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ABSTRAKT

V poslednich desetiletich se evolu¢ni algoritmy (EA) staly populdrnimi a uzné-
vanymi pro svou robustnost a efektivitu v feseni rozmanitych optimalizacnich
problému. S nartstajicimi vyzvami v oblasti umélé inteligence (Al), zejména v
kontextu aplikaci strojového uceni, dochazi k nové viné vyzkumu EA. Klicové
aspekty pro dalsi generaci téchto algoritmi zahrnuji teoretické zaklady, analyzy
béhu, spravné benchmarkovaci postupy a detailni zvladani kritickych situaci,
coz jsou zakladni stavebni kameny pro dosahovani novych tspécht v Al Jed-
nou z klicovych vyzev je i zvladnuti limit parametrii optimalizované tlohy;,
které definuji prostor pripustnych feseni. I kdyz se dostupné publikace, zaby-
vajici se metodami zabranujicich prekroceni téchto limit, postupné zlepsuji
a jejich pocet roste, stale je to mnohdy opomijené téma, které ma vyznamny
dopad na efektivitu evolucénich algoritmu (EA). Tato dizertaéni prace se za-
méruje na vliv riznych protiopatfeni na vykon evolucénich algoritmu (EA).
Vyzkum zacal analyzou zékladnich variant EA | jako jsou PSO (Particle Swarm
Optimization), FA (Firefly Algorithm) a SOMA (Self-Organizing Migrating
Algorithm). Pozornost se poté presunula na pokrocilejsi algoritmy (state-of-
the-art), vybrané na zakladé benchmarkovych sad. Studie identifikovala, ze
integrace uc¢innych protiopatreni do navrhu algoritmii mize vyznamné ovlivnit
jejich pozici v benchmarkovych testech. Zaveéry prace poukazuji na vyznamnou
problematiku v replikovatelnosti algoritmi, zptisobenou nekompletnimi popisy
v publikacich. Tato situace naznacuje potiebu zlepSeni v procesu navrhu al-

goritmil, aby se zvysila jejich ovéritelnost a udrzitelnost.

ABSTRACT

In recent decades, evolutionary algorithms (EA) have become popular and rec-
ognized for their robustness and effectiveness in solving a variety of optimiza-
tion problems. With increasing challenges in the field of artificial intelligence
(AI), especially in the context of machine learning applications, a new wave
of EA research is emerging. Key aspects for the next generation of these algo-

rithms include theoretical foundations, runtime analyses, proper benchmarking



procedures, and detailed handling of critical situations, which are fundamental
building blocks for achieving new successes in Al. One of the key challenges
is mastering the limits of parameters of the optimized task, which define the
space of permissible solutions. Although the available publications dealing
with methods to prevent exceeding these limits are gradually improving and
increasing in number, it is still a neglected topic that has a significant impact
on the effectiveness of evolutionary algorithms (EA). This dissertation thesis
focuses on the impact of various countermeasures on the performance of evolu-
tionary algorithms (EA). The research began with an analysis of basic variants
of EA, such as PSO (Particle Swarm Optimization), FA (Firefly Algorithm),
and SOMA (Self-Organizing Migrating Algorithm). Attention then shifted
to more advanced algorithms (state-of-the-art), selected based on benchmark
sets. The study identified that integrating effective countermeasures into the
design of algorithms could significantly influence their position in benchmark
tests. The conclusions of the work point to a significant issue in the replica-
bility of algorithms, caused by incomplete descriptions in publications. This
situation indicates the need for improvement in the algorithm design process

to enhance their verifiability and sustainability.
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1 INTRODUCTION

In recent decades, the landscape of optimization problem-solving has been
significantly transformed by the advent and proliferation of metaheuristic al-
gorithms, which have become indispensable tools for tackling tasks of varying
complexity across both real and discrete domains. These methods, encom-
passing a diverse range of techniques from deterministic approaches [1] like
the Newton [2] and gradient methods [3] to Evolutionary Algorithms (EAs)
[4] and beyond, offer a robust framework for addressing challenges that are
often intractable through traditional deterministic means due to current com-
putational limitations. EAs, a prominent subgroup within the metaheuristic
category [5, 6], stand out for their effectiveness in solving complex optimization
problems, thereby highlighting the vast potential of Evolutionary Computing
Techniques (ECTs).

This dissertation thesis delves into the crucial aspect of metaheuristics design
and benchmarking: the Boundary Control Methods (BCM). Given the inher-
ent variability and randomness of metaheuristic algorithms, there is always
a possibility that trial solutions might fall outside the predefined parameter
boundaries. This occurrence presents a significant challenge as these bound-
aries reflect the constraints of real-world optimization scenarios or follow the
specification of benchmark functions. Such boundaries might be necessitated
by practical considerations, such as ensuring the length of a screw remains
within positive numerical limits, or by the theoretical constructs underlying
benchmark functions, which dictate constraints to maintain mathematical va-

lidity in optimization research.

Boundary limits, therefore, form a core component of virtually every optimiza-
tion task, necessitating the deployment of effective BCMs to handle instances
where trial solutions fall outside these acceptable ranges. Over the years, a
diverse array of strategies has been developed to address boundary violations,
with some methods gaining prominence for their general applicability across a
wide spectrum of algorithms, while others are finely tuned to the nuances of

specific problems or algorithms.



By focusing on the intricacies of BCMs, this thesis endeavors to offer valuable
insights and recommendations to researchers in the field of metaheuristics, po-
tentially informing future directions in the profiling of benchmark testbeds.
The ability to effectively manage boundary constraints is pivotal, not only for
the integrity of the optimization process but also for the broader applicability
and relevance of metaheuristic algorithms in tackling complex optimization
tasks, whether they are rooted in theoretical challenges or practical applica-
tions. This exploration underscores the importance of BCMs as a critical factor

in the design, evaluation, and enhancement of metaheuristic algorithms.

The thesis aims to highlight the significance of BCMs as crucial hyperparam-
eters within metaheuristics. These methods should not only undergo thor-
ough optimization and selection but also be clearly documented within the
algorithm’s description. Such transparency is essential for ensuring the re-
producibility of benchmarking outcomes and enhancing our comprehension of

metaheuristic population dynamics.

2 GOALS OF THE DISSERTATION THESIS

During my scientific activities, I discovered that only limited attention is given
to the use of Boundary Control Methods (BCM). Therefore, I have set the

following goal for this dissertation:

To document and experimentally verify the impact of using various BCMs
on the performance of state-of-the-art evolutionary algorithms. Based on
the analysis of the test results, I formulated recommendations for good

practices in benchmarking of evolutionary algorithms.

Therefore, the essential steps to goal fulfillment were as follows:

1. Survey the current state of Boundary Control Methods (BCMs) used
in evolutionary algorithms.
2. Investigate influence of various BCMs on the performance of selected

evolutionary algorithms.



3. Conduct experiments evaluating the impact of BCMs on the perfor-
mance of state-of-the-art algorithms and results of competitive bench-
marking.

4. Based on the experimental results draw conclusions and recommen-

dations for good practices in benchmarking.

3 BOUNDARY CONTROL METHODS

The spectrum of optimization problems is vast, often originating from a wide
array of real-world challenges. Typically, these problems are transferred to
mathematical forms to facilitate easier analysis. With growing interest in
metaheuristic optimization [7], there has been a notable increase in the num-
ber of benchmark functions and artificial problems created for testing purposes.
Each of these benchmark functions used to evaluate metaheuristic optimizers
is defined within a specific domain, such as real numbers, positive numbers,
or integers, reflecting the varied nature of optimization scenarios. A common
feature across both real-world and artificial optimization tasks is the presence
of parameter bounds. These bounds may originate from practical limitations
in real-world scenarios, such as physical constraints, cost factors, or time lim-

itations.

Due to the inherent randomness in metaheuristic algorithms, there is always
a possibility that trial solutions might fall outside the predefined parameter
boundaries. This occurrence poses a challenge in effectively solving optimiza-
tion problems. A typical solution involves checking each newly generated solu-
tion to ensure it remains within the acceptable parameter bounds. If a solution
is found outside these bounds, an appropriate correction mechanism must be

employed to bring it back into the feasible solution space.



3.1 Existing Boundary Control Methods

This subsection presents a consolidated overview of BCMs commonly utilized
in research. The versatility of some techniques allows for their adaptation in
various forms, while others are specifically tailored for particular optimization
algorithms. Additionally, certain methods might be underrepresented in this
summary due to their lesser popularity or because they are briefly mentioned
in research focusing on different topics.

Clipping

The Clipping Method (also known as saturation) stands out for its simplicity
and ease of implementation, often making it one of the first choices in BCMs.
In this method, individual solutions x are prevented from crossing the defined
boundaries in each dimension. Instead, they are "clipped" to remain within

the parameter bounds.

Random

In cases where a trial solution violates the boundary in any dimension, the
Random Method generates a new position for the respective dimension. This
position is randomly determined between the lower and upper bounds, follow-

ing a pseudo-random uniform distribution.

Reflection

The Reflection Method mirrors a solution back into the feasible space if it
attempts to cross the defined borders. This technique is akin to the reflection
behavior of a mirror. For each dimension that violates the boundary, the
position of the individual is corrected in a way that reflects it back into the

permissible range.

Periodic

The Periodic Method approaches boundary violations by considering an infi-
nite solution space, effectively creating infinite copies of the optimized hyper-
space. It employs a mapping technique that brings the individual back into the
feasible space using a modulo function. This method ensures that solutions

are cyclically repositioned within the acceptable range.

10



Halving the Distance

As suggested by its name, this method involves halving the distance between
the original position and the crossed boundary. Unlike previous techniques,
this approach requires tracking the starting position of an individual. It offers

a more nuanced adjustment by averaging the boundary and the initial position.

Soft

The Soft Method is unique in that it imposes no immediate restrictions on
individuals outside the feasible space, except that their objective function val-
ues are not updated until they re-enter the feasible area. Implementing this
method can be challenging, as it does not guarantee finite iteration completion
without specific algorithm tuning. This approach allows for greater flexibility

but requires careful management to ensure algorithm convergence.

4 CHRONOLOGICAL CONTRIBUTIONS TO
BOUNDARY CONTROL METHODS

The subsequent sections outline the empirical findings from a set of focused
studies undertaken by the author of this doctoral thesis. Initial observations
concentrated on the Particle Swarm Optimization (PSO) and its advanced
iterations; further studies were conducted on the Self-Organizing Migrating
Algorithm (SOMA) and the Firefly Algorithm (FA). These studies aimed to
explore the effect of the BCMs on the overall performance of these metaheuris-

tic algorithms.

An additional cornerstone of this exploration is presented in the journal article
titled "Impact of Boundary Control Methods on Bound-Constrained Optimiza-
tion Benchmarking" [8]. This paper focuses on the critical implementation of
BCMs and their significant influence on the performance of leading algorithms,
as demonstrated in the IEEE CEC competitions of 2017 and 2020.

A further contribution was focused on exploring the frequency of BCM acti-

vations. The study investigated how often BCMs were activated during the

11



optimization process across various metaheuristic algorithms.

4.1 PSO

The study’s results published in 2017 [9] confirmed that the selection of used
BCM affects the algorithm’s performance. The study compared Clipping, Ran-
dom, Periodic, and Soft methods on the generic version of PSO and the variant
called Diversity guided PSO (ARPSO) [10]. The ARPSO algorithm, developed
by J. Riget and J. S. Vesterstrgm in 2002, specifically addresses the issue of
premature convergence — a notable shortcoming of the traditional PSO algo-

rithm they highlighted in their proposal.

The experiments were conducted on the CEC 2015 benchmark set [11] for
dimension sizes 10, 30, and 50. The benchmark encompasses 15 test functions,
and every test function was repeated for 51 independent runs. The results were
tested for statistical significance using the Friedman Rank test [12] with the

significance level a = 0.05, accompanied by Nemenyi critical distance (CD)
[13].

4.1.1 Key findings

The Friedman rank tests (Fig. 4.1, Fig. 4.2) clearly show that the Clipping
method negatively affected the overall performance of both PSO and ARPSO
algorithms on all dimension sizes. The CD shows which BCMs do not alter
the performance of the particular algorithm with statistical significance in
comparison with the first-ranked method. These are Random, Periodic, and
Soft methods for dimension sizes 10 and 30. For dimension size 50, only

Random and Soft methods perform similarly.
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----- Nemenyi Critical Distance ===== Nemenyi Critical Distance

Avg. Rank Avg. Rank
2.985 35

3.0]

3.0

2.5

2.5

(a) D = 10 (b) D =30

Avg. Rank
35

Clipping Random Periodic

3.325

Clipping Random Soft Periodic

(¢) D =50

Fig. 4.1 Friedman rank comparison of the Clipping, Random, Periodic, and
Soft methods on PSO on benchmark set CEC 2015. [9]

----- Nemenyi Critical Distance ===== Nemenyi Critical Distance

Avg. Rank Avg. Rank

4 2973 35 3.404

3.0

25,

(a) D =10 (b) D =30

Avg. Rank
3.5

Clipping Random Soft Periodic

3.0

25

20

Clipping Random Soft Periodic

(¢) D =50

Fig. 4.2 Friedman rank comparison of the Clipping, Random, Periodic, and
Soft methods on ARPSO on benchmark set CEC 2015. [9]
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4.2 FA

The subsequent study from 2018 [14] compared Clipping, Random, Reflection,
and Periodic BCMs on FireFly Algorithm (FA) and on a hybrid of FA and
PSO, called Firefly Particle Swarm Optimization (FFPSO) [15]. This hybrid
algorithm was introduced in late 2016 by Padmavathi Kora and K. Sri Rama
Krishna. The basic idea behind such an approach, according to the authors, is
that the new hybrid strategy can share advantages from both algorithms and
hopefully eliminate their disadvantages. The main principle remains the same
as in the standard FA, but the equation for firefly motion is slightly changed

according to PSO movement.

The experiments were performed on the CEC 2017 benchmark set [16], en-
compassing 30 test functions, and every test function was repeated for 51
independent runs. The tested dimension sizes were 10 and 30. The results
were tested for statistical significance using the Friedman Rank test [12] with

the significance level o = 0.05, accompanied by Nemenyi critical distance (CD)
[13].

4.2.1 Key findings

Figures 4.3 and 4.4 illustrate the performance rankings for the FA and FF-
PSO algorithms, respectively, with lower ranks indicating better performance
of the BCM used. The significant impact of the selected BCMs is predomi-
nantly observed in the canonical FA, while the hybrid FFPSO shows minimal
or negligible effects. The Friedman ranks, accompanied by the Nemenyi crit-
ical distance (CD) depicted as a dashed line, highlight clipping and reflection
methods as the most effective BCMs for dimension sizes 10 and 30.

14



Avg. Rank Avg. Rank

3767

Random Reflection

(2) D =10 (b) D =30

Fig. 4.3 Friedman rank comparison of the Clipping, Random, Reflection, and
Periodic methods on FA on benchmark set CEC 2017. [14]

Avg. Rank Avg. Rank

3.0

27

25

20

Clipping Random Reflection

(2) D =10 (b) D = 30

Clipping Random Reflection

Fig. 4.4 Friedman rank comparison of the Clipping, Random, Reflection, and
Periodic methods on FFPSO on benchmark set CEC 2017. [14]
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4.3 SOMA

The 2020 study [17] delved into the impact of BCMs on the Self-Organizing
Migrating Algorithm (SOMA), specifically its All-To-One and All-To-All vari-
ants. SOMA is a metaheuristic optimization technique inspired by the social
behavior of individuals within a population moving towards better positions
or solutions. It is known for its efficacy in navigating complex optimization
landscapes. This investigation was prompted by the notable gap in research
concerning the interaction between BCMs and SOMA strategies, a gap that
this study aimed to bridge.

For the experiment, the CEC 2017 benchmark set [16] was chosen, encom-
passing 30 test functions categorized into unimodal, multimodal, hybrid, and
composite groups. The experiment focused on dimension sizes of 10 and 30,
adhering to the benchmark’s stipulation of a maximum of 10,000 function eval-
uations per dimension. To ensure robustness, each test function underwent 51
independent trials, with the outcomes subjected to statistical analysis. The
analysis utilized the Friedman Rank test [12] to assess statistical significance,

rejecting the null hypothesis of equal means at a 5% significance level.

4.3.1 Key findings

Figure 4.5 displays the Friedman ranking outcomes for the All-To-One and All-
To-All SOMA strategies across dimension sizes of 10 and 30, with lower ranks
indicating superior performance. The Nemenyi Critical Distance post-hoc test,
visually represented by a dashed line from the highest-ranked method, iden-
tified the Random and Periodic methods as notably effective for both strate-
gies, enhancing SOMA’s ability to avoid local minima and maintain consistent
movement patterns. Conversely, the Clipping method, restricting movement
to the borders of the feasible space, was found to be the least effective, neg-
atively impacting performance. The Reflection method also showed promise
by facilitating effective navigation across the search space. Overall, the re-
sults highlight the effectiveness of Random and Periodic methods in introduc-

ing beneficial stochastic elements and preserving natural movement dynamics,
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Clipping Random ' Reflection Periodic Clipping Random ' Reflection Periodic

(a) D = 10; All-To-One (b) D = 10; All-To-All

Avg. Rank Avg. Rank
3.448 3.69

Clipping Random Reflection Periodic Clipping Random ' Reflection eriodic

(¢) D = 30; All-To-One (d) D = 30; All-To-All

Fig. 4.5 Friedman rank comparison of the Clipping, Random, Reflection, and
Periodic methods on SOMA on benchmark set CEC 2017. [17]

whereas the limitations of the Clipping method underscore its potential draw-

backs in constrained environments.

4.4 Analyzing the Impact of Boundary Control Meth-

ods on Algorithmic Performance

The impulse for the performance analysis study comes from earlier investiga-
tions [9, 14, 17] that explored the impact of BCMs on basic metaheuristic algo-
rithms, raising questions about their potential influence on more competitive
algorithms, particularly CEC competition winners. This study investigates
whether modifications to BCMs could enhance the performance of top algo-

rithms from recent competitions, potentially altering their ranking outcomes.

The study was focused on the three top-ranking participants of two benchmark
competitions: CEC17 [16], and CEC20 [18].
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4.4.1 Top 3 best-performing algorithms for CEC17

The testbed CEC17 published in 2016 [16] encompasses 30 test functions for di-
mension sizes of 10, 30, 50, and 100. The following subsections briefly describe

the top three performing algorithms according to the official results [19].

EBOwithCMAR was initially proposed for the CEC17 benchmark and suc-
cessfully obtained the first position among 11 competitors. The hybrid algo-
rithm is based on the Effective Butterfly Optimizer (EBO) and Covariance
Matrix Adapted Retreat Phase (CMAR), which improves the local search ca-
pability of EBO. The paper [20] does not specify any used BCM; however,
upon the analysis of the algorithm code showed that EBOwithCMAR uses
two BCMs, Halving for EBO and Clipping for CMAR.

jSO [21] represents an improved variant of the iL-SHADE algorithm [22] and
ranked in second place. The improvement lies predominantly in the new ver-
sion of the mutation strategy. The jSO uses Halving BCM, which is referred
in the paper as a “repeat mechanism” without any detailed description or

citation.

LSHADE-cnEpSin is the third algorithm used in this study and represents
an extension to the LSHADE-EpSin [23], which was ranked as the joint winner
in the competition IEEE CEC 2016. The enhancement lies in the ensemble of
sinusoidal approaches and covariance matrix learning for the crossover opera-
tor. The LSHADE-cnEpSin [24] ranked third in the CEC17 competition and
uses Halving BCM, which is unfortunately not mentioned in the paper by the

authors.

4.4.2 Top 3 best-performing algorithms for CEC20

The CEC20 benchmark [18] was introduced in 2019 and includes 10 test func-
tions for dimension sizes of 5, 10, 15, and 20. Again, the following subsections
briefly describe the top three performing algorithms according to the official
results [25].

18



IMODE is a Differential Evolution (DE) based algorithm ranked as the win-
ner in the CEC20 competition. IMODE [26] benefits from multiple differential
evolution operators, with more emphasis placed on the best-performing op-
erator. The algorithm employs two BCMs: Clipping and Halving, selected
randomly each time it is used. Unfortunately, BCMs are not mentioned in the

paper.

AGSK is the second-best performing algorithm in the CEC20 competition.
AGSK [27] is the enhanced version of the Gaining Sharing Knowledge-based
algorithm (GSK) [28], which uses adaptive settings to its control parameters.
The algorithm utilizes Halving BCM; however, the authors did not specify this.

j2020 [29] ranked third place in the competition, and it is based on the two
self-adaptive DE algorithms: jDE [30] and jDE100 [31]. The used BCM is
Periodic, which is described in the paper.

4.4.3 Statistical Evaluation

Friedman rank test was a first step. Each algorithm was tested and evaluated
while using different BCMs. The evaluation was performed by Friedman rank
test [12], and the results are presented in Table 4.1 for CEC17 and Table 4.2
for CEC20.

Table 4.1 contains more results with statistically significant differences than
Table 4.2. The likely reasons are that the CEC20 benchmark contains only 10
test functions and lower dimensionality might cause a lower number of BCM
use (see [32] — low dimensionality leads to a lower probability of creation of an
infeasible trial solution), and the top ranking algorithms in the competition

are robust and similar in the performance.

4.4.4 Competition Scoring System

The motivation for this second test, using CEC scoring system, was to deter-

mine if a change of BCM may cause a change in the order of the algorithms.
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The CEC scoring system is in detail provided in the technical reports accom-
panying the CEC benchmarks [16, 18].

4.4.5 Results

This subsection presents the results of both experiments performed for bench-
marks CEC17 and CEC20. Each test scenario used a different number of

independent runs as defined by the used benchmark. CEC 17 testbed defines
51 independent runs, while CEC20 testbed requires 30 independent runs.

The three approaches were used to analyze and represent the results: Friedman
rank test, CEC scoring system, and selection of the best performing BCM

variant for the algorithms.

Selection of the BCM was the third and the last step to implement the
best-performing BCM variant for the algorithms and check if the final order of
the competition would be different. For the CEC17, tables 4.3, 4.4, and 4.5
represent the situations when only one algorithm selects its best variant of
the BCM. If the rank is changed, the original rank is shown in parentheses.
The most noticeable difference is in Table 4.5, where the LSHADE-cnEpSin
obtained the first rank. Table 4.9 then contains the ranks accomplished if all
three algorithms had used the best-performing variant of the BCM, and again,
the LSHADE-cnEpSin would have achieved the first position.

For the CEC20, the process is the same as for CEC17. The results are presented
in Table 4.6 - 4.8 and no change in the algorithms order was observed.

4.4.6 Key findings

The motivation behind the contribution was to establish if the BCM can in-
fluence the algorithm performance from the competition results point of view.
Thus, raise awareness about the need for careful selection of the BCM, simi-
lar to other hyperparameters of the metaheuristic algorithms. The presented

results confirm that ill-selected BCM can negatively influence the algorithm’s
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Tab. 4.3 CEC17 — Score — EBOwithCMAR

Rank Algorithm Score 1 Score 2 Score
1(1) EBOwithCMAR 5.00E4+01 5.00E4+01 1.00E+402
2 (2) iSO 4.96E401 4.55E4+01 9.51E+01
3 (4) LSHADE_SPACMA 4.66E4+01 4.83E4+01 9.49E+01
4 (3) LSHADE-cnEpSin ~ 4.78E+01 4.25E401 9.03E+01
5 (5) DES 4.61E+01 4.23E401 8.84E+01
6 (6) MM_OED 4.62E+01 3.74E4+01 8.35E+01
7(7) IDEbestNsize 3.00E+01 2.69E4+01 5.69E+01
8 (9) RB-IPOP-CMA-ES  3.81E+00 3.32E+01 3.70E+401
9 (8) MOS-CEC2013 1.90E4+01 1.78E4+01 3.68E+01
10 (10) MOS-SOCO2011 1.11E401 1.97E+01 3.08E+401
11 (11) PPSO 3.94E+00 1.77TE4+01 2.17E+01
12 (12) DYYPO 5.96E-01 1.76E401 1.82E+01
13 (13) TLBO-FL 2.89E-02 1.68E4+01 1.68E+01
Tab. 4.4 CEC17 — Score — jSO
Rank Algorithm Score 1 Score 2 Score
1(1) EBOwithCMAR 4.89E+01 5.00E401 9.89E+01
2 (2) iSO 5.00E4+01 4.76E4+01 9.76E+01
3 (4) LSHADE_SPACMA 4.60E+01 4.87E+01 9.47E+401
4 (3) LSHADE-cnEpSin ~ 4.71E+01 4.35E+4+01 9.06E+01
5 (5) DES 4.55E401 4.33E4+01 8.88E+01
6 (6) MM__OED 4.55E+01 3.81E401 8.36E+01
7(7) IDEbestNsize 2.96E4+01 2.76E4+01 5.72E+01
8 (9) RB-IPOP-CMA-ES  3.76E4+00 3.38E+01 3.76E+401
9 (8) MOS-CEC2013 1.88E+01 1.82E4+01 3.70E+01
10 (10) MOS-SOCO02011 1.10E4+01 2.01E+01 3.11E+401
11 (11) PPSO 3.89E+00 1.81E+01 2.20E+01
12 (12) DYYPO 5.88E-01 1.79E4+01 1.85E+01
13 (13) TLBO-FL 2.84E-02 1.71E401 1.72E+01

Tab. 4.5 CEC17 — Score — LSHADE-cnEpSin
Rank Algorithm Score 1 Score 2 Score
1(3) LSHADE-cnEpSin ~ 5.00E401 5.00E401 1.00E+02
2 (1) EBOwithCMAR 4.73E4+01 4.92E4+01 9.66E+01
3 (2) iSO 4.73E4+01 4.62E4+01 9.35E+01
4 (4) LSHADE_SPACMA 445E401 4.81E+01 9.26E+01
5 (5) DES 4.40E+01 4.34E401 8.74E+01
6 (6) MM__OED 4.40E4+01 3.79E+01 8.19E+01
7(7) IDEbestNsize 2.86E+01 2.75E+01 5.61E+01
8 (9) RB-IPOP-CMA-ES  3.63E4+00 3.37E+01 3.73E401
9 (8) MOS-CEC2013 1.81E+01 1.83E4+01 3.64E+01
10 (10) MOS-SOC02011 1.06E+01 2.02E+01 3.09E+01
11 (11) PPSO 3.76E400 1.82E+01 2.20E+01
12 (12) DYYPO 5.68E-01 1.80E401 1.86E401
13 (13) TLBO-FL 2.75E-02 1.72E4+01 1.73E+01
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Tab. 4.6 CEC20 — Score — IMODE

Rank  Algorithm  Score 1 Score 2 Score

1(1)  j2020  5.00E+01 451E+01 9.51E+01
2(2) IMODE  2.34E+01 5.00E+01 7.34E+01
3(3) AGSK  230E+01 447E+01 6.77BE+01

Tab. 4.7 CEC20 — Score — AGSK

Rank  Algorithm  Score 1 Score 2 Score

1(1)  j2020  5.00E+01 4.52E+01 9.52E+01
2(2) IMODE 2.14E+01 5.00E+01 7.14E+01
3(3) AGSK  225E+01 4.43E+01 6.68E+01

Tab. 4.8 CEC20 — Score — j2020

Rank Algorithm  Score 1 Score 2 Score

1(1)  j2020  5.00E+01 4.36E+01 9.36E+01
2(2) IMODE 286E+01 5.00E+01 7.86E+01
3(3) AGSK  3.06E+01 4.45E+01 7.51E+01

Tab. 4.9 CEC17 — Score

Rank Algorithm Score 1 Score 2 Score
1(3) LSHADE-cnEpSin 5.00E401 5.00E+01 1.00E+402
2 (1) EBOwithCMAR, 4.77E401 5.00E4+01 9.76E+01
3 (2) iSO 4.84E401 4.58E+01 9.42E+01
4 (4) LSHADE_SPACMA 445E+401 4.78E+01 9.23E+401
5 (5) DES 4.40E401 4.30E4+01 8.70E-+01
6 (6) MM__OED 4.40E+01 3.81E401 8.21E+01
7(7) IDEbestNsize 2.86E+01 2.76E4+01 5.62E+01
8 (9) RB-IPOP-CMA-ES  3.63E4+00 3.37E+01 3.73E+401
9 (8) MOS-CEC2013 1.81E+01 1.82E4+01 3.64E4-01
10 (10) MOS-SOC0O2011 1.06E401 2.02E401 3.08E401
11 (11) PPSO 3.76E4+00 1.82E4+01 2.20E+01
12 (12) DYYPO 5.68E-01 1.80E+01 1.86E401
13 (13) TLBO-FL 2.75E-02 1.72E401 1.73E+401
Tab. 4.10 CEC20 — Score
Rank Algorithm  Score 1 Score 2 Score
1(1) 72020 5.00E4+01 4.19E4+01 9.19E+01

2(2) IMODE 3.14E4+01 5.00E+01 8.14E+01
3(3) AGSK  2.96E+01 4.53E+01 7.49E+01
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overall performance.

While the boundary control methods (BCM) are often an overlooked part of
the experiment design in metaheuristics benchmarking, the paper aimed to
highlight the importance of understanding the BCM as a necessary input for
results reproducibility.

To conclude, the findings highlight a significant gap in the reproducibility of re-
sults among competition entries, primarily due to the omission of information
about the utilized BCM. This oversight not only hampers the reproducibility
of results but also overlooks potential performance enhancements that could
be achieved by focusing on BCMs. Moreover, it has been observed that algo-
rithms, particularly from the Differential Evolution (DE) family, implemented
in Matlab, often rely on the same or similar libraries for BCM. These libraries
commonly include the implementation of the halving BCM, likely influencing
researchers’ preference for its use due to its ready availability.

4.5 Exploring the Frequency of BCMs Activation

This study delves into the relationship between the frequency of BCM acti-
vation and various problem characteristics, such as dimensionality and fitness
landscape, analyzing each dimension separately. The focus was on evaluating

the top three algorithms from the CEC20 competition (AGSK, IMODE, and
j2020) using the competition’s benchmark set.

The activation frequency of BCMs was assessed for each function in the bench-
mark set across the top three performing algorithms. The number of func-
tion evaluations (FEs) and the population size were standardized according to
competition rules to align with original benchmarking conditions. Each exper-
imental setting was conducted 30 times to ensure the reliability of the results,
and the average number of BCM activations was calculated for each problem

dimension. Dimension sizes of 5 and 10 were specifically examined.

To offer a comprehensive understanding of BCM activation patterns, activa-

tions were observed in each problem dimension separately. Through this ana-
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lytical approach, insights into the intricacies of BCM activation frequency and
its relationship with the problem’s dimensionality were gained. Furthermore,
it was examined whether the BCM activation frequency differed significantly
across the functions in the benchmark set, yielding valuable information for

algorithm designers and researchers.

The results are presented using stacked graphs, a highly effective visualiza-
tion technique that provides several advantages for displaying and interpret-
ing data. Stacked graphs are utilized for a clear and concise representation of
multiple datasets within a single, unified plot. In the context of this research,
stacked graphs are employed to effectively illustrate the activation frequency
of various BCMs in relation to problem dimensionality and fitness landscape.
Additionally, the same technique is used to visualize differences in BCM acti-

vation rate among the distinct problem dimensions.

Figures Fig. 4.6 display stacked graphs of the average number of BCM ac-
tivations for three different algorithms (IMODE, AGSK, and j2020) across
six different BCMs. In each figure, each column represents an algorithm, with
BCMs stacked on top of each other to form a bar chart. The x-axis displays the
six different BCMs, and the y-axis indicates the average number of activations
(over 30 runs), for each algorithm-dimension combination. It is important to
note that the values for each algorithm in the stacked graph are represented as
the sum of BCM activations in different dimensions. Different colors in each

column represent the different algorithms.

Figures Fig. 4.7 show different stacked graphs; these depict a particular BCM
activation on a selected test function, dimension size, and algorithm. The
x-axis represents the function evaluations (FEs) of the algorithm, and the y-
axis shows the average number of activations (over 30 runs) for each problem

dimension.

From the analysis of the first group of graphs (Fig. 4.6), it is concluded that
the AGSK algorithm contributes to BCM activation the most across all test
functions. It is also concluded that the particular BCM affects the AGSK
algorithm the most. Moreover, the number of BCM activations for algorithms
j2020 and IMODE is observed to remain fairly consistent across all BCM vari-
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ants.

All figures, codes of the examined algorithms, and their results are accessible

in high resolution from the designated webpage .

4.5.1 Key findings

Based on the findings that reveal variations in BCM activation rates across dif-
ferent algorithms, test problems (fitness landscapes), and problem dimensions,
as well as differences in activation rates for each BCM on the same problem,

several important conclusions are drawn:

Algorithm-specific characteristics: Differences in BCM activation rates
among different algorithms are observed, indicating unique characteristics for
cach algorithm that influence how boundary constraints are handled. This
underscores the importance of selecting appropriate algorithms for specific

problem types and suggests potential improvements through a better under-
standing of BCM behavior.

Problem-dependent activation rates: Variations in BCM activation rates
across different fitness landscapes suggest that the effectiveness of BCMs is
strongly dependent on the characteristics of the test problems. This neces-
sitates careful consideration of problem-specific properties when designing or

selecting BCMs to ensure optimal performance.

Dimensionality impact: The variability of BCM activation rates among di-
mensions of the same problem highlights the influence of problem dimension-
ality on the complexity of boundary constraints. This emphasizes the need to
consider dimensionality’s impact on BCM activation patterns when designing

or adapting algorithms for high-dimensional optimization challenges.

Tailoring BCMs for improved performance: Observed differences in ac-
tivation rates for each BCM on the same problem suggest that a universal

solution for boundary control does not exist. By understanding these varia-

https://go.fai.utb.cz/2023workshop
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tions and identifying the most effective BCM for a given problem or algorithm,
researchers and practitioners can tailor BCM implementation to enhance per-

formance in optimization tasks.

5 THE CONTRIBUTION TO SCIENCE AND
PRACTICE

Metaheuristic-based optimization methods are currently enjoying immense
popularity. Alongside this growing popularity, the volume of research articles
on this subject is also expanding, with continuous development and modifi-
cation of new and existing algorithms respectively. A crucial aspect of this
development process is the meticulous control of parameters that govern the
behavior of the algorithm. Given that the primary focus is often on algo-
rithm performance, selecting optimal control parameters is critical. The term
"control parameter' encompasses a range of variables, including information

storage systems and the selection of methods for managing critical states.

The BCMs are categorized as procedures for handling these critical states, as
they are applied when a trial solution falls into an infeasible space. Preliminary
studies indicate that each BCM may affect algorithm performance differently,
necessitating careful consideration during the selection process. An ill-advised
selection of BCMs can degrade the performance of the metaheuristic algorithm
or alter other behaviors, potentially compromising specific desired character-

istics of the algorithm.

Research articles that propose new metaheuristic algorithms or modifications
to existing ones often overlook BCMs. Without specific details on the BCMs
used by the original authors, subsequent implementations of such algorithms
may be imprecise, leading to variations in effectiveness when solving specific
tasks.

Addressing the research gap described above, which focuses on the often over-
looked BCMs, constitutes the main part of this thesis. The first goal of this
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work is to raise awareness within the scientific community about the impor-
tance of BCMs, demonstrated by the presented results which prove their real
impact on algorithm performance. This impact is evident not only in basic
metaheuristic algorithms but also in state-of-the-art variants that have partic-

ipated in benchmark competitions.

The second goal targets algorithm designers, who are urged to pay careful
attention to providing a detailed description of the algorithm and its setup.
This is crucial for the reproducibility of results and the effective evaluation of

algorithm performance across different implementations.

The work highlights the significance of BCMs in the development and bench-
marking of metaheuristic algorithms, and BCMs should also be important
components in the automatic design or configuration of algorithms. It is im-
perative that these components are not merely mentioned as afterthoughts
but are integrated into the core design and reporting of algorithmic research
to ensure accuracy and replicability in scientific studies.

6 GOAL FULFILLMENT

This section outlines the steps implemented to achieve the dissertation goal,

which were established as follows:

v' Survey the current state of boundary control methods (BCMs)
used in evolutionary algorithms: The current state of BCMs was
extensively reviewed and a comprehensive survey of the literature was
conducted not only to establish a foundational understanding of BCM
applications in evolutionary algorithms but also to investigate which
BCMs are being utilized. Additionally, this review explored whether
other researchers, particularly in the context of algorithm design and
benchmarking, are addressing these issues.

v’ Investigate the influence of various BCMs on the performance
of selected evolutionary algorithms: Initial studies investigated the

impact of BCMs on both basic and more advanced variants of various

31



algorithms such as PSO, FA, and SOMA. These investigations laid the
groundwork for subsequent experiments aimed at assessing the influence
of BCMs on state-of-the-art algorithms.

Conduct experiments evaluating the impact of BCMs on the
performance of state-of-the-art algorithms and results of com-
petitive benchmarking: The experiments were carried out as de-
scribed in Section 4, which tested the efficacy and the influence of BCMs
on state-of-the-art algorithms using modern competitive benchmarks.
The results from these experiments corroborated the preliminary find-
ings from the initial studies, confirming the significant impact of BCMs
on algorithm performance.

Based on the experimental results, draw conclusions and rec-
ommendations for good practices in benchmarking: The conclu-
sions and recommendations were presented, underscoring the significant
influence of BCMs on the performance of metaheuristic algorithms. As
evidenced by the experimental results in Section 4, appropriately cho-
sen BCMs significantly altered the competitive ranking of the algorithms.
The analysis of competition algorithms and the survey of state-of-the-art
literature suggest that BCMs should be considered an integral part of
the hyperparameter analysis of any algorithm design. Authors should
always specify which BCM implementation was chosen to ensure fair

comparison and reproducibility.

These findings underscore the importance of BCMs in the design and anal-

ysis of metaheuristic algorithms, advocating for their consistent inclusion in

algorithmic research and documentation.

7 CONCLUSION

This dissertation provides a comprehensive treatise on the use of Boundary

Control Methods (BCMs) in metaheuristic algorithms. The initial sections

introduce the fundamental concepts and relationships among these fields, with

a specific focus on the role and impact of BCMs in contemporary EA trends.
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Following the introduction, the dissertation delineates the proposed goals and
the methodologies employed to achieve them. A detailed examination of BCMs
and a state-of-the-art overview are presented, where five representative BCMs
are selected based on the literature review. The methodology and preliminary
results, previously published at international conferences by the Author, are
described in subsequent sections. After these preliminary results, further ex-
periments were conducted to evaluate the impact of BCMs on the performance
of state-of-the-art algorithms and the results of competitive benchmarking.
Additionally, an experiment was included to investigate the frequency of BCM

usage among state-of-the-art algorithms in the CEC20 benchmark.

While BCMs are often an overlooked part of experiment design in metaheuris-
tics benchmarking, this dissertation highlights the importance of understand-
ing BCMs as a necessary input for results reproducibility and potential perfor-
mance improvement. The experimental findings from the CEC17 benchmark
participants clearly demonstrate this. Notably, the LSHADE-cnEpSin algo-
rithm could have won the CEC17 competition if it had employed the random
BCM. Additionally, it was observed that none of the three tested algorithms
achieved the best results with their original BCMs, indicating that perfor-
mance improvements were possible through alternative BCMs. However, only
five of the 12 CEC17 participants provided details on their BCM practices,
with two of these reports being incomplete, which significantly impairs the
reproducibility of their experiments. These findings underscore the significant
influence of BCMs on the performance of metaheuristic algorithms, as evi-
denced in Section 5.4, where appropriately chosen BCMs significantly altered
the competitive ranking of the algorithms. The analysis of competition algo-
rithms and the survey of state-of-the-art literature suggest that BCMs should
be considered an integral part of the hyperparameter analysis of any algorithm
design. Authors should always specify which BCM implementation was chosen
to ensure fair comparison and reproducibility, advocating for their consistent

inclusion in algorithmic research and documentation.

This dissertation has conclusively demonstrated that BCMs are not merely
supplementary components but are integral to the effective design, analysis,

and application of metaheuristic algorithms. Their role should be carefully
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considered and integrated into future research and practice in the field of op-
timization. The importance of future research on BCMs lies in their universal
applicability and profound impact across the entire field of metaheuristic op-
timizers, particularly in bound-constrained scenarios. Such research is crucial
for advancing our understanding and implementation of these methods, ensur-
ing they contribute significantly to the robustness and efficacy of optimization

solutions.
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