

Road Segmentation in Single View Images

Cong Thuan Nguyen

Master's thesis
2024

I hereby declare that:

• I understand that by submitting my Master´s thesis, I agree to the publication of my

work according to Law No. 111/1998, Coll., On Universities and on changes and

amendments to other acts (e.g. the Universities Act), as amended by subsequent legis-

lation, without regard to the results of the defence of the thesis.

• I understand that my Master´s Thesis will be stored electronically in the university in-

formation system and be made available for on-site inspection, and that a copy of the

Master´s Thesis will be stored in the Reference Library of the Faculty of Applied Infor-

matics, Tomas Bata University in Zlín, and that a copy shall be deposited with my Su-

pervisor.

• I am aware of the fact that my Master´s Thesis is fully covered by Act No. 121/2000

Coll. On Copyright, and Rights Related to Copyright, as amended by some other laws

(e.g. the Copyright Act), as amended by subsequent legislation; and especially, by §35,

Para. 3.

• I understand that, according to §60, Para. 1 of the Copyright Act, TBU in Zlín has the

right to conclude licensing agreements relating to the use of scholastic work within the

full extent of §12, Para. 4, of the Copyright Act.

• I understand that, according to §60, Para. 2, and Para. 3, of the Copyright Act, I may use

my work - Master´s Thesis, or grant a license for its use, only if permitted by the licens-

ing agreement concluded between myself and Tomas Bata University in Zlín with a

view to the fact that Tomas Bata University in Zlín must be compensated for any rea-

sonable contribution to covering such expenses/costs as invested by them in the creation

of the thesis (up until the full actual amount) shall also be a subject of this licensing

agreement.

• I understand that, should the elaboration of the Master´s Thesis include the use of soft-

ware provided by Tomas Bata University in Zlín or other such entities strictly for study

and research purposes (i.e. only for non-commercial use), the results of my Master´s

Thesis cannot be used for commercial purposes.

• I understand that, if the output of my Master´s Thesis is any software product(s),

this/these shall equally be considered as part of the thesis, as well as any source codes,

or files from which the project is composed. Not submitting any part of this/these com-

ponent(s) may be a reason for the non-defence of my thesis.

I herewith declare that:

• I have worked on my thesis alone and duly cited any literature I have used. In the case

of the publication of the results of my thesis, I shall be listed as co-author.

• That the submitted version of the thesis and its electronic version uploaded to IS/STAG

are both identical.

In Zlín; dated:

 Student´s Signature

ABSTRAKT

Tato práce se zaměřuje na vylepšení segmentace silnic v jednopohledových snímcích s

využitím omezení existujících metod prostřednictvím adaptace metod hlubokého učení a

transferového učení. Provádí analýzu nejmodernějších technik segmentace a zdůrazňuje

aktuální výzvy v různých podmínkách prostředí. Strategie jsou navrženy tak, aby

poskytovaly přehled o robustnosti algoritmu a využívaly schopnosti hlubokého učení pro

extrakci funkcí a rozpoznávání vzorů. Ke komplexnímu testování algoritmů za určitých

povětrnostních podmínek se používají nejmodernější datové sady. Výsledky jsou hodnoceny

pomocí přesnosti, vyvolání, skóre F1 a výsledku segmentace vizuálních kontrol. To má

přispět k náročné doméně funkcí bezpečného řízení a nahlédnutí do reálné efektivity modelů

pro segmentaci silnic.

Klíčová slova: Segmentace silnic, umělá inteligence, strojové učení, neuronová síť,

segmentace obrazu

ABSTRACT

This thesis focuses on enhancing road segmentation in single-view images using the limita-

tions of existing methods through the adaptation of deep learning and transfer learning meth-

ods. It conducts to analyse state-of-the-art segmentation techniques, highlighting current

challenges in diverse environmental conditions. The strategies are designed to give insights

about the algorithm robustness, leveraging the capabilities of deep learning for feature ex-

traction and pattern recognition. State-of-the-art datasets are used to test the algorithms com-

prehensively in certain weather conditions. Results are evaluated using precision, recall, F1

score, and the segmentation outcome of visual inspections. This is to contribute to the chal-

lenging domain of safety driving functionalities and insights into the real-world effective-

ness of the models for road segmentation.

Keywords: Road segmentation, AI, Artificial Intelligence, Machine Learning, Neural Net-

work, Image Segmentation

ACKNOWLEDGEMENTS

Acknowledgements, motto and a declaration of honour saying that the print version of the

Bachelor's/Master's thesis and the electronic version of the thesis deposited in the IS/STAG

system are identical, worded as follows:

I hereby declare that the print version of my Bachelor's/Master's thesis and the electronic

version of my thesis deposited in the IS/STAG system are identical.

CONTENTS

CONTENTS .. 6

INTRODUCTION .. 8

I THEORY ... 9

1 ARTIFICIAL INTELLIGENCE ... 10

1.1 HISTORY OF AI .. 10

1.2 MACHINE LEARNING ... 10

1.3 DATA MODELLING ... 12

1.3.1 DATASETS ... 12

1.3.2 DATA TRANSFORMATION ... 13

1.4 OPTIMIZER ... 13

1.4.1 MEAN SQUARED ERROR (MSE)... 13

1.4.2 MEAN ABSOLUTE ERROR (MAE) ... 14

1.4.3 CROSS-ENTROPY.. 14

1.5 LOSS FUNCTION .. 15

1.5.1 GRADIENT DESCENT .. 15

1.5.2 STOCHASTIC GRADIENT DESCENT (SGD) .. 16

1.5.3 ADAPTIVE MOMENT ESTIMATION (ADAM) .. 16

1.6 TRAINING AND TESTING ... 17

1.6.1 TRAINING.. 17

1.6.2 TESTING.. 17

1.7 MEASUREMENT .. 19

1.7.1 CONFUSION MATRIX .. 19

1.7.2 F1 SCORE .. 20

1.7.3 AUC ROC CURVE ... 21

2 NEURAL NETWORKS ... 24

2.1 FUNDAMENTAL OF NEURAL NETWORKS ... 24

2.1.1 NEURAL NETWORK’S STRUCTURE ... 24

2.2 LAYERS AND ACTIVATION FUNCTIONS ... 26

2.2.1 LAYERS .. 26

2.2.2 ACTIVATION FUNCTIONS .. 30

2.3 PRE-TRAINED MODELS AND TRANSFER LEARNING 37

2.3.1 PRE-TRAINED MODELS ... 38

2.3.2 TRANSFER LEARNING ... 38

2.4 SEGMENTATION .. 39

2.4.1 CONVOLUTIONAL NEURAL NETWORKS (CNNS) .. 39

2.5 SEMANTIC SEGMENTATION MODELS ... 40

2.5.1 SEGNET .. 40

2.5.2 FULLY CONVOLUTIONAL NETWORK ... 40

2.5.3 U-NET .. 41

2.6 VGG16 ... 42

3 MACHINE LEARNING TOOLS AND LIBRARIES.. 45

3.1 TENSORFLOW.KERAS... 45

3.2 OPENCV .. 46

II ANALYSIS ... 48

4 DATASETS .. 49

4.1 DATA GENERATOR ... 50

5 TRAINING AND MODELS .. 53

5.1 TRAINING ... 53

5.2 MODELS FOR TRAINING .. 53

5.2.1 FCN ... 53

5.2.2 U-NET .. 56

5.2.3 TRANSFER TRAINED WEIGHTS USING VGG16 .. 59

6 EVALUATION... 63

7 FUTURE OF THE SOLUTION ... 66

CONCLUSION ... 67

BIBLIOGRAPHY ... 68

LIST OF ABBREVIATIONS ... 74

LIST OF FIGURES .. 75

LIST OF TABLES .. 77

APPENDICES .. 78

TBU in Zlín, Faculty of Applied Informatics 8

INTRODUCTION

Road segmentation in single-view photos is important in many real-world applications, in-

cluding autonomous driving, traffic monitoring, and urban planning. Road borders must be

accurately delineated in order for cars and pedestrians to navigate safely and efficiently.

However, creating strong and accurate road segmentation remains a difficult challenge due

to a variety of environmental elements such as illumination, weather, and occlusions.

This thesis aims to address the limitations of existing road segmentation methods in single-

view images by leveraging advancements in deep learning and transfer learning techniques.

The primary motivation behind this research is to enhance the robustness and accuracy of

road segmentation models, thereby improving their performance across diverse environmen-

tal conditions that some original model such as Urban scene segmentation using U-Net

model cannot offer the robustness and accuracy of segmentation solutions. Many solutions

with strong accuracy are also kept confidential so they are less accessible to researchers.

This thesis will talk about the principles of Artificial Intelligence and the related topics such

as Deep learning algorithms and Neural Networks and then give insights into the models

which are used in segmentation and their limitations. A brief introduction to the tools which

are used to aid the research of this topic will be stated.

In summary, this thesis endeavours to advance the state-of-the-art in road segmentation by

improving and advancing deep learning-based approaches using U-Net with VGG16 and to

compare with state-of-the-art FCN and regular U-Net segmentation models that show the

improvement of robustness and accuracy in single-view images, aiming to contribute to-

wards safer and more efficient navigation systems in real-world environments through me-

ticulous experimentation and evaluation.

TBU in Zlín, Faculty of Applied Informatics 9

 I THEORY

TBU in Zlín, Faculty of Applied Informatics 10

1 ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) is a multifaceted technology that is revolutionising various fields

by allowing people to reconsider how we combine data, evaluate information, and use the

resultant insights to make better decisions. AI is nowadays the most emerging tool that it can

aid to our daily lives. In this section, a brief introduction of AI will be discussed and how AI

models can be constructed [1].

1.1 History of AI

Artificial intelligence was first introduced by computer scientists Marvin Minsky and John

McCarthy in 1956. It was giving a breeze to gather scientists in order to research a new

method of the interaction between humans and machines where machines could mimic hu-

man’s action [2].

AI started to evolve even bigger which first integrated ruled-base systems using predefined

rules to make decisions. It kept growing more complex with the desire of scientists that they

wanted to expand the system into knowledge-based models [2].

Neural networks were later on getting attention from scientists which led to a significant role

of machine learning algorithms in AI domain [2].

There was a decline state of AI but then it resurged and became more powerful in computa-

tion and machine learning. Deep learning or deep neural networks became dominance of

research fields. A huge number of new tools based on AI models were developed and intro-

duced to the society thanks to the computational power keeping increasing and improving

year by year [2].

Nowadays AI have been presenting in every corner of the world. It is a helpful tool to ease

manual and time-consuming tasks of our daily activities. It will more and more become

powerful with endless research in the field around the world. The challenges of AI are mo-

tivating to improve and expand it [2].

1.2 Machine learning

The study of developing algorithms and statistical models that allow computer systems to

learn from and make predictions or judgments based on data is the focus of the artificial

intelligence (AI) subfield of machine learning (ML). The main goal of machine learning is

TBU in Zlín, Faculty of Applied Informatics 11

to give computers the capacity to gradually get better at a given task without having to be

explicitly programmed [3].

Machine learning techniques can be broadly categorized into three main types based on the

learning approach: supervised learning, unsupervised learning, and reinforcement learning.

Each type serves different purposes and is suitable for specific types of tasks [4].

1. Supervised Learning:

 In supervised learning, the model is trained on a labelled dataset, where the input data

is paired with corresponding target outputs. The goal is to learn a mapping from input fea-

tures to the target outputs, allowing the model to make predictions on new, unseen data [3].

Common supervised learning tasks include:

• Classification: Assigning labels to inputs (e.g., spam or not spam, image recognition)

[3].

• Regression: Predicting a continuous value (e.g., house prices, stock prices) [3].

2. Unsupervised Learning:

Unsupervised learning involves training a model on an unlabelled dataset without ex-

plicit target outputs. The model discovers patterns, structures, or relationships within the

data. This type of learning is often used for exploratory data analysis and extracting in-

sights from data [3].

Common unsupervised learning tasks include:

• Clustering: Grouping similar data points based on patterns (e.g., customer seg-

mentation) [3].

• Dimensionality Reduction: Reducing the number of features in a dataset (e.g.,

principal component analysis) [3].

3. Reinforcement Learning:

Reinforcement learning involves training a model to make sequences of decisions by inter-

acting with an environment. The model receives feedback in the form of rewards or penalties

based on its actions, allowing it to learn optimal strategies. Reinforcement learning is often

used in scenarios where an agent needs to make a series of decisions over time. Common

TBU in Zlín, Faculty of Applied Informatics 12

reinforcement learning applications include robotics, game playing, and autonomous sys-

tems [3].

Additionally, within these main categories, there are several specific machine learning tech-

niques and algorithms. Here are some notable ones:

Supervised Learning Algorithms: Linear Regression, Support Vector Machines (SVM), De-

cision Trees, Random Forest, k-Nearest Neighbors (k-NN), Neural Networks [4].

Unsupervised Learning Algorithms: K-Means Clustering, Hierarchical Clustering, Principal

Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Asso-

ciation Rule Learning (e.g., Apriori algorithm) [4].

Reinforcement Learning Algorithms: Q-Learning, Deep Q Network (DQN), Policy Gradient

Methods, Actor-Critic Models [4].

These algorithms can be applied to various domains and tasks, depending on the nature of

the data and the goals of the machine learning application. The choice of technique depends

on factors such as the availability of labelled data, the nature of the problem, and the desired

outcomes [4].

1.3 Data modelling

AI is a wide area of research. However, it is mainly focused on solving real-world problems

in result of creating automated and smart systems in various application areas. There are

many techniques classified for example machine learning, deep learning and neural net-

works, data mining, ruled-base knowledge, or fuzzy logic approaches [5].

AI models rely on training data to recognise the patterns and make decisions or predictions

based on a chosen problem. In that statement, a structured dataset is required to train an AI

model and AI algorithms are used to extract, realise, and parameterise the patterns in the

dataset [5].

1.3.1 Datasets

Datasets are collections of data that are used to train and test algorithms and models. These

datasets are specifically applied to AI fields and they serve for certain purposes for example

TBU in Zlín, Faculty of Applied Informatics 13

the dataset of iris flower is used to classify three species of Iris (Iris setosa, Iris virginica and

Iris versicolor).

1.3.2 Data transformation

Data transformation is a task that converts raw and unorganised data from various sources

to a usable and structured data. It is mandatory to convert non-compatible data to usable data

such as converting string value to numeric value because algorithms are operations on ma-

trices so a string cannot operate with mathematic operations [6].

Since the size of data is various, data need to be resized to a fixed size because linear models,

for example, have fixed number of input nodes, therefore, it is expected to have same size

on the dataset.

It is necessary to visualise data. Visualisation can help to find anormal data fractals in the

dataset. By that means, noise can be reduced during training and improving outcoming re-

sults [6].

1.4 Optimizer

The precision of a model's forecasts is assessed using a loss function. For every training

sample, it computes the discrepancy between the expected and actual output.

Minimizing the loss function is the model's objective. The most effective way to determine

which combination of parameters will yield the most accurate forecasts is to minimize the

loss function [7].

1.4.1 Mean squared error (MSE)

MSE is a widely used loss function in regression issues. It calculates the average squared

difference between the projected and actual outputs.

This loss function is sensitive to outliers, which implies that a few extremely big mistakes

can have a significant impact on the overall value of the loss function. However, MSE is a

common choice due to its differentiability and computational efficiency.

TBU in Zlín, Faculty of Applied Informatics 14

A Python function to calculate the mean squared error (MSE) for a given set of predicted

values and actual values is shown as below [7]:

def mean_squared_error(predicted_values, actual_values):

 # calculate the squared difference between predicted and actual val-

ues

 squared_differences = [(pred - act) ** 2 for pred, act in zip(pre-

dicted_values, actual_values)]

 # calculate the mean of the squared differences

 mse = sum(squared_differences) / len(squared_differences)

 return mse

1.4.2 Mean Absolute Error (MAE)

MAE is another popular loss function for regression problems. MAE calculates the average

absolute difference between anticipated and actual values. It responds less to outliers than

MSE [7].

def mean_absolute_error(predicted_values, actual_values):

 # calculate the absolute difference between predicted and actual val-

ues

 absolute_differences = [abs(pred - act) for pred, act in zip(pre-

dicted_values, actual_values)]

 # calculate the mean of the absolute differences

 mae = sum(absolute_differences) / len(absolute_differences)

 return mae

1.4.3 Cross-entropy

Cross-entropy loss is a commonly used loss function in classification issues. It quantifies the

difference between the expected and actual probability distributions.

This loss function is especially valuable when the classes are unbalanced, since it can assist

to balance the mistakes caused in each class. Depending on the data, you can utilize either

Binary or Categorical Cross-entropy [8].

def cross_entropy(y_pred, y_true):

 # ensure that the predicted probabilities are in the range [0, 1]

 y_pred = np.clip(y_pred, 1e-15, 1 - 1e-15)

 # calculate the cross-entropy loss

 loss = -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 -

y_pred))

 return loss

TBU in Zlín, Faculty of Applied Informatics 15

It is important to note that this function assumes that the input arrays have the same number

of elements and that the true labels are binary (i.e., either 0 or 1). If the labels are multi-class,

one-hot encoding should be applied before calling this function.

1.5 Loss function

Once the loss function has been created, an optimizer is used to modify the model's param-

eters in order to minimize the loss function. It's also worth noting that these optimizers may

be fine-tuned using various variables or hyperparameters like learning rate, momentum, de-

cay rate, and so on.

These optimizers can also be used with other strategies, such as learning rate scheduling, to

make the model perform even better.

Below are the three most commonly used optimizers. [9]

1.5.1 Gradient Descent

Gradient descent is one of the most widely used optimizers. It adjusts the model’s parameters

by taking the derivative of the loss function with respect to the parameters and updating the

parameters in the direction of the negative gradient. Gradient descent is simple to implement,

but it can be slow to converge when the loss function has many local minima [9].

def gradient_descent(model, X, y, learning_rate, num_iterations):

 # obtain the number of training examples

 m = X.shape[0]

 for i in range(num_iterations):

 # make predictions using the current model parameters

 y_pred = model.predict(X)

 # calculate gradients

 grads = model.gradient(X, y, y_pred)

 # update model parameters

 for j in range(len(model.params)):

 model.params[j] = model.params[j] - learning_rate * grads[j]

/ m

 return model

It first obtain the number of training examples and then it iterates over the number of itera-

tions. At each iteration it makes predictions using the current model parameters and then it

calculates gradients using the provided model.gradient function. Finally, it updates the

TBU in Zlín, Faculty of Applied Informatics 16

model parameters by subtracting the product of learning rate and gradients by the number of

examples [9].

1.5.2 Stochastic Gradient Descent (SGD)

SGD is an extension of gradient descent. It updates the model’s parameters after each train-

ing sample, rather than after each epoch. This makes it faster to converge, but it can also

make the optimization process more unstable. Stochastic gradient descent is often used for

problems with a large amount of data [9].

def stochastic_gradient_descent(model, X, y, learning_rate, num_itera-

tions):

 # obtain the number of training examples

 m = X.shape[0]

 for i in range(num_iterations):

 # shuffle the training data

 X, y = shuffle(X, y)

 # iterate over each training example

 for j in range(m):

 # make predictions using the current model parameters

 y_pred = model.predict(X[j])

 # calculate gradients

 grads = model.gradient(X[j], y[j], y_pred)

 # update model parameters

 for k in range(len(model.params)):

1.5.3 Adaptive Moment Estimation (Adam)

Adam is an optimizer that combines the advantages of gradient descent and SGD. It uses the

first and second moments of the gradients to adjust the learning rate adaptively. Adam is

generally considered to be one of the best optimizers for deep learning [10].

The Adam optimizer is often a good choice for problems with a large number of parameters.

import numpy as np

def Adam(params, grads, learning_rate=0.001, beta1=0.9, beta2=0.999, ep-

silon=1e-8):

 # initialize the first and second moment estimates

 m = [np.zeros_like(p) for p in params]

 v = [np.zeros_like(p) for p in params]

 # initialize the time step

 t = 0

TBU in Zlín, Faculty of Applied Informatics 17

 # update the parameters

 for p, g, m_, v_ in zip(params, grads, m, v):

 t += 1

 m_ = beta1 * m_ + (1 - beta1) * g

 v_ = beta2 * v_ + (1 - beta2) * np.power(g, 2)

 m_hat = m_ / (1 - beta1 ** t)

 v_hat = v_ / (1 - beta2 ** t)

 p

1.6 Training and Testing

In machine learning field or in artificial intelligence field in general, training and testing are

essential components that help algorithms recognise the patterns of existing data and make

decisions and possibly improve accuracy over time [11].

1.6.1 Training

Training refers to providing an algorithm the data usually labelled or categorised to guide it

recognising the patterns inside the data. The dataset can be various from text to image, plain

numbers to documents [11].

To reveal the accuracy of the algorithm, testing is performed to see how accurate and under-

standable the algorithm is to the provided data [11].

1.6.2 Testing

Testing is performed after training finished. Testing data will try to use the data in the testing

set in the algorithm that is trained previously. The output will be compared to the result of

the training set to create a representation based on input-output correlations, allowing it to

generate accurate predictions when exposed to new, unseen data [12].

The concept of testing in machine learning involves evaluating the model's generalization

ability, assessing its accuracy, and identifying potential issues. Here are key components of

testing in machine learning [11]:

1. Training and Testing Data Split:

o The dataset is typically divided into two subsets: a training set used to train

the model and a testing (or validation) set used to assess its performance on

unseen data.

TBU in Zlín, Faculty of Applied Informatics 18

o The goal is to simulate the model's performance on real-world data it has not

encountered during training [11].

2. Cross-Validation:

o To address concerns about the randomness of data splitting, cross-validation

techniques are often employed. Common methods include k-fold cross-vali-

dation, where the dataset is divided into k subsets, and the model is trained

and evaluated k times, using a different subset as the test set in each iteration

[12].

3. Performance Metrics:

o Various metrics are used to evaluate the model's performance, depending on

the nature of the problem. Common metrics include accuracy, precision, re-

call, F1 score, and area under the receiver operating characteristic curve

(AUC-ROC) for classification tasks. Mean Squared Error (MSE) and R-

squared are commonly used for regression tasks [12].

4. Overfitting and Underfitting:

o Testing helps identify issues of overfitting (model performs well on training

data but poorly on new data) and underfitting (model fails to capture patterns

in the training data) [12].

o Regularization techniques and hyperparameter tuning are often applied based

on testing results to address these issues [12].

5. Confusion Matrix and Error Analysis:

o A confusion matrix provides a detailed breakdown of the model's perfor-

mance, showing true positive, true negative, false positive, and false negative

counts [12].

o Error analysis involves investigating specific instances where the model

makes mistakes, providing insights into potential improvements [12].

6. A/B Testing (Deployment Testing):

o In deployment, A/B testing can be used to compare the performance of the

machine learning model with other models or baseline approaches.

o Continuous monitoring and testing are essential to ensure the model's effec-

tiveness over time, considering changing data distributions [12].

7. Ethical and Bias Testing:

TBU in Zlín, Faculty of Applied Informatics 19

o Testing should also include ethical considerations, checking for biases in the

model's predictions and ensuring fairness across different demographic

groups [12].

o Regular audits and fairness assessments help mitigate bias-related issues [12].

8. Robustness Testing:

o Assessing the model's robustness involves testing its performance under var-

ious conditions, such as different input data distributions, noise, or adversar-

ial attacks [12].

1.7 Measurement

To measure the accuracy of trained models, there are many methods to show the result.

Along with the output results of each training epoch, some formal methods are used to meas-

ure the accuracy and the loss, for example F1 scores or Confusion Matrix. This chapter will

briefly introduce two measurement methods: F1 Scores and Confusion Matrix.

1.7.1 Confusion Matrix

Confusion Matrix, as its name implies, provides us with a matrix as an output and details

the model's overall performance.

Assume for a moment that we have a binary classification issue. We have a few examples

that fall into either the YES or NO categories. Additionally, we have an in-house classifier

that assigns a class to an input sample that is given. We obtain the following outcome

when 165 samples are used to test our model [14].

TBU in Zlín, Faculty of Applied Informatics 20

Figure 1 Confusion Matrix [14]

There are 4 important terms of Figure 1 [14]:

• True Positives: The cases in which we predicted YES and the actual output was also

YES.

• True Negatives: The cases in which we predicted NO and the actual output was NO.

• False Positives: The cases in which we predicted YES and the actual output was NO.

• False Negatives: The cases in which we predicted NO and the actual output was

YES.

Accuracy for the matrix can be calculated by taking average of the values lying across the

“main diagonal” [14]:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒
 (2)

1.7.2 F1 Score

F1 Score is the Harmonic Mean of accuracy and recall. The range of F1 Score is [0, 1]. It

indicates a classifier's precision (the number of cases properly classified) and robustness.

TBU in Zlín, Faculty of Applied Informatics 21

High accuracy but poor recall produces incredibly precise results, but it also misses a huge

number of occurrences that are difficult to identify. Our model's performance improves as

the F1 Score increases. It may be mathematically represented as follows [15]:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (1)

 Precision: It is the number of correct positive results divided by the number of positive

results predicted by the classifier [15].

 Recall: It is the number of correct positive results divided by the number of all relevant

samples (all samples that should have been identified as positive).

The F1 score outperforms basic accuracy in situations where an unbalanced dataset may

distort the accuracy statistic. The F1 score makes up for this by taking into consideration

both accuracy and recall, giving a more complete picture of the model's performance. How-

ever, this measurement is appropriate for binary classification solutions rather than sophis-

ticated classification and segmentation [15].

1.7.3 AUC ROC Curve

The AUC ROC curve is a performance indicator in machine learning that assesses the effec-

tiveness of a binary classification model. Here's an explanation of what it stands for:

Receiver Operating Characteristics (ROC): This is a graphical display that depicts a binary

classifier system's diagnostic capacity when the discrimination threshold is changed. It com-

pares the True Positive Rate (TPR) against the False Positive Rate (FPR) at different thresh-

olds [16].

AUC (region Under the ROC Curve): This metric captures the complete two-dimensional

region beneath the ROC curve. It calculates an aggregate measure of performance across all

categorization criteria. The AUC value is between zero and one. A model with flawless pre-

dictions has an AUC of 1, whereas a model with all wrong predictions has an AUC of zero.

A higher AUC value implies that the model performs better in differentiating between posi-

tive and negative classifications [16].

The ROC curve is especially valuable since it is independent of the classification threshold

and provides an indication of how effectively the model separates the two classes as in the

Figure 2. The AUC provides a single numerical assessment of the model's performance by

TBU in Zlín, Faculty of Applied Informatics 22

taking into account all conceivable thresholds. It is especially effective when dealing with

unbalanced datasets in which one class far outnumbers the other [16].

Figure 2 Perfection classifier based on the curve [17]

A machine learning classification model may be used to predict the data point's actual class

or the chance of belonging to distinct classes, with an AUC-ROC curve used for assessment.

The latter provides us greater influence over the outcome. We may choose our own threshold

for interpreting the classifier's results, which is useful when examining the intricacies of the

ROC curve. This method is sometimes more wise than developing a whole new model [18].

Changing the criteria for categorizing positive data points will accidentally modify the

model's sensitivity and specificity. Depending on whether we want to reduce the amount of

TBU in Zlín, Faculty of Applied Informatics 23

False Negatives or False Positives, one of these criteria will most likely perform better than

the others [18].

In an AUC-ROC curve, a higher X-axis value suggests a greater number of false positives

than true negatives. A higher Y-axis value suggests a greater number of true positives than

false negatives. So, the threshold is determined by the capacity to naturally balance false

positives and false negatives [18].

TBU in Zlín, Faculty of Applied Informatics 24

2 NEURAL NETWORKS

Neural networks are conceptualized after the human brain to process information. While

they draw inspiration from biological processes, they don’t precisely mimic the actual work-

ings of the brain. There are many varieties of neural networks, some are listed as below [13]:

Artificial Neural Networks (ANNs), which are effective for tackling intricate challenges

[13].

Convolutional Neural Networks (CNNs), which excel in addressing problems related to

computer vision [13].

Recurrent Neural Networks (RNNs), which are adept at handling tasks in the realm of natural

language processing [13].

2.1 Fundamental of Neural Networks

Neural networks are a branch of machine learning algorithms. They have been used widely

in data mining for various subjects. Before we explore the neural networks, machine learning

is revived to express the certainty of this field in order to give a fundamental understanding

of artificial intelligence concept [4].

2.1.1 Neural network’s structure

A typical neural network consists of three main types of layers: the input layer, one or more

hidden layers, and the output layer. Each layer contains nodes, also known as neurons or

units. The connections between nodes are associated with weights, which are adjusted during

the training process to enable the network to learn from data. Here's a general structure of a

feedforward neural network, which is one of the most common types [13]:

• Input Layer:

 The input layer receives the features or input values of the dataset. Each node in this

layer represents a feature, and the number of nodes corresponds to the number of input fea-

tures [13].

• Hidden Layers:

 Between the input and output layers, there can be one or more hidden layers. These

layers help the neural network learn complex patterns and representations in the data [13].

TBU in Zlín, Faculty of Applied Informatics 25

 Each node in a hidden layer is connected to every node in the previous and next layers,

and each connection has an associated weight [13].

• Output Layer:

 The output layer produces the final predictions or classifications. The number of nodes

in this layer depends on the nature of the task (e.g., binary classification, multi-class classi-

fication, regression) [13].

 The output layer's activation function is often chosen based on the task, such as sigmoid

for binary classification or softmax for multi-class classification [19].

• Connections, Weights, and bias:

 Each connection between nodes has a weight associated with it. During training, these

weights are adjusted to minimize the difference between the predicted output and the true

target values [19].

 The weighted sum of inputs to a node, along with a bias term, is passed through an

activation function to determine the node's output [19].

Bias nodes in neural networks serve a similar purpose to the intercept in linear regres-

sion, represented as (y = ax + b), where “a” is the slope and “b” is the intercept. The primary

role of a bias is to add a trainable constant value to the node, aside from the standard inputs

it receives. Crucially, the bias allows for shifting the activation function left or right, which

is a key factor in the successful training of Artificial Neural Networks [19].

• Activation Function:

 Each node, or neuron, typically has an activation function that introduces non-linearity

to the model in the Figure 3. Common activation functions include sigmoid, hyperbolic tan-

gent (tanh), and rectified linear unit (ReLU) [19].

TBU in Zlín, Faculty of Applied Informatics 26

Figure 3 A structure of a neural network [19]

2.2 Layers and Activation Functions

The net inputs of a neural network are the most important components of its architecture.

They are processed and transformed into an output result known as the activation of the unit

using a function known as the activation function, threshold function, or transfer function—

a scalar to scalar transformation [20].

Squashing functions allow a neuron to output in a limited range and at a constrained ampli-

tude. A squashing function limits the amplitude of the output signal [20].

2.2.1 Layers

The convolutional layer is the most commonly utilized, if not the sole, layer in image-related

models. Convolutional neural networks have the capacity to identify and extract features

independent of their position in provided pictures; this is a required attribute in urban and

road scenes with stochastic components such as automobiles, pedestrians, and pavement

[20].

ConvLayer

TBU in Zlín, Faculty of Applied Informatics 27

The Convolutional Layer is the fundamental layer of Convolutional Neural Networks and

may be thought of as the neural networks' 'eyes'. A convolutional layer's neurons look for

specific traits. The input to a convolutional layer is simply a two-dimensional array that

might represent the network's input image or the output of a previous layer as shown in the

Figure 4. The first convolutional layer receives data from the input image. Typically, there

are two types of input pictures: single-channel grayscale images and three-channel colour

images [20].

Figure 4 A Convolutional layer setup with three-channel colour images [20]

In a CNN, activation functions are typically applied after each convolutional layer and fully

connected layer. However, they are not applied after pooling layers [20].

The math behind is basically described as following Figure 5:

TBU in Zlín, Faculty of Applied Informatics 28

Figure 5 Convolutional layer operation [24]

Consider a set of K learnable filters, each with dimensions and channels distinct from the

input, and an input image with dimensions H x W x C, such as an RGB image with three

channels. During 2D convolution, each filter glides across the input, multiplying components

with pixels that match. The findings are then combined to get a single output value for each

point. Similar to matrix multiplication, this operation distributes weights throughout the

filter, providing the impression of a fully connected layer. Notably, convolutional layers do

not make a direct link between the input and output pixels. The convolution technique is

repeated K times, once for each filter, to produce the output feature map. The resulting

feature maps are then layered along the depth axis. The size of the feature map produced by

the process is determined by the input dimensions, filter size, stride, and padding [24].

Pooling layer - MaxPooling

The output of the max-pooling layer is given by the maximum activation over non-overlap-

ping rectangular regions of size (Kx,Ky). Max-pooling creates position invariance over larger

local regions and down-samples the input image by a factor of Kx and Ky along each direc-

tion. Max-pooling leads to faster convergence rate by selecting superior invariant features

which improves generalization performance [21].

As shown in Figure 6, the algorithm will choose the biggest number in the regions of size

(Kx,Ky) and put it in the output matrix.

TBU in Zlín, Faculty of Applied Informatics 29

Figure 6 MaxPooling operation [22]

Dropout

Dropout is a regularization method used in neural networks, specifically deep learning mod-

els, to minimize overfitting. During training, a subset of neurons in a layer are deactivated

at random. This mechanism reduces the dependency of neurons and drives the network to

learn more robust properties [23].

1. Regularization: Dropout is a regularization strategy that prevents overfitting by

minimizing the complicated co-adaptations of neurons [23].

2. Improved Generalization: Dropout allows the model to acquire more generalizable

properties by preventing it from being overly reliant on specific neurons [23].

3. Reduction of Model Complexity: Dropout can simplify the model by lowering the

effective network size, resulting in quicker training and lower computing costs [23].

TBU in Zlín, Faculty of Applied Informatics 30

Figure 7 Dropout during training [23]

During training as in Figure 7, dropout randomly sets a fraction of the input units to zero

with a probability pp, typically chosen between 0.2 and 0.5. This means that the output of

these units is temporarily ignored during the forward and backward passes of training.

Dropout is only applied during training, not during inference or evaluation [23].

2.2.2 Activation functions

The activation function defines an artificial neuron's activity range. This is applied to the

neuron's entire weighted input data. An activation function is nonlinear. If an activation func-

tion is not employed, the only operations involved in calculating the output of a multilayer

perceptron are the linear products between the weights and the input values [25].

One linear operation may be conceived of as a collection of successive linear operations.

Using a non-linear activation function, on the other hand, leads the artificial neural network

to become nonlinear, causing the function that approximates the neural network to become

nonlinear as well. According to the approximation theorem, a universal function approxima-

tor is a multilayer perceptron that has one hidden layer and a nonlinear activation function

[25].

Sigmoid

The sigmoid function is one of the most often used activation functions. It is commonly

understood that there are two stages to modeling and training a multi-layer neural network:

forward propagation and reverse propagation. In addition, during backpropagation, the de-

rivatives of the activation functions must be computed in each layer. Because the sigmoid

function is continuous, it may be differentiated anywhere [25].

TBU in Zlín, Faculty of Applied Informatics 31

𝑔(𝑥) =
1

1 + 𝑒−𝑥
(2)

In neural networks, the sigmoid function serves as an activation function. To refresh your

memory on what an activation function is, consider the function that an activation function

plays in one layer of a neural network in the image below. An activation function is applied

to a weighted sum of inputs, and the resultant output is used as an input for the subsequent

layer [25].

It is guaranteed that the output of a neuron will always be between 0 and 1 as in the Figure

8 when the neuron's activation function is a sigmoid function. The output of this unit would

also be a non-linear function of the weighted sum of inputs because the sigmoid is a non-

linear function. A sigmoid unit is a kind of neuron that uses the sigmoid function as an acti-

vation function [25].

Figure 8 Sigmoid function [25]

TBU in Zlín, Faculty of Applied Informatics 32

ReLU

In the realm of Convolutional Neural Network, the Rectified Linear Unit (ReLU) is a cor-

nerstone that gives a simple solution to some of the industry's most persistent problems.

ReLU is just a simple but strong activation function that returns the input when it is positive

and zero otherwise. Its simplicity belies its potency, as it provides critical nonlinearity into

neural network design, fundamentally altering neural networks. ReLU paves the way for

more accurate and nuanced learning by allowing the network to detect more complex link-

ages within data [25].

𝑓(𝑥) = max(0, 𝑥) (3)

Saturated functions like sigmoid and tanh pose complications with back propagation. As the

neural network construction progresses, the gradient signal begins to disappear, a phenome-

non known as the "vanishing gradient". This occurs because the gradient of such functions

is usually always close to zero, except in the center. However, the ReLU has a constant

gradient for positive input. Although the function is not differentiable, it can be disregarded

during implementation [25].

The ReLU generates a sparse representation in the Figure 9. Because the zero in the gradient

results in a full zero. However, sigmoid and tanh always provide non-zero outcomes from

the gradient, which may not be advantageous for training [25].

TBU in Zlín, Faculty of Applied Informatics 33

Figure 9 Graph of ReLU

One of ReLU's unique qualities is its ability to effectively handle the vanishing gradient

problem, which has long been a hurdle in neural network training. ReLU solves this problem,

allowing for quicker learning and better performance than its predecessors, such as the sig-

moid and hyperbolic tangent functions. This feature not only reduces training time, but also

enhances the network's capacity to learn complex patterns from data. Furthermore, ReLU's

fundamental nature makes it easier to train models, speeding up development and usually

generating superior results in a wide range of applications [25].

Many neural network topologies, including CNNs and multilayer perceptrons, use ReLU as

their default activation function. Its broad use arises from its ability to permit sparse activa-

tions in networks and expedite training procedures. This widespread adoption emphasizes

the importance of ReLU in modern deep learning, as it serves as the foundation for a wide

range of models and applications. ReLU remains a trusty companion as the field evolves,

allowing neural networks to manage the complexities of real-world data with unparalleled

efficacy and efficiency [25].

TBU in Zlín, Faculty of Applied Informatics 34

LeakyReLU

Leaky ReLU is an improvised version of ReLU function where for negative values of x,

instead of defining the ReLU functions’ value as zero in the Figure 10, it is defined as ex-

tremely small linear component of x. It can be expressed mathematically as [26]:

𝑓(𝑥) = {
0.01𝑥, 𝑥 < 0

𝑥, 𝑥 ≥ 0
 (4)

Figure 10 LeakyReLU compared to ReLU [26]

BatchNormalization

Batch normalization (BN) is a technique to normalize activations in intermediate layers of

deep neural networks. Its tendency to improve accuracy and speed up training have estab-

lished BN as a favourite technique in deep learning. BN is an indispensable component in

many deep neural networks. BN has been widely used in various areas such as machine

vision, speech and natural language processing [27].

When feeding data into a deep learning model, it is common practice to normalize it to zero

mean and unit variance. Assume the input data has several features (x1, x2, …xn) , as shown

in the Figure 11. Each characteristic may have a separate range of values. For example, val-

ues for feature x1 may vary from 1 to 5, but values for feature x2 may range from 1000 to

99999. We compute the mean and variance for each feature column independently, using the

values from all samples in the dataset. Next, use the formula in Figure 11 to normalize the

data [27].

TBU in Zlín, Faculty of Applied Informatics 35

Figure 11 How a batch is normalized [27]

Normalizing data has an effect. The original values (blue) are now centered around zero

(red). This guarantees that all feature values are now on a consistent scale as shown in Figure

12 [27].

TBU in Zlín, Faculty of Applied Informatics 36

Figure 12 How batch normalization looks like [27]

Softmax

Softmax is a mathematical function that converts a vector of real numbers into a probability

distribution. It's commonly used as the activation function in the output layer of a neural

network when the task involves multi-class classification. Softmax ensures that the output

probabilities sum up to 1, making it suitable for modeling the probability distribution over

multiple classes [29].

Given an input vector 𝑧 = [𝑧1, 𝑧2, . . . , 𝑧𝑛], the softmax function computes the probability

distribution 𝜎(𝑧) = [𝑝1, 𝑝2, . . . , 𝑝𝑛] as follows [29]:

𝑝𝑖 =
𝑒𝑧𝑖

∑ 𝑒 𝑧𝑗𝑛
𝑗=1

(4)

where:

TBU in Zlín, Faculty of Applied Informatics 37

• 𝑒 is the base of the natural logarithm (Euler's number).

• 𝑧𝑖 is the 𝑖𝑡ℎ element of the input vector.

• ∑ 𝑒𝑧𝑗𝑛
𝑗=1 is the sum of the exponentiated elements of the input vector.

The softmax function effectively "squashes" the input values into the range (0, 1) and ensures

that the resulting values sum up to 1, thus representing a probability distribution as Figure

13 [29].

Figure 13 Softmax graph [28]

2.3 Pre-trained models and transfer learning

Transfer learning is a potent machine learning technique that makes use of insights from the

resolution of one problem to improve performance on a related but different task. Transfer

learning enables the model to profit from prior information acquired during training on a

different source task, as opposed to starting from scratch when training for a particular target

job. This method is especially useful when obtaining labelled data for the target job is costly

or scarce. Transfer learning has shown to be a useful tactic in a variety of fields, allowing

models to perform better on tasks with little data available, generalize more effectively, and

TBU in Zlín, Faculty of Applied Informatics 38

achieve faster convergence by transferring acquired representations, patterns, and insights

[30].

2.3.1 Pre-trained models

Pre-trained models are neural network designs that have been trained on large datasets, usu-

ally for image classification, object detection, natural language processing, or other machine

learning applications. These models are trained on massive volumes of data to produce use-

ful representations of the original data. They initially assign a set of weights and bias which

can be fine-tuned for a specific task. PyTorch gives an option to load the pre-trained weights

to the models from their libraries. The following section will describe the pre-trained models

utilised and their attributes in relation to the datasets [31].

2.3.2 Transfer learning

Transfer learning is a machine learning technique in which a model learned on one job is

modified or fine-tuned to perform a different but related task. Transfer learning is the process

by which knowledge obtained from addressing one problem is transferred and applied to

another, but usually similar problem. This is especially advantageous when the task at hand

has limited labelled data, because the pre-trained model can apply knowledge gained from a

bigger dataset to boost performance on the new task [32].

The following steps are usually involved in the process:

 Pre-training: Use a sizable dataset to train a CNN model for a task such as image catego-

rization. The model is able to extract broad characteristics and trends from the data through

this method [32].

 Transfer Learning: Adapt the previously trained CNN to the semantic segmentation task

by making changes to it. This usually entails changing the network's fully linked layers or

replacing them to meet segmentation's output needs [32].

 Fine-tuning: You can choose to use the new dataset with labeled segmentation masks to

test the adjusted model. The model can now modify its learned features to better suit the new

dataset thanks to this phase [32].

TBU in Zlín, Faculty of Applied Informatics 39

2.4 Segmentation

Image segmentation is a method of segregating different objects inside an image into differ-

ent regions. Convolutional neural networks are a part of deep learning models that shows

outstanding outcomes of different computer vision tasks including segmentation [33].

This chapter will introduce about Convolutional neural networks and image segmentation,

and how CNNs are used to train in image segmentation. Next transfer learning method will

be presented to express the efficiency of the method in image segmentation.

2.4.1 Convolutional Neural Networks (CNNs)

Like any standard neural network model, Convolutional Neural Networks (CNNs) follow a

structure where neurons are arranged in layers, enabling the learning of hierarchical repre-

sentations. Connections between neurons across layers involve weights and biases. The first

layer serves as the input layer, such as remote sensing data, while the final layer produces

the output, like a classification prediction for plant species. Hidden layers in between modify

the feature space of the input to align with the desired output. CNNs specifically incorporate

a convolutional layer among the hidden layers to capture patterns, particularly spatial pat-

terns in the context of this review which can be seen in Figure 14 [34].

Figure 14 Typical CNN structure [34]

TBU in Zlín, Faculty of Applied Informatics 40

2.5 Semantic segmentation models

Semantic segmentation models play a vital role in computer vision field. They take care of

pixel-level analysis precisely. There are many famous semantic segmentation models to in-

crease the accuracy and the comprehensiveness towards the datasets.

2.5.1 SegNet

The architecture of SegNet is encoder-decoder based. Its purpose is to take an image as input

and generate a pixel-by-pixel label map. Through the use of many convolutional and pooling

layers, the encoder is able to extract high-level information. SegNet's decoder network,

which upsamples and creates a segmentation map using the spatial pooling indices created

during max-pooling in the encoder phase, is the main innovation in the system. This type of

upsampling helps to maintain the output's fine-grained features while still being memory-

efficient [35].

2.5.2 Fully Convolutional Network

Fully Convolutional Network is referred to as FCN. This kind of neural network design is

mostly applied to computer vision applications involving semantic segmentation. In order to

divide objects or areas of interest, semantic segmentation entails dividing a picture into many

segments and giving a class name to each pixel [37].

The term "fully convolutional" refers to FCNs as in Figure 15 since they only include con-

volutional layers and no fully linked layers. Because of this, they can process input of any

size and generate output with comparable spatial dimensions, which makes them appropriate

for jobs where the output must be spatially matched with the input, such as semantic seg-

mentation [37].

TBU in Zlín, Faculty of Applied Informatics 41

Figure 15 FCN basic structure [37]

Convolutional layers are created by FCN from fully linked layers, allowing for an effective

classification net for end-to-end dense learning. By this means, they can enable precise clas-

sification as well as segmentation for images [37].

2.5.3 U-Net

Olaf Ronneberger et al. created the U-Net, a convolutional network architecture, for biomed-

ical image segmentation at the University of Freiburg in Germany in 2015. It allows for

accurate and speedy image segmentation [38].

With four encoder blocks and four decoder blocks joined by a bridge, U-Net is a U-shaped

encoder-decoder network design in Figure 16. At each encoder block, the number of filters

(feature channels) is doubled and the spatial dimensions are cut in half by the encoder net-

work (tracing path). Similarly, the number of feature channels is cut in half and the spatial

dimensions are doubled by the decoder network [38].

TBU in Zlín, Faculty of Applied Informatics 42

Figure 16 U-Net architecture [38]

2.6 VGG16

VGG16 is developed by Visual Geometry Group, is a type of CNN (Convolutional Neural

Network) that is considered to be one of the best computer vision models to date. The crea-

tors of this model evaluated the networks and increased the depth using an architecture with

very small (3 × 3) convolution filters, which showed a significant improvement on the prior-

art configurations. They pushed the depth to 16–19 weight layers making it approximate —

138 trainable parameters [39].

VGG16 is object detection and classification algorithm which is able to classify 1000 images

of 1000 different categories with 92.7% accuracy. It is one of the popular algorithms for

image classification and is easy to use with transfer learning. By this means, this model can

be classified among the classes in the road segmentation solution. It observes and distin-

guishes classes and outputs large quantities of parameters for segmentation in U-Net variants

[39].

TBU in Zlín, Faculty of Applied Informatics 43

Figure 17 Example architecture of VGG-16 [32]

The depth of the configurations increases from the left (A) to the right (E), as more layers

are added (the added layers are shown in bold). The convolutional layer parameters are de-

noted as “conv<receptive field size> - <number of channels>”. Configurations are following

with the patterns below [39]:

TBU in Zlín, Faculty of Applied Informatics 44

Table 1 Parameter are following these, with, A, A-LRN, B, C, D, and E

configurations [39]

To follow the table, the size of a layer is stated after the layer name. For example, if the

configuration A is used, Conv3 means the output of the Layer, block3_pool (MaxPooling2D)

and its size of the output is 64. The next layer is max pool layer, then comes next with conv3-

128 and so on. In the output layer, it will be connected to Fully Connected layer with size

4096 (FC-4096) and finally with softmax layer. Based on which configuration, the more

parameters it will generate, the larger the model it is [39].

ConvNet Configuration

A A-LRN B C D E

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight

layers layers layers layers layers layers

input (224 × 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

 LRN conv3-64 conv3-64 conv3-64 conv3-64

 ma xpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128

 conv3-128 conv3-128 conv3-128 conv3-128

 ma xpool

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

 conv1-256 conv3-256 conv3-256

conv3-256

 ma xpool

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

 conv1-512 conv3-512 conv3-512

conv3-512

 ma xpool

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

 conv1-512 conv3-512 conv3-512

conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

TBU in Zlín, Faculty of Applied Informatics 45

3 MACHINE LEARNING TOOLS AND LIBRARIES

There are several popular machine learning libraries and tools that are widely used in the

field which can be told as Tensorflow, Keras, PyTorch, or OpenCV. Every library has its

own advantages such as PyTorch has its simplicity, ease of use, flexibility, efficient memory

usage, and dynamic computational graphs, but it cannot display the deep details as Tensor-

flow. Tensorflow also supports Keras library to keep the explicit of model construction so

that it can be tracked down on every layer. Therefore, Tensorflow is chosen for creating and

measuring models.

Tensorflow Keras is, briefly described, used for establishing models, training, and testing. It

provides detailed insights about layers, shapes, and model architecture.

OpenCV is a library to load and use the image. Because its ease of use, I use this for easy

access to an image and load it. OpenCV is used for evaluating trained models and to import

and display images, as well as try trained models with videos. By this means, it can mimic a

real-life application for road segmentation solutions.

3.1 Tensorflow.Keras

In this project, TensorFlow is chosen to measure, train, evaluate, and construct models for

segmentation. TensorFlow Keras is a high-level neural networks API written in Python and

integrated into TensorFlow. It serves as TensorFlow's official high-level API for building

and training deep learning models. Keras provides a user-friendly interface that allows for

easy and fast prototyping of neural networks, making it suitable for both beginners and ex-

perts in machine learning [40].

TensorFlow Keras offers several key features and benefits:

• Modularity: Keras makes it simple to create complicated structures by enabling

users to construct neural networks by stacking modular building pieces (layers)

together [40].

• User-friendly: Keras has an easy-to-understand interface that is straightforward,

making it a great choice for individuals who are new to deep learning [40].

• Flexibility: Keras makes it simple to experiment with various network architec-

tures, optimizers, loss functions, and other hyperparameters [40].

TBU in Zlín, Faculty of Applied Informatics 46

• Compatibility: TensorFlow Keras works in unison with other TensorFlow compo-

nents, including TensorFlow Es-timators for distributed training and TensorFlow

Datasets for data loading [40].

• Performance: Keras leverages the computational power of TensorFlow backend

for efficient training and inference, while prioritizing simplicity and ease of use.

This results in excellent performance [40].

• Community and Resources: As one of the most widely used deep learning librar-

ies, Keras boasts a sizable user and contributor community that offers a wealth of

resources, including pre-trained models, documentation, and tutorials [40].

Therefore, TensorFlow Keras is a powerful tool for building and training deep learning mod-

els, offering a balance between simplicity and flexibility, and it can show in detail about

models and give messages about faults during training [32].

To define a model using Keras, there is many ways to define one, it depends on user coding

style.

inputs = keras.Input(shape=(37,))

x = keras.layers.Dense(32, activation="relu")(inputs)

outputs = keras.layers.Dense(5, activation="softmax")(x)

model = keras.Model(inputs=inputs, outputs=outputs)

The model to define should have inputs as input layer using keras.Input, it will have multiple

x variables as hidden layers which is provided by Keras in keras.layers library that will link

the input layers and be the output for output layer. Then it will define an output layer. Even-

tually, the model is declared with inputs and outputs which are the parameters inputs and

outputs. A model can be defined as a class with inheritance as keras.Model. To overview the

model just created, Keras provides summary method from the keras.Model. With this

method, a summary of the model with shapes and parameter sizes is shown.

3.2 OpenCV

In this project, real-time applications for assessing and measuring the performance of the

trained models are provided by using OpenCV to analyze photos, as well as input and output

images from the models. An open-source software library for computer vision and machine

learning is called OpenCV, short for Open Source Computer Vision Library. Originally cre-

ated by Intel, it is currently maintained by the OpenCV Foundation, a community of devel-

opers [41].

TBU in Zlín, Faculty of Applied Informatics 47

The library is renowned for its real-time vision applications and computational efficiency,

supporting interfaces in C++, Python, Java, and MATLAB, and is compatible with Win-

dows, Linux, Android, and Mac OS. Therefore, OpenCV is suitable for implementing eval-

uation application with high performance by using native application like C++. OpenCV's

algorithms are designed to be highly optimized, taking advantage of hardware acceleration

where available. Its extensive use in various industries, from Google and Microsoft to

startups, highlights its versatility in applications like surveillance, robotics, interactive art,

and automated inspection [41].

TBU in Zlín, Faculty of Applied Informatics 48

 II ANALYSIS

TBU in Zlín, Faculty of Applied Informatics 49

4 DATASETS

The algorithms are benchmarked and evaluated with dataset Cityscapes contains single view

images and ground truth images for training. The datasets can be downloaded via their offi-

cial website Cityscapes [43].

The Datasets contain single view images from an interior camera that it captures urban street

scenes. They possess many different sets of datasets. In this project, the datasets originally

have 30 classes but simplify into 13 classes. This is to reduce the resources needed to train

and validate.

Alongside with the official datasets, paired image datasets are used to simplify the data pro-

cessing and data structure for training and testing [45].

Figure 18 Image display example of the Cityscapes dataset [45]

The classes in the datasets are described in their official website as below:

Table 2 Classes in the datasets [43]

Group Classes

flat Road, sidewalk, parking, rail track

human Person, rider

vehicle Car, truck, bus, on rails, motorcycle, bicycle, caravan, trailer

construction Building, wall, fence, guard rail, bridge, tunnel

object Pole, pole group, traffic sign, traffic light

nature Vegetation, terrain

sky sky

void Ground, dynamic, static

TBU in Zlín, Faculty of Applied Informatics 50

The chosen classes in this project are for obstacles as road, sidewalk, person, car, bus, build-

ing, pole, traffic sign, traffic light, vegetation, terrain, and sky; and static as car itself which

is displayed as black in the ground truth image. Each class is coloured with an RBG code

and to display it for demonstration and prediction.

4.1 Data Generator

Data generator is a function to extract images and ground truth images; and put them sepa-

rately into variables.

The datasets is delivered without pre-made trainsets and testsets so it has to be done by

separating all the images into to set. In this project, they are named as ‘train’ and ‘val’ with

proportion 80% for trainset and 20% for validation sets.

Figure 19 Splitting train sets and test sets

The code snippet can be broken down as follows:

1. Data Preparation: The code prepares the dataset for training and testing by iterating

through each class folder.

2. File Selection: It selects only files with the ".jpg" extension for further processing.

3. Shuffling: The file names are randomly shuffled to ensure that the data is not biased

during training and testing.

4. Splitting: The shuffled file names are split into training and testing sets based on the

specified test size ratio.

TBU in Zlín, Faculty of Applied Informatics 51

5. Moving Files: Files are moved from their original location to either the train or test

folder based on the split index.

6. Directory Creation: Directories for the train and test folders are created if they don't

already exist.

7. Copying Files: Files are copied from the source path to the destination path using

shutil.copy2().

8. Feedback: Progress is printed to the console indicating which files are being moved

to the train and test folders.

After the trainsets and testsets are partitioned and structured in separate folders, the images

are loaded to variables for training and testing during fitting the model.

The function DataGenerator gets all the images in both folder, load into a variable, and split

them into batches. The data is converted to NumPy array to fit with Keras format.

Figure 20 DataGenerator code snippet

To access to an image in the output of DataGenerator, it can be queried by using next()

function.

train_gen = DataGenerator(train_folder, batch_size=BATCH_SIZE)

val_gen = DataGenerator(valid_folder, batch_size=BATCH_SIZE)

imgs, segs = next(train_gen)

imgs.shape, segs.shape

TBU in Zlín, Faculty of Applied Informatics 52

Firstly, DataGenerator has to be defined and assigned to a variable train_set or val_set. To

access to an element in train_set or val_set, next() function is used as in above code snippets.

TBU in Zlín, Faculty of Applied Informatics 53

5 TRAINING AND MODELS

The algorithms are verified by models U-Net, FCN, and a use of U-Net structure with pre-

trained model VGG16 for classification then combine with U-Net structure.

The U-Net has its specifically designed advantages in image segmentation due to its effi-

ciency and good handling of multi-class tasks. FCN is chosen to measure the performance

of the chosen dataset because the model has no restrictions from the full connection layer,

so the size of the input can be flexible. U-Net with VGG16 is to improve the disadvantages

of both models that the U-Net is more prone to overfitting, especially when working with

small datasets and FCN is relatively big and slow even if it is with small datasets [46][47].

VGG16 is the state-of-the-art pre-trained model in segmentation solutions fine-tuned for

specific tasks, reducing the need for large annotated datasets. It is famous for its high accu-

racy and well-trained weights. [38]

5.1 Training

By training, loss function and some parameters are used for training. It is necessary to declare

an optimizer and a loss function to validate the model. It can be declared in the compile

method to compile the model.

In this project, some state-of-the-art algorithms are used for optimizer and loss function.

Each model is trained using different algorithms. Initially all models were used the same

algorithms. After each training and testing phase, I adjusted the algorithms to find which

models were performed the best and keep them for application evaluation.

5.2 Models for training

In this project, FCN, U-Net, and pre-trained U-Net (using VGG16) are used to validate the

dataset and test the performance of the models.

5.2.1 FCN

Fully Convolutional Networks are used to measure the accuracy of segmentation in this pro-

ject. This model is simply constructed with a straightforward architecture which include five

convolutional blocks with ReLU as activation function and then flattens out the data. The

TBU in Zlín, Faculty of Applied Informatics 54

Lambda layer is to normalise the input data into a range of 0-1 from RGB values whose data

is from 0 to 255.

Because the architecture of FCN is quite big, a table will describe its architecture as below:

Table 3 Architecture of FCN model

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) [(None, 256, 256, 3)] 0 []
lambda (None, 256, 256, 3) 0 ['input_1[0][0]']
block1_conv1
(Conv2D)

(None, 256, 256, 64) 1792 ['lambda[0][0]']

block1_conv2
(Conv2D)

(None, 256, 256, 64) 36928 ['block1_conv1[0][0]']

block1_pool (Max-
Pooling2D)

(None, 128, 128, 64) 0 ['block1_conv2[0][0]']

block2_conv1
(Conv2D)

(None, 128, 128, 128) 73856 ['block1_pool[0][0]']

block2_conv2
(Conv2D)

(None, 128, 128, 128) 147584 ['block2_conv1[0][0]']

block2_pool (Max-
Pooling2D)

(None, 64, 64, 128) 0 ['block2_conv2[0][0]']

block3_conv1
(Conv2D)

(None, 64, 64, 256) 295168 ['block2_pool[0][0]']

block3_conv2
(Conv2D)

(None, 64, 64, 256) 590080 ['block3_conv1[0][0]']

block3_conv3
(Conv2D)

(None, 64, 64, 256) 590080 ['block3_conv2[0][0]']

block3_pool (Max-
Pooling2D)

(None, 32, 32, 256) 0 ['block3_conv3[0][0]']

block4_conv1
(Conv2D)

(None, 32, 32, 512) 1180160 ['block3_pool[0][0]']

block4_conv2
(Conv2D)

(None, 32, 32, 512) 2359808 ['block4_conv1[0][0]']

block4_conv3
(Conv2D)

(None, 32, 32, 512) 2359808 ['block4_conv2[0][0]']

block4_pool (Max-
Pooling2D)

(None, 16, 16, 512) 0 ['block4_conv3[0][0]']

block5_conv1
(Conv2D)

(None, 16, 16, 512) 2359808 ['block4_pool[0][0]']

block5_conv2
(Conv2D)

(None, 16, 16, 512) 2359808 ['block5_conv1[0][0]']

block5_conv3
(Conv2D)

(None, 16, 16, 512) 2359808 ['block5_conv2[0][0]']

block5_pool (Max-
Pooling2D)

(None, 8, 8, 512) 0 ['block5_conv3[0][0]']

TBU in Zlín, Faculty of Applied Informatics 55

conv2d_transpose (None, 512, 512, 13) 851968 ['block3_pool[0][0]']
conv2d_transpose_1 (None, 512, 512, 13) 6815744 ['block4_pool[0][0]']
conv2d_transpose_2 (None, 512, 512, 13) 2726297 ['block5_pool[0][0]']
add (None, 512, 512, 13) 0 ['conv2d_transpose[0][0]',

'conv2d_transpose_1[0][0]',
'conv2d_transpose_2[0][0]']

final (MaxPooling2D) (None, 256, 256, 13) 0 ['add[0][0]']
conv2d (None, 256, 256, 13) 182 ['final[0][0]']
activation (None, 256, 256, 13) 0 ['conv2d[0][0]']

This model takes approximately longer time to train and more memory to store the parame-

ters during training sessions. Every epoch takes about 160s which is around 550ms/step. The

accuracy is saturated around 0.8, and the loss is around 0.6.

298/298 [==============================] - 166s 558ms/step - loss: 0.6785

- acc: 0.8050 - val_loss: 0.7261 - val_acc: 0.7917

A trained model is exported for testing. The model is quite big due to the transformation of

pixel-to-pixel classes. The outcome of the model is not high in accuracy because it cannot

be addressed well in the contextual information. [48]

Therefore, this model is suitable for being used for measurement and experimentation to

show the early stage of semantic segmentation model experiment.

Figure 21 Prediction of FCN

TBU in Zlín, Faculty of Applied Informatics 56

The prediction image with overlay masks can show that most of details in the original masks

are not predicted, for example the traffic signs and the traffic poles. However, it does well

predicting vehicles (cars).

5.2.2 U-Net

The U-Net model in this project is constructed with two blocks, down block and up block,

and a bottle neck with minimal convolutional shape.

The input layer accepts 256x256 image as default. Then it feeds to Conv2D layer to 16 output

classes.

Down block contains the two layers of convolutional computation in between of MaxPooling

layers. The shape of sample is reduced by 2 by each MaxPooling layer.

Figure 22 Sample of Up block in U-Net

The Neck bottle is the bottom of the U-Shape. It is the smallest shape of the samples. And it

is the transition to start concatenating the samples together, which is reconstructing the im-

age and its shape.

TBU in Zlín, Faculty of Applied Informatics 57

Figure 23 Bottleneck part of U-Net

The Up block contains concatenate layers in between of Convolutional layer with the same

depth as Down block. And the output of each Concatenate layer is multiplied by 2.

Figure 24 Up block architecture of the U-Net

There are connections between layers of convolutional layer with the same shape output of

Concatenate layer. For example, Layer Conv2D will connect with layer concatenate_1.

TBU in Zlín, Faculty of Applied Informatics 58

Output layer will convolute the image to match the number of configured classes.

The U-Net can predict small details in an image better than the FCN and has smaller param-

eter size. The predict time is faster compared to FCN, which can be used for systems requir-

ing faster performance instead of quality performance.

For this model, I use Adam as optimizer and categorical_crossentropy as loss function. It

sets to 10 epochs and 298 steps per epoch.

298/298 [==============================] - 66s 223ms/step - loss: 0.6845 -

acc: 0.8029 - val_loss: 0.7902 - val_acc: 0.7783

Figure 25 AUC of the model U-Net

As shown in Figure 25, the curve shows that the accuracy of the model is improving each

epoch. At epoch 6, the accuracy is slightly decreasing. But it is improved in later epochs.

The Figure 26 shows the masks how they are formed compared to the original ground truth

image. The masks are not formed well in shapes with the pavements. However, the poles on

the pavement are well predicted.

TBU in Zlín, Faculty of Applied Informatics 59

Figure 26 Predict masks using U-Net

5.2.3 Transfer trained weights using VGG16

VGG16 is used as pre-trained model for classification.

In Keras library, a VGG16 model is embedded in its applications class. To load the model

to my local, I use below a line of code below to import the VGG16 class from library

keras.applications.vgg16.

from keras.applications.vgg16 import VGG16

After the class is imported, it must be declared with weights from the applications. Since the

Keras library contains many pre-trained weight sets which can be used for different scenar-

ios, I have to declare which weight I want for my model. For segmentation solutions, I use

‘imagenet’ as pre-trained weight. It can be set as ‘None’ to randomize the choice of pre-

trained weight, or a customized pre-trained weight can be loaded by setting the path to the

weight with parameter ‘weights’ [49].

The VGG16 consists of 5 blocks of two Conv2D and a MaxPooling2D. By using this, the

classification weights need to be kept promoting and taking advantages of pre-trained mod-

els. To customize my input, I keep only ‘block1_conv1’ as trainable, so I can put my images

from the dataset.

 Layer (type) Output Shape Param #

===

 input_1 (InputLayer) [(None, 256, 256, 3)] 0

TBU in Zlín, Faculty of Applied Informatics 60

 block1_conv1 (Conv2D) (None, 256, 256, 64) 1792

 block1_conv2 (Conv2D) (None, 256, 256, 64) 36928

 block1_pool (MaxPooling2D) (None, 128, 128, 64) 0

 block2_conv1 (Conv2D) (None, 128, 128, 128) 73856

 block2_conv2 (Conv2D) (None, 128, 128, 128) 147584

 block2_pool (MaxPooling2D) (None, 64, 64, 128) 0

 block3_conv1 (Conv2D) (None, 64, 64, 256) 295168

 block3_conv2 (Conv2D) (None, 64, 64, 256) 590080

 block3_conv3 (Conv2D) (None, 64, 64, 256) 590080

 block3_pool (MaxPooling2D) (None, 32, 32, 256) 0

 block4_conv1 (Conv2D) (None, 32, 32, 512) 1180160

 block4_conv2 (Conv2D) (None, 32, 32, 512) 2359808

 block4_conv3 (Conv2D) (None, 32, 32, 512) 2359808

 block4_pool (MaxPooling2D) (None, 16, 16, 512) 0

 block5_conv1 (Conv2D) (None, 16, 16, 512) 2359808

 block5_conv2 (Conv2D) (None, 16, 16, 512) 2359808

 block5_conv3 (Conv2D) (None, 16, 16, 512) 2359808

 block5_pool (MaxPooling2D) (None, 8, 8, 512) 0

===

List above is the actual structure of VGG16 that is fetched from Keras library. The input

layer is defined by users which will adapt to the actual dataset. As we set block1_conv1 as

trainable and the rest are untrainable, so the weights stay remained. The output of VGG16 is

(None, 8, 8, 512), so bottleneck layer is necessary to merge with the up-block of U-Net.

re_lu (ReLU) (None, 8, 8, 512) 0

['block5_pool[0][0]']

 max_pooling2d (MaxPooling2 (None, 4, 4, 512) 0

['re_lu[0][0]']

 D)

 dropout (Dropout) (None, 4, 4, 512) 0

['max_pooling2d[0][0]']

 conv_middle (Conv2D) (None, 4, 4, 256) 1179904

['dropout[0][0]']

TBU in Zlín, Faculty of Applied Informatics 61

The bottleneck block consists of ReLU, MaxPooling, Dropout and a Conv2D layer. This is

to adapt the output of the VGG16 to up-block of U-Net. The up-block of U-Net is reused

from the previous section. Therefore the shape and the parameters are able to be compatible.

For this model, I use Adam as optimizer and categorical_crossentropy as loss function. It

sets to 10 epochs and 298 steps per epoch.

298/298 [==============================] - 131s 439ms/step - loss: 0.6915

- acc: 0.8021 - val_loss: 0.7503 - val_acc: 0.7843

The output of accuracy is 0.892 and 0.7877 for validation accuracy. The loss is 0.6542 at

rate and validation loss is 0.7254.

Figure 27 Training curve of 10 epochs for pre-trained model with VGG16

The model is tested with random images in the validation set. The model performs very well

in such complex environments that it can predict pedestrians and traffic signs. The areas of

objects are not confined well. However, the correct objects within the areas are predicted.

The model can detect pavement with better straight line and find correct pavement areas.

The greens and buildings are good defined in such prediction. Vehicles on the road are de-

tected correctly without confusion.

TBU in Zlín, Faculty of Applied Informatics 62

Figure 28 Prediction of complex scene on the road using pre-trained model VGG16

The model performs well on many scenes. Even though the confusion and the misprediction

are still there. But the accuracy and the performance of the model increase drastically using

pre-trained models.

TBU in Zlín, Faculty of Applied Informatics 63

6 EVALUATION

Three models are taken account to measure based on the accuracy of the output using AUC,

the performance of the model based on practical measurement, and the observable details of

output predictions.

All models can perform well to detect objects with label Cars, Building, and Green. How-

ever, FCNs can segment the road in less complicated scenes. U-Net model can segment

smaller objects in an urban scene, and it can predict more various objects in more complex

scenes. Even though the accuracy of both models is approximately the same with 0.8050 for

FCN and 0.8060 for U-Net, the rapid increase of prediction is observable easily from sample

images.

While using the models with real life images, especially images not included in the original

train sets and test sets, the results are differed and give outcome with good results.

Figure 29 Predict with FCN

The FCN predicts traffic signs and bicycles, poles on pavement, and buildings in good shape

and is converged to objects with refined areas. However, the distortion happens on sky area

and in small details from far away. A disadvantage of FCN is the parameters and weights

size are relative huge and proceed to generate predicted masks fairly slow.

TBU in Zlín, Faculty of Applied Informatics 64

Figure 30 Predict with U-Net

U-Net model loses its performance using real life scenes. It loses its ability to predict traffic

signs and objects by the pavement. The pole is surprisingly well detected using U-Net model.

It also give bad shapes for roads and pavements. The advantage of the model is the parame-

ters and weights small and very fast generate predicted masks.

Figure 31 Predict with pre-trained U-Net

The pre-trained U-Net remains its accuracy with real life scenes. The traffic signs and the

pavements are well segmented. The distortion in the predicted masks of the object is negli-

gible but overall, the correct segmentation is formed. The size of the model is relatively

TBU in Zlín, Faculty of Applied Informatics 65

bigger than U-Net but still small and reliable. It also generates predicted masks fast relatively

to U-Net model and faster than FCN.

Below is the summary of all parameters and output values from the models U-Net, FCN, and

U-Net with VGG16.

Table 4 Comparison of FCN, U-Net, and U-Net with VGG16

Total Params (Num -

Size)

Loss Val_loss Acc Val_acc val_time

U-Net 7962829 (7.49 MB) 0.6845 0.7902 0.8029 0.7783 373ms/step

FCN 49645558 (189.38 MB) 0.6785 0.7261 0.805 0.7917 1s/step

U-Net

VGG16

20927513 (79.83 MB) 0.6915 0.7503 0.8021 0.7843 745ms/step

TBU in Zlín, Faculty of Applied Informatics 66

7 FUTURE OF THE SOLUTION

The U-Net with pre-trained model potentially improves its accuracy by using different pre-

trained models such as DeepLabv3 from Google. DeepLabv3 is well defined model with

variety of different set of pre-train weights. The model can be adjusted layers and its algo-

rithms namely activation functions, loss functions, or optimizers.

It can be improved by improving the datasets used. The current solution uses single view

images from one camera which lack of information of an image such as depth, objects, or

sharpness. There would be a model to extract the depth of an image, to refine blurred objects

in far details or in such low quality of camera.

Beside the images from single view camera, there would be an aid from LiDAR camera that

capture the real details of the object by objecting millions of dots to front view. Using LiDAR

as an aid in trainsets and testsets, the accuracy can be improved.

The solution will be improved in the future with all the potential solutions mentioned above.

The next generation of it is a desire to extract and reconstruct the objects from one camera.

The motivation for this solution is that the 3D map can be more accuracy and reliable for

auto-pilot vehicles. By reconstructing the object, mathematics can be applied to calculate the

distance between colliders and can predict and extract more complex scenarios in real life

operation.

TBU in Zlín, Faculty of Applied Informatics 67

CONCLUSION

In conclusion, this thesis has aimed to enhance road segmentation from single-view images

by refining existing models to achieve superior solutions. The motivation of improving the

robustness and accuracy of semantic segmentation for road scene using sigle view images is

led to the novel approach of semantic segmentation that combines available solutions and

adapts the existing models to it. To summarize the solution, the use of FCN, U-Net, and an

upgraded U-Net variation based on VGG16 for road segmentation from single-view photos

has shown encouraging results, with each having individual strengths and shortcomings.

Both FCN and U-Net recognize common things with impressive precision, such as

automobiles, buildings, and plants. FCN thrives in simpler settings, easily segmenting

roadways, but U-Net shines in urban areas, successfully collecting tiny objects and managing

more complicated scenarios.

Despite their equivalent overall accuracy, FCN has faster prediction capabilities but suffers

from distortions in distant features and sky areas due to its considerably greater parameter

size and slower processing speed. Conversely, U-Net's reduced parameter set allows for

speedier predictions, but with limits in real-world applications, notably when anticipating

traffic signs and pavement items. However, its pre-trained version remains accurate and

effectively partitions objects with minimal distortion.

Moving forward, integrating the benefits of both models may improve road segmentation

performance by exploiting FCN's quick prediction capabilities and U-Net's efficacy in real-

world scenarios. Further study might look at solutions to address the observed flaws, such

as model tuning or dataset augmentation approaches. Finally, the use of these models has

the potential to improve road safety and enable autonomous navigation systems in a variety

of environments.

TBU in Zlín, Faculty of Applied Informatics 68

BIBLIOGRAPHY

[1] 1. JACK KARSTEN, Darrell M. West, HENRY-NICKIE, Makada, SUNIL JOHAL,

Daniel Araya, WHEELER, Tom, DARRELL M. WEST, Joseph B. Keller and J.

SCOTT BABWAH BRENNEN, Matt Perault. How artificial intelligence is trans-

forming the world. Brookings [online]. 27 June 2023. [Accessed 26 February 2024].

Available from: https://www.brookings.edu/articles/how-artificial-intelligence-is-

transforming-the-world/

[2] HAENLEIN, MICHAEL & KAPLAN, ANDREAS. (2019). A Brief History of Ar-

tificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. Cali-

fornia Management Review. 61. 000812561986492. 10.1177/0008125619864925.

[3] SARKER, I.H. Machine Learning: Algorithms, Real-World Applications and Re-

search Directions. SN COMPUT. SCI. 2, 160 (2021). https://doi.org/10.1007/s42979-

021-00592-x

[4] Z.R. YANG, Z. YANG, 6.01 - Artificial Neural Networks, Editor(s): Anders

Brahme, Comprehensive Biomedical Physics, Elsevier, 2014, Pages 1-17, ISBN

9780444536334, https://doi.org/10.1016/B978-0-444-53632-7.01101-1.

[5] 3. JACK KARSTEN, Darrell M. West, HENRY-NICKIE, Makada, SUNIL JOHAL,

Daniel Araya, WHEELER, Tom, DARRELL M. WEST, Joseph B. Keller and J.

SCOTT BABWAH BRENNEN, Matt Perault. How artificial intelligence is trans-

forming the world. Brookings [online]. 27 June 2023. [Accessed 26 February 2024].

Available from: https://www.brookings.edu/articles/how-artificial-intelligence-is-

transforming-the-world/

[6] 1. Iris. UCI Machine Learning Repository [online]. [Accessed 27 February 2024].

Available from: http://archive.ics.uci.edu/dataset/53/iris

[7] PATIL, Shreya U., 2024. Loss Functions and Optimizers in ML models - Geek Cul-

ture - Medium. Medium [online]. Available at: https://medium.com/geekcul-

ture/loss-functions-and-optimizers-in-ml-models-b125871ff0dc

[8] Anon., [b.r.]. Introduction to transforming data. Google for Developers [online].

Available at: https://developers.google.com/machine-learning/data-prep/trans-

form/introduction

https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s42979-021-00592-x

TBU in Zlín, Faculty of Applied Informatics 69

[9] SHUN-Ichi AMARI, Backpropagation and stochastic gradient descent method, Neu-

rocomputing, Volume 5, Issues 4–5, 1993, Pages 85-196, ISSN 0925-2312,

https://doi.org/10.1016/0925-2312(93)90006-O.

[10] WHITNEY K. Newey, Adaptive estimation of regression models via moment re-

strictions, Journal of Econometrics, Volume 38, Issue 3, 1988, Pages 301-339, ISSN

0304-4076, https://doi.org/10.1016/0304-4076(88)90048-6.

[11] 1. ROLLER, Joshua. A practical guide to working with testing and training data in

ML Projects. IEEE Computer Society [online]. 26 June 2023. [Accessed 29 Febru-

ary 2024]. Available from: https://www.computer.org/publications/tech-

news/trends/machine-learning-projects-training-testing

[12] KUZNETSOV, S.O. (2004). Machine Learning and Formal Concept Analysis. In:

Eklund, P. (eds) Concept Lattices. ICFCA 2004. Lecture Notes in Computer Sci-

ence(), vol 2961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-

24651-0_25

[13] MOHAIMINUL Islam, GUORONG Chen, SHANGZHU Jin. An Overview of

Neural Network. American Journal of Neural Networks and Applications. Vol. 5,

No. 1, 2019, pp. 7-11. doi: 10.11648/j.ajnna.20190501.12

[14] DRAELOS, Rachel, 2019. Measuring Performance: The Confusion Matrix. Glass

Box [online]. Dostupné z: https://glassboxmedicine.com/2019/02/17/measuring-

performance-the-confusion-matrix/

[15] KUNDU, Rohit, 2024. F1 Score in Machine Learning: Intro & Calculation. V7

[online]. Available at: https://www.v7labs.com/blog/f1-score-guide

[16] BHANDARI, Aniruddha, 2024. Guide to AUC ROC Curve in Machine Learning :

What is specificity? Analytics Vidhya [online]. Available

at: https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-

learning/

[17] KILIÇ, İlyurek, 2023. ROC Curve and AUC: Evaluating Model Performance - İlyu-

rek Kılıç - Medium. Medium [online]. Available at: https://medium.com/@il-

yurek/roc-curve-and-auc-evaluating-model-performance-c2178008b02

[18] JIN HUANG and C. X. Ling, "Using AUC and accuracy in evaluating learning

algorithms," in IEEE Transactions on Knowledge and Data Engineering, vol. 17, no.

3, pp. 299-310, March 2005, doi: 10.1109/TKDE.2005.50.

https://doi.org/10.1016/0925-2312(93)90006-O
https://doi.org/10.1007/978-3-540-24651-0_25
https://doi.org/10.1007/978-3-540-24651-0_25
https://glassboxmedicine.com/2019/02/17/measuring-performance-the-confusion-matrix/
https://glassboxmedicine.com/2019/02/17/measuring-performance-the-confusion-matrix/
https://www.v7labs.com/blog/f1-score-guide
https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/
https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/

TBU in Zlín, Faculty of Applied Informatics 70

[19] OLUDARE ISAAC ABIODUN, AMAN JANTAN, ABIODUN ESTHER

OMOLARA, KEMI VICTORIA DADA, NACHAAT ABDELATIF MOHAMED,

HUMAIRA ARSHAD. State-of-the-art in artificial neural network applications: A

survey. Heliyon 4 (2018) e00938. doi: 10.1016/j.heliyon.2018. e00938

[20] KROMYDAS, Bill and Bill KROMYDAS, 2024. Convolutional Neural Network:

A complete guide. LearnOpenCV – Learn OpenCV, PyTorch, Keras, Tensorflow

With Code, & Tutorials [online]. Available

at: https://learnopencv.com/understanding-convolutional-neural-networks-cnn/

[21] D. SCHERER, A. MULLER AND S. BEHNKE, "Evaluation of pooling operations

in convolutional architectures for object recognition", Proc. of the Intl. Conf. on Ar-

tificial Neural Networks, pp. 92-101, 2010.

[22] Anon., [b.r.]. Max pooling layer. NumPyNet [online]. Available at: https://nico-

curti.github.io/NumPyNet/NumPyNet/layers/maxpool_layer.html

[23] SCIENCE, Baeldung on Computer and Baeldung on Computer SCIENCE, 2024.

How ReLU and dropout layers work in CNNs | Baeldung on Computer Science.

Baeldung on Computer Science [online]. Available

at: https://www.baeldung.com/cs/ml-relu-dropout-layers

[24] SUPERANNOTATE AI INC., [b.r.]. Convolutional Neural Networks: 1998-2023

Overview | SuperAnnotate. SuperAnnotate AI Inc. [online]. Available

at: https://www.superannotate.com/blog/guide-to-convolutional-neural-networks

[25] B. DING, H. QIAN AND J. ZHOU, "Activation functions and their characteristics

in deep neural networks," 2018 Chinese Control And Decision Conference (CCDC),

Shenyang, China, 2018, pp. 1836-1841, doi: 10.1109/CCDC.2018.8407425.

[26] LI, Z. & NASH, W. & BRIEN, S. & QIU, Y. & GUPTA, RAJEEV & BIRBILIS,

NICK. (2022). cardiGAN: A Generative Adversarial Network Model for Design and

Discovery of Multi Principal Element Alloys.

[27] DOSHI, KETAN, 2022. Batch Norm Explained Visually — How it works, and why

neural networks need it. Medium [online]. Available at: https://towardsdatasci-

ence.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-

need-it-b18919692739

[28] ES-SABERY, FATIMA & HAIR, ABDELLATIF & QADIR, JUNAID & SAINZ

DE ABAJO, BEATRIZ & GARCIA-ZAPIRAIN, BEGONA & DE LA TORRE

https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
https://nico-curti.github.io/NumPyNet/NumPyNet/layers/maxpool_layer.html
https://nico-curti.github.io/NumPyNet/NumPyNet/layers/maxpool_layer.html
https://www.baeldung.com/cs/ml-relu-dropout-layers
https://www.superannotate.com/blog/guide-to-convolutional-neural-networks

TBU in Zlín, Faculty of Applied Informatics 71

DÍEZ, ISABEL. (2021). Sentence-Level Classification Using Parallel Fuzzy Deep

Learning Classifier. IEEE Access. PP. 1-1. 10.1109/ACCESS.2021.3053917.

[29] M. WANG, S. LU, D. ZHU, J. LIN AND Z. WANG, "A High-Speed and Low-

Complexity Architecture for Softmax Function in Deep Learning," 2018 IEEE Asia

Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 2018, pp.

223-226, doi: 10.1109/APCCAS.2018.8605654.

[30] GRÉGOIRE MESNIL, YANN DAUPHIN, XAVIER GLOROT, SALAH RIFAI,

YOSHUA BENGIO, IAN GOODFELLOW, ERICK LAVOIE, XAVIER MULLER,

GUILLAUME DESJARDINS, DAVID WARDE-FARLEY, PASCAL VINCENT,

AARON COURVILLE, JAMES BERGSTRA, Proceedings of ICML Workshop on

Unsupervised and Transfer Learning, PMLR 27:97-110, 2012.

[31] XU HAN, ZHENGYAN ZHANG, NING DING, YUXIAN GU, XIAO LIU, YUQI

HUO, JIEZHONG QIU, YUAN YAO, AO ZHANG, LIANG ZHANG, WENTAO

HAN, MINLIE HUANG, QIN JIN, YANYAN LAN, YANG LIU, ZHIYUAN LIU,

ZHIWU LU, XIPENG QIU, RUIHUA SONG, JIE TANG, JI-RONG WEN, JINHUI

YUAN, WAYNE XIN ZHAO, JUN ZHU, Pre-trained models: Past, present and fu-

ture, AI Open, Volume 2, 2021, Pages 225-250, ISSN 2666-6510,

https://doi.org/10.1016/j.aiopen.2021.08.002.

[32] RIJWAN KHAN, MOHAMMAD AYOUB KHAN, MOHAMMAD ASLAM

ANSARI, NIHARIKA DHINGRA, NEHA BHATI, Chapter 1 - Machine learning-

based agriculture, Editor(s): Mohammad Ayoub Khan, Rijwan Khan, Mohammad

Aslam Ansari, Application of Machine Learning in Agriculture, Academic Press,

2022, Pages 3-27, ISBN 9780323905503, https://doi.org/10.1016/B978-0-323-

90550-3.00003-5.

[33] FARHANA SULTANA, ABU SUFIAN, PARAMARTHA DUTTA, Evolution of

Image Segmentation using Deep Convolutional Neural Network: A Survey,

Knowledge-Based Systems, Volumes 201–202, 2020, 106062, ISSN 0950-7051,

https://doi.org/10.1016/j.knosys.2020.106062.

[34] TEJA KATTENBORN, JENS LEITLOFF, FELIX SCHIEFER, STEFAN HINZ,

Review on Convolutional Neural Networks (CNN) in vegetation remote sensing,

ISPRS Journal of Photogrammetry and Remote Sensing, Volume 173, 2021, Pages

24-49, ISSN 0924-2716, https://doi.org/10.1016/j.isprsjprs.2020.12.010.

https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.1016/B978-0-323-90550-3.00003-5
https://doi.org/10.1016/B978-0-323-90550-3.00003-5
https://doi.org/10.1016/j.knosys.2020.106062
https://doi.org/10.1016/j.isprsjprs.2020.12.010

TBU in Zlín, Faculty of Applied Informatics 72

[35] BADRINARAYANAN, VIJAY, et al. SegNet: A Deep Convolutional Encoder-De-

coder Architecture for Image Segmentation. 3, arXiv:1511.00561, arXiv, 10 Oct.

2016. arXiv.org, https://doi.org/10.48550/arXiv.1511.00561.

[36] EVAN SHELHAMER, JONATHAN LONG, AND TREVOR DARRELL, Mem-

ber, Fully Convolutional Networks for Semantic Segmentation, IEEE,

arXiv:1605.06211v1, https://arxiv.org/pdf/1605.06211v1.pdf

[37] LI, Y.; CHEN, Y.; LIU, G.; JIAO, L. A Novel Deep Fully Convolutional Network

for PolSAR Image Classification. Remote Sens. 2018, 10, 1984.

https://doi.org/10.3390/rs10121984

[38] OLAF RONNEBERGER, PHILIPP FISCHER, AND THOMAS BROX, Computer

Science Department and BIOSS Centre for Biological Signalling Studies, University

of Freiburg, Germany, arXiv:1505.04597

[39] KAREN SIMONYAN & ANDREW ZISSERMAN, Visual Geometry Group, De-

partment of Engineering Science, University of Oxford, {karen,az}@ro-

bots.ox.ac.uk, arXiv:1409.1556v6

[40] ABADI, MARTÍN; BARHAM, PAUL; CHEN, JIANMIN; CHEN, ZHIFENG;

DAVIS, ANDY; DEAN, JEFFREY; DEVIN, MATTHIEU; GHEMAWAT,

SANJAY; IRVING, GEOFFREY; ISARD, MICHAEL; KUDLUR, MANJUNATH;

LEVENBERG, JOSH; MONGA, RAJAT; MOORE, SHERRY; MURRAY,

DEREK G.; STEINER, BENOIT; TUCKER, PAUL; VASUDEVAN, VIJAY;

WARDEN, PETE; WICKE, MARTIN; YU, YUAN; ZHENG, XIAOQIANG

(2016). TensorFlow: A System for Large-Scale Machine Learning. Proceedings of

the 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI ’16). arXiv:1605.08695.

[41] PULLI, KARI; BAKSHEEV, ANATOLY; KORNYAKOV, KIRILL;

ERUHIMOV, VICTOR (1 April 2012). "Realtime Computer Vision with OpenCV".

doi:10.1145/2181796.2206309

[42] Anon., Models and pre-trained weights — Torchvision 0.17 documentation. (n.d.).

https://pytorch.org/vision/stable/models.html

[43] M. CORDTS, M. OMRAN, S. RAMOS, T. REHFELD, M. ENZWEILER, R.

BENENSON, U. FRANKE, S. ROTH, AND B. SCHIELE, “The Cityscapes Dataset

https://doi.org/10.48550/arXiv.1511.00561
https://arxiv.org/pdf/1605.06211v1.pdf
https://doi.org/10.3390/rs10121984
https://pytorch.org/vision/stable/models.html

TBU in Zlín, Faculty of Applied Informatics 73

for Semantic Urban Scene Understanding,” in Proc. of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016.

[44] N. GÄHLERT, N. JOURDAN, M. CORDTS, U. FRANKE, and J. DENZLER,

"Cityscapes 3D: Dataset and Benchmark for 9 DoF Vehicle Detection", 3D bounding

box annotations of vehicles for train and val sets (3475 annotated images). CVPRW

2020.

[45] Isola, Phillip, et al. Image-to-Image Translation with Conditional Adversarial Net-

works. arXiv:1611.07004, arXiv, 26 Nov. 2018. arXiv.org,

http://arxiv.org/abs/1611.07004.

[46] HUANG SY, HSU WL, HSU RJ, LIU DW. Fully Convolutional Network for the

Semantic Segmentation of Medical Images: A Survey. Diagnostics (Basel). 2022

Nov 11;12(11):2765. doi: 10.3390/diagnostics12112765. PMID: 36428824;

PMCID: PMC9689961.

[47] S, PREMANAND, 2023. Top 8 interview questions on UNET architecture. Analyt-

ics Vidhya [online]. Available at: https://www.analyt-

icsvidhya.com/blog/2023/01/top-8-interview-questions-on-unet-architecture/

[48] HAOFU LIAO, S. KEVIN ZHOU, JIEBO LUO, Chapter 5 - Segmentation: intra-

cardiac echocardiography contouring, Editor(s): Haofu Liao, S. Kevin Zhou, Jiebo

Luo, In The MICCAI Society book Series, Deep Network Design for Medical Image

Computing, Academic Press, 2023, Pages 89-107, ISBN 9780128243831,

https://doi.org/10.1016/B978-0-12-824383-1.00013-7.

[49] TEAM, K. (n.d.). Keras documentation: VGG16 and VGG19.

https://keras.io/api/applications/vgg/#vgg16-function

https://arxiv.org/abs/2006.07864
http://arxiv.org/abs/1611.07004
https://doi.org/10.1016/B978-0-12-824383-1.00013-7

TBU in Zlín, Faculty of Applied Informatics 74

LIST OF ABBREVIATIONS

AI Artificial Intelligence

SVM Support Vector Machine

k-NN k-nearest neighbors

NN Neural Network

PCA Principal component analysis

t-SNE t-distributed stochastic neighbor embedding

DQN Deep Q-Network

MSE Mean squared error

MAE Mean absolute error

SGD Stochastic gradient descent

Adam Adaptive Moment Estimation

AUC-ROC “Area Under the Curve” of the “Receiver Operating Characteristic”

ANN Artificial Neural Networks

CNN Convolutional Neural Network

RNN Recurrent Neural Network

tanh Hyperbolic Tangent

ReLU Rectified Linear Unit

H x W x C Height x Width x Channel as in RGB image

BN Batch Normalization

VGG16 Visual Geometry Group, VGG model with 16 layers

FCN Fully Convolutional Network

TBU in Zlín, Faculty of Applied Informatics 75

LIST OF FIGURES

Figure 1 Confusion Matrix [14] ... 20

Figure 2 Perfection classifier based on the curve [17] ... 22

Figure 3 A structure of a neural network [19]... 26

Figure 4 A Convolutional layer setup with three-channel colour images [20] 27

Figure 5 Convolutional layer operation [24]... 28

Figure 6 MaxPooling operation [22] .. 29

Figure 7 Dropout during training [23] .. 30

Figure 8 Sigmoid function [25] ... 31

Figure 9 Graph of ReLU ... 33

Figure 10 LeakyReLU compared to ReLU [26] ... 34

Figure 11 How a batch is normalized [27] ... 35

Figure 12 How batch normalization looks like [27] .. 36

Figure 13 Softmax graph [28].. 37

Figure 14 Typical CNN structure [34] ... 39

Figure 15 FCN basic structure [37] .. 41

Figure 16 U-Net architecture [38] .. 42

Figure 17 Example architecture of VGG-16 [32].. 43

Figure 18 Image display example of the Cityscapes dataset [45] 49

Figure 19 Splitting train sets and test sets... 50

Figure 20 DataGenerator code snippet ... 51

Figure 21 Prediction of FCN ... 55

Figure 22 Sample of Up block in U-Net... 56

Figure 23 Bottleneck part of U-Net ... 57

Figure 24 Up block architecture of the U-Net .. 57

Figure 25 AUC of the model U-Net ... 58

Figure 26 Predict masks using U-Net... 59

Figure 27 Training curve of 10 epochs for pre-trained model with VGG16 61

Figure 28 Prediction of complex scene on the road using pre-trained model VGG16

.. 62

Figure 29 Predict with FCN .. 63

Figure 30 Predict with U-Net .. 64

Figure 31 Predict with pre-trained U-Net ... 64

TBU in Zlín, Faculty of Applied Informatics 76

TBU in Zlín, Faculty of Applied Informatics 77

LIST OF TABLES

Table 1 Parameter are following these, with, A, A-LRN, B, C, D, and E configurations

[39] ... 44

Table 2 Classes in the datasets [43] ... 49

Table 3 Architecture of FCN model ... 54

Table 4 Comparison of FCN, U-Net, and U-Net with VGG16 65

TBU in Zlín, Faculty of Applied Informatics 78

APPENDICES

https://www.cityscapes-dataset.com/

https://www.cityscapes-dataset.com/

