [M+H]+ = 
713.2034); and 2´-O-glucosyl-isobetanin (tR = 2.63 minutes; [M+H]+ = 
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340.1132). Provisional identification also revealed feruloyl glucose at 3.55 
minutes ([M+H]+ = 357.1175), 5,5’,6,6’-tetrahydroxy-3,3’-biindolyl at 3.74 
minutes ([M+H]+ = 297.0874), betavulgarin at 5.35 minutes ([M+H]+ = 313.0704) 
and cochliophilin A at 6.23 minutes ([M+H]+ = 283.0604) [205], [206]. 
 

 

Figure 13. Representative TIC of the diluted BRE; the retention times were attributed 

by mass spectrometry analysis. 

 

 

Figure 14. Positive electrospray tandem mass spectra for (A) neobetanin and (B) 

betanin or isobetanin.  

Thermal analysis 
Incorporating an inorganic filler in the polymers and introducing a polyphenol, 

such as an AO, has the capacity for altering a multitude of properties, an example 
being thermal stability. DSC and TGA analyses were conducted to gauge the 
thermal properties of the prepared PLA and PCL samples with natural BRE 
anchored on bentonite (BE); comparison was made to neat polymers and samples 
without BRE, concurrently. The effects exerted by artificial ageing in a UV 
chamber were monitored for 720 hours. Significant changes were observed in the 
Tg of the PLA samples and its composites (see Table 6). As a result of accelerated 
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ageing, a clearly noticeable decrease in Tg values was observed for the neat PLA 
sample, potentially caused by two phenomena. Firstly, low-molecular-weight 
compounds may have formed new macromolecules in the process of degradation, 
giving rise to plasticizing properties and lowering the glass transition temperature 
of the polymeric materials. Secondly, the macromolecules could have been 
shortened by breaking the polymer backbone. Short macromolecules are known 
to have low glass transition temperatures and encourage a plasticizing effect. The 
ageing experiment for the semi-crystalline PCL revealed that it was not possible 
to technically compare the glass transitions of the materials (-60°C). Analysis of 
the PCL samples permitted evaluation of data on Tm, with the neat PCL and PCL-
BE samples showing two melting peaks (Table 7). The absolute values for cold 
crystallization and enthalpy of melting of these samples were virtually identical, 
since ageing PCL often exhibits double-melting behaviour, i.e. a stable melting 
structure at high temperatures and a less stable melting structure at lower ones 
[208]. 

 
Table 6. DSC data for the neat PLA and PLA composites with bentonite and AO before 

and after the UV ageing test. 

Sample 
Tg  
°C 

Tm  
°C 

∆Hm  
J/g 

Tonset  
°C 

Tpeak  
°C 

∆H  
J/g 

PLA 53 146 36.4 254 355 1805 
PLA-BE 57 143 38.5 267 349 1564 

PLA-BRE 57 145 38.0 265 347 1746 
PLA-UV 49 151 41.9 212 - - 

PLA-BE-UV 53 133 37.1 216 - - 
PLA-BRE-UV 57 135 38.6 218 - - 

 

Table 7. DSC data for the neat PCL and PCL composites with bentonite and AO 

before and after the UV ageing test. 

 

Visible changes were observed merely in Tpeak thermal stability values in the 
presence of oxygen. DSC analysis showed that samples with the carrier 
(bentonite) and carrier with AO exhibited faster thermal degradation than those 

Sample 
Tm1  
°C 

Tm2  
°C 

Tcc  
°C 

∆Hcc  
J/g 

∆Hm  
J/g 

Tonset  
°C 

Tpeak 
 °C 

∆H  
J/g 

PCL 65 - 34 2.7 88.3 245 312 3168 
PCL-BE 65 - 34 2.5 86.4 240 314 2254 
PCL-BRE 66 - 35 2.7 90.1 236 281 1157 
PCL-UV 39 66 26 2.6 91.5 215 286 254 
PCL-BE-UV 38 64 36 2.8 99.2 216 288 307 
PCL-BRE-UV - 64 30 1.4 92.5 208 265 143 
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containing the pure polymers. The primary difference between the polymers was 
the notably low internal enthalpy (∆H) of the PCL samples (1157 J/g). Figure 16 
and Table 7 illustrate that the thermal degradation of the PCL-BRE samples was 
slower than for the PCL samples. In the case of PCL-BRE, the antidegradant 
ceased to act as a disruptor of the chain autooxidation reaction, causing the 
formation of free radicals from the macromolecular chain. The thermal 
decomposition of polymers can be caused by various factors, primarily factors 
such as temperature, humidity, UV and the presence of oxygen. Another 
important aspect is the formation of free radicals, which affect thermal stability. 
The thermal degradation of polymers is considered an inevitable effect under 
normal conditions, e.g. in melt processing. Such degradation can be prevented or 
slowed down by adding an inorganic filler or AO, a phenomenon more 
pronounced for the given PCL samples [209], [210]. 

 

 
Figure 15. DSC degradation test for the PLA samples under an oxygen atmosphere. 

 

 
Figure 16. DSC degradation test for the PCL samples under an oxygen atmosphere. 
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Regarding the results of TGA analysis, the respective curves highlight that an 
influence was exerted by solar ageing on the stability of the PLA and PCL with 
additives. The PLA curves of the samples depicted in Figure 17 begin with the 
normal, initial release of moisture and volatiles. This is followed by thermal 
degradation, with a faster course in neat PLA. Upon ageing in the UV chamber, 
the Tonset of neat PLA is higher (354°C) than for its composites (343°C and 
347°C), although the degradation process itself is slower. This is especially 
evident for the PLA-BRE-UV sample, as the temperature at point T10 starts at 
175°C, indicating a slower mass loss (see Table 8). The TGA curves in Figure 18 
describe the degradation of the PCL materials. The effect of bentonite is obvious, 
reducing the temperatures of the degradation rate for PCL-BE-UV to 367°C and 
PCL-BRE-UV to 360°C, with that for PCL-UV at 335°C. However, the influence 
of the AO on this sample cannot be demonstrably claimed from this method [211], 
[212]. 

 

 
Figure 17. Thermogravimetric response of PLA-bentonite with the AO alongside 

reference samples. 
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Figure 18. Thermogravimetric response of PCL-bentonite with the AO alongside 

reference samples. 

 
Table 8. Summary of TGA curves for the PLA, PCL and composites. 

Samples Tonset (°C) T10 (°C) T50 (°C) T90 (°C) Mass Loss (%) 
PLA 359 123 337 355 100 

PLA-BE 358 140 336 357 95 
PLA-BRE 357 136 335 356 95 
PLA-UV 354 149 315 348 100 

PLA-BE-UV 343 156 316 342 95 
PLA-BRE-UV 347 175 322 346 95 

           
Samples Tonset (°C) T10 (°C) T50 (°C) T90 (°C) Mass Loss (%) 

PCL 368 333 363 350 100 
PCL-BE 378 307 346 449 95 

PCL-BRE 378 315 348 443 95 
PCL-UV 350 278 326 350 99 

PCL-BE-UV 381 302 359 397 95 
PCL-BRE-UV 379 281 354 398 95 

 

Mechanical properties 

The mechanical properties of the PLA, PCL and their composites were 
observed prior to and following the artificial ageing test. The first of the 
parameters was monitored by applying Young’s modulus (Figure 19). Increase in 
this parameter was evident, especially in the PLA samples that had undergone 
ageing. These exhibited interesting behaviour regarding rise in the modulus 
instigated by crosslinking of the PLA chains and crystallization. This difference 
was less significant in the PCL samples since a slight photodegradation process 
occurred. The point of maximum stress of the materials was also researched 
(Figure 20). A slight increase in this parameter was observed for the composites 
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with bentonite, as the latter acted as a nucleating agent. Another important 
parameter concerned elongation at break (Table 9). For the PLA- and PCL-based 
systems, adding a natural AO heightened the elastic modulus. The slight rise in 
elongation at break in all the AO-supplemented systems was attributed to a 
plasticizing effect initiated by stabilization of the molecules. It is known that low-
molecular-weight molecules dispersed in polymer matrices have the capacity to 
further the free volume of the system and reduce friction between the 
macromolecules. 

 

 
Figure 19. Mechanical properties of the PLA and PCL samples as per Young’s 

modulus. 

 

 
Figure 20. Mechanical properties of the PLA and PCL samples as per maximum 

stress. 
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According to the results in Table 9 relating to the ageing factor (Af), few 
samples appeared to be stable under extreme conditions in the climatic chamber. 
However, the PCL sample supplemented with AO evinced a suitable ageing 
factor. This study demonstrated the limited effect of the natural AO derived from 
BR. In this regard, BRE proved capable of reducing the amount of synthetic AO 
in the degradable polymer formulations, especially those based on PCL. The 
literature states that hydrolytic degradation of the chains in PLA takes place 
primarily on the surface and preferably in amorphous regions [212], [213]. 

 
 

Table 9. Comparison of the mechanical properties of the PLA and PCL composites 

prior to and following ageing; the ageing factor (Af) was calculated according to 

Equation 4. 

Samples 
Before solar ageing After solar Ageing 

Af (-) 
σ (MPa) ε (%) σ (MPa) ε (%) 

PLA 15 ± 1 354 ± 18 16 ± 2 24 ± 6 0.07 ± 0.01 
PLA-BE 16 ± 2 301 ± 25 6 ± 2 5 ± 1 0.01 ± 0.00 

PLA-BRE 10 ± 1 363 ± 14 1 ± 1 9 ± 1 0.00 ± 0.00 
PCL 17 ± 1 1006± 9 8 ± 3 14 ± 6 0.01 ± 0.01 

PCL-BE 22 ± 2 1008 ± 6 6 ± 3 8 ± 3 0.00 ± 0.01 
PCL-BRE 22 ± 2 1062 ± 8 11± 3 375 ± 42 0.15 ± 0.00 
 
Colour measurement 
As mentioned above, a polymer is influenced by numerous factors that aid 

degradation and affect its properties. In the case of smart packaging, dyes are used 
to visualize such changes, indicating alterations related to the freshness of the 
foodstuffs and in the properties of the polymer. The overall appearance is thus 
affected and an associated effect made on consumers. In particular, UV light can 
trigger undesirable photooxidation processes, bringing about either potentially 
rapid loss in quality or deterioration in the packaged foods. This could occur 
during transport and storage, ultimately giving rise to unwanted deviation from 
the original colour [214]. In this context, it is important to investigate the effect 
of the additives on the various properties of the materials. The results presented 
herein reveal the influences of the given additives (natural bentonite and extract 
additives) on the biopolymers (Figures 21, 22). 

The natural phenomenon of ageing is manifested through change in hue, as 
visible in every film tested herein. In the case of the neat matrices, the alteration 
was from transparent PLA and milky white PCL to a shade of yellow. In the PLA 
films, the most pronounced shift in hue was demonstrated by the sample 
containing merely bentonite. The colour change index (∆E) for this specimen was 
29, i.e. the same value as for the neat PCL sample (Figure 21). In contrast, the 
lowest values were evident for the samples with BRE, the colour change index 
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equalling 17 in both instances. During the ageing test, a significant alteration 
became apparent in the chroma (Cab) of the biopolymer samples supplemented 
with bentonite only. The whiteness index (Wi) increased in all the samples, which 
in the PLA materials pertained to a shift in their transparency, and a slight haze 
appeared during the ageing experiment. For these reasons, incorporating such 
natural dyes into the polymers would permit a visual indication as to the degree 
of degradation and even afford them the potential to serve as indicators (Figure 
22). 

 

 
Figure 21. Colour change (∆E) in the PLA and PCL composites with bentonite and the 

natural AOs, in comparison with the references of neat PLA and PCL; calculations 

were performed according to Equation 5. 
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Figure 22. Impact of solar ageing on (a) the chroma (Cab) and (b) whiteness index 

(Wi); calculations were performed according to Equations 6 and 7. 

 
Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR was carried out to record certain changes, mainly in chemical structure, 
as this is affected when polymeric PLA and PCL films age. Figure 23 shows the 
spectra for PLA before and after UV exposure. As regards the PLA and its 
composites, changes occurred through exposure to UV radiation, evident in 
alteration in the intensities of characteristic peaks, such as at 1756 cm‒1, 
corresponding to (C = O) carbonyl groups. The ether groups (C-O-C) of PLA in 
the bands at 1088 cm‒1 and 1183 cm‒1 also proved sensitive to UV ageing. A peak 
was additionally formed in the PLA-UV sample in the region of 1654 cm‒1, 
indicating the formation of anhydride groups during degradation. In conclusion, 
the samples of neat PLA demonstrated a significant decrease in their characteristic 
bands instigated mainly through photodegradation, though thermal degradation of 
the polymer structure might have played a contributory role [215], [216]. 

In the case of the PCL films (Fig. 24), the main characteristic peaks appear 
primarily in the regions of 2865 cm‒1 and 2945 cm‒1, which represents a 
symmetrical and asymmetrical expansion of the -OH groups. A peak at 1724 cm‒
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1 pertains to carbonyl ester vibrations, while C-O-C bands are denoted by peaks 
at 1187 cm‒1 and 1241 cm‒1. Degradation was observed after exposing the PCL 
samples to the UV chamber, resulting in increased peaks for the carbonyl groups 
and indicating the formation of radicals in the PCL macromolecules. In the 
instance of PCL-UV, the main peak widened to 1724 cm‒1. All the samples 
exhibited partial degradation, affected somewhat by the higher temperature of the 
UV chamber. Relatively demanding conditions were set for the materials over a 
relatively long period of time, hence it was not possible to directly discern the 
clear influence of the AO under the circumstances [217], [218]. 

 

 
Figure 23. FTIR spectra for the PLA and PLA composite films prior to and following 

exposure in a UV chamber. 

 

 
Figure 24. FTIR spectra for the PCL and PCL composite films prior to and following 

exposure in a UV chamber. 
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Scanning Electron Microscopy (SEM) 
This optical method with mobile electron beam imaging was used to obtain 

images of the refractive surfaces of the PLA and PCL samples (Figure 25 and 26; 
A‒F), taken before and after exposure in the UV chamber, as well as the surfaces 
of the samples after the UV chamber (G‒I). This facilitated detailed observation 
of the influence of the UV chamber environment on both materials. Thus, it was 
possible to recognize stratification in the films and the homogeneity of the filler 
present in the PLA, PCL and their composites.  

The degradation process was evidently underway after four weeks in the UV 
chamber, with cracks, cavities and flaking fragments visible in the materials. 
Although the effect of irradiation was perceptible solely on the irradiated surfaces 
of the materials, it was more noticeable in the PCL samples. Degradation had 
significantly impacted the surface of the neat PCL, which showed cavities after 
exposure. The PLA and PCL samples containing BRE also presented signs of 
degradation, though merely mild in extent and with only a thin surface layer 
affected. 

 

 
Figure 25. SEM images detailing change in the PLA samples prior to and following 

exposure in a UV chamber, comprising the fracture surfaces of samples (A) PLA; (B) 

PLA-BE; (C) PLA-BRE; (D) PLA-UV; (E) PLA-BE-UV; and (F) PLA-BRE-UV; and 

the surfaces of the samples (G) PLA-UV; (H) PLA-BE-UV; and (I) PLA-BRE-UV. 
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Figure 26. SEM images detailing change in the PCL samples prior to and following 

exposure in a UV chamber, comprising the fracture surfaces of samples (A) PCL; (B) 

PCL-BE; (C) PCL-BRE; (D) PCL-UV; (E) PCL-BE-UV; and (F) PCL-BRE-UV; and 

the surfaces of samples (G) PCL-UV; (H) PCL-BE-UV; and (I) PCL-BRE-UV. 

 
 
Conclusions 
A heightened interest is discernible in the adoption of alternative polymeric 

materials that are environmentally-friendly. Another trend concerns incorporating 
natural additives in such polymers without exerting any impact on their overall 
concept and integrity. Accessible, inexpensive fillers and additives are needed that 
would be applicable for the foodstuffs and packaging industries, for example. 
Research focused on designing a simple method for preparing biodegradable 
polymers, namely polylactide (PLA) and polycaprolactone (PCL), filled with a 
natural ingredient with antioxidant and colouring effects. Emphasis was placed 
on superior incorporation of BRE in polymer films for extended AO efficiency. 
The effect of the AO additive was demonstrated during experiments, manifested 
by reduced colour change, which was detected by spectrophotometry. 
Determining the thermal stability of the samples by DSC analysis revealed that 
the BRE in the PLA sample neither affected Tg after being aged in the UV 
chamber, nor reduced the onset of degradation in an oxygen atmosphere. In 
relation to TGA, the thermal degradation of the PLA-BRE sample commenced at 
a higher temperature (175°C) prior to and following exposure to UV. The PCL 
sample supplemented with the AO component exhibited stable intrinsic enthalpy, 
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as confirmed by DSC. Mechanical tests detected the effect of bentonite on the 
brittleness of the material. wherein the filler-free samples showed high values for 
Young’s modulus after ageing; for neat PLA and PCL, the increase was 90% and 
50%, respectively. However, bentonite diminished the total strength of the 
specimens during a stretching test. The elongation at break indicated a possible 
antioxidant effect for the PCL sample, which equated to 375% compared to the 
others at ca 10%. The presented findings suggest that the additive derived from 
beetroot shows potential as a natural antioxidant capable of increasing thermal 
stability and colour fastness in packaging materials, as required in the food 
industry and elsewhere. 
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4.2. Comparative degradation study of a biodegradable 
composite based on polylactide with halloysite nanotubes 
and a polyacrylic acid copolymer 

 
Motivation 

Biodegradable polymer-based materials have the potential to replace the 
current range of mainstream, petroleum-based plastics, thereby contributing to 
reduction in the amount of plastic waste generated. The best known biopolymer 
presently deployed by manufacturers is PLA, since it possesses unique properties 
such as biocompatibility and biodegradability, and breaks down into the final 
decomposition products of CO2 and H2O. It also has similar properties to PS, 
although PLA is produced from agricultural raw materials [219]. Drawbacks 
exist, however, that hinder further adoption, e.g. high production costs and slow 
degradation. Regardless of the future commercial use of PLA various areas, it 
shall become paramount to tackle the environmental burden will eventually be 
considered due to the slow rate of degradation of many products that do not allow 
chemical recycling [171]. Consequently, it is necessary to improve the 
development and application of PLA in connection with raising its performance 
and accelerating its degradation. The rate of degradation processes in the 
composting medium should be comparable to the rate of other forms of 
biodegradable matter, and no residues should be apparent [220], [221]. 

The rate of PLA degradation depends on many aspects, an example being 
molecular weight, as low-molecular-weight polymers degrade faster than high-
molecular-weight ones. Abiotic factors (e.g. mechanical, light, thermal and 
chemical substances) also influence the initiation of the biodegradation process 
[222]. Temperature is crucial, since it significantly accelerates degradation in 
parallel with high humidity. The optimal temperature for PLA is 58°C, which is 
identical to its glass transition temperature. During this process, high-molecular-
weight chain fragments decompose, then shorter fragments are further digested 
and mineralized by microorganisms into essential elements [103], [222]. 
However, this phase lasts several days compared to a normal composting process, 
resulting in insufficient depolymerization of the chains of the given material. The 
ability to accelerate depolymerization during composting is reasonable, i.e. to 
reduce the time required for biodegradation to ensure compatibility of the material 
with surrounding organic by-products. 

Several approaches can be used to treat PLA to promote biodegradation and 
significantly alter the rate of hydrolysis. Examples include copolymerization 
[223]  and grafting various monomers onto polymer chains [224], [225], blending 
PLA with extremely biodegradable additives and modifying properties such as 
crystallinity [226]. Nevertheless, improving the biodegradability of PLA could 
lead to unintended deterioration in the properties of the material (e.g. mechanical, 
thermal stability and transparency) [227]. Nanocomposites and multiphase 
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materials made up of two or more parts constitute suitable options for adjusting 
the initial characteristics of PLA [228]. For instance, deploying certain 
nanoparticles affects the mechanical properties of PLA and, dramatically, its 
biodegradation behaviour. Clays, zinc oxide, TiO2, graphene oxide, metal oxides 
and natural polymers such as chitosan and nanocellulose are known to accelerate 
the decomposition of PLA. The development of PLA-based nanocomposites often 
involves a trade-off between the performance of such composites and their 
degradability at the end of their life cycle. They improve selected properties of a 
given biopolymer, in terms of strength and heat resistance, while also lending 
stability to the structure. This is because incorporating a nanofiller leads to the 
formation of effective interfacial hydrogen bonds between the components. 
Another advantage of nanofillers is their low cost [103]. 

A well-known form of nanoclay, halloysite nanotubes (HNT) show real 
potential since they are non-toxic in nature, biocompatible and dispersible. They 
also have a high cation-exchange capacity, hence the formation of hydrogen 
bonds is likely, arising through the hydrogen atoms in the PLA interacting with 
oxygen atoms in the HNT [195], [229]. This marks the material out as a 
particularly suitable additive for the biopolymers of PLA and PLA-g-PAA 
(polylactic acid)/poly(acrylic acid). It also disperses well in a matrix, which is 
crucial for optimizing the properties of a nanocomposite film. The additive in 
PLA-g-PAA facilitates superior dispersion in the matrix, thereby enhancing the 
properties of the nanocomposite film. It also helps to accelerate the 
biodegradation of PLA during hydrolysis, caused by enrichment of the PLA 
matrix by ester groups. These groups are the first to be released and help convert 
oligomers to monomers [103], [185].  

The characteristics of the PLA biopolymers are affected by the dispersion of an 
HNT nanofiller in their matrices, the chemical bonds between them and the mean 
molecular weights of the resulting materials, which in this regard could be achieve 
by suitable concentration of both chosen fillers. Although the influence exerted 
by HNT on the properties of PLA has previously been investigated by researchers, 
the emphasis was on specific characteristics, so a more detailed and thorough 
investigation was absent [228]. Indeed, an accelerated degradation experiment has 
never been published that addresses the effect of the environment of a municipal 
composting facility on PLA-g-PAA/HNT nanocomposites [230]. The authors 
believed it necessary to fill the gap in knowledge on effective nanocomposite 
PLA-g-PAA/HNT films by researching the topic in connection with different 
environments, including data processing and the application of kinetic models. 

The aim of this study was to develop a new, optimized composite supplemented 
with HNTs in combination with a multi-combed copolymer (PLA-g-PAA), the 
purpose being to accelerate the degradation processes of PLA by an applicable 
technological procedure. The first step involved characterizing the resulting 
composites in relation to certain properties - mechanical, thermal and wettability, 
i.e. those important for manufacturers. The unique and compact structure 
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instigated by the additives was believed to lend high compatibility to the PLA 
polymer matrix, enhance mechanical and thermal properties, and help accelerate 
hydrolysis. Crucial to this research was the act of monitoring the rate of 
degradation and its course in various environments (abiotic and biotic), wherein 
changes in molecular weight were observed alongside the release of carbon or 
carbon dioxide. Kinetic models for the given types of degradation processes were 
also derived from the experimental data. With consideration of potential real-
world applications, a disintegration experiment was carried out under composting 
conditions in laboratory conditions. Emulating the function of a municipal 
composting plant, the intention was to explore the degradation behaviour of 
materials disposed of at the end of their life cycles. 

 
Results and discussion 
 
Surface morphology of the PLA and modified nanocomposite films 

Figure 27 illustrates the surfaces and fracture surfaces of the PLA (a, a´), 
modified films (b, b´ ‒ g, g´) and HNT (h). The surfaces of all samples are very 
similarity to each other. The presence of additives was observed in the fractured 
cross-sections. The HNT nanoparticles were observed as white particles in Figure 
27 b´, c´, e´, f´, as highlighted by the blue arrows. These white spots are absent 
from Figure 27 a' for neat PLA and in Figure 27 d' and g' merely for the PLA-g-
PAA variant (without HNT). Despite the presence of the additives in the PLA 
matrix, even at higher concentrations, the surfaces of the film samples remain 
smooth and crack-free, indicating good homogeneous dispersion enabled by 
significant interaction between the components. The structure of the HNT 
provides negatively charged oxygen atoms that interact with positively charged 
PLA hydrogen atoms via hydrogen bonds, Similarly, hydrogen bonds are also 
formed between the siloxane groups in the HNT and the hydroxyl groups of the 
PLA. The presence of carboxyl groups in the PLA also form bonds with hydrogen 
atoms in the hydroxyl groups of the HNT, giving rise to films which possess both 
thermal stability and increased mechanical strength [230]. The PLA-g-PAA comb 
copolymer is characterized by numerous PLA side chains with a high 
concentration of terminal carboxyl groups, furthering compatibility with the PLA 
matrix [185]. 
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Figure 27. Electron micrographs of the surfaces and fractured surfaces of the thin 

films: (a, a´) PLA; (b, b´) PLA/5H; (c, c´) PLA/5H/20PLA-g-PAA; (d, d´) PLA/5PLA-

g-PAA; (e, e´) PLA/20H; (f, f´) PLA/20H/20PLA-g-PAA; (g, g´) PLA/20PLA-g-PAA; 

and (h) HNT; (blue arrows indicate HNT particles). 

 

FTIR spectra for powders of the neat PLA, HNT, PLA-g-PAA and modified films 

The FTIR plots in Figure 28a depict separate spectra for the PLA matrix and 
the additives in order to facilitate the identification of functional groups. 
Characteristic absorption bands of the HNT filler appear at 3695 cm‒1 and 3624 
cm‒1, indicating the stretching vibration of the O–H bond with aluminium and 
implying internal and surface stretching. The IR bands at 1029 cm‒1 and 912 cm‒

1 correspond to the symmetric stretching of the Si–O–Si bond and the bending 
vibrations of Al–OH. The peaks observed at 1008 cm‒1 are formed by 
absorption/in-plane stretching of Si‒O in the HNTs [230]. The slight humps at 
1117 cm‒1, 793 cm‒1 and 746 cm−1 are caused by in-plane Si‒O stretching, Si‒O‒
Si symmetrical stretching and Si‒O‒Al perpendicular stretching, respectively 
[231]. 

The spectra in Figure 28a for the PLA-g-PAA powder and neat PLA look 
similar, with a clearly visible broad peak starting at 1720 cm–1, attributed to an 
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increase in the concentration of ‒COOH and a parallel rise in the amount of PAA. 
The PAA signals, i.e. ‒CH and ‒CH2, essentially overlap others from this part of 
the PLA polymer, otherwise there no significant qualitative changes are apparent 
in the spectra [232].  

The characteristic peaks observed for PLA at 1756 cm−1, 1269 cm−1 and 
754 cm−1 for –C=O relate to its strength vibration, bending vibration and torsion 
vibration, respectively. The peak located at 955 cm−1 corresponds to the C–C 
group, while the spikes at 1132 cm−1, 1045 cm−1 and 869 cm−1 belong to C–O–C 
groups for strength vibration. The peak at 1454 cm−1 signifies ‒CH3 bending, 
whereas those expressing symmetrical and asymmetrical strength vibrations of 
the –CH bond are indicated at 1360 cm−1 and 1383 cm−1 [233]. For the PLA/HNT 
films, a shift in the lower wavenumber from 1756 cm−1 to 1752 cm−1 for the –C=O 
bond is visible, owing to strong interactions between the hydroxyl groups of the 
HNT and carbonyl groups of PLA [234]. 

Adding HNT into the PLA triggered a rise in intensity to 1045 cm−1 for the 
PLA/HNT films, resulting from the overlapping of shifted peaks for the HNT at 
1029 cm−1 and 1008 cm−1 (see Figure 28b). The peaks at 869 cm−1 and 754 cm−1 

pertain to amorphous and crystalline regions present in the PLA [230]. 
 

 
Figure 28. FTIR spectra for attenuated total reflectance (ATR) samples of PLA, PLA-

g-PAA and HNTs in (a) powdered form and (b) as pristine PLA and modified films. 
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TGA 
The thermogravimetric properties of thermal decomposition in an inert 

atmosphere (nitrogen) are given in Table 10. The main parameters that 
characterize the thermal stability of the PLA samples and composite specimens 
with the HNT and PLA-g-PAA additives comprise temperatures for degradation 
onset (Tonset) and maximum degradation (Tmax). The former, Tonset, was affected 
by increase in HNT concentration, dropping by up to 8% (in the case of 20 wt.%), 
alongside a significant reduction in the degradation maximum by up to 9% (30°C). 
This decrease in thermal stability was attributed to the catalytic role of the HNT 
on the pyrolysis of PLA, with the existence of Si‒OH and Al‒OH acidic sites on 
the outer surfaces of the HNT nanoparticles [235]. The thermal stability of 
samples containing lower percentages of PLA-g-PAA was not notably influenced. 
Although a drop in thermal stability was evident, no corresponding dip in 
temperature occurred that would disrupt or interfere with the thermal processing 
of the PLA matrix. 
 

Table 10. Effects of the copolymer and nanofiller on thermal stability. 

Sample Tonset (°C) Tmax (°C) 
Mass loss 

(%) 

PLA 317 350 100 

PLA/5H 301 332 94 

PLA/20H 293 319 78 

PLA/5PLA-g-PAA 313 348 100 

PLA/20PLA-g-PAA 311 342 100 

PLA/20H/5PLA-g-PAA 298 321 82 

PLA/5H/20PLA-g-PAA 299 331 94 

 
Mechanical testing 
Table 11 shows the Young’s modulus (E), elongation at break (ɛ) and tensile 
strength (σ) of the neat PLA and its composites with different contents of both 
additives. Mechanical properties are key to determining the suitability of materials 
for most applications, acting as a basic indicator in production, storage, transport 
and handling. The Young’s modulus of the PLA/5H and PLA/20H 
nanocomposites increased in parallel with a rise in HNT content. In the case of 
PLA/5H, the value went up by 15%, and sample PLA/20H exceeded neat PLA in 
this regard by 25%.  These values indicated that the films with HNT possessed 
greater stiffness. An opposite trend was seen for composite with 20 % PLA-g-
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PAA, whereby it was lower (up to 5 %) than for neat PLA. The HNT composites 
exhibited a strong effect in connection with PLA-g-PAA, as values for the 
modulus were reduced compared with neat PLA or the PLA/HNT composites. 
This phenomenon could be attributed to PLA-g-PAA (with its shorter chains) and 
how it was incorporated into the polymer matrix. The consequent reduction in 
intermolecular binding and greater chain mobility in the polymer matrix 
heightened the flexibility of the films and contributed to the loss of rigidity [236]. 
The combination of PLA with a lower concentration of HNT and a higher 
concentration of PLA-g-PAA in the composite films was advantageous because, 
in some cases, it could match the values for the neat PLA material, giving it more 
stability. A higher concentration of HNT filler can also reduce the elongation of 
PLA, and the opposite was the case with a lower concentration of PLA-g-PAA. 
 

Table 11. Mechanical properties of the neat PLA and PLA composites. 

Sample E (MPa) ɛ (%) σ (MPa) 

PLA 4 000 ± 70a 1.7 ± 0.1a 49 ± 3a,c 

PLA/5H 4 600 ± 130b,e 1.4 ± 0.3a,b,d,e 48 ± 3a,c 

PLA/20H 5 000 ± 120c 1.1 ± 0.3b 34 ± 3b,d 

PLA/5PLA-g-PAA 3 900 ± 120a,d 2.0 ± 0.3c 51 ± 2c 

PLA/20PLA-g-PAA 3 800 ± 100d 1.8 ± 0.2a,c 47 ± 3a,c,d 

PLA/20H/5PLA-g-PAA 4 700 ± 70e 1.1 ± 0.2b,d 31 ± 2d 

PLA/5H/20PLA-g-PAA 4 000 ± 130a 1.4 ± 0.1e 45 ± 3a 

* The mean values followed by the same superscript letters in the same column do not 

exhibit differences at the 5% significance level according to Tukey's test. 

 
Contact angles 

The wettability of the PLA samples was measured by the static water contact 
angle (W), ethylene glycol (EG) and diiodomethane (DIM) methods. The mean 
values with the standard deviation are given in Table 5, and the mean values were 
processed using Tukey's test and recorded in the upper index in lower case letters. 
Contact angle measurements revealed that incorporating HNT nanotubes did not 
significantly affect wettability in the case of water. However, in the case of 
ethylene glycol, a phenomenon was manifested that was the opposite of 
expectations, namely that the hydrophobicity of samples containing HNT 
increased with the increasing content of this filler. This phenomenon could be due 
to the hydrophobic nature of HNTs with a low number of hydroxyl groups, which 
led to a decrease in water absorption capacity, or also to the well-dispersed HNTs 
in the mixed matrices, which could use some free -OH to form hydrogen bonds 
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between them [237]. The surface free energy (SFE) varies with the amount and 
type of filler added to the PLA matrix. For samples containing PLA-g-PAA, these 
changes are not striking, but in the case of composites containing 20 % HNT, there 
is a slight increase, which could be caused by a slight agglomeration of this filler 
in PLA [238]. As confirmed by SEM analysis, every sample was smooth, and 
cracks were absent that could affect the contact angle. 

 
Table 12. Values for contact angle discerned for liquids (water, ethylene glycol and 

diiodomethane) and the surfaces of the various samples. 

Samples 

Contact Angle Values (°)  

W EG DIM 

Total 

SFE  

(mJm‒2) 

PLA 68 ± 4a 34 ± 6a 42 ± 6a 45 ± 1a 

PLA/5H 62 ± 4a 43 ± 4b 37 ± 3a 45 ± 1a 

PLA/20H 62 ± 3a 47 ± 4b 37 ± 2b 48 ± 0b 

PLA/5PLA-g-PAA 67 ± 3a 41 ± 2a 42 ± 4a 45 ± 0a,c 

PLA/20PLA-g-PAA 65 ± 3a 41 ± 1a 40 ± 2a 45 ± 1c 

PLA/20H/5PLA-g-PAA 64 ± 3a 47 ± 3b 36 ± 3b 48 ± 0b 

PLA/5H/20PLA-g-PAA 60 ± 4b 38 ± 4a 38 ± 2a 45 ± 1c 

* Variations are given in parentheses. Samples with different letters are significantly 
different at 95% confidence interval of probability according to Tukey's tests. 
 

Abiotic hydrolysis 
Abiotic hydrolysis is a process of initial degradation that is essential to 

determining the stability of materials. It is also necessary for the course of 
subsequent biodegradation by microorganisms. The aim of the two given 
additives was to accelerate the initial stages of the protracted abiotic hydrolysis of 
the PLA matrix, a procedure primarily influenced by temperature and humidity. 
The hydrolytic behaviour of neat PLA and its composites was observed herein 
under the influence of abiotic factors, i.e. a high temperature of 58°C and in 
aqueous medium (0.1 M Na-PB). During the process, changes associated with 
dissolved organic carbon (TOC-L) and molecular weight (GPC) were analysed, 
as detailed in Table 13 and Figures 29 and 30. Experimental data obtained from 
the dissolved organic carbon tests were subsequently processed by applying 
mathematical kinetic models and coefficients of determination (R2), mainly in 
relation to the first phase of degradation. 
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The 60-day experiment revealed the course of abiotic hydrolysis of PLA and 
its composites, and the experimental data agreed with the kinetic models. The 
adequacy of the model was also evident from the resulting coefficients of 
determination, with a level of significance exceeding 0.99.  

The hydrolysis experiment revealed that the mineralization of PLA accelerated 
as a consequence of an increase in the concentration of the PLA-g-PAA additive. 
This happens the fastest at the highest concentration of this kind additive (~5 
days,), which is half the time faster than for neat PLA (~11 days). Such 
acceleration was quantified by the length of lag phase C calculated from a kinetic 
model that expressed the initial phase of hydrolysis, i.e. the amount of carbon 
dissolved in the aqueous medium; this represented a step preceding the final stage 
of microbial carbon mineralization during biodegradation. The opposite effect 
was found for the PLA/HNT composites, primarily those containing 20% HNT. 
It is known that applying a higher quantity of such nanoparticles could block the 
release of carboxyl groups from PLA to a certain extent. However, the 
combination of the additives in PLA accelerated hydrolysis, and a composite 
containing 5% HNT and 20% PLA-g-PAA stood out in this regard. Under the 
given conditions, the rate constant increased from 0.041 day‒1 for neat PLA to 
approximately 0.067 day‒1 for PLA with the mentioned percentage of both fillers. 

 
 

 
Figure 29. Carbon content of the neat PLA and PLA composites during abiotic 

hydrolysis, in 0.1 M Na-PB (pH~7) at 58°C. 
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Table 13. Parameters of the kinetic model and coefficients of determination (R2) for 

the abiotic hydrolysis of the PLA and PLA composites. 

Sample 
Caq,0

a  

(%) 

Ch,0
b  

(%) 

khr
c
  

(day-1) 

Cd  

(days) 
R2 

PLA 0 30.81 0.041 11.3 0.999 

PLA/5H 0 30.41 0.023 9.9 0.998 

PLA/20H 0 49.14 0.030 11.9 0.992 

PLA/5PLA-g-PAA 0 38.14 0.054 9.0 0.994 

PLA/20PLA-g-PAA 0 41.27 0.058 5.4 0.993 

PLA/20H/5PLA-g-PAA 0 36.44 0.036 7.5 0.999 

PLA/5H/20PLA-g-PAA 0 60.70 0.067 6.2 0.988 

a Percentage of initial, intermediate. 
b Percentage of initial, readily hydrolysable. 
c Rate constant for first-order hydrolysis. 
d Duration of the lag phase during the initial biodegradation phase. 

 
Investigation at a molecular level by GPC was carried out to discern the 

behaviour of the materials during hydrolysis. Agreement with previously recorded 
data was seen for molecular weight and findings on the degradation of the neat 
PLA and composites. Figure 30 details a marked decrease in Mw in the first 10 
days for all the PLA samples. The rate increased significantly in the presence of 
PLA-g-PAA, this more rapid onset and course of biodegradation most likely 
instigated by the presence of PAA, which catalysed the hydrolysis of ester bonds. 
Experimental data obtained from mathematical evaluation with first-order 
kinetics described the random cleavage of the ester bonds. The rate constants 
determined for chain cleavage confirmed that the phenomenon was accelerated in 
the PLA sample supplemented with PLA-g-PAA. The random cleavage of ester 
bonds in neat PLA was expressed as a rate constant of 0.1479 days‒1, while for 
PLA specimens with PLA-g-PAA it ranged from ca 0.2056 to 0.2734 days‒1. HNT 
nanoparticles had the opposite effect on hydrolysis, as the rate constant shifted 
from 0.1430 to 0.1302 day‒1 (Table 14). 

The full course throughout the period of 25‒60 days, according to the measured 
data, is detailed in the bar graph (see Figure 31) of molecular weights gauged 
during abiotic hydrolysis. The molecular weight of PLA decreased by 76% after 
10 days in the abiotic environment (from approximately 201 kgmol‒1 to 48 
kgmol‒1). The PLA/5PLA-g-PAA and PLA/20PLA-g-PAA samples decreased 
by 90% (from approximately 170−174 kgmol‒1 to 22−11 kgmol‒1), whereas the 
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PLA/5H and PLA/20H composites reduced by 72% from the baseline (from 
approximately 195−191 kgmol‒1 to 49−55 kgmol‒1), respectively. All the 
samples showed a 99% reduction from their original molecular weights after 25 
days. 

The results confirmed the rapid onset and course of degradation of PLA 
supplemented with PLA-g-PAA in combination with a limited amount of HNTs 
(5 wt.%). Heightened acceleration of abiotic hydrolysis is desirable, whereby the 
rapid fragmentation of long chains occurs alongside the potential mineralization 
of soluble oligomers, the latter then being broken down by microorganisms [183]. 

 
 

 
Figure 30. Reduction in molecular weight during abiotic hydrolysis of the neat PLA 

and various composites with additives, according to the kinetic model. 

 
Table 14. Parameters of the first-order kinetic model and coefficients of determination 

(R2) for random scission of the PLA and PLA composites. 

Sample Mw,0
a (g∙mol−1) ub (day−1) R2 

PLA 201,467 0.1479 0.9994 

PLA/5H 194,800 0.1430 0.9992 

PLA/20H 191,672 0.1302 0.9988 

PLA/5PLA-g-PAA 174,073 0.2056 0.9995 

PLA/20PLA-g-PAA 170,412 0.2734 0.9991 
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PLA/20H/5PLA-g-PAA 183,008 0.1424 0.9995 

PLA/5H/20PLA-g-PAA 166,819 0.2657 0.9990 

a Initial weight average Mw at time t = 0. 
b Rate constant of abiotic hydrolysis. 

 

 
Figure 31. Course of abiotic hydrolysis during 25‒60 days. 

 
Biotic degradation test 

Aerobic composting (AC) on a laboratory scale made it possible to monitor the 
biodegradation of the material by gauging the amount of CO2 released from the 
test samples [239]. Composting conditions were set at 58°C after 48 days, since 
control pieces of the cellulose films degraded by more than 70% within 48 days 
of incubation. 

Parameters of the kinetic model and the coefficient of determination (R2) were 
determined from the findings, as detailed in Figure 32 and Table 15. Calculation 
of the kinetic model was performed in order to predict the course of 
biodegradation, and the values plotted are in general agreement with the 
experimental data obtained from all experiments. The resulting coefficients of 
determination are remarkable, with significance levels 0.99 for each material. 

Analysis revealed that both degradation factors (abiotic and biotic) acted on the 
samples, with each one reaching approximately 40% mineralization after 48 days 
of incubation, thereby confirming their biodegradability in the composting 
medium. All the samples, except for composites with a higher HNT content, 
demonstrated a faster onset of the degradation mechanism than neat PLA, the 
quickest being reported for samples containing the PLA-g-PAA additive at 20 
wt.%. Adding 5 wt.% of the HNTs into the PLA matrix also exerted a positive 
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effect. Rate constants for biodegradation comprised 0.0238 day‒1 for PLA, 0.0307 
day−1 for PLA/5PLA-g-PAA and 0.0364 day−1 for PLA/20PLA-g-PAA. The 
highest value for rate constant (0.0397 day−1) was discerned for the 
PLA/5H/20PLA-g-PAA composite. 

As in the biotic degradation and abiotic hydrolysis experiments, samples 
containing the additive PLA-g-PAA tended to accelerate the hydrolysis of neat 
PLA, further supported by increasing its concentration. This additive also 
heightened degradation when combined with a low amount of the inorganic filler 
- HNT. This finding is consistent with reports in the literature on acid-catalysed 
hydrolysis of PLA ester bonds in the presence of high carboxyl groups, with the 
structure of the HNTs also aiding water binding and accelerating PLA degradation 
as a consequence [174], [180], [185]. 

 
Figure 32. Biodegradation of the PLA, PLA with HNTs and PLA-g-PAA/HNT 

nanocomposite films, as converted to carbon during mineralization. 

 
Table 15. Parameters of the kinetic model and coefficients of determination (R2) for 

the biodegradation of the PLA and PLA composites 

Sample 
Caq,0 

a Ch,0 
b kaq c khr

d Ce 
R2 

(%) (%) (day−1) (day−1) (days) 

PLA 0 32.61 0.0952 0.0238 2.0 0.9904 

PLA/5H 0 37.55 0.1042 0.0295 1.5 0.9852 

PLA/20H 0 31.62 0.0764 0.0307 4.0 0.9918 

PLA/5PLA-g-PAA 0 24.35 0.1654 0.0348 1.8 0.9969 
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PLA/20PLA-g-PAA 0 25.54 0.2417 0.0364 0.3 0.9971 

PLA/20H/5PLA-g-PAA 0 34.06 0.0747 0.0246 0.7 0.9982 

PLA/5H/20PLA-g-PAA 0 39.86 0.2509 0.0397 0.9 0.9995 
a Percentage of initial, intermediate, solid carbon. 

b Percentage of initial, readily hydrolysable, solid carbon. 
c Rate constant for mineralizing water-soluble carbon into carbon dioxide. 
d Rate constant for first-order hydrolysis. 
e Duration of the lag phase during the initial biodegradation phase prior to the onset 

of CO2 production. 

 
Composting test 

The composting process has the potential to convert biodegradable plastic 
waste matter into environmentally-friendly products. Investigation was made as 
to the degree of degradation (decomposition of the material over time) exhibited 
by the produced nanocomposites in a composting environment. This study of the 
biocomposites over a period of time was performed under laboratory conditions 
that simulated circumstances at a municipal composting plant. Degradation of the 
samples was observed in terms of change in Mw (Figure 33) and crystallinity 
(Table 16); note that a high Mw can impede this process. Supplementing PLA with 
certain additives greatly impacts its thermal stability and crystallization, and thus 
its subsequent biodegradation. In this context, DSC analysis was performed to 
determine alteration in the behaviour of the polymer and its composites during the 
composting process. 

Mw dropped by approximately 50% in the first 4 days, and in the PLA/20PLA-
g-PAA and PLA/5H/20PLA-g-PAA composites by up to 62%, a phenomenon 
related to the hydrolytic degradation of ester groups [185]. After 7 days, the other 
composites had degraded by approximately 61%, although samples containing 
PLA-g-PAA had decreased by up to 95%. The HNTs were expected to accelerate 
the degradation of PLA, caused by binding that in turn permitted the rapid binding 
of water. An opposite effect of the HNTs was found in relation to molecular 
weight under composting conditions, potentially through an increase in the 
crystalline phase, which subsequently hindered such degradation. Based on these 
findings, it was concluded that the HNTs decelerated the degradation process, in 
comparison with neat PLA, since they were inorganic in nature. However, as other 
authors have reported [240], supplementation with a limited amount of HNTs may 
promote the breakdown of the polymer matrix. According to the results, maybe 
in a concentration of less than 5%. 

After less than a month, however, the Mw of all samples equalled ca 3,000 
gmol‒1 and it was not possible to detect such values after 28 days.  
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Figure 33. Values for the molecular weights of the PLA and PLA composites during 

degradation under composting conditions. 

 
The capacity of PLA is generally quite poor and the crystallinity of the prepared 

films was low. When initially exposed to the composting environment, each 
sample contained an amorphous polymeric material. The duration of the 
composting experiment was 45 days, and values for enthalpy of melting (ΔHm; 
the content of the crystalline phase in the polymer) are summarised in Table 16. 
Biodegradation under the given composting conditions (58 ± 2 °C and 80 % RH) 
was influenced by various factors, especially temperature and humidity. 
Temperatures can up to 60 °C in this environment, meaning they align with the 
range for the glass transition of PLA, thus cold crystallisation occurs in the 
material [112]. Biodegradation transpired the quickest during the first and second 
weeks of exposure. The high temperature in the reactors caused a decrease in 
molecular weight alongside an increase in melting enthalpies, i.e. crystallinity. 
Such a drop in molecular weight is associated with  the chain length being 
shortened and the formation of lactic acid oligomers, which crystallize efficiently 
[241]. The results compare the PLA composites with the neat PLA matrix. In the 
initial phase of degradation (7 days), the PLA/5PLA-g-PAA and PLA/20H/5PLA-
g-PAA composites resembled neat PLA. The sample containing the 
experimentally prepared additive PLA/5PLA-g-PAA was similar to neat PLA in 
this respect at the end of the test. Differences in biodegradation became more 
pronounced after 35 days had passed. The PLA samples lost the ability to cold 
crystallise during the second heating scan, although melting enthalpy increased, 
indicating that the amorphous parts of the tested samples had biodegraded, leaving 
merely a crystalline portion. There was also a noticeable loss in melting point 
associated with chain separation and a reduction in molecular weight for all the 
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samples. Thus, the separation of multiple crystalline chains into semi-crystalline 
or amorphous portions could have contributed to the microbial degradation of the 
polymer [242]. 

 
Table 16. DSC results for the neat PLA and composites during degradation under 

composting conditions. 

 

Sample 

Amorphous materials; 

after cold 

crystallization 

Crystalline materials 

Tg 
a  

(°C) 

ΔHb
m 

(J/g) 

ΔHb
m  

(J/g) 

amorphous crystalline 
7  14  21  28  35 45  

(days) 

PLA 66 18 54 84 77 80 76 - 
PLA/5H 60 2 39 83 87 77 61 - 
PLA/20H 58 13 78 57 48 40 29 - 
PLA/5PLA-g-
PAA 

58 35 56 97 89 95 84 - 

PLA/20PLA-g-
PAA 

58 4 38 94 85 83 93 - 

PLA/20H/5PLA
-g-PAA 

58 13 50 64 60 31 14 - 

PLA/5H/20PLA
-g-PAA 

57 30 77 84 68 60 25 - 

a Glass transition temperature determined by DSC. 
b Melting enthalpy determined by DSC (from the 1st heating scan) of the studied 

material. 

 
Samples were reported at particular intervals until the end of the composting 

test at 45 days. Figure 34 shows the changes that occurred in the surfaces of the 
neat PLA and composites during the composting process in the laboratory setting. 
Not only did the materials become brittle after 7 days, but also alteration in colour 
was evident. In the first phase, yellowing primarily affected the composites with 
PLA-g-PAA. An organic segment formed over time, and the samples turned a 
shade of brown. Those containing up to 20% of PLA-g-PAA reached 98% of 
biodegradation after 45 days, even when they contained 5% HNTs. Remnants 
were visible solely through the presence of the mesh. As for the compost, no 
evidence of any residual PLA polymer was discerned in it after sieving. 
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Measurements were taken of the pH levels and temperature in the reactors 
during the biodegradation experiment. At time 0 until day 3, pH equalled 6‒8 and 
the temperature 58°C. Then the pH rose sharply to 10‒12 and the temperature to 
60‒62 °C, which remained unchanged until day 10, when both of these gradually 
diminished; by the 35th day, pH values had dropped to about 9 and the 
temperature back to 58°C. This phase, reported as lasting 3‒4 weeks, is referred 
to as “active”, wherein the temperature could rise to 70°C, depending on the 
material. Compost is hygienized in this phase, a process in which pathogenic 
organisms are destroyed by the high temperature and organic matter is 
decomposed into basic raw materials. Thermophilic microorganisms at such 
temperatures facilitate the degradation of complex organic matter, and the 
conversion of nitrogen into ammonia occurs, raising the pH of the compost. It is 
possible for the process to end after 35 days, depending on temperature and pH, 
by which time a mesophilic phase of polymer degradation has occurred and fungi 
are visible to the naked eye. At the end of the composting process, it can be 
assumed that biodegradation has transpired, wherein the decomposing polymer is 
processed into a humus complex while the compost benefits from a high 
fertilizing effect [243], [244]. 

 



90 
 

 
Figure 34. Images showing the course of biodegradation of the neat PLA and PLA 

composites during the composting experiment. 

 
Approximately 10 g of dried compost was required to prepare the extract. 

Sampling was performed from each reactor, including a blank. This amount was 
supplemented with 200 mL of distilled water, shaken for 24 h, and then the 
samples were filtered. An initial quantity of technical waste was prepared for the 
samples at the beginning of the composting test. The filtered extracts were first 
analysed from an elemental perspective, revealing changes that occurred during 
the composting experiment and the possible presence of dangerous or toxic 
elements. 

The extracts did not contain hazardous elements such as As, Cd, Hg, Cu and 
Pb, i.e. those strictly controlled in drinking water and landfill sites. On the 
contrary, common elements were found instead, including potassium, chlorine 
and calcium (see Table 17). As expected, the chlorine concentration did not differ 
significantly, ranging from merely 0.02 to 0.03%. The presence of calcium was 
observed only in small amounts. Two samples (PLA/5PLA-g-PAA and 
PLA/20H/5PLA-g-PAA) showed a slight decrease in potassium, from 0.08% to 
0.06‒0.04 % [245]; such a trace amount was at the detection limit of the device. 
Potassium is an essential nutrient for plants, though, necessary for their proper 
development. It is also a positive mobile ion with the potential to interfere in 
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nutrient uptake (fungi) or mineralization at the concentrations listed herein. Each 
such disruption is followed by spontaneous stabilization of itself [246]. 

 
Table 17. Energy-dispersive X-ray spectroscopy (EDX) analysis of all samples. 

Sample 
Element (wt.%) 

K  Cl  Ca  

Synthetic waste 0.078 0.022 - 

Blank 0.074 0.026 - 

PLA 0.071 0.029 - 

PLA/5H 0.075 0.025 - 

PLA/20H 0.073 0.027 - 

PLA/5PLA-g-PAA 0.040 0.027 0.053 

PLA/20PLA-g-PAA 0.072 0.028 - 

PLA/20H/5PLA-g-PAA 0.060 0.027 0.013 

PLA/5H/20PLA-g-PAA 0.075 0.025 - 

 
Table 18 presents the decomposition values of the samples (D), the percentages 

of reduction in volatile matter (R), the C/N ratios after composting and the results 
of the phytotoxicity test (IK). Every composted sample degraded by more than 
90%, and each one adhered to the given standard. However, neat PLA showed the 
lowest values, while samples containing 20% of PLA-g-PAA reached almost 
100%, as confirmed by Figure 34 above. The content of volatile matter in the 
samples and blanks also decreased universally by more than 70%, indicating that 
they also adhered to the standard, with the final result exceeding 30%. The C/N 
ratio is a key factor that affects both the composting process and the related 
quality. The act of composting triggers inevitable losses in nitrogen (N) and 
carbon (C) through the mineralization of organic matter by microorganisms, 
which causes the release of dozens of gaseous metabolic products. A C/N ratio at 
the range of 20‒30 is considered optimal for composting. This ratio is often 
affected by the composition of the compost, as plant components increase this 
ratio, while manure and food residues reduce it. The results showed that the 
compost reached a C/N ratio of 8‒9 in all cases, including the blank, after 45 days 
of incubation. Therefore, the samples did not impact the characteristics of the 
compost. In practice, the properties of compost are modified by mixing fillers (e.g. 
straw, leaves and woody material) [247], [248], [249], [250]. 

In order to evaluate the overall quality of compost, its phytotoxicity was tested, 
which is important for determining its maturity, i.e. the effect it has on the overall 
growth and development of plants. Percentages indicating germination indices 
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(IK) include good compost maturity between 80% and 100%, partially mature at 
>60% and immature at <60%. The effect on germination of PLA-bound seeds and 
their composites after 45 days of composting (the minimum duration) was 
insufficient in all the samples; indeed, IK values were measured of about 50%. 
However, the samples of PLA and its composites did not affect the composting 
process, as the same result was obtained for the comparison blank. It can be 
assumed that a longer maturation time after 90 days could improve the properties 
of the compost, as described in the literature [251], [252], [253].  

 

Table 18. Biodegradation of the PLA and PLA nanocomposite materials under 

composting conditions in reactors. 

Samples D (%) R (%) C/N ratio* IK (%) 

Blank ̶ 75.7 ± 0.7 a,d 8.6 ± 0.2 a 48.7 ± 3.2 a 

PLA 93.2 ± 3.8a,b,c 73.9 ± 0.5 a,b,c 8.8 ± 0.8 a 54.8 ± 4.0 a 

PLA/5H 94.1 ± 3.9 a,b,c 74.3 ± 1.0 a,b,c,d 9.1 ± 0.8 a 56.7 ± 5.1 a 

PLA/20H 97.8 ± 0.3b 74.9 ± 0.5a,d 8.3 ± 1.7 a 46.2 ± 3.8 a 

PLA/5PLA-g-PAA 94.9 ± 3.0 a,b,c 73.5 ± 0.6 a,b,c 8.1 ± 1.1 a 49.3 ± 1.6 a 

PLA/20PLA-g-PAA 99.4 ± 0.9 b,c 73.4 ± 0.1 b,d 9.3 ± 0.4 a 51.1 ± 3.3 a 

PLA/20H/5PLA-g-PAA 96.8 ± 0.3 a,b 73.1 ± 0.2 c 8.3 ± 1.0 a 52.4 ± 4.4 a 

PLA/5H/20PLA-g-PAA 99.8 ± 0.4 c 76.0 ± 0.2 d 9.3 ± 0.8 a 49.6 ± 4.1 a 

D – degree of disintegration according to Equation (12)  

R – decrease in the content of volatile solids according to Equation (13) 

IK – germination index according to Equation (14) 

*Results obtained from the TOC-L total organic carbon analyser. 

** Mean values were processed using Tukey's test, and different letters in the same 

column indicate significant differences (p < 0.05). 

 

Conclusions 
Initially, two additives (HNTs and PLA-g-PAA) were incorporated into the PLA 
matrix at various concentrations (5% and 20% w/w) by heat extrusion followed 
by compression into films. Furthermore, the films were characterised by 
mechanical (tensile properties), thermal (effect on thermal degradation), 
wettability and overall homogenisation of additives in PLA (optical method) 
which is important for processing applications. PLA-g-PAA had a plasticiser 
property when the HNT filler was added, and it increased the strength and 
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stiffness without any significant effect on the thermal stability of the material. The 
influence of individual additives and their composites was monitored, the 
inclusion of which effectively supported the degradation of the PLA material. In 
the case of abiotic hydrolysis, it was noted that the fast lag phase was achieved 
with composites containing 20 % PLA-g-PAA additive, where the quickest course 
was achieved by PLA/5H/20PLA-g-PAA composite, reaching disintegration by 
about 30 % in 60 days (compared to neat PLA (TOC-L analysis)). Similar results 
were obtained for molecular weight disintegration and biotic test where 
degradation was almost twice faster than pure PLA because the additive 
containing acrylic acid provide chains with a high concentration of terminal 
carboxyl groups capable of catalysing the random cleavage of ester bonds in the 
PLA matrix. In the case of composting, the results of these composites confirmed 
an accelerating effect on PLA degradation, manifested by almost 100 % 
disintegration in 45 days without adversely affecting the compost properties that 
could prevent plant germination. The optimally designed combination of both 
components in the sample led to the desired biodegradation of PLA, especially 
under conditions ideal for composting plants. The results indicate that the 
composite could be potentially usable in materials that cannot be fully recycled. 
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SUMMARY OF WORK 
The demand for ecological materials, especially biodegradable polymers, is 

growing significantly. PLA is a foremost biopolymer and considered one of the 
most promising sustainable alternatives to petroleum-based options. The rise in 
interest in PLA is mainly due to its interesting physical and mechanical properties, 
low carbon footprint, the possibility of recycling or biodegradability at the end of 
a life cycle of a product, and the various means of processing it that only 
necessitate standard equipment. In terms of large scale applications, PLA is 
commonly used in manufacture of sustainable packaging materials or medical and 
textile fibres. As yet this material has not been deemed suitable for more durable 
applications (e.g. in motor vehicles, electrical and electronic products, mechanical 
components, etc.), where performant materials are required. 

In alignment with recent trends, it is advantageous to employ natural additives 
obtained from waste products from sectors such as agriculture. PLA constitutes 
an inexpensive commodity material suitable for food packaging. The natural 
antioxidants commercially available are difficult to apply to polymers, and their 
effectiveness in this material is limited. It would be desirable for certain products 
made of PLA to undergo rapid degradation, though. The polymer is known for its 
protracted degradation process that is influenced by several factors. Numerous 
municipal composting plants are currently unwilling to handle it, and not all PLA-
based products are suitable for chemical recycling. 

In relation to current knowledge, an overview of this topic was given in the 
theoretical part of this manuscript, and the research objectives of the work were 
defined. Based on this, the experimental part of the work was devoted to preparing 
novel biodegradable polymer systems in the form of mixed films and 
nanoparticles that were based on PLA and modified with additives that alter 
stabilization. 

In the first experimental section, preparation was optimized of an extract 
containing an antioxidant component (AO) comprising betalains sourced from 
beetroot. For maximum efficiency, the extract was incorporated on a carrier of 
inorganic origin. Polymer films (PLA and PCL) were processed in a cast mould 
and the properties were monitored during an artificial ageing process in a UV 
chamber. Testing revealed the effect exerted by the AO additive, manifested in 
one respect as both a reduction and change in colour. Determining the thermal 
stability of the samples by DSC analysis revealed that the AO in the PLA sample 
neither affected Tg nor diminished the onset of degradation in an oxygen 
atmosphere. Thermal degradation of the AO-supplemented PLA sample, prior to 
and following UV exposure, commenced at higher temperatures than the pure 
matrix. The PCL sample containing the AO component additionally demonstrated 
stable behaviour, as confirmed by internal enthalpy.  

The second part focused on accelerating the degradation of the PLA matrix by 
applying selected additives. Comparison was made as to the content and 
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concentrations of the given additives PLA-g-PAA and HNTs on the degradation 
rate and efficiency in the abiotic and biotic environments, including in compost. 
The results confirmed that the effect of the PLA-g-PAA additive was to accelerate 
degradation in all environments. In the case of the HNT additives, this ability was 
influenced by the environment and the given amount, optimally up to 5 wt.%. A 
positive finding concerns the fact that during the decomposition of the 
composites, no impact was discerned against the properties of the compost that 
would impair its quality, as confirmed by a phytotoxicity test. 

Both research papers usher in benefits pertaining to the stability of the 
investigated biopolymers and the ability to modify them with additives (even 
natural ones). It would be appropriate in future research to explore matters such 
as enhancing the incorporation of a natural AO, thereby permitting industrial heat 
treatment methods for polymer fabrication. In the case of the second paper, it 
would be interesting in the future to observe conditions at landfill sites, where the 
decomposition of plastics occurs most frequently. 
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CONTRIBUTIONS TO SCIENCE AND PRACTICE 
 
The presented dissertation investigates a selection of natural and synthetic 

additives for their ability to modify biopolymers, specifically polylactide. The aim 
is to obtain a biodegradable material for which it is possible to regulate the 
degradation mechanism, hence its relevance to contemporary academic and 
industrial research. 

 
Furthermore, this work deals with the preparation and optimization of the 

composition of the additives to ensure their effective action in the polymer matrix. 
The related findings show great potential, especially in terms of application in 
practice. 

 
The main contribution to science pertains to the preparation and 

characterization of new biodegradable systems for slowing down the degradation 
mechanism of a PLA-based material modified with natural and synthetic 
additives. This transpired via the following experiments: 

 
• incorporation of a natural antioxidant on an inorganic carrier and preparation 

of films with the potential to reduce the degradation processes of the given 
biodegradable polymer, as well as extend the life cycle of the final product with a 
view to potential in the packaging industry; 

 
• preparation of a composite based on polylactide and polyacrylic acid, 

supplemented with a nanoclay in order to achieve the maximum degradation 
effect in technical composting plants with the potential as a material in disposable 
packaging. 

 
The results presented in this work were processed within the infrastructure of 

the Polymer Centre. The results obtained also constitute part of a project wherein 
the findings of applied research in the form of a utility model or a functional 
sample were achieved and were (or will be) published in international journals 
with an impact factor. 
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