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ABSTRAKT

V posledních desetiletích se evoluční algoritmy (EA) staly populárními a uzná-
vanými pro svou robustnost a efektivitu v řešení rozmanitých optimalizačních
problémů. S narůstajícími výzvami v oblasti umělé inteligence (AI), zejména v
kontextu aplikací strojového učení, dochází k nové vlně výzkumu EA. Klíčové
aspekty pro další generaci těchto algoritmů zahrnují teoretické základy, analýzy
běhu, správné benchmarkovací postupy a detailní zvládání kritických situací,
což jsou základní stavební kameny pro dosahování nových úspěchů v AI. Jednou
z klíčových výzev je i zvládnutí limitů parametrů optimalizované úlohy, které
definují prostor přípustných řešení. I když se dostupné publikace, zabývající
se metodami zabraňujících překročení těchto limitů, postupně zlepšují a jejich
počet roste, stále je to mnohdy opomíjené téma, které má významný dopad na
efektivitu evolučních algoritmů (EA). Tato dizertační práce se zaměřuje na vliv
různých protiopatření na výkon evolučních algoritmů (EA). Výzkum začal analý-
zou základních variant EA, jako jsou PSO (Particle Swarm Optimization), FA
(Firefly Algorithm) a SOMA (Self-Organizing Migrating Algorithm). Pozornost
se poté přesunula na pokročilejší algoritmy (state-of-the-art), vybrané na základě
benchmarkových sad. Studie identifikovala, že integrace účinných protiopatření
do návrhu algoritmů může významně ovlivnit jejich pozici v benchmarkových
testech. Závěry práce poukazují na významnou problematiku v replikovatel-
nosti algoritmů, způsobenou nekompletními popisy v publikacích. Tato situace
naznačuje potřebu zlepšení v procesu návrhu algoritmů, aby se zvýšila jejich
ověřitelnost a udržitelnost.

SUMMARY

In recent decades, evolutionary algorithms (EA) have become popular and rec-
ognized for their robustness and effectiveness in solving a variety of optimiza-
tion problems. With increasing challenges in the field of artificial intelligence
(AI), especially in the context of machine learning applications, a new wave of



EA research is emerging. Key aspects for the next generation of these algo-
rithms include theoretical foundations, runtime analyses, proper benchmarking
procedures, and detailed handling of critical situations, which are fundamental
building blocks for achieving new successes in AI. One of the key challenges
is mastering the limits of parameters of the optimized task, which define the
space of permissible solutions. Although the available publications dealing with
methods to prevent exceeding these limits are gradually improving and increas-
ing in number, it is still a neglected topic that has a significant impact on the
effectiveness of evolutionary algorithms (EA). This dissertation thesis focuses
on the impact of various countermeasures on the performance of evolutionary
algorithms (EA). The research began with an analysis of basic variants of EA,
such as PSO (Particle Swarm Optimization), FA (Firefly Algorithm), and SOMA
(Self-Organizing Migrating Algorithm). Attention then shifted to more advanced
algorithms (state-of-the-art), selected based on benchmark sets. The study iden-
tified that integrating effective countermeasures into the design of algorithms
could significantly influence their position in benchmark tests. The conclusions
of the work point to a significant issue in the replicability of algorithms, caused
by incomplete descriptions in publications. This situation indicates the need for
improvement in the algorithm design process to enhance their verifiability and
sustainability.
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1 INTRODUCTION

In recent decades, the landscape of optimization problem-solving has been signif-
icantly transformed by the advent and proliferation of metaheuristic algorithms,
which have become indispensable tools for tackling tasks of varying complexity
across both real and discrete domains. These methods, encompassing a diverse
range of techniques from deterministic approaches [1] like the Newton [2] and
gradient methods [3] to Evolutionary Algorithms (EAs) [4, 5, 6] and beyond, offer
a robust framework for addressing challenges that are often intractable through
traditional deterministic means due to current computational limitations. EAs,
a prominent subgroup within the metaheuristic category [7, 8, 9], stand out for
their effectiveness in solving complex optimization problems, thereby highlight-
ing the vast potential of Evolutionary Computing Techniques (ECTs).

The evolution of metaheuristic algorithms involves expanding theoretical foun-
dations, enhancing strategies through hybridization [10], hyperparameter fine-
tuning [11], and the integration of learning and adaptive mechanisms. Recent de-
velopments also focus on the automatic configuration and selection of algorithms
[12], merging machine learning with evolutionary computation for improved per-
formance prediction [13] and explainability [14], highlighting the growing impor-
tance of advanced ML techniques in algorithm optimization.

The significance of these advancements is often validated through rigorous bench-
marking [15] on well-recognized platforms like the IEEE CEC benchmarks [16]
and the COCO platform [17] BBOB testbed, which play a pivotal role in shaping
the direction of algorithm design, comparison, and refinement.

Amidst this progress, the metaheuristic research community has increasingly fo-
cused on establishing best practices for benchmarking [18] to ensure fair, compre-
hensive comparisons and to gather deeper insights into algorithmic performance
across diverse problem sets [19]. The push towards more transparent and stan-
dardized benchmarking protocols reflects a broader recognition of the need to
enhance the reproducibility and clarity of results, particularly as metaheuristic
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algorithms are tasked with solving ever-more complex optimization problems.
This initiative, supported by both independent researchers and professional or-
ganizations like IEEE, underscores the critical importance of a thorough under-
standing of optimization processes and methodologies, not only to advance the
current state of knowledge but also to facilitate the transition of these insights
into other advanced Artificial Intelligence (AI) methods.

This dissertation thesis delves into the crucial aspect of metaheuristics design
and benchmarking: the Boundary Control Methods (BCM). Given the inherent
variability and randomness of metaheuristic algorithms, there is always a possi-
bility that trial solutions might fall outside the predefined parameter boundaries.
This occurrence presents a significant challenge as these boundaries reflect the
constraints of real-world optimization scenarios or follow the specification of
benchmark functions. Such boundaries might be necessitated by practical con-
siderations, such as ensuring the length of a screw remains within positive nu-
merical limits, or by the theoretical constructs underlying benchmark functions,
which dictate constraints to maintain mathematical validity in optimization re-
search.

Boundary limits, therefore, form a core component of virtually every optimiza-
tion task, necessitating the deployment of effective BCMs to handle instances
where trial solutions fall outside these acceptable ranges. Over the years, a di-
verse array of strategies has been developed to address boundary violations, with
some methods gaining prominence for their general applicability across a wide
spectrum of algorithms, while others are finely tuned to the nuances of specific
problems or algorithms.

By focusing on the intricacies of BCMs, this thesis endeavors to offer valuable
insights and recommendations to researchers in the field of metaheuristics, po-
tentially informing future directions in the profiling of benchmark testbeds. The
ability to effectively manage boundary constraints is pivotal, not only for the
integrity of the optimization process but also for the broader applicability and
relevance of metaheuristic algorithms in tackling complex optimization tasks,
whether they are rooted in theoretical challenges or practical applications. This
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exploration underscores the importance of BCMs as a critical factor in the de-
sign, evaluation, and enhancement of metaheuristic algorithms.

The thesis aims to highlight the significance of BCMs as crucial hyperparameters
within metaheuristics. These methods should not only undergo thorough opti-
mization and selection but also be clearly documented within the algorithm’s
description. Such transparency is essential for ensuring the reproducibility of
benchmarking outcomes and enhancing our comprehension of metaheuristic pop-
ulation dynamics.

The subsequent sections will provide concise overviews of various basic meta-
heuristic algorithms selected for examination and comparison regarding their
response to BCMs. These algorithms have been specifically chosen to cover
a broad spectrum of strategies, some of which draw inspiration from natural
phenomena, swarm behaviors, or self-organization processes [20, 21, 22]. This
focus on a diverse set of metaheuristics is intentional, addressing a gap in ex-
isting research, which typically concentrates on a single algorithm or a closely
related family of algorithms. Hence, this effort is directed towards offering a
more holistic analysis of boundary constraint methods across the field of evolu-
tionary algorithms, aiming to contribute to a comprehensive understanding of
how different BCMs impact a wide range of metaheuristic approaches.
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2 GOALS OF THE DISSERTATION THESIS

During my scientific activities, I discovered that only limited attention is given to
the use of Boundary Control Methods (BCM). Therefore, I have set the following
goal for this dissertation:

To document and experimentally verify the impact of using various BCMs
on the performance of state-of-the-art evolutionary algorithms. Based on
the analysis of the test results, I formulated recommendations for good
practices in benchmarking of evolutionary algorithms.

Therefore, the essential steps to goal fulfillment were as follows:

1. Survey the current state of Boundary Control Methods (BCMs) used
in evolutionary algorithms.

2. Investigate influence of various BCMs on the performance of selected
evolutionary algorithms.

3. Conduct experiments evaluating the impact of BCMs on the perfor-
mance of state-of-the-art algorithms and results of competitive benchmark-
ing.

4. Based on the experimental results draw conclusions and recommen-
dations for good practices in benchmarking.
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3 EVOLUTIONARY ALGORITHMS

The motivation behind Evolutionary Algorithms (EAs) [4, 5, 6] began with a
relatively simple idea: nature, over millions of years, has evolved systems and
organisms that are remarkably effective at solving complex problems. Examples
include ants that intuitively find the shortest paths [23], bees optimizing their
foraging strategies [24], the optimal growth patterns of certain plant species [25],
and various species adapting to environmental changes through natural selection.
The foundation of EAs is built upon Charles Darwin’s theory of natural evolution
[26], Gregor Mendel’s research on species heredity [27], and studies on collective
behavior and patterns [28].

Thus, a straightforward approach is to apply the vast knowledge of natural sys-
tems to real-life optimization challenges. In the context of EAs, this means
transforming these natural experiences into metaheuristic algorithms. The gen-
eral process often involves taking inspiration from a natural process, which is
then translated into the pseudo-code of a new algorithm. However, this trans-
lation often involves simplification and metaphorization, leading to algorithms
that may not always be as robust as their natural counterparts. Moreover, de-
spite the wide array of algorithms within the EA field, only a few have achieved
widespread popularity and use. The rapid proliferation of metaheuristic algo-
rithms has drawn criticism [29, 30], particularly regarding the development of
new algorithms based on unjustified concepts drawn from nature, created pri-
marily for rapid publication.

Growing consensus indicates that the creation of these algorithms, despite their
innovative surface, often lacks substantial justification in terms of the natural
concepts they are based on. Many in the field express concern that such algo-
rithms are more about achieving publication than meaningfully contributing to
the field of optimization. This practice not only dilutes the impact of genuinely
innovative algorithms but also raises questions about the effectiveness and ro-
bustness of these rapidly produced methods. Therefore, there is a pressing need
for more rigorous standards in the development and evaluation of new EAs.
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These standards should prioritize not just the novelty of the natural concept but
also the practical applicability and improvement in optimization effectiveness,
ensuring that contributions to the field are both scientifically sound and techni-
cally valuable, aligning more closely with the principles of meaningful scientific
advancement rather than the pursuit of publication metrics.

3.1 Principles and Mechanisms of Evolutionary Algorithms

In the realm of computational problem-solving, optimization plays a pivotal
role, particularly within the context of Evolutionary Algorithms (EAs) [31]. Op-
timization fundamentally involves selecting the most effective combination of
parameters. This combination is then evaluated based on its overall perfor-
mance, typically measured by an objective function. The mathematical goal is
to find a solution x = {x1, x2, . . . , xD} that optimizes (minimizes or maximizes)
the objective function f(x). This optimization process can be subject to various
constraints, either defined by functions gk(x) ≤ 0; k = 1, . . . , n or by parameter
bounds lj ≤ xj ≤ hj ; j = 1, . . . , D, where D represents the dimensionality of
the optimization problem, indicating the number of parameters to be optimized.

EAs approach this optimization task by simulating the process of natural evolu-
tion. They operate on a population of potential solutions, applying mechanisms
akin to genetic inheritance, mutation, recombination, and selection. Through
iterative processes, these algorithms evolve the population, aiming to improve
the quality of solutions with respect to the objective function. Each member of
the population, often referred to as an individual or a chromosome, represents a
potential solution to the optimization problem, encoded in a structure analogous
to the genetic makeup of living organisms.

The effectiveness of EAs in navigating complex, multidimensional search spaces
lies in their ability to balance exploration and exploitation [32]. Exploration
involves searching through new, untested areas of the solution space, while ex-
ploitation focuses on refining the already discovered promising areas. This bal-
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ance is critical in avoiding local optima traps and steering the algorithm towards
the global optimum.

In summary, the essence of optimization in the context of EAs is rooted in the
careful selection and iterative improvement of solutions, guided by the prin-
ciples of natural evolution. This approach is particularly effective in dealing
with complex problems where traditional optimization techniques may struggle.
Traditional methods often face challenges with complex problems due to their
tendency to become trapped in local optima, their sensitivity to the dimension-
ality of the search space, and their inability to handle discontinuous or non-
differentiable functions effectively. Unlike these methods, EAs are more robust
in exploring diverse solution spaces, as they use populations of solutions and
stochastic processes, which help avoid premature convergence on sub-optimal
solutions and provide a broader exploration of the problem space.

3.2 Genetic Algorithm

The Genetic Algorithm (GA), a renowned member of the EAs family, was pi-
oneered in the 1960s by John Holland [33]. A hallmark of the classical GA is
its unique approach to representing individual parameters encoded as a binary
string. These parameters, termed genes, collectively form a chromosome, repre-
senting one individual’s solution. An entire set of these chromosomes constitutes
the population in GA. The main functional components of GA are segmented
into three distinct phases.

Selection: This initial phase involves choosing parent chromosomes from the
population for reproduction, based on their performance as measured by the ob-
jective function. Common methods employed for selection include the roulette
rule, rank selection, and tournament selection. Each method influences the rate
of convergence and the overall quality of the resulting solution. Typically, indi-
viduals with higher solution quality have a greater probability of being selected
to pass their genetic information to the subsequent generation.
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Crossover: This phase is central to the genetic algorithm, epitomizing the core
concept of genetic recombination. The crossover process entails combining ge-
netic information from two parent chromosomes to produce offspring. Various
crossover methods exist, but the focus here is on the single-point crossover. As
the name implies, single-point crossover involves dividing each parent’s chromo-
some at a specific point and exchanging the segments, resulting in two offspring
that inherit a blend of genetic material from both parents.

Mutation: The final phase is mutation, where, with a low probability, certain
genes in the offspring’s chromosomes may be inverted. The primary objective
of mutation is to introduce genetic diversity into the population and to avert
premature convergence on suboptimal solutions. The offspring, post-mutation,
are then included in the new generation for the next cycle of the algorithm.

Upon completion of the mutation phase, the selection process recommences,
marking the start of a new iteration. This cycle continues until a new genera-
tion of the population is formed. The description here encapsulates one of the
most basic variants of GA. Over the years, numerous adaptations of GA have
been developed, many tailored to address specific optimization problems with
enhanced efficacy.

The pseudo-code of the described basic GA is shown in Algorithm 1.

Algorithm 1 GA
1: GA initialization
2: while Stopping criterion not met do
3: for i = 1 to NP with i+ = 2 do
4: Selection
5: Crossover
6: Mutation
7: Evaluation
8: end for
9: record the best solution

10: end while
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3.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) stands as a notable example of so-called
swarm-based algorithms, first introduced by Eberhart and Kennedy in 1995 [34].
The PSO algorithm is inspired by the social behavior and movement patterns
observed in natural swarms, such as bird flocking. According to the authors
of the proposed modifications, modern adaptations of PSO primarily focus on
addressing its known weakness: the tendency for premature convergence to local
optima [35, 36].

In PSO, each member of the swarm, denoted as x, navigates the solution space
of the optimization problem. This movement is governed by two key factors: the
individual’s current position x and its velocity v. The position of each swarm
member is updated according to the equation:

xk+1
i,j = xki,j + vki,j (3.1)

where xk+1
i,j represents the position of the i-th individual in the j-th dimension

during the (k + 1)-th iteration of the algorithm.

Each individual in the swarm maintains a record of its personal best position,
pBest, while the collective swarm retains information about the overall best
solution found, gBest. These memories, pBest and gBest, are integral to the
calculation of the velocity v, as described in the following equation:

vk+1
i,j = w · vki,j + c1 · r1 · (pBesti,j − xki,j) + c2 · r2 · (gBestj − xki,j) (3.2)

Here, w denotes the inertia weight, c1 and c2 are cognitive and social factors,
and r1 and r2 are random numbers drawn from an unimodal distribution within
the range < 0, 1 >. The pseudo-code for PSO is detailed in Algorithm 2.
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Algorithm 2 PSO
1: PSO initialization
2: while Stopping criterion not met do
3: for i = 1 to NP do
4: calculate the velocity v (3.2)
5: calculate the new position x (3.1)
6: evaluate the x
7: update the positions pBest and gBest
8: end for
9: record the best solution

10: end while

3.4 Differential Evolution

Differential Evolution (DE), a notable algorithm introduced by Storn and Price
in [37], forms the foundation of a family of algorithms widely recognized for their
effectiveness in continuous optimization. The majority of DE variants adhere to
the foundational principles outlined in the original 1995 publication [38].

At its core, DE evolves from a randomly generated population of individuals,
where each individual x signifies a potential solution to the optimization prob-
lem. These individuals are represented as vectors of parameters, with each com-
ponent of the vector corresponding to a distinct attribute of the problem. The
evolution of these individuals is facilitated through a combination of mutation,
crossover, and selection processes, aiming to produce superior offspring in sub-
sequent iterations. This evolutionary cycle continues until a predefined stopping
criterion is met, ensuring that each new iteration comprises solutions that are
either better or equivalent to those in the preceding iteration. The DE algorithm
is fundamentally structured into three key steps.

Mutation: This step involves the formation of a mutated vector v through the
combination of vectors from selected individuals. This process is governed by a
scaling factor F , as illustrated in the equation:

vki,j = xkr1,j + F · (xkr2,j − xkr3,j) (3.3)
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Here, vki,j represents the mutated vector in the j-th dimension for the i-th
individual at iteration k. The indices r1, r2, r3 are randomly selected from the
population and are distinct from each other and also distinct from i-th individual,
with NP denoting the total population size.

Crossover: The creation of the trial vector u occurs in this step. It involves
choosing attributes either from the mutated vector v or the original vector x,
based on a crossover probability determined by the crossover rate CR. The
process is encapsulated in the following equation:

uk+1
i,j =

vki,j , if (randj ≤ CR)

xki,j , otherwise
(3.4)

The trial vector u is constructed ensuring that it incorporates at least one
parameter from the mutated vector v.

Selection: In this final step, the algorithm selects the superior solution between
the trial vector u and the original vector x, based on their respective objective
function values f(x) and f(u). The selected solution then proceeds to the next
iteration.

Through these systematic steps, DE efficiently navigates the solution space, en-
suring the continuous improvement of solutions towards optimal results.

The pseudo-code for the general DE is shown in Algorithm 3.

3.5 Self-organising Migrating Algorithm

The Self-Organizing Migrating Algorithm (SOMA), developed by Zelinka in 1999
[39, 40], represents a significant contribution to swarm-based algorithms, incor-
porating elements of self-organization and various innovative techniques. Influ-
enced by other EAs, SOMA integrates techniques such as discrete perturbation,
akin to the mutation process found in evolution strategies. This aspect of SOMA
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Algorithm 3 DE
1: DE initialization
2: while Stopping criterion not met do
3: for i = 1 to NP do
4: mutation (3.3)
5: crossover (3.4)
6: selection
7: evaluation
8: end for
9: record the best solution

10: end while

not only enhances its effectiveness but also facilitates scalability and adaptability
across diverse search spaces.

Central to SOMA is the concept of cooperation among individuals, mirroring the
collaborative dynamics observed in PSO. In this context, an individual x rep-
resents a potential solution to the optimization problem at hand. The essence
of this cooperation, as defined by the algorithm’s creator, is the migration pro-
cess of an individual towards another member within the population, expressed
mathematically as:

xk+1
i,j = xki,j + (xkL,j − xki,j) · t · PRTV ectorj (3.5)

In this equation, xk+1
i,j denotes the new position of the i-th individual in the

j-th dimension for the next iteration step k + 1, with xki,j being its current
position. The term xkL,j refers to the position of a ’leader,’ selected based on a
specific SOMA strategy, and t parameterizes individual discrete steps towards
this leader, influenced by user-defined parameters PathLength and Step.

The mutation process in SOMA is emulated through the PRTV ectorj , which
is generated for each step t and dictates the dimensions in which an individual
will migrate towards the leader. The probability of mutation in each dimension
is controlled by a user-defined parameter prt, influencing the mutation strength
during migration, as detailed in the following equation:
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PRTV ectorj =

1, if (randj < prt)

0, otherwise
(3.6)

SOMA is characterized by its various strategies for leader selection, with the
two primary ones being the ’All-To-One’ and ’All-To-All’ strategies. The ’All-
To-One’ strategy (the pseudo-code is shown in Algorithm 4) involves selecting
one leader per migration cycle based on their objective function value, with other
individuals migrating towards this leader. The ’All-To-All’ strategy, conversely,
sees each individual migrate towards all others in succession, returning to its
original position after each migration. The effectiveness of SOMA is showcased
in these diverse strategies, each contributing uniquely to the algorithm’s ability
to explore and exploit the solution space effectively.

Algorithm 4 SOMA - All-To-One
1: SOMA initialization
2: while Stopping criterion not met do
3: select leader xL from population
4: for i = 1 to NP do
5: for t = Step to pathLength with t+ = Step do
6: generate PRTV ector (3.6)
7: migrate xi to xL (3.5)
8: evaluate the migrated xi
9: end for

10: save best xi to the new population
11: end for
12: record the best solution
13: end while

3.6 Current Trends in Evolutionary Algorithms

The widespread use of Evolutionary Algorithms, particularly swarm-based ones,
presents a paradox: their popularity has been both beneficial and problematic,
prompting criticisms for the swift proliferation of new algorithms [29]. Despite
these criticisms, research indicates [41] that the development of new algorithms
continues steadily, affirming that the trend of creating innovative algorithms is
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ongoing. Consequently, there is a growing focus among experts on exploring
deeper aspects of metaheuristic algorithms, such as runtime analysis, bench-
marking, communication dynamics, diversity management, population stagna-
tion, and robustness and efficiency studies [42, 43, 44, 45, 46, 47, 48, 49, 50]. This
shift is crucial because, despite their practical efficacy, metaheuristic algorithms
require a stronger theoretical foundation to fully leverage their capabilities and
facilitate the development of new technologies.

This dissertation is aligned with this emerging focus and aims to deliver a
detailed examination of a frequently neglected aspect of metaheuristic algo-
rithms—the boundary control methods (BCM). The reproducibility of research
is fundamental; thus, omitting critical details renders such studies impractical.
Given that BCM can significantly influence the performance and other behav-
ioral aspects of algorithms, it is vital to address them with the same rigor as all
other control variables within these algorithms.
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4 BOUNDARY CONTROL METHODS

The spectrum of optimization problems is vast, often originating from a wide ar-
ray of real-world challenges. Typically, these problems are transferred to mathe-
matical forms to facilitate easier analysis. With growing interest in metaheuristic
optimization [29], there has been a notable increase in the number of benchmark
functions and artificial problems created for testing purposes. Each of these
benchmark functions used to evaluate metaheuristic optimizers is defined within
a specific domain, such as real numbers, positive numbers, or integers, reflect-
ing the varied nature of optimization scenarios. A common feature across both
real-world and artificial optimization tasks is the presence of parameter bounds.
These bounds may originate from practical limitations in real-world scenarios,
such as physical constraints, cost factors, or time limitations.

Due to the inherent randomness in metaheuristic algorithms, there is always
a possibility that trial solutions might fall outside the predefined parameter
boundaries. This occurrence poses a challenge in effectively solving optimization
problems. A typical solution involves checking each newly generated solution to
ensure it remains within the acceptable parameter bounds. If a solution is found
outside these bounds, an appropriate correction mechanism must be employed
to bring it back into the feasible solution space.

The literature presents various methods for addressing boundary constraint vio-
lations. Studies suggest that the choice of BCM might influence the performance
and other characteristics of an optimization algorithm, as suggested by general
studies mentioning potential impacts, often focused on single algorithms. Despite
this, there appears to be a lack of comprehensive, generalized studies examining
the impact of BCMs on the performance of metaheuristic optimizers in existing
publications.
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4.1 Literature Overview

The exploration of boundary control methods is addressed in various research
publications, with a range of depth in problem coverage. The body of literature
pertaining to EA, specifically within the realm of metaheuristic optimization,
can be categorized as follows:

• papers primarily dedicated to the exploration of BCMs as a fundamental
aspect of EA,

• articles that acknowledge the use of such methods (often within the frame-
work of novel algorithm design) or that develop/implement these methods
in a specific optimization algorithm,

• and studies that neglect to discuss BCMs, though inclusion might be ben-
eficial.

It is important to note that searching for relevant literature on this topic is
complicated by the similarity in terminology between parameter bounds and ob-
jective function constraints. Frequently, while objective function constraints are
the focus, parameter bounds are also examined. Thus, thoroughly investigat-
ing all related research, which encompasses numerous detailed studies, is both
time-intensive and complex.

The primary category of papers should be those entirely dedicated to boundary
control handling as a general topic within EA, encompassing various families
of metaheuristic algorithms. Regrettably, there are few, if any, comprehensive
resources in the literature that address the full spectrum of metaheuristic algo-
rithms.

Papers that discuss boundary control techniques exhibit a range of focuses.
While some papers concentrate solely on comparing these methods within a
single algorithm, accompanied by statistical analyses and recommendations on
which methods generally enhance algorithm performance, the conclusions of
these studies are often specific to the algorithm under consideration. The pro-
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posed BCMs typically exploit unique aspects of these algorithms, which may
limit their applicability for general use.

For PSO-based algorithms, the experimental analysis by Helwig, Branke, and
Mostaghim in 2012 [51] compares several BCMs within the PSO algorithm.
They concluded that such methods significantly affect algorithm performance
and can introduce a considerable search bias. This analysis also considered vari-
ous aspects of PSO, such as the velocity of individual particles and variables for
optimal positions. Oldewage, Engelbrecht, and Cleghorn conducted a similarly
comprehensive study on BCMs for the PSO algorithm in 2018 [52], finding that
the hyperbolic method performed best, though its application was limited ex-
clusively to PSO. Clerc’s slightly less detailed research in 2006 [53] categorized
BCMs in PSO as "confinements," describing and testing several on a limited
dataset. Zhang et al. conducted a parallel study in 2004, comparing a different
set of methods [54]. Additionally, Michalewicz and Koziel published an extensive
study on parameter bounds mixed with constrained numerical optimization for
GAs [55, 56]. Detailed work on infeasible solutions and five BCM strategies for
addressing them in terms of DE are discussed by Kononova et al. [57].

Another subset of articles that mention BCMs do so only as part of the design
of new metaheuristic algorithms, with minimal to no analysis. For instance, in
their seminal effort to define a standard for PSO, Bratton and Kennedy [58] in
2007 only briefly mention the boundary conditions, selecting one type without
any detailed discussion or references. Similarly, the paper by Mostaghim et
al. in 2006 [59] focuses on the multi-objective version of PSO. While primarily
dedicated to objective function constraints, it also summarily addresses BCMs
alongside previous work. However, extracting relevant results from this study is
somewhat challenging due to its primary focus. In another context, four BCMs
are discussed in Hansen’s tutorial paper on the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) algorithm [60], yet the impact of these methods
on CMA-ES performance was not explored in the tutorial.

Up to this point, the majority of referenced research articles have focused on
the family of PSO algorithms, with one notable exception related to CMA-ES.
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This category of papers also encompasses research in the field of Differential
Evolution (DE) algorithms. Ronkkonen et al. [61] describe a method for the
DE algorithm where a trial solution is reflected off the boundary by the amount
of the violation. A similar technique is employed in the works of Brest et al.
[62], Price and Storn [63], Guo et al. [64], and Zhang et al. [65]. Additionally,
Caraffini et al. provide more detailed work on structural bias—primarily caused
by boundary constraints—with extensive results and discussion in [66]. Further
work by Vermetten et al. led to the creation of a toolbox called BIAS, designed
specifically for benchmarking structural bias, as detailed in [67].

The results and implications derived from the collected works suggest that BCMs
can directly influence the overall performance of a metaheuristic algorithm. Yet,
many new algorithms, tutorials, and overview articles have overlooked or ne-
glected this aspect. For instance, this oversight occurs in a tutorial for PSO [68],
a general paper on EAs [69], articles on the Firefly Algorithm (FA) [70, 71], a
publication on the Cuckoo Algorithm [72], and a paper introducing new mechan-
ics for DE [73].

The following quotation from the article on experimental analysis of BCM (stated
as bound handling techniques in the article) in particle swarm optimization by
Helwig et al. [51] emphasizes this point:

"As was shown, the bound handling technique has a significant impact on the
performance of PSO, particularly when the search space is of high dimensionality,
as this greatly increases the likelihood of a particle exiting the feasible area."

This statement, along with other publications listed in subsection 4.1, strongly
suggests that BCMs require careful consideration—whether in proposing a new
metaheuristic algorithm or when modifying an existing one. The findings in
these publications also indicate that different methods are preferred for different
algorithms, underscoring the need for extensive research to examine the employed
methods across a variety of optimizers. Such research should aim to deeply
analyze their effects not only on performance but also on other characteristics
of the algorithms.
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4.2 Existing Boundary Control Methods

This subsection presents a consolidated overview of Boundary Control Methods
(BCMs) commonly utilized in research. The versatility of some techniques al-
lows for their adaptation in various forms, while others are specifically tailored
for particular optimization algorithms. Additionally, certain methods might be
underrepresented in this summary due to their lesser popularity or because they
are briefly mentioned in research focusing on different topics.

In the ensuing subsections, mathematical formulations of various BCMs are de-
tailed. To facilitate comprehension, a brief recapitulation of the variables em-
ployed in these formulations is provided here. An individual solution in the
context of these methods is denoted as x = {x1, x2, . . . , xD}, representing a
vector of parameters where D indicates the dimension size. Each parameter xj

within this vector, corresponding to a specific dimension, is subject to defined
bounds that demarcate the feasible solution space. These parameter bounds are
expressed as lj ≤ xj ≤ hj , where lj and hj represent the lower and upper bounds,
respectively, for the j-th dimension.

4.2.1 Clipping

The Clipping Method (also known as saturation) stands out for its simplicity
and ease of implementation, often making it one of the first choices in BCMs.
In this method, individual solutions x are prevented from crossing the defined
boundaries in each dimension. Instead, they are "clipped" to remain within
the parameter bounds. This approach is succinctly captured by the following
equation, ensuring that each solution stays within its maximum and minimum
limits.
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xk+1
i,j =


hj , if

(
xki,j > hj

)
lj , if

(
xki,j < lj

)
xki,j , otherwise

(4.1)

The xk+1
i,j is the i-th individual in j-th dimension in k+1 iteration, and the pair

hj and lj are the parameter bounds, maximum and minimum respectively.

4.2.2 Random

In cases where a trial solution violates the boundary in any dimension, the
Random Method generates a new position for the respective dimension. This
position is randomly determined between the lower and upper bounds, follow-
ing a pseudo-random uniform distribution. This method is straightforward to
implement, as reflected in its mathematical representation.

xk+1
i,j =

{
U (lj , hj) , if

(
xki,j > hj OR xki,j < lj

)
xki,j , otherwise

(4.2)

4.2.3 Reflection

The Reflection Method mirrors a solution back into the feasible space if it at-
tempts to cross the defined borders. This technique is akin to the reflection be-
havior of a mirror. For each dimension that violates the boundary, the position
of the individual is corrected in a way that reflects it back into the permissible
range.



TBU in Zlín, Faculty of Applied Informatics 31

xk+1
i,j =


hj −

(
xki,j − hj

)
, if

(
xki,j > hj

)
lj +

(
lj − xki,j

)
, if

(
xki,j < lj

)
xki,j , otherwise

(4.3)

4.2.4 Periodic

The Periodic Method approaches boundary violations by considering an infinite
solution space, effectively creating infinite copies of the optimized hyper-space.
It employs a mapping technique that brings the individual back into the feasible
space using a modulo function. This method ensures that solutions are cyclically
repositioned within the acceptable range.

xk+1
i,j = lj +

(
(xki,j − hj) MOD (hj − lj)

)
(4.4)

4.2.5 Halving the Distance

As suggested by its name, this method involves halving the distance between
the original position and the crossed boundary. Unlike previous techniques, this
approach requires tracking the starting position of an individual. It offers a more
nuanced adjustment by averaging the boundary and the initial position.

xk+1
i,j =


xk−1
i,j +

(
hj − xk−1

i,j

)
/2 , if

(
xki,j > hj

)
lj +

(
xk−1
i,j − lj

)
/2 , if

(
xki,j < lj

)
xki,j , otherwise

(4.5)
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4.2.6 Soft

The Soft Method is unique in that it imposes no immediate restrictions on indi-
viduals outside the feasible space, except that their objective function values are
not updated until they re-enter the feasible area. Implementing this method can
be challenging, as it does not guarantee finite iteration completion without spe-
cific algorithm tuning. This approach allows for greater flexibility but requires
careful management to ensure algorithm convergence.
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5 CHRONOLOGICAL CONTRIBUTIONS TO BOUND-
ARY CONTROL METHODS

The subsequent sections outline the empirical findings from a set of focused
studies undertaken by the author of this doctoral thesis. Initial observations
concentrated on the Particle Swarm Optimization (PSO) and its advanced it-
erations; further studies were conducted on the Self-Organizing Migrating Al-
gorithm (SOMA) and the Firefly Algorithm (FA) [74]. These studies aimed to
explore the effect of the Boundary Constraint Methods (BCMs) on the overall
performance of these metaheuristic algorithms.

An additional cornerstone of this exploration is presented in the journal article
titled "Impact of Boundary Control Methods on Bound-Constrained Optimiza-
tion Benchmarking" [75]. This paper focuses on the critical implementation of
BCMs and their significant influence on the performance of leading algorithms,
as demonstrated in the IEEE CEC competitions of 2017 and 2020. The moti-
vation for this research was based on the findings described in previous initial
studies [76, 77, 78], where the influence of BCMs on the performance of selected
basic versions of metaheuristic algorithms was examined. Thus, a research ques-
tion arose as to whether the choice of a BCM could significantly influence other
competitive algorithms, especially the CEC competition winners. Furthermore,
it was motivating to find out whether just changing the BCM can help achieve
even better results for the top three performing algorithms from a given year of
the competition, possibly changing their final order. The results presented in
the article showed that the impact on the empirical performance of the top 3
algorithms from CEC17 is affected by the choice of BCMs.

A further contribution was focused on exploring the frequency of BCM acti-
vations. The study investigated how often BCMs were activated during the
optimization process across various metaheuristic algorithms.

A timeline of the contributions mentioned, detailing the progression and key
milestones of the research, is illustrated in Figure 5.1.
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Fig. 5.1 Research timeline progress.

5.1 PSO

The study’s results published in 2017 [76] confirmed that the selection of used
BCM affects the algorithm’s performance. The study compared Clipping, Ran-
dom, Periodic, and Soft methods on the generic version of PSO and the variant
called Diversity guided PSO (ARPSO) [35]. The ARPSO algorithm, developed
by J. Riget and J. S. Vesterstrøm in 2002, specifically addresses the issue of pre-
mature convergence – a notable shortcoming of the traditional PSO algorithm
they highlighted in their proposal.

Operating on principles akin to those outlined in Section 3.3 for PSO, ARPSO
involves computing the population’s diversity in each iteration. Should this
divergence fall below a predefined threshold, a repulsive phase is initiated to dis-
perse the particles, thereby enhancing exploration. Conversely, if the divergence
exceeds a certain upper threshold, an attractive phase is triggered, encouraging
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particles to converge, which aids in exploitation. This dynamic adjustment be-
tween attraction and repulsion phases helps in maintaining a balance between
exploration and exploitation, which is crucial for avoiding premature conver-
gence.

5.1.1 Experimental setup

The experiments were conducted on the CEC 2015 benchmark set [79] for di-
mension sizes 10, 30, and 50. The benchmark encompasses 15 test functions,
and every test function was repeated for 51 independent runs. The results were
tested for statistical significance using the Friedman Rank test [80] with the
significance level α = 0.05, accompanied by Nemenyi critical distance (CD) [81].

5.1.2 Key findings

The Friedman rank tests (Fig. 5.2, Fig. 5.3) clearly show that the Clipping
method negatively affected the overall performance of both PSO and ARPSO
algorithms on all dimension sizes. The CD shows which BCMs do not alter
the performance of the particular algorithm with statistical significance in com-
parison with the first-ranked method. These are Random, Periodic, and Soft
methods for dimension sizes 10 and 30. For dimension size 50, only Random and
Soft methods perform similarly.

5.2 FA

The subsequent study from 2018 [77] compared Clipping, Random, Reflection,
and Periodic BCMs on FireFly Algorithm (FA) and on a hybrid of FA and
PSO, called Firefly Particle Swarm Optimization (FFPSO) [82]. This hybrid
algorithm was introduced in late 2016 by Padmavathi Kora and K. Sri Rama
Krishna. The basic idea behind such an approach, according to the authors, is
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Fig. 5.2 Friedman rank comparison of the Clipping, Random, Periodic, and Soft
methods on PSO on benchmark set CEC 2015. [76]

that the new hybrid strategy can share advantages from both algorithms and
hopefully eliminate their disadvantages. The main principle remains the same
as in the standard FA, but the equation for firefly motion is slightly changed
according to PSO movement.

5.2.1 Experimental setup

The experiments were performed on the CEC 2017 benchmark set [83], encom-
passing 30 test functions, and every test function was repeated for 51 independent
runs. The tested dimension sizes were 10 and 30. The results were tested for
statistical significance using the Friedman Rank test [80] with the significance
level α = 0.05, accompanied by Nemenyi critical distance (CD) [81].
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Fig. 5.3 Friedman rank comparison of the Clipping, Random, Periodic, and Soft
methods on ARPSO on benchmark set CEC 2015. [76]

5.2.2 Key findings

The figures Fig. 5.4 and Fig. 5.5 show the aforementioned ranks for FA and
FFPSO algorithms, respectively. The lower the rank, the better the perfor-
mance of the used BCM. Furthermore, the presented Friedman ranks are again
accompanied by Nemenyi critical distance (CD), represented as the dashed line,
measuring the critical distance from the best BCM (the lowest mean rank).

According to the ranking shown in both Figures (Fig. 5.4 and Fig. 5.5), the
significant impact of the selected BCM is mostly observed on canonical FA. For
the hybrid method FFPSO, the results indicate a minimal or negligible impact
of the used method. For dimension sizes 10 and 30, the most favorable BCMs
appear to be clipping and reflection methods.
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(a) D = 10 (b) D = 30

Fig. 5.4 Friedman rank comparison of the Clipping, Random, Reflection, and
Periodic methods on FA on benchmark set CEC 2017. [77]

(a) D = 10 (b) D = 30

Fig. 5.5 Friedman rank comparison of the Clipping, Random, Reflection, and
Periodic methods on FFPSO on benchmark set CEC 2017. [77]
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5.3 SOMA

The 2020 study [78] delved into the impact of BCMs on the Self-Organizing Mi-
grating Algorithm (SOMA), specifically its All-To-One and All-To-All variants.
SOMA is a metaheuristic optimization technique inspired by the social behavior
of individuals within a population moving towards better positions or solutions.
It is known for its efficacy in navigating complex optimization landscapes. This
investigation was prompted by the notable gap in research concerning the in-
teraction between BCMs and SOMA strategies, a gap that this study aimed to
bridge.

The study evaluated four distinct BCMs: Clipping, Random, Reflection, and
Periodic. This comparative analysis sheds light on how different BCMs can in-
fluence the performance and robustness of SOMA variants, contributing valuable
insights to the sparse body of knowledge on BCMs’ role in enhancing SOMA’s
optimization capabilities.

5.3.1 Experimental setup

For the experiment, the CEC 2017 benchmark set [83] was chosen, encompassing
30 test functions categorized into unimodal, multimodal, hybrid, and composite
groups. The experiment focused on dimension sizes of 10 and 30, adhering to
the benchmark’s stipulation of a maximum of 10,000 function evaluations per
dimension. To ensure robustness, each test function underwent 51 independent
trials, with the outcomes subjected to statistical analysis.

Regarding the SOMA parameters, they were configured as follows: the pop-
ulation size NP was 100 individuals; the probability of perturbation prt was
set to 0.3; the Step parameter was 0.11, and the Path length was fixed at 3.
These settings were in line with the recommendations of the original authors
[39, 40, 84].
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The analysis utilized the Friedman Rank test [80] to assess statistical significance,
rejecting the null hypothesis of equal means at a 5% significance level.

5.3.2 Key findings

Figure 5.6 displays the Friedman ranking outcomes for both the All-To-One and
All-To-All SOMA strategies across the dimension sizes of 10 and 30, where lower
ranks signify superior performance. To compare multiple BCMs, the Nemenyi
Critical Distance post-hoc test was employed, determining a critical distance
(CD). The critical distance is visually represented by a dashed line extending
from the highest-ranked boundary method in the figure.

For the All-To-One strategy, the Random and Periodic methods emerged as
notably effective, with the All-To-All strategy showing similar results and the
Reflection method also presenting promise. Conversely, the Clipping method was
identified as the least effective across strategies. The analysis distinguished two
method groups: one (Clipping, Reflection, and Periodic) maintaining consistent
individual migration across the search space without losing previous position in-
formation, and the other (Random method) facilitating a more stochastic search,
potentially aiding SOMA in avoiding local minima traps.

The findings indicate the Random and Periodic methods as particularly promis-
ing, with the Random method introducing beneficial stochastic elements to
SOMA. In contrast, the Periodic method preserves individuals’ movement di-
rections and patterns, offering a more predictable and natural behavior that
aligns with original population dynamics.

The least effective method for both SOMA strategies was found to be the Clip-
ping method, potentially due to its restriction of individual movements to the
borders of the feasible space, impacting the algorithm’s performance negatively
in both tested dimension sizes.
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(a) D = 10; All-To-One (b) D = 10; All-To-All

(c) D = 30; All-To-One (d) D = 30; All-To-All

Fig. 5.6 Friedman rank comparison of the Clipping, Random, Reflection, and
Periodic methods on SOMA on benchmark set CEC 2017. [78]
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5.4 Analyzing the Impact of Boundary Control Methods on Algo-
rithmic Performance

The impulse for the performance analysis study comes from earlier investigations
[76, 77, 78] that explored the impact of BCMs on basic metaheuristic algorithms,
raising questions about their potential influence on more competitive algorithms,
particularly CEC competition winners. This study investigates whether modifi-
cations to BCMs could enhance the performance of top algorithms from recent
competitions, potentially altering their ranking outcomes.

5.4.1 Experimental setup

The study was focused on the three top-ranking participants of two benchmark
competitions: CEC17 [83], and CEC20 [85]. The goals for both testbeds were
to:

• determine which BCM was used by the three winning algorithms,

• examine if there is a better choice of a BCM for a particular algorithm,

• if the algorithms used a different BCM, could it have changed the final
order?

Both benchmarks encompass four groups of test functions: unimodal, multi-
modal, hybrid, and composition functions. An advantageous feature of the CEC
benchmark is that all incorporated test functions are defined with equal and
static (same values across all dimensions) search ranges for all parameters. The
original implementation also supports a shift of the global optimum and rotation
of each function.

The description of each benchmark is summarized in the following subsections
alongside the descriptions of the three top-ranking algorithms of each benchmark.
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Tab. 5.1 CEC17 – Algorithm overview

Algorithm BCM BCM listed
EBOwithCMAR [87] Halving, Clipping No

LSHADE-cnEpSin [88] Halving No
jSO [89] Halving Partially
DES [90] Penalization Yes

DYYPO [91] – No
IDEbestNsize [92] Reflection Partially

LSHADE_SPACMA [93] – No
MM_OED [94] – No

MOS-CEC2013 [95] – No
MOS-SOCO2011 [95] – No

PPSO [96] Random bounce Yes
RB-IPOP-CMA-ES [97] – No

TLBO-FL [98] Clipping Yes

5.4.2 Top 3 best-performing algorithms for CEC17

The testbed CEC17 published in 2016 [83] encompasses 30 test functions for
dimension sizes of 10, 30, 50, and 100. The following subsections briefly describe
the top three performing algorithms according to the official results [86]. Ta-
ble 5.1 contains a list of all participants, including the used BCM, and if the
BCM was mentioned in the accompanying paper.

EBOwithCMAR was initially proposed for the CEC17 benchmark and success-
fully obtained the first position among 11 competitors. The hybrid algorithm
is based on the Effective Butterfly Optimizer (EBO) and Covariance Matrix
Adapted Retreat Phase (CMAR), which improves the local search capability of
EBO. The paper [87] does not specify any used BCM; however, upon the analysis
of the algorithm code showed that EBOwithCMAR uses two BCMs, Halving for
EBO and Clipping for CMAR.

jSO [89] represents an improved variant of the iL-SHADE algorithm [99] and
ranked in second place. The improvement lies predominantly in the new version
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Tab. 5.2 CEC20 – Algorithm overview

Algorithm BCM BCM listed
IMODE [102] Random, Halving No
AGSK [103] Halving No
j2020 [104] Periodic Yes
Cssin [105] – No

MP-EEH [106] Clamping Yes
RASP-SHADE [107] Halving Yes

DISH-XX [108] Halving No
jDE100e [109] – No

OLSHADE [110] Clipping, Halving Yes
mpmL-SHADE [111] Halving Yes

SOMA-CL [112] Random No

of the mutation strategy. The jSO uses Halving BCM, which is referred in the
paper as a “repeat mechanism” without any detailed description or citation.

LSHADE-cnEpSin is the third algorithm used in this study and represents
an extension to the LSHADE-EpSin [100], which was ranked as the joint winner
in the competition IEEE CEC 2016. The enhancement lies in the ensemble of
sinusoidal approaches and covariance matrix learning for the crossover operator.
The LSHADE-cnEpSin [88] ranked third in the CEC17 competition and uses
Halving BCM, which is unfortunately not mentioned in the paper by the authors.

5.4.3 Top 3 best-performing algorithms for CEC20

The CEC20 benchmark [85] was introduced in 2019 and includes 10 test functions
for dimension sizes of 5, 10, 15, and 20. Again, the following subsections briefly
describe the top three performing algorithms according to the official results
[101], and Table 5.2 contains a list of all participants, what boundary control
method they used, and if the BCM was mentioned in the related paper.

IMODE is a Differential Evolution (DE) based algorithm ranked as the winner
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in the CEC20 competition. IMODE [102] benefits from multiple differential
evolution operators, with more emphasis placed on the best-performing operator.
The algorithm employs two BCMs: Clipping and Halving, selected randomly
each time it is used. Unfortunately, BCMs are not mentioned in the paper.

AGSK is the second-best performing algorithm in the CEC20 competition.
AGSK [103] is the enhanced version of the Gaining Sharing Knowledge-based
algorithm (GSK) [113], which uses adaptive settings to its control parameters.
The algorithm utilizes Halving BCM; however, the authors did not specify this.

j2020 [104] ranked third place in the competition, and it is based on the two
self-adaptive DE algorithms: jDE [114] and jDE100 [115]. The used BCM is
Periodic, which is described in the paper.

5.4.4 Statistical Evaluation

Friedman rank test was a first step. Each algorithm was tested and evaluated
while using different BCMs. The evaluation was performed by Friedman rank
test [80], and the results are presented in Table 5.3 for CEC17 and Table 5.4 for
CEC20. The values in cells are the rankings for each algorithm for a particular
dimension size. The columns indicate the tested BCM. If the algorithm used a
different BCM than the selected (Clipping, Random, Periodic, Reflection, Halv-
ing), the column Default was used. Otherwise, this column states the name of
the used BCM of the algorithm. The last column contains p-values of the Fried-
man rank test. The tested significance levels are 0.1, 0.05, 0.01, and 0.001. Each
level corresponds to a certain symbol: *, †, **, and *** respectively. Therefore,
a symbol represents the significance level of the result. The last row of each algo-
rithm also contains the mean rank (given in bold) across the dimension sizes for
a particular BCM. The last column, CD, stands for Nemenyi Critical Difference
– if the difference between a pair of BCMs’ ranks is higher than the CD value,
they are significantly different. For example, in Table 5.3, the Periodic BCM
in LSHADE-cnEpSin in 10D is significantly different (better according to rank)
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from Clipping BCM. But the same Periodic BCM is not significantly different
from Random BCM.

Table 5.3 contains more results with statistically significant differences than Ta-
ble 5.4. The likely reasons are that the CEC20 benchmark contains only 10 test
functions and lower dimensionality might cause a lower number of BCM use (see
[51] – low dimensionality leads to a lower probability of creation of an infeasible
trial solution), and the top ranking algorithms in the competition are robust and
similar in the performance.

5.4.5 Competition Scoring System

The motivation for this second test, using CEC scoring system, was to determine
if a change of BCM may cause a change in the order of the algorithms. The CEC
scoring system is in detail provided in the technical reports accompanying the
CEC benchmarks [83, 85].

The final score value sorts the algorithms, and the higher score value, the better
is the performance of the algorithm. This Score is a sum of two partial scores
named Score 1 and Score 2. Score 2 is based on the weighted rank values, and
Score 1 is computed from the normalized error values for CEC20 or mean (not
normalized) error values for CEC17. Score 1 is computed using equations (5.1)
and (5.2).

SE = 0.1 ·
29∑
i=1

ef10D + 0.2 ·
29∑
i=1

ef30D

+0.3 ·
29∑
i=1

ef50D + 0.4 ·
29∑
i=1

ef100D

(5.1)
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Score1 =

(
1− SE − SEmin

SE

)
· 50 (5.2)

Where ef is the mean error value for a certain dimension size and SEmin is
the minimal sum of errors among all algorithms. The Score 2 is then computed
based on equations equations (5.3) and (5.4).

SR = 0.1 ·
29∑
i=1

rank10D + 0.2 ·
29∑
i=1

rank30D

+0.3 ·
29∑
i=1

rank50D + 0.4 ·
29∑
i=1

rank100D

(5.3)

Score2 =

(
1− SR− SRmin

SR

)
· 50 (5.4)

The final score is then defined as (5.5).

Score = Score1 + Score2 (5.5)

The equations (5.1) – (5.5) describes the computation of the score for CEC17.
The same equations are used to compute the CEC20 score but with different
dimension sizes.
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5.4.6 Results

This subsection presents the results of both experiments performed for bench-
marks CEC17 and CEC20. Each test scenario used a different number of in-
dependent runs as defined by the used benchmark. CEC 17 testbed defines 51
independent runs, while CEC20 testbed requires 30 independent runs.

The three approaches were used to analyze and represent the results: Friedman
rank test, CEC scoring system, and selection of the best performing BCM variant
for the algorithms.

The Tables 5.5 a) – f) contain the Score and rank of BCMs used for a particular
algorithm. The default BCM is in bold. From the given results, not once did
the default BCM ranked as the best performing variant; therefore, potentially
better results for the algorithm may be achieved using the BCM with the highest
Score. The parentheses under the score display percentual contribution of each
dimensional setting to the score. The significant disproportion in values of Score
1 for dimension size 50 for CEC17 was caused by the last test function f30, Since
this disproportion is observed across all tested algorithms and their BCMs, the
obtained results are still comparable, however further investigation is needed to
find the cause of such behavior.

Friedman ranks suggest that higher dimension size has a more significant impact
on the final score, as can be seen in Table 5.5. However, the higher impact of
higher dimension sizes is also implicit due to the weighting of dimension parts
of the score computation in (5.1) and (5.3).
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Tab. 5.5 Score and rank of BCMs used for a particular algorithm. The rank is
based on the final Score, which is a sum of partial scores 1 and 2. The default

BCM of the algorithm is in bold. The parentheses under the score display
percentual contribution of each dimensional setting to the score (CEC17 –

{10D, 30D, 50D, 100D}, CEC20 – {5D, 10D, 15D, 20D}).

a) CEC17 – EBOwithCMAR
Rank BCM Score 1 Score 2 Score

1 Reflection 4.81E+01 5.00E+01 9.81E+01
(0.4, 1.1, 92.6, 5.9) (10.8, 23.4, 33.7, 32.)

2 Random 4.98E+01 4.52E+01 9.49E+01
(0.4, 1.1, 92.1, 6.3) (9.7, 20.1, 31., 39.2)

3 Halving 4.71E+01 4.75E+01 9.46E+01
(0.4, 1.1, 92.7, 5.9) (11.6, 19.5, 31., 37.9)

4 Periodic 5.00E+01 4.30E+01 9.30E+01
(0.4, 1.2, 92., 6.4) (8.5, 18.8, 27.5, 45.2)

5 Default 4.78E+01 4.49E+01 9.27E+01
(0.4, 1.1, 92.4, 6.) (9.9, 19.5, 29.4, 41.3)

6 Clipping 4.62E+01 4.17E+01 8.79E+01
(4.8, 1., 88.4, 5.8) (9.7, 19.2, 28.1, 43.1)

b) CEC17 – jSO
Rank BCM Score 1 Score 2 Score

1 Reflection 5.00E+01 5.00E+01 10.0E+01
(0.4, 1.1, 90.5, 7.9) (10.1, 22.8, 31.7, 35.4)

2 Random 5.00E+01 4.69E+01 9.69E+01
(0.4, 1.2, 89.9, 8.5) (10.1, 20.5, 28.7, 40.7)

3 Halving 4.87E+01 4.38E+01 9.25E+01
(0.4, 1.1, 90.5, 8.) (10.2, 18.9, 29.2, 41.7)

4 Clipping 4.80E+01 4.04E+01 8.83E+01
(2.7, 1.1, 88.7, 7.5) (11.3, 20., 30.8, 38.)

5 Periodic 4.98E+01 3.82E+01 8.80E+01
(0.4, 1.2, 89.8, 8.6) (8.4, 18.5, 29.7, 43.3)
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c) CEC17 – LSHADE-cnEpSin
Rank BCM Score 1 Score 2 Score

1 Random 5.00E+01 5.00E+01 1.00E+02
(0.5, 1.2, 91.8, 6.5) (9.2, 20., 30.4, 40.5)

2 Periodic 4.92E+01 4.78E+01 9.71E+01
(0.5, 1.2, 91.5, 6.8) (8., 19.9, 28.3, 43.8)

3 Reflection 4.60E+01 4.20E+01 8.79E+01
(0.5, 1.1, 92.5, 5.9) (10.6, 20.8, 30.2, 38.4)

4 Halving 4.44E+01 4.21E+01 8.65E+01
(3.7, 1.1, 89.7, 5.5) (10.9, 19.7, 29.9, 39.5)

5 Clipping 4.43E+01 3.66E+01 8.08E+01
(0.4, 1.1, 92.7, 5.8) (10.8, 19.7, 31., 38.6)

d) CEC20 – IMODE
Rank BCM Score 1 Score 2 Score

1 Reflection 5.00E+01 5.00E+01 1.00E+02
(1.4, 10.9, 34.5, 53.2) (10.8, 19.7, 33.9, 35.6)

2 Halving 4.95E+01 4.41E+01 9.36E+01
(2.4, 11.1, 32.4, 54.1) (8.7, 22.4, 30.7, 38.1)

3 Random 4.47E+01 4.79E+01 9.27E+01
(4.4, 10.3, 32.7, 52.6) (10.5, 22., 26.1, 41.5)

4 Periodic 4.35E+01 4.27E+01 8.63E+01
(5.5, 7.9, 39.5, 47.) (10.2, 20.1, 27.3, 42.4)

5 Default 4.37E+01 4.19E+01 8.57E+01
(4.3, 15.9, 29.9, 49.8) (8.7, 18.1, 31.6, 41.6)

6 Clipping 4.14E+01 4.39E+01 8.53E+01
(4.1, 8.9, 27.4, 59.6) (11.3, 17.9, 30.6, 40.2)

e) CEC20 – AGSK
Rank BCM Score 1 Score 2 Score

1 Reflection 4.90E+01 4.58E+01 9.48E+01
(0.4, 5., 29.2, 65.4) (11.5, 19.7, 31.7, 37.2)

2 Halving 5.00E+01 4.38E+01 9.38E+01
(0.1, 5., 29.6, 65.3) (7.5, 23., 29.8, 39.7)

3 Random 4.36E+01 5.00E+01 9.36E+01
(0.4, 4.7, 38., 56.9) (12.3, 18.3, 30.4, 39.)

4 Periodic 4.60E+01 3.96E+01 8.56E+01
(0., 4.2, 31.9, 63.9) (9.4, 17.6, 30.7, 42.2)

5 Clipping 4.67E+01 3.40E+01 8.07E+01
(0., 4.7, 30.1, 65.2) (9.7, 21.1, 28., 41.1)
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Tab. 5.6 CEC17 – Score – Default BCM

Rank Algorithm Score 1 Score 2 Score
1 EBOwithCMAR 5.00E+01 5.00E+01 1.00E+02
2 jSO 4.97E+01 4.33E+01 9.30E+01
3 LSHADE-cnEpSin 4.68E+01 4.47E+01 9.15E+01
4 LSHADE_SPACMA 4.64E+01 4.47E+01 9.11E+01
5 DES 4.59E+01 4.12E+01 8.71E+01
6 MM_OED 4.60E+01 3.62E+01 8.22E+01
7 IDEbestNsize 2.98E+01 2.63E+01 5.61E+01
8 MOS-CEC2013 1.89E+01 1.74E+01 3.63E+01
9 RB-IPOP-CMA-ES 3.79E+00 3.21E+01 3.59E+01
10 MOS-SOCO2011 1.11E+01 1.92E+01 3.03E+01
11 PPSO 3.93E+00 1.73E+01 2.12E+01
12 DYYPO 5.93E–01 1.71E+01 1.77E+01
13 TLBO-FL 2.87E–02 1.64E+01 1.64E+01

f) CEC20 – j2020
Rank BCM Score 1 Score 2 Score

1 Halving 5.00E+01 4.27E+01 9.27E+01
(0.5, 0.5, 42.1, 56.8) (9.6, 24.3, 31.1, 35.)

2 Random 4.19E+01 5.00E+01 9.19E+01
(0., 5., 35.2, 59.7) (11.3, 14.2, 27.6, 46.9)

3 Reflection 4.35E+01 4.34E+01 8.69E+01
(0., 5.6, 43.1, 51.4) (10.9, 21.1, 28.9, 39.2)

4 Periodic 3.62E+01 3.59E+01 7.22E+01
(0., 4.3, 33.1, 62.6) (8.7, 19.8, 31.1, 40.3)

5 Clipping 3.68E+01 3.20E+01 6.88E+01
(0., 6., 14., 80.) (9.9, 19.8, 30.6, 39.7)

Selection of the BCM was the third and the last step to implement the
best-performing BCM variant for the algorithms and check if the final order
of the competition would be different. Table 5.6 and Table 5.10 contain the
Score and rank if the algorithms used their default BCMs. Unfortunately, the
complete results of all competitors are available for the CEC17 benchmark only;
therefore, Table 5.10 encompasses only the three top-ranking algorithms of the
CEC20 competition. The best BCM for each algorithm was selected according
to the ranks in Tables 5.5 - 5.5.
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Tab. 5.7 CEC17 – Score – EBOwithCMAR

Rank Algorithm Score 1 Score 2 Score
1 (1) EBOwithCMAR 5.00E+01 5.00E+01 1.00E+02
2 (2) jSO 4.96E+01 4.55E+01 9.51E+01
3 (4) LSHADE_SPACMA 4.66E+01 4.83E+01 9.49E+01
4 (3) LSHADE-cnEpSin 4.78E+01 4.25E+01 9.03E+01
5 (5) DES 4.61E+01 4.23E+01 8.84E+01
6 (6) MM_OED 4.62E+01 3.74E+01 8.35E+01
7 (7) IDEbestNsize 3.00E+01 2.69E+01 5.69E+01
8 (9) RB-IPOP-CMA-ES 3.81E+00 3.32E+01 3.70E+01
9 (8) MOS-CEC2013 1.90E+01 1.78E+01 3.68E+01

10 (10) MOS-SOCO2011 1.11E+01 1.97E+01 3.08E+01
11 (11) PPSO 3.94E+00 1.77E+01 2.17E+01
12 (12) DYYPO 5.96E–01 1.76E+01 1.82E+01
13 (13) TLBO-FL 2.89E–02 1.68E+01 1.68E+01

Tab. 5.8 CEC17 – Score – jSO

Rank Algorithm Score 1 Score 2 Score
1 (1) EBOwithCMAR 4.89E+01 5.00E+01 9.89E+01
2 (2) jSO 5.00E+01 4.76E+01 9.76E+01
3 (4) LSHADE_SPACMA 4.60E+01 4.87E+01 9.47E+01
4 (3) LSHADE-cnEpSin 4.71E+01 4.35E+01 9.06E+01
5 (5) DES 4.55E+01 4.33E+01 8.88E+01
6 (6) MM_OED 4.55E+01 3.81E+01 8.36E+01
7 (7) IDEbestNsize 2.96E+01 2.76E+01 5.72E+01
8 (9) RB-IPOP-CMA-ES 3.76E+00 3.38E+01 3.76E+01
9 (8) MOS-CEC2013 1.88E+01 1.82E+01 3.70E+01

10 (10) MOS-SOCO2011 1.10E+01 2.01E+01 3.11E+01
11 (11) PPSO 3.89E+00 1.81E+01 2.20E+01
12 (12) DYYPO 5.88E–01 1.79E+01 1.85E+01
13 (13) TLBO-FL 2.84E–02 1.71E+01 1.72E+01
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Tab. 5.9 CEC17 – Score – LSHADE-cnEpSin

Rank Algorithm Score 1 Score 2 Score
1 (3) LSHADE-cnEpSin 5.00E+01 5.00E+01 1.00E+02
2 (1) EBOwithCMAR 4.73E+01 4.92E+01 9.66E+01
3 (2) jSO 4.73E+01 4.62E+01 9.35E+01
4 (4) LSHADE_SPACMA 4.45E+01 4.81E+01 9.26E+01
5 (5) DES 4.40E+01 4.34E+01 8.74E+01
6 (6) MM_OED 4.40E+01 3.79E+01 8.19E+01
7 (7) IDEbestNsize 2.86E+01 2.75E+01 5.61E+01
8 (9) RB-IPOP-CMA-ES 3.63E+00 3.37E+01 3.73E+01
9 (8) MOS-CEC2013 1.81E+01 1.83E+01 3.64E+01

10 (10) MOS-SOCO2011 1.06E+01 2.02E+01 3.09E+01
11 (11) PPSO 3.76E+00 1.82E+01 2.20E+01
12 (12) DYYPO 5.68E–01 1.80E+01 1.86E+01
13 (13) TLBO-FL 2.75E–02 1.72E+01 1.73E+01

Tab. 5.10 CEC20 – Score – Default BCM

Rank Algorithm Score 1 Score 2 Score
1 j2020 5.00E+01 4.56E+01 9.56E+01
2 IMODE 2.14E+01 5.00E+01 7.14E+01
3 AGSK 2.31E+01 4.56E+01 6.88E+01

Tab. 5.11 CEC20 – Score – IMODE

Rank Algorithm Score 1 Score 2 Score
1 (1) j2020 5.00E+01 4.51E+01 9.51E+01
2 (2) IMODE 2.34E+01 5.00E+01 7.34E+01
3 (3) AGSK 2.30E+01 4.47E+01 6.77E+01

Tab. 5.12 CEC20 – Score – AGSK

Rank Algorithm Score 1 Score 2 Score
1 (1) j2020 5.00E+01 4.52E+01 9.52E+01
2 (2) IMODE 2.14E+01 5.00E+01 7.14E+01
3 (3) AGSK 2.25E+01 4.43E+01 6.68E+01

Tab. 5.13 CEC20 – Score – j2020

Rank Algorithm Score 1 Score 2 Score
1 (1) j2020 5.00E+01 4.36E+01 9.36E+01
2 (2) IMODE 2.86E+01 5.00E+01 7.86E+01
3 (3) AGSK 3.06E+01 4.45E+01 7.51E+01
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Tab. 5.14 CEC17 – Score

Rank Algorithm Score 1 Score 2 Score
1 (3) LSHADE-cnEpSin 5.00E+01 5.00E+01 1.00E+02
2 (1) EBOwithCMAR 4.77E+01 5.00E+01 9.76E+01
3 (2) jSO 4.84E+01 4.58E+01 9.42E+01
4 (4) LSHADE_SPACMA 4.45E+01 4.78E+01 9.23E+01
5 (5) DES 4.40E+01 4.30E+01 8.70E+01
6 (6) MM_OED 4.40E+01 3.81E+01 8.21E+01
7 (7) IDEbestNsize 2.86E+01 2.76E+01 5.62E+01
8 (9) RB-IPOP-CMA-ES 3.63E+00 3.37E+01 3.73E+01
9 (8) MOS-CEC2013 1.81E+01 1.82E+01 3.64E+01

10 (10) MOS-SOCO2011 1.06E+01 2.02E+01 3.08E+01
11 (11) PPSO 3.76E+00 1.82E+01 2.20E+01
12 (12) DYYPO 5.68E–01 1.80E+01 1.86E+01
13 (13) TLBO-FL 2.75E–02 1.72E+01 1.73E+01

Tab. 5.15 CEC20 – Score

Rank Algorithm Score 1 Score 2 Score
1 (1) j2020 5.00E+01 4.19E+01 9.19E+01
2 (2) IMODE 3.14E+01 5.00E+01 8.14E+01
3 (3) AGSK 2.96E+01 4.53E+01 7.49E+01
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For the CEC17, tables 5.7, 5.8, and 5.9 represent the situations when only one
algorithm selects its best variant of the BCM. If the rank is changed against Ta-
ble 5.6, the original rank is shown in parentheses. The most noticeable difference
is in Table 5.9, where the LSHADE-cnEpSin obtained the first rank. Table 5.14
then contains the ranks accomplished if all three algorithms had used the best-
performing variant of the BCM, and again, the LSHADE-cnEpSin would have
achieved the first position.

For the CEC20, the process is the same as for CEC17. The results are presented
in Table 5.10 - 5.15 and no change in the algorithms order was observed.

5.4.7 Key findings

The motivation behind this contribution was to establish if the BCM can in-
fluence the algorithm performance from the competition results point of view.
Thus, raise awareness about the need for careful selection of the BCM, similar to
other hyperparameters of the metaheuristic algorithms. The presented results
confirm that ill-selected BCM can negatively influence the algorithm’s overall
performance.

While the boundary control methods (BCM) are often an overlooked part of the
experiment design in metaheuristics benchmarking, the paper aimed to high-
light the importance of understanding the BCM as a necessary input for results
reproducibility. Further, the attention was to the possibility of performance im-
provement by the use of alternate boundary control methods, as presented in
the results of CEC17 benchmark participants, where:

• The LSHADE-cnEpSin algorithm would have won the CEC17 competition,
if it did employ the random boundary control method.

• According to the scores as defined by the CEC17 benchmark, none of the
three tested algorithms achieved the best results with the original BCM.
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In other words, it was possible to improve the results of any of these algo-
rithms by using a different BCM.

• Only five of the 12 participants reported on the employed BCM in the pa-
pers (albeit in two cases only partially, see Table 5.1). Moreover, the results
of the two best-performing algorithms would be irreproducible without a
detailed study of the source code.

The results of the second experiment, using the CEC20 benchmark seem to be
less conclusive, as only three scenarios show statistically significant differences
in performance (see Table 5.4). However, the scoring (Tables 5.5 d), 5.5 e) and
5.5 f)) seems to indicate not only a difference in performance, but a possible
benefit of using other than default BCM.

To conclude, the findings highlight a significant gap in the reproducibility of
results among competition entries, primarily due to the omission of information
about the utilized BCM. This oversight not only hampers the reproducibility
of results but also overlooks potential performance enhancements that could be
achieved by focusing on BCMs. Moreover, it has been observed that algorithms,
particularly from the Differential Evolution (DE) family, implemented in Matlab,
often rely on the same or similar libraries for BCM. These libraries commonly
include the implementation of the halving BCM, likely influencing researchers’
preference for its use due to its ready availability.

5.5 Exploring the Frequency of BCMs Activation

This study delves into the relationship between the frequency of BCM acti-
vation and various problem characteristics, such as dimensionality and fitness
landscape, analyzing each dimension separately. The focus was on evaluating
the top three algorithms from the CEC20 competition (AGSK, IMODE, and
j2020) using the competition’s benchmark set.
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5.5.1 Experimental setup

The activation frequency of BCMs was assessed for each function in the bench-
mark set across the top three performing algorithms. The number of function
evaluations (FEs) and the population size were standardized according to com-
petition rules to align with original benchmarking conditions. Each experimental
setting was conducted 30 times to ensure the reliability of the results, and the
average number of BCM activations was calculated for each problem dimension.
Dimension sizes of 5 and 10 were specifically examined.

To offer a comprehensive understanding of BCM activation patterns, activations
were observed in each problem dimension separately. Through this analytical
approach, insights into the intricacies of BCM activation frequency and its re-
lationship with the problem’s dimensionality were gained. Furthermore, it was
examined whether the BCM activation frequency differed significantly across
the functions in the benchmark set, yielding valuable information for algorithm
designers and researchers.

The results are presented using stacked graphs, a highly effective visualization
technique that provides several advantages for displaying and interpreting data.
Stacked graphs are utilized for a clear and concise representation of multiple
datasets within a single, unified plot. In the context of this research, stacked
graphs are employed to effectively illustrate the activation frequency of various
BCMs in relation to problem dimensionality and fitness landscape. Additionally,
the same technique is used to visualize differences in BCM activation rate among
the distinct problem dimensions.

Figures Fig. 5.7 and Fig. 5.8 display stacked graphs of the average number of
BCM activations for three different algorithms (IMODE, AGSK, and j2020)
across six different BCMs. In each figure, each column represents an algorithm,
with BCMs stacked on top of each other to form a bar chart. The x-axis displays
the six different BCMs, and the y-axis indicates the average number of activa-
tions (over 30 runs), for each algorithm-dimension combination. It is important
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to note that the values for each algorithm in the stacked graph are represented
as the sum of BCM activations in different dimensions. Different colors in each
column represent the different algorithms.

Figures Fig. 5.9 and Fig. 5.10 show different stacked graphs; these depict a partic-
ular BCM activation on a selected test function, dimension size, and algorithm.
The x-axis represents the function evaluations (FEs) of the algorithm, and the
y-axis shows the average number of activations (over 30 runs) for each problem
dimension.

From the analysis of the first group of graphs (Fig. 5.7 and Fig. 5.8), it is
concluded that the AGSK algorithm contributes to BCM activation the most
across all test functions and both dimension sizes. It is also concluded that the
particular BCM affects the AGSK algorithm the most. Moreover, the number of
BCM activations for algorithms j2020 and IMODE is observed to remain fairly
consistent across all BCM variants.

From Figures Fig. 5.9 and Fig. 5.10, it is evident that the number of BCM
activations is dependent on the problem - specifically the test function. The
number of BCM activations is almost equally distributed over the dimensions
for f2 (Fig. 5.9 (b)), whereas for test function f1 (Fig. 5.9 (c)), the distribution is
uneven, with the number of BCM activations for dimension two prevailing over
the averaged algorithm run.

All figures are included in lower quality at the end of this thesis as supplementary
data. For a more detailed view, high-resolution versions of the same figures are
accessible from a designated webpage 1) together with codes of the examined
algorithms and their results.

1)https://go.fai.utb.cz/2023workshop

https://go.fai.utb.cz/2023workshop
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(a) f1 (b) f2

(c) f3 (d) f4

(e) f5

Fig. 5.7 Total BCM activation for dim = 5. [116]
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(a) f1 (b) f2

(c) f3 (d) f4

(e) f5

Fig. 5.8 Total BCM activation for dim = 10. [116]
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(a) j2020; Periodic; f2; dim = 10 (b) AGSK; Clipping ; f1; dim = 5

(c) AGSK; Clipping ; f2; dim = 5 (d) AGSK; Clipping ; f1; dim = 10

(e) AGSK; Clipping ; f2; dim = 10 (f) IMODE; Clipping ; f9; dim = 5

Fig. 5.9 BCM activation over the run of the algorithm. [116]
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(a) IMODE; Random; f9; dim = 5 (b) IMODE; Periodic; f9; dim = 5

(c) IMODE; Reflection; f9; dim = 5 (d) IMODE; Halving ; f9; dim = 5

(e) IMODE; Halving ; f9; dim = 10

Fig. 5.10 BCM activation over the run of the algorithm. [116]
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5.5.2 Key findings

Based on the findings that reveal variations in BCM activation rates across
different algorithms, test problems (fitness landscapes), and problem dimensions,
as well as differences in activation rates for each BCM on the same problem,
several important conclusions are drawn:

Algorithm-specific characteristics: Differences in BCM activation rates among
different algorithms are observed, indicating unique characteristics for each al-
gorithm that influence how boundary constraints are handled. This underscores
the importance of selecting appropriate algorithms for specific problem types
and suggests potential improvements through a better understanding of BCM
behavior.

Problem-dependent activation rates: Variations in BCM activation rates
across different fitness landscapes suggest that the effectiveness of BCMs is
strongly dependent on the characteristics of the test problems. This necessitates
careful consideration of problem-specific properties when designing or selecting
BCMs to ensure optimal performance.

Dimensionality impact: The variability of BCM activation rates among di-
mensions of the same problem highlights the influence of problem dimensionality
on the complexity of boundary constraints. This emphasizes the need to consider
dimensionality’s impact on BCM activation patterns when designing or adapting
algorithms for high-dimensional optimization challenges.

Tailoring BCMs for improved performance: Observed differences in acti-
vation rates for each BCM on the same problem suggest that a universal solution
for boundary control does not exist. By understanding these variations and iden-
tifying the most effective BCM for a given problem or algorithm, researchers and
practitioners can tailor BCM implementation to enhance performance in opti-
mization tasks.
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6 THE CONTRIBUTION TO SCIENCE AND PRAC-
TICE

Metaheuristic-based optimization methods are currently enjoying immense pop-
ularity. Alongside this growing popularity, the volume of research articles on
this subject is also expanding, with continuous development and modification of
new and existing algorithms respectively. A crucial aspect of this development
process is the meticulous control of parameters that govern the behavior of the
algorithm. Given that the primary focus is often on algorithm performance,
selecting optimal control parameters is critical. The term "control parameter"
encompasses a range of variables, including information storage systems and the
selection of methods for managing critical states.

The BCMs are categorized as procedures for handling these critical states, as
they are applied when a trial solution falls into an infeasible space. Preliminary
studies indicate that each BCM may affect algorithm performance differently,
necessitating careful consideration during the selection process. An ill-advised
selection of BCMs can degrade the performance of the metaheuristic algorithm
or alter other behaviors, potentially compromising specific desired characteristics
of the algorithm.

Research articles that propose new metaheuristic algorithms or modifications to
existing ones often overlook BCMs. Without specific details on the BCMs used
by the original authors, subsequent implementations of such algorithms may be
imprecise, leading to variations in effectiveness when solving specific tasks.

Addressing the research gap described above, which focuses on the often over-
looked BCMs, constitutes the main part of this thesis. The first goal of this work
is to raise awareness within the scientific community about the importance of
BCMs, demonstrated by the presented results which prove their real impact on
algorithm performance. This impact is evident not only in basic metaheuristic
algorithms but also in state-of-the-art variants that have participated in bench-
mark competitions.
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The second goal targets algorithm designers, who are urged to pay careful atten-
tion to providing a detailed description of the algorithm and its setup. This is
crucial for the reproducibility of results and the effective evaluation of algorithm
performance across different implementations.

The work highlights the significance of BCMs in the development and bench-
marking of metaheuristic algorithms, and BCMs should also be important com-
ponents in the automatic design or configuration of algorithms. It is imperative
that these components are not merely mentioned as afterthoughts but are in-
tegrated into the core design and reporting of algorithmic research to ensure
accuracy and replicability in scientific studies.
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7 GOAL FULFILLMENT

This section outlines the steps implemented to achieve the dissertation goal,
which were established as follows:

✓ Survey the current state of boundary control methods (BCMs)
used in evolutionary algorithms: The current state of BCMs was ex-
tensively reviewed in Section 4.1, where a comprehensive survey of the
literature was conducted not only to establish a foundational understand-
ing of BCM applications in evolutionary algorithms but also to investi-
gate which BCMs are being utilized. Additionally, this review explored
whether other researchers, particularly in the context of algorithm design
and benchmarking, are addressing these issues.

✓ Investigate the influence of various BCMs on the performance
of selected evolutionary algorithms: Initial studies, detailed in Sec-
tions 5.1, 5.2 and 5.3, investigated the impact of BCMs on both basic
and more advanced variants of various algorithms such as PSO, FA, and
SOMA. These investigations laid the groundwork for subsequent experi-
ments aimed at assessing the influence of BCMs on state-of-the-art algo-
rithms.

✓ Conduct experiments evaluating the impact of BCMs on the per-
formance of state-of-the-art algorithms and results of competitive
benchmarking: The experiments were carried out as described in Sec-
tion 5.4 and Section 5.5, which tested the efficacy and the influence
of BCMs on state-of-the-art algorithms using modern competitive bench-
marks. The results from these experiments corroborated the preliminary
findings from the initial studies, confirming the significant impact of BCMs
on algorithm performance.

✓ Based on the experimental results, draw conclusions and recom-
mendations for good practices in benchmarking: The conclusions
and recommendations were presented, underscoring the significant influ-
ence of BCMs on the performance of metaheuristic algorithms. As evi-
denced by the experimental results in Section 5.4, appropriately chosen
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BCMs significantly altered the competitive ranking of the algorithms. The
analysis of competition algorithms and the survey of state-of-the-art lit-
erature suggest that BCMs should be considered an integral part of the
hyperparameter analysis of any algorithm design. Authors should always
specify which BCM implementation was chosen to ensure fair comparison
and reproducibility.

These findings underscore the importance of BCMs in the design and analysis of
metaheuristic algorithms, advocating for their consistent inclusion in algorithmic
research and documentation.
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8 CONCLUSION

This dissertation provides a comprehensive treatise on the use of Boundary Con-
trol Methods (BCMs) in metaheuristic algorithms. The initial sections introduce
the fundamental concepts and relationships among these fields, with a specific
focus on the role and impact of BCMs in contemporary EA trends as outlined
in subsection 3.6.

Following the introduction, the dissertation delineates the proposed goals and
the methodologies employed to achieve them. A detailed examination of BCMs
and a state-of-the-art overview are presented, where five representative BCMs
are selected based on the literature review. The methodology and preliminary
results, previously published at international conferences by the Author, are
described in subsequent sections. After these preliminary results, further exper-
iments were conducted to evaluate the impact of BCMs on the performance of
state-of-the-art algorithms and the results of competitive benchmarking. Addi-
tionally, an experiment was included to investigate the frequency of BCM usage
among state-of-the-art algorithms in the CEC20 benchmark.

While BCMs are often an overlooked part of experiment design in metaheuris-
tics benchmarking, this dissertation highlights the importance of understanding
BCMs as a necessary input for results reproducibility and potential performance
improvement. The experimental findings from the CEC17 benchmark partici-
pants clearly demonstrate this. Notably, the LSHADE-cnEpSin algorithm could
have won the CEC17 competition if it had employed the random BCM. Ad-
ditionally, it was observed that none of the three tested algorithms achieved
the best results with their original BCMs, indicating that performance improve-
ments were possible through alternative BCMs. However, only five of the 12
CEC17 participants provided details on their BCM practices, with two of these
reports being incomplete, which significantly impairs the reproducibility of their
experiments. These findings underscore the significant influence of BCMs on
the performance of metaheuristic algorithms, as evidenced in Section 5.4, where
appropriately chosen BCMs significantly altered the competitive ranking of the
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algorithms. The analysis of competition algorithms and the survey of state-of-
the-art literature suggest that BCMs should be considered an integral part of
the hyperparameter analysis of any algorithm design. Authors should always
specify which BCM implementation was chosen to ensure fair comparison and
reproducibility, advocating for their consistent inclusion in algorithmic research
and documentation.

This dissertation has conclusively demonstrated that BCMs are not merely sup-
plementary components but are integral to the effective design, analysis, and
application of metaheuristic algorithms. Their role should be carefully consid-
ered and integrated into future research and practice in the field of optimization.
The importance of future research on BCMs lies in their universal applicability
and profound impact across the entire field of metaheuristic optimizers, particu-
larly in bound-constrained scenarios. Such research is crucial for advancing our
understanding and implementation of these methods, ensuring they contribute
significantly to the robustness and efficacy of optimization solutions.
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