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ABSTRAKT 

Tato práce se zaměřuje na vylepšení segmentace silnic v jednopohledových snímcích s 

využitím omezení existujících metod prostřednictvím adaptace metod hlubokého učení a 

transferového učení. Provádí analýzu nejmodernějších technik segmentace a zdůrazňuje 

aktuální výzvy v různých podmínkách prostředí. Strategie jsou navrženy tak, aby 

poskytovaly přehled o robustnosti algoritmu a využívaly schopnosti hlubokého učení pro 

extrakci funkcí a rozpoznávání vzorů. Ke komplexnímu testování algoritmů za určitých 

povětrnostních podmínek se používají nejmodernější datové sady. Výsledky jsou hodnoceny 

pomocí přesnosti, vyvolání, skóre F1 a výsledku segmentace vizuálních kontrol. To má 

přispět k náročné doméně funkcí bezpečného řízení a nahlédnutí do reálné efektivity modelů 

pro segmentaci silnic. 

 

Klíčová slova: Segmentace silnic, umělá inteligence, strojové učení, neuronová síť, 

segmentace obrazu

 

 

ABSTRACT 

This thesis focuses on enhancing road segmentation in single-view images using the limita-

tions of existing methods through the adaptation of deep learning and transfer learning meth-

ods. It conducts to analyse state-of-the-art segmentation techniques, highlighting current 

challenges in diverse environmental conditions. The strategies are designed to give insights 

about the algorithm robustness, leveraging the capabilities of deep learning for feature ex-

traction and pattern recognition. State-of-the-art datasets are used to test the algorithms com-

prehensively in certain weather conditions. Results are evaluated using precision, recall, F1 

score, and the segmentation outcome of visual inspections. This is to contribute to the chal-

lenging domain of safety driving functionalities and insights into the real-world effective-

ness of the models for road segmentation.  

 

Keywords: Road segmentation, AI, Artificial Intelligence, Machine Learning, Neural Net-

work, Image Segmentation
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INTRODUCTION 

Road segmentation in single-view photos is important in many real-world applications, in-

cluding autonomous driving, traffic monitoring, and urban planning. Road borders must be 

accurately delineated in order for cars and pedestrians to navigate safely and efficiently. 

However, creating strong and accurate road segmentation remains a difficult challenge due 

to a variety of environmental elements such as illumination, weather, and occlusions. 

This thesis aims to address the limitations of existing road segmentation methods in single-

view images by leveraging advancements in deep learning and transfer learning techniques. 

The primary motivation behind this research is to enhance the robustness and accuracy of 

road segmentation models, thereby improving their performance across diverse environmen-

tal conditions that some original model such as Urban scene segmentation using U-Net 

model cannot offer the robustness and accuracy of segmentation solutions. Many solutions 

with strong accuracy are also kept confidential so they are less accessible to researchers. 

This thesis will talk about the principles of Artificial Intelligence and the related topics such 

as Deep learning algorithms and Neural Networks and then give insights into the models 

which are used in segmentation and their limitations. A brief introduction to the tools which 

are used to aid the research of this topic will be stated.  

In summary, this thesis endeavours to advance the state-of-the-art in road segmentation by 

improving and advancing deep learning-based approaches using U-Net with VGG16 and to 

compare with state-of-the-art FCN and regular U-Net segmentation models that show the 

improvement of robustness and accuracy in single-view images, aiming to contribute to-

wards safer and more efficient navigation systems in real-world environments through me-

ticulous experimentation and evaluation. 
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 I  THEORY 
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1 ARTIFICIAL INTELLIGENCE 

Artificial intelligence (AI) is a multifaceted technology that is revolutionising various fields 

by allowing people to reconsider how we combine data, evaluate information, and use the 

resultant insights to make better decisions. AI is nowadays the most emerging tool that it can 

aid to our daily lives. In this section, a brief introduction of AI will be discussed and how AI 

models can be constructed [1]. 

1.1 History of AI 

Artificial intelligence was first introduced by computer scientists Marvin Minsky and John 

McCarthy in 1956. It was giving a breeze to gather scientists in order to research a new 

method of the interaction between humans and machines where machines could mimic hu-

man’s action [2].  

AI started to evolve even bigger which first integrated ruled-base systems using predefined 

rules to make decisions. It kept growing more complex with the desire of scientists that they 

wanted to expand the system into knowledge-based models [2]. 

Neural networks were later on getting attention from scientists which led to a significant role 

of machine learning algorithms in AI domain [2].  

There was a decline state of AI but then it resurged and became more powerful in computa-

tion and machine learning. Deep learning or deep neural networks became dominance of 

research fields. A huge number of new tools based on AI models were developed and intro-

duced to the society thanks to the computational power keeping increasing and improving 

year by year [2].  

Nowadays AI have been presenting in every corner of the world. It is a helpful tool to ease 

manual and time-consuming tasks of our daily activities. It will more and more become 

powerful with endless research in the field around the world. The challenges of AI are mo-

tivating to improve and expand it [2].  

1.2 Machine learning 

The study of developing algorithms and statistical models that allow computer systems to 

learn from and make predictions or judgments based on data is the focus of the artificial 

intelligence (AI) subfield of machine learning (ML). The main goal of machine learning is 
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to give computers the capacity to gradually get better at a given task without having to be 

explicitly programmed [3].  

Machine learning techniques can be broadly categorized into three main types based on the 

learning approach: supervised learning, unsupervised learning, and reinforcement learning. 

Each type serves different purposes and is suitable for specific types of tasks [4].  

1. Supervised Learning: 

        In supervised learning, the model is trained on a labelled dataset, where the input data 

is paired with corresponding target outputs. The goal is to learn a mapping from input fea-

tures to the target outputs, allowing the model to make predictions on new, unseen data [3].  

Common supervised learning tasks include: 

• Classification: Assigning labels to inputs (e.g., spam or not spam, image recognition) 

[3].  

• Regression: Predicting a continuous value (e.g., house prices, stock prices) [3].  

 

2. Unsupervised Learning: 

Unsupervised learning involves training a model on an unlabelled dataset without ex-

plicit target outputs. The model discovers patterns, structures, or relationships within the 

data. This type of learning is often used for exploratory data analysis and extracting in-

sights from data [3].  

Common unsupervised learning tasks include: 

• Clustering: Grouping similar data points based on patterns (e.g., customer seg-

mentation) [3].  

• Dimensionality Reduction: Reducing the number of features in a dataset (e.g., 

principal component analysis) [3].  

 

3. Reinforcement Learning: 

Reinforcement learning involves training a model to make sequences of decisions by inter-

acting with an environment. The model receives feedback in the form of rewards or penalties 

based on its actions, allowing it to learn optimal strategies. Reinforcement learning is often 

used in scenarios where an agent needs to make a series of decisions over time. Common 
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reinforcement learning applications include robotics, game playing, and autonomous sys-

tems [3].  

Additionally, within these main categories, there are several specific machine learning tech-

niques and algorithms. Here are some notable ones: 

Supervised Learning Algorithms: Linear Regression, Support Vector Machines (SVM), De-

cision Trees, Random Forest, k-Nearest Neighbors (k-NN), Neural Networks [4].  

Unsupervised Learning Algorithms: K-Means Clustering, Hierarchical Clustering, Principal 

Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Asso-

ciation Rule Learning (e.g., Apriori algorithm) [4].  

Reinforcement Learning Algorithms: Q-Learning, Deep Q Network (DQN), Policy Gradient 

Methods, Actor-Critic Models [4].  

These algorithms can be applied to various domains and tasks, depending on the nature of 

the data and the goals of the machine learning application. The choice of technique depends 

on factors such as the availability of labelled data, the nature of the problem, and the desired 

outcomes [4].  

 

1.3 Data modelling 

AI is a wide area of research. However, it is mainly focused on solving real-world problems 

in result of creating automated and smart systems in various application areas. There are 

many techniques classified for example machine learning, deep learning and neural net-

works, data mining, ruled-base knowledge, or fuzzy logic approaches [5].  

AI models rely on training data to recognise the patterns and make decisions or predictions 

based on a chosen problem. In that statement, a structured dataset is required to train an AI 

model and AI algorithms are used to extract, realise, and parameterise the patterns in the 

dataset [5].  

1.3.1 Datasets 

Datasets are collections of data that are used to train and test algorithms and models. These 

datasets are specifically applied to AI fields and they serve for certain purposes for example 
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the dataset of iris flower is used to classify three species of Iris (Iris setosa, Iris virginica and 

Iris versicolor).  

1.3.2 Data transformation 

Data transformation is a task that converts raw and unorganised data from various sources 

to a usable and structured data. It is mandatory to convert non-compatible data to usable data 

such as converting string value to numeric value because algorithms are operations on ma-

trices so a string cannot operate with mathematic operations [6].  

Since the size of data is various, data need to be resized to a fixed size because linear models, 

for example, have fixed number of input nodes, therefore, it is expected to have same size 

on the dataset.  

It is necessary to visualise data. Visualisation can help to find anormal data fractals in the 

dataset. By that means, noise can be reduced during training and improving outcoming re-

sults [6].  

1.4 Optimizer 

The precision of a model's forecasts is assessed using a loss function. For every training 

sample, it computes the discrepancy between the expected and actual output. 

Minimizing the loss function is the model's objective. The most effective way to determine 

which combination of parameters will yield the most accurate forecasts is to minimize the 

loss function [7].  

 

1.4.1 Mean squared error (MSE) 

MSE is a widely used loss function in regression issues. It calculates the average squared 

difference between the projected and actual outputs. 

This loss function is sensitive to outliers, which implies that a few extremely big mistakes 

can have a significant impact on the overall value of the loss function. However, MSE is a 

common choice due to its differentiability and computational efficiency. 
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A Python function to calculate the mean squared error (MSE) for a given set of predicted 

values and actual values is shown as below [7]:  

def mean_squared_error(predicted_values, actual_values): 

    # calculate the squared difference between predicted and actual val-

ues 

    squared_differences = [(pred - act) ** 2 for pred, act in zip(pre-

dicted_values, actual_values)] 

    # calculate the mean of the squared differences 

    mse = sum(squared_differences) / len(squared_differences) 

    return mse 

1.4.2 Mean Absolute Error (MAE) 

MAE is another popular loss function for regression problems. MAE calculates the average 

absolute difference between anticipated and actual values. It responds less to outliers than 

MSE  [7]. 

def mean_absolute_error(predicted_values, actual_values): 

 

    # calculate the absolute difference between predicted and actual val-

ues 

    absolute_differences = [abs(pred - act) for pred, act in zip(pre-

dicted_values, actual_values)] 

    # calculate the mean of the absolute differences 

    mae = sum(absolute_differences) / len(absolute_differences) 

    return mae 

1.4.3 Cross-entropy 

Cross-entropy loss is a commonly used loss function in classification issues. It quantifies the 

difference between the expected and actual probability distributions. 

This loss function is especially valuable when the classes are unbalanced, since it can assist 

to balance the mistakes caused in each class. Depending on the data, you can utilize either 

Binary or Categorical Cross-entropy [8]. 

 

def cross_entropy(y_pred, y_true): 

    # ensure that the predicted probabilities are in the range [0, 1] 

    y_pred = np.clip(y_pred, 1e-15, 1 - 1e-15) 

 

    # calculate the cross-entropy loss 

    loss = -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - 

y_pred)) 

 

    return loss 
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It is important to note that this function assumes that the input arrays have the same number 

of elements and that the true labels are binary (i.e., either 0 or 1). If the labels are multi-class, 

one-hot encoding should be applied before calling this function. 

1.5 Loss function 

Once the loss function has been created, an optimizer is used to modify the model's param-

eters in order to minimize the loss function. It's also worth noting that these optimizers may 

be fine-tuned using various variables or hyperparameters like learning rate, momentum, de-

cay rate, and so on. 

These optimizers can also be used with other strategies, such as learning rate scheduling, to 

make the model perform even better. 

Below are the three most commonly used optimizers. [9] 

1.5.1 Gradient Descent 

Gradient descent is one of the most widely used optimizers. It adjusts the model’s parameters 

by taking the derivative of the loss function with respect to the parameters and updating the 

parameters in the direction of the negative gradient. Gradient descent is simple to implement, 

but it can be slow to converge when the loss function has many local minima [9].  

def gradient_descent(model, X, y, learning_rate, num_iterations): 

    # obtain the number of training examples 

    m = X.shape[0] 

 

    for i in range(num_iterations): 

        # make predictions using the current model parameters 

        y_pred = model.predict(X) 

 

        # calculate gradients 

        grads = model.gradient(X, y, y_pred) 

 

        # update model parameters 

        for j in range(len(model.params)): 

            model.params[j] = model.params[j] - learning_rate * grads[j] 

/ m 

 

    return model 

It first obtain the number of training examples and then it iterates over the number of itera-

tions. At each iteration it makes predictions using the current model parameters and then it 

calculates gradients using the provided model.gradient function. Finally, it updates the 
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model parameters by subtracting the product of learning rate and gradients by the number of 

examples [9].  

1.5.2 Stochastic Gradient Descent (SGD) 

SGD is an extension of gradient descent. It updates the model’s parameters after each train-

ing sample, rather than after each epoch. This makes it faster to converge, but it can also 

make the optimization process more unstable. Stochastic gradient descent is often used for 

problems with a large amount of data [9].  

def stochastic_gradient_descent(model, X, y, learning_rate, num_itera-

tions): 

     

    # obtain the number of training examples 

    m = X.shape[0] 

 

    for i in range(num_iterations): 

        # shuffle the training data 

        X, y = shuffle(X, y) 

 

        # iterate over each training example 

        for j in range(m): 

            # make predictions using the current model parameters 

            y_pred = model.predict(X[j]) 

 

            # calculate gradients 

            grads = model.gradient(X[j], y[j], y_pred) 

 

            # update model parameters 

            for k in range(len(model.params)): 

1.5.3 Adaptive Moment Estimation (Adam) 

Adam is an optimizer that combines the advantages of gradient descent and SGD. It uses the 

first and second moments of the gradients to adjust the learning rate adaptively. Adam is 

generally considered to be one of the best optimizers for deep learning [10].  

The Adam optimizer is often a good choice for problems with a large number of parameters. 

import numpy as np 

 

def Adam(params, grads, learning_rate=0.001, beta1=0.9, beta2=0.999, ep-

silon=1e-8): 

    # initialize the first and second moment estimates 

    m = [np.zeros_like(p) for p in params] 

    v = [np.zeros_like(p) for p in params] 

     

    # initialize the time step 

    t = 0 
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    # update the parameters 

    for p, g, m_, v_ in zip(params, grads, m, v): 

        t += 1 

        m_ = beta1 * m_ + (1 - beta1) * g 

        v_ = beta2 * v_ + (1 - beta2) * np.power(g, 2) 

        m_hat = m_ / (1 - beta1 ** t) 

        v_hat = v_ / (1 - beta2 ** t) 

        p 

 

1.6 Training and Testing 

In machine learning field or in artificial intelligence field in general, training and testing are 

essential components that help algorithms recognise the patterns of existing data and make 

decisions and possibly improve accuracy over time [11].  

1.6.1 Training 

Training refers to providing an algorithm the data usually labelled or categorised to guide it 

recognising the patterns inside the data. The dataset can be various from text to image, plain 

numbers to documents [11].  

To reveal the accuracy of the algorithm, testing is performed to see how accurate and under-

standable the algorithm is to the provided data [11].  

1.6.2 Testing 

Testing is performed after training finished. Testing data will try to use the data in the testing 

set in the algorithm that is trained previously. The output will be compared to the result of 

the training set to create a representation based on input-output correlations, allowing it to 

generate accurate predictions when exposed to new, unseen data [12].  

The concept of testing in machine learning involves evaluating the model's generalization 

ability, assessing its accuracy, and identifying potential issues. Here are key components of 

testing in machine learning [11]:  

1. Training and Testing Data Split: 

o The dataset is typically divided into two subsets: a training set used to train 

the model and a testing (or validation) set used to assess its performance on 

unseen data. 
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o The goal is to simulate the model's performance on real-world data it has not 

encountered during training [11].  

2. Cross-Validation: 

o To address concerns about the randomness of data splitting, cross-validation 

techniques are often employed. Common methods include k-fold cross-vali-

dation, where the dataset is divided into k subsets, and the model is trained 

and evaluated k times, using a different subset as the test set in each iteration 

[12].  

3. Performance Metrics: 

o Various metrics are used to evaluate the model's performance, depending on 

the nature of the problem. Common metrics include accuracy, precision, re-

call, F1 score, and area under the receiver operating characteristic curve 

(AUC-ROC) for classification tasks. Mean Squared Error (MSE) and R-

squared are commonly used for regression tasks [12].  

4. Overfitting and Underfitting: 

o Testing helps identify issues of overfitting (model performs well on training 

data but poorly on new data) and underfitting (model fails to capture patterns 

in the training data) [12].  

o Regularization techniques and hyperparameter tuning are often applied based 

on testing results to address these issues [12].  

5. Confusion Matrix and Error Analysis: 

o A confusion matrix provides a detailed breakdown of the model's perfor-

mance, showing true positive, true negative, false positive, and false negative 

counts [12].  

o Error analysis involves investigating specific instances where the model 

makes mistakes, providing insights into potential improvements [12].  

6. A/B Testing (Deployment Testing): 

o In deployment, A/B testing can be used to compare the performance of the 

machine learning model with other models or baseline approaches. 

o Continuous monitoring and testing are essential to ensure the model's effec-

tiveness over time, considering changing data distributions [12].  

7. Ethical and Bias Testing: 
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o Testing should also include ethical considerations, checking for biases in the 

model's predictions and ensuring fairness across different demographic 

groups [12].  

o Regular audits and fairness assessments help mitigate bias-related issues [12].  

8. Robustness Testing: 

o Assessing the model's robustness involves testing its performance under var-

ious conditions, such as different input data distributions, noise, or adversar-

ial attacks [12].  

1.7 Measurement 

To measure the accuracy of trained models, there are many methods to show the result. 

Along with the output results of each training epoch, some formal methods are used to meas-

ure the accuracy and the loss, for example F1 scores or Confusion Matrix. This chapter will 

briefly introduce two measurement methods: F1 Scores and Confusion Matrix. 

1.7.1 Confusion Matrix 

Confusion Matrix, as its name implies, provides us with a matrix as an output and details 

the model's overall performance. 

Assume for a moment that we have a binary classification issue. We have a few examples 

that fall into either the YES or NO categories. Additionally, we have an in-house classifier 

that assigns a class to an input sample that is given. We obtain the following outcome 

when 165 samples are used to test our model [14].  
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Figure 1 Confusion Matrix [14] 

There are 4 important terms of Figure 1 [14]:  

• True Positives: The cases in which we predicted YES and the actual output was also 

YES. 

• True Negatives: The cases in which we predicted NO and the actual output was NO. 

• False Positives: The cases in which we predicted YES and the actual output was NO. 

• False Negatives: The cases in which we predicted NO and the actual output was 

YES. 

Accuracy for the matrix can be calculated by taking average of the values lying across the 

“main diagonal” [14]:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒
 (2) 

 

1.7.2 F1 Score 

F1 Score is the Harmonic Mean of accuracy and recall. The range of F1 Score is [0, 1]. It 

indicates a classifier's precision (the number of cases properly classified) and robustness. 
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High accuracy but poor recall produces incredibly precise results, but it also misses a huge 

number of occurrences that are difficult to identify. Our model's performance improves as 

the F1 Score increases. It may be mathematically represented as follows [15]:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (1) 

 

    Precision: It is the number of correct positive results divided by the number of positive 

results predicted by the classifier [15].  

    Recall: It is the number of correct positive results divided by the number of all relevant 

samples (all samples that should have been identified as positive). 

The F1 score outperforms basic accuracy in situations where an unbalanced dataset may 

distort the accuracy statistic. The F1 score makes up for this by taking into consideration 

both accuracy and recall, giving a more complete picture of the model's performance. How-

ever, this measurement is appropriate for binary classification solutions rather than sophis-

ticated classification and segmentation [15].  

1.7.3 AUC ROC Curve 

The AUC ROC curve is a performance indicator in machine learning that assesses the effec-

tiveness of a binary classification model. Here's an explanation of what it stands for: 

Receiver Operating Characteristics (ROC): This is a graphical display that depicts a binary 

classifier system's diagnostic capacity when the discrimination threshold is changed. It com-

pares the True Positive Rate (TPR) against the False Positive Rate (FPR) at different thresh-

olds [16].  

AUC (region Under the ROC Curve): This metric captures the complete two-dimensional 

region beneath the ROC curve. It calculates an aggregate measure of performance across all 

categorization criteria. The AUC value is between zero and one. A model with flawless pre-

dictions has an AUC of 1, whereas a model with all wrong predictions has an AUC of zero. 

A higher AUC value implies that the model performs better in differentiating between posi-

tive and negative classifications [16].  

The ROC curve is especially valuable since it is independent of the classification threshold 

and provides an indication of how effectively the model separates the two classes as in the 

Figure 2. The AUC provides a single numerical assessment of the model's performance by 
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taking into account all conceivable thresholds. It is especially effective when dealing with 

unbalanced datasets in which one class far outnumbers the other [16].  

 

Figure 2 Perfection classifier based on the curve [17] 

A machine learning classification model may be used to predict the data point's actual class 

or the chance of belonging to distinct classes, with an AUC-ROC curve used for assessment. 

The latter provides us greater influence over the outcome. We may choose our own threshold 

for interpreting the classifier's results, which is useful when examining the intricacies of the 

ROC curve. This method is sometimes more wise than developing a whole new model [18].  

Changing the criteria for categorizing positive data points will accidentally modify the 

model's sensitivity and specificity. Depending on whether we want to reduce the amount of 
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False Negatives or False Positives, one of these criteria will most likely perform better than 

the others [18].  

In an AUC-ROC curve, a higher X-axis value suggests a greater number of false positives 

than true negatives. A higher Y-axis value suggests a greater number of true positives than 

false negatives. So, the threshold is determined by the capacity to naturally balance false 

positives and false negatives [18].  
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2 NEURAL NETWORKS 

Neural networks are conceptualized after the human brain to process information. While 

they draw inspiration from biological processes, they don’t precisely mimic the actual work-

ings of the brain. There are many varieties of neural networks, some are listed as below [13]:  

Artificial Neural Networks (ANNs), which are effective for tackling intricate challenges 

[13].  

Convolutional Neural Networks (CNNs), which excel in addressing problems related to 

computer vision [13].  

Recurrent Neural Networks (RNNs), which are adept at handling tasks in the realm of natural 

language processing [13]. 

2.1 Fundamental of Neural Networks 

Neural networks are a branch of machine learning algorithms. They have been used widely 

in data mining for various subjects. Before we explore the neural networks, machine learning 

is revived to express the certainty of this field in order to give a fundamental understanding 

of artificial intelligence concept [4].  

2.1.1 Neural network’s structure 

A typical neural network consists of three main types of layers: the input layer, one or more 

hidden layers, and the output layer. Each layer contains nodes, also known as neurons or 

units. The connections between nodes are associated with weights, which are adjusted during 

the training process to enable the network to learn from data. Here's a general structure of a 

feedforward neural network, which is one of the most common types  [13]:  

• Input Layer: 

        The input layer receives the features or input values of the dataset. Each node in this 

layer represents a feature, and the number of nodes corresponds to the number of input fea-

tures  [13].  

• Hidden Layers: 

        Between the input and output layers, there can be one or more hidden layers. These 

layers help the neural network learn complex patterns and representations in the data  [13].  
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        Each node in a hidden layer is connected to every node in the previous and next layers, 

and each connection has an associated weight [13].  

• Output Layer: 

        The output layer produces the final predictions or classifications. The number of nodes 

in this layer depends on the nature of the task (e.g., binary classification, multi-class classi-

fication, regression) [13].  

        The output layer's activation function is often chosen based on the task, such as sigmoid 

for binary classification or softmax for multi-class classification  [19].  

• Connections, Weights, and bias: 

        Each connection between nodes has a weight associated with it. During training, these 

weights are adjusted to minimize the difference between the predicted output and the true 

target values [19].  

        The weighted sum of inputs to a node, along with a bias term, is passed through an 

activation function to determine the node's output  [19].  

Bias nodes in neural networks serve a similar purpose to the intercept in linear regres-

sion, represented as (y = ax + b), where “a” is the slope and “b” is the intercept. The primary 

role of a bias is to add a trainable constant value to the node, aside from the standard inputs 

it receives. Crucially, the bias allows for shifting the activation function left or right, which 

is a key factor in the successful training of Artificial Neural Networks [19].  

• Activation Function: 

        Each node, or neuron, typically has an activation function that introduces non-linearity 

to the model in the Figure 3. Common activation functions include sigmoid, hyperbolic tan-

gent (tanh), and rectified linear unit (ReLU) [19].  
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Figure 3 A structure of a neural network [19] 

2.2 Layers and Activation Functions 

The net inputs of a neural network are the most important components of its architecture. 

They are processed and transformed into an output result known as the activation of the unit 

using a function known as the activation function, threshold function, or transfer function—

a scalar to scalar transformation  [20].  

Squashing functions allow a neuron to output in a limited range and at a constrained ampli-

tude. A squashing function limits the amplitude of the output signal [20].  

2.2.1 Layers 

The convolutional layer is the most commonly utilized, if not the sole, layer in image-related 

models. Convolutional neural networks have the capacity to identify and extract features 

independent of their position in provided pictures; this is a required attribute in urban and 

road scenes with stochastic components such as automobiles, pedestrians, and pavement 

[20].  

ConvLayer 
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The Convolutional Layer is the fundamental layer of Convolutional Neural Networks and 

may be thought of as the neural networks' 'eyes'. A convolutional layer's neurons look for 

specific traits. The input to a convolutional layer is simply a two-dimensional array that 

might represent the network's input image or the output of a previous layer as shown in the 

Figure 4. The first convolutional layer receives data from the input image. Typically, there 

are two types of input pictures: single-channel grayscale images and three-channel colour 

images [20].  

 

Figure 4 A Convolutional layer setup with three-channel colour images [20] 

In a CNN, activation functions are typically applied after each convolutional layer and fully 

connected layer. However, they are not applied after pooling layers [20].  

The math behind is basically described as following Figure 5: 
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Figure 5 Convolutional layer operation [24] 

Consider a set of K learnable filters, each with dimensions and channels distinct from the 

input, and an input image with dimensions H x W x C, such as an RGB image with three 

channels. During 2D convolution, each filter glides across the input, multiplying components 

with pixels that match. The findings are then combined to get a single output value for each 

point. Similar to matrix multiplication, this operation distributes weights throughout the 

filter, providing the impression of a fully connected layer. Notably, convolutional layers do 

not make a direct link between the input and output pixels. The convolution technique is 

repeated K times, once for each filter, to produce the output feature map. The resulting 

feature maps are then layered along the depth axis. The size of the feature map produced by 

the process is determined by the input dimensions, filter size, stride, and padding [24].  

Pooling layer - MaxPooling 

The output of the max-pooling layer is given by the maximum activation over non-overlap-

ping rectangular regions of size (Kx,Ky). Max-pooling creates position invariance over larger 

local regions and down-samples the input image by a factor of Kx and Ky along each direc-

tion. Max-pooling leads to faster convergence rate by selecting superior invariant features 

which improves generalization performance [21].  

As shown in Figure 6, the algorithm will choose the biggest number in the regions of size 

(Kx,Ky) and put it in the output matrix. 
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Figure 6 MaxPooling operation [22] 

Dropout 

Dropout is a regularization method used in neural networks, specifically deep learning mod-

els, to minimize overfitting. During training, a subset of neurons in a layer are deactivated 

at random. This mechanism reduces the dependency of neurons and drives the network to 

learn more robust properties [23].  

1. Regularization: Dropout is a regularization strategy that prevents overfitting by 

minimizing the complicated co-adaptations of neurons [23].  

2. Improved Generalization: Dropout allows the model to acquire more generalizable 

properties by preventing it from being overly reliant on specific neurons [23].  

3. Reduction of Model Complexity: Dropout can simplify the model by lowering the 

effective network size, resulting in quicker training and lower computing costs [23].  
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Figure 7 Dropout during training [23] 

During training as in Figure 7, dropout randomly sets a fraction of the input units to zero 

with a probability pp, typically chosen between 0.2 and 0.5. This means that the output of 

these units is temporarily ignored during the forward and backward passes of training. 

Dropout is only applied during training, not during inference or evaluation  [23]. 

2.2.2 Activation functions 

The activation function defines an artificial neuron's activity range. This is applied to the 

neuron's entire weighted input data. An activation function is nonlinear. If an activation func-

tion is not employed, the only operations involved in calculating the output of a multilayer 

perceptron are the linear products between the weights and the input values [25].  

One linear operation may be conceived of as a collection of successive linear operations. 

Using a non-linear activation function, on the other hand, leads the artificial neural network 

to become nonlinear, causing the function that approximates the neural network to become 

nonlinear as well. According to the approximation theorem, a universal function approxima-

tor is a multilayer perceptron that has one hidden layer and a nonlinear activation function 

[25].  

Sigmoid 

The sigmoid function is one of the most often used activation functions. It is commonly 

understood that there are two stages to modeling and training a multi-layer neural network: 

forward propagation and reverse propagation. In addition, during backpropagation, the de-

rivatives of the activation functions must be computed in each layer. Because the sigmoid 

function is continuous, it may be differentiated anywhere  [25].  
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𝑔(𝑥) =
1

1 + 𝑒−𝑥
(2) 

 

In neural networks, the sigmoid function serves as an activation function. To refresh your 

memory on what an activation function is, consider the function that an activation function 

plays in one layer of a neural network in the image below. An activation function is applied 

to a weighted sum of inputs, and the resultant output is used as an input for the subsequent 

layer [25].  

It is guaranteed that the output of a neuron will always be between 0 and 1 as in the Figure 

8 when the neuron's activation function is a sigmoid function. The output of this unit would 

also be a non-linear function of the weighted sum of inputs because the sigmoid is a non-

linear function. A sigmoid unit is a kind of neuron that uses the sigmoid function as an acti-

vation function [25].  

 

Figure 8 Sigmoid function [25] 
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ReLU 

In the realm of Convolutional Neural Network, the Rectified Linear Unit (ReLU) is a cor-

nerstone that gives a simple solution to some of the industry's most persistent problems. 

ReLU is just a simple but strong activation function that returns the input when it is positive 

and zero otherwise. Its simplicity belies its potency, as it provides critical nonlinearity into 

neural network design, fundamentally altering neural networks. ReLU paves the way for 

more accurate and nuanced learning by allowing the network to detect more complex link-

ages within data  [25].  

𝑓(𝑥) = max(0, 𝑥) (3) 

 

Saturated functions like sigmoid and tanh pose complications with back propagation. As the 

neural network construction progresses, the gradient signal begins to disappear, a phenome-

non known as the "vanishing gradient". This occurs because the gradient of such functions 

is usually always close to zero, except in the center. However, the ReLU has a constant 

gradient for positive input. Although the function is not differentiable, it can be disregarded 

during implementation  [25].  

The ReLU generates a sparse representation in the Figure 9. Because the zero in the gradient 

results in a full zero. However, sigmoid and tanh always provide non-zero outcomes from 

the gradient, which may not be advantageous for training  [25].  
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Figure 9 Graph of ReLU 

One of ReLU's unique qualities is its ability to effectively handle the vanishing gradient 

problem, which has long been a hurdle in neural network training. ReLU solves this problem, 

allowing for quicker learning and better performance than its predecessors, such as the sig-

moid and hyperbolic tangent functions. This feature not only reduces training time, but also 

enhances the network's capacity to learn complex patterns from data. Furthermore, ReLU's 

fundamental nature makes it easier to train models, speeding up development and usually 

generating superior results in a wide range of applications [25].  

Many neural network topologies, including CNNs and multilayer perceptrons, use ReLU as 

their default activation function. Its broad use arises from its ability to permit sparse activa-

tions in networks and expedite training procedures. This widespread adoption emphasizes 

the importance of ReLU in modern deep learning, as it serves as the foundation for a wide 

range of models and applications. ReLU remains a trusty companion as the field evolves, 

allowing neural networks to manage the complexities of real-world data with unparalleled 

efficacy and efficiency  [25].  
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LeakyReLU 

Leaky ReLU is an improvised version of ReLU function where for negative values of x, 

instead of defining the ReLU functions’ value as zero in the Figure 10, it is defined as ex-

tremely small linear component of x. It can be expressed mathematically as [26]:  

𝑓(𝑥) =  {
0.01𝑥, 𝑥 <  0

𝑥, 𝑥 ≥  0
 (4) 

 

 

Figure 10 LeakyReLU compared to ReLU [26] 

BatchNormalization 

Batch normalization (BN) is a technique to normalize activations in intermediate layers of 

deep neural networks. Its tendency to improve accuracy and speed up training have estab-

lished BN as a favourite technique in deep learning. BN is an indispensable component in 

many deep neural networks. BN has been widely used in various areas such as machine 

vision, speech and natural language processing [27].  

When feeding data into a deep learning model, it is common practice to normalize it to zero 

mean and unit variance. Assume the input data has several features (x1, x2, …xn) , as shown 

in the Figure 11. Each characteristic may have a separate range of values. For example, val-

ues for feature x1 may vary from 1 to 5, but values for feature x2 may range from 1000 to 

99999. We compute the mean and variance for each feature column independently, using the 

values from all samples in the dataset. Next, use the formula in Figure 11 to normalize the 

data [27].  
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Figure 11 How a batch is normalized [27] 

Normalizing data has an effect. The original values (blue) are now centered around zero 

(red). This guarantees that all feature values are now on a consistent scale as shown in Figure 

12 [27].  
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Figure 12 How batch normalization looks like [27] 

  

Softmax 

Softmax is a mathematical function that converts a vector of real numbers into a probability 

distribution. It's commonly used as the activation function in the output layer of a neural 

network when the task involves multi-class classification. Softmax ensures that the output 

probabilities sum up to 1, making it suitable for modeling the probability distribution over 

multiple classes [29].  

Given an input vector 𝑧 = [𝑧1, 𝑧2, . . . , 𝑧𝑛], the softmax function computes the probability 

distribution 𝜎(𝑧) = [𝑝1, 𝑝2, . . . , 𝑝𝑛] as follows [29]:  

𝑝𝑖 =
𝑒𝑧𝑖

∑ 𝑒 𝑧𝑗𝑛
𝑗=1

(4) 

 

where: 
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• 𝑒 is the base of the natural logarithm (Euler's number). 

• 𝑧𝑖  is the 𝑖𝑡ℎ element of the input vector. 

• ∑ 𝑒𝑧𝑗𝑛
𝑗=1  is the sum of the exponentiated elements of the input vector. 

The softmax function effectively "squashes" the input values into the range (0, 1) and ensures 

that the resulting values sum up to 1, thus representing a probability distribution as Figure 

13 [29].  

 

 

Figure 13 Softmax graph [28] 

2.3 Pre-trained models and transfer learning 

Transfer learning is a potent machine learning technique that makes use of insights from the 

resolution of one problem to improve performance on a related but different task. Transfer 

learning enables the model to profit from prior information acquired during training on a 

different source task, as opposed to starting from scratch when training for a particular target 

job. This method is especially useful when obtaining labelled data for the target job is costly 

or scarce. Transfer learning has shown to be a useful tactic in a variety of fields, allowing 

models to perform better on tasks with little data available, generalize more effectively, and 
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achieve faster convergence by transferring acquired representations, patterns, and insights 

[30].  

2.3.1 Pre-trained models 

Pre-trained models are neural network designs that have been trained on large datasets, usu-

ally for image classification, object detection, natural language processing, or other machine 

learning applications. These models are trained on massive volumes of data to produce use-

ful representations of the original data. They initially assign a set of weights and bias which 

can be fine-tuned for a specific task. PyTorch gives an option to load the pre-trained weights 

to the models from their libraries. The following section will describe the pre-trained models 

utilised and their attributes in relation to the datasets [31].  

2.3.2 Transfer learning 

Transfer learning is a machine learning technique in which a model learned on one job is 

modified or fine-tuned to perform a different but related task. Transfer learning is the process 

by which knowledge obtained from addressing one problem is transferred and applied to 

another, but usually similar problem. This is especially advantageous when the task at hand 

has limited labelled data, because the pre-trained model can apply knowledge gained from a 

bigger dataset to boost performance on the new task [32].  

The following steps are usually involved in the process: 

    Pre-training: Use a sizable dataset to train a CNN model for a task such as image catego-

rization. The model is able to extract broad characteristics and trends from the data through 

this method [32].  

    Transfer Learning: Adapt the previously trained CNN to the semantic segmentation task 

by making changes to it. This usually entails changing the network's fully linked layers or 

replacing them to meet segmentation's output needs [32].  

    Fine-tuning: You can choose to use the new dataset with labeled segmentation masks to 

test the adjusted model. The model can now modify its learned features to better suit the new 

dataset thanks to this phase [32]. 
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2.4 Segmentation 

Image segmentation is a method of segregating different objects inside an image into differ-

ent regions. Convolutional neural networks are a part of deep learning models that shows 

outstanding outcomes of different computer vision tasks including segmentation [33].  

This chapter will introduce about Convolutional neural networks and image segmentation, 

and how CNNs are used to train in image segmentation. Next transfer learning method will 

be presented to express the efficiency of the method in image segmentation. 

2.4.1 Convolutional Neural Networks (CNNs) 

Like any standard neural network model, Convolutional Neural Networks (CNNs) follow a 

structure where neurons are arranged in layers, enabling the learning of hierarchical repre-

sentations. Connections between neurons across layers involve weights and biases. The first 

layer serves as the input layer, such as remote sensing data, while the final layer produces 

the output, like a classification prediction for plant species. Hidden layers in between modify 

the feature space of the input to align with the desired output. CNNs specifically incorporate 

a convolutional layer among the hidden layers to capture patterns, particularly spatial pat-

terns in the context of this review which can be seen in Figure 14 [34].  

 

Figure 14 Typical CNN structure [34] 
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2.5 Semantic segmentation models 

Semantic segmentation models play a vital role in computer vision field. They take care of 

pixel-level analysis precisely. There are many famous semantic segmentation models to in-

crease the accuracy and the comprehensiveness towards the datasets.  

2.5.1 SegNet 

The architecture of SegNet is encoder-decoder based. Its purpose is to take an image as input 

and generate a pixel-by-pixel label map. Through the use of many convolutional and pooling 

layers, the encoder is able to extract high-level information. SegNet's decoder network, 

which upsamples and creates a segmentation map using the spatial pooling indices created 

during max-pooling in the encoder phase, is the main innovation in the system. This type of 

upsampling helps to maintain the output's fine-grained features while still being memory-

efficient [35].  

2.5.2 Fully Convolutional Network 

Fully Convolutional Network is referred to as FCN. This kind of neural network design is 

mostly applied to computer vision applications involving semantic segmentation. In order to 

divide objects or areas of interest, semantic segmentation entails dividing a picture into many 

segments and giving a class name to each pixel [37].  

The term "fully convolutional" refers to FCNs as in Figure 15 since they only include con-

volutional layers and no fully linked layers. Because of this, they can process input of any 

size and generate output with comparable spatial dimensions, which makes them appropriate 

for jobs where the output must be spatially matched with the input, such as semantic seg-

mentation [37].  
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Figure 15 FCN basic structure [37] 

Convolutional layers are created by FCN from fully linked layers, allowing for an effective 

classification net for end-to-end dense learning. By this means, they can enable precise clas-

sification as well as segmentation for images [37].  

2.5.3 U-Net 

Olaf Ronneberger et al. created the U-Net, a convolutional network architecture, for biomed-

ical image segmentation at the University of Freiburg in Germany in 2015. It allows for 

accurate and speedy image segmentation [38].  

With four encoder blocks and four decoder blocks joined by a bridge, U-Net is a U-shaped 

encoder-decoder network design in Figure 16. At each encoder block, the number of filters 

(feature channels) is doubled and the spatial dimensions are cut in half by the encoder net-

work (tracing path). Similarly, the number of feature channels is cut in half and the spatial 

dimensions are doubled by the decoder network [38].  
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Figure 16 U-Net architecture [38] 

  

2.6 VGG16 

VGG16 is developed by Visual Geometry Group, is a type of CNN (Convolutional Neural 

Network) that is considered to be one of the best computer vision models to date. The crea-

tors of this model evaluated the networks and increased the depth using an architecture with 

very small (3 × 3) convolution filters, which showed a significant improvement on the prior-

art configurations. They pushed the depth to 16–19 weight layers making it approximate — 

138 trainable parameters [39].  

VGG16 is object detection and classification algorithm which is able to classify 1000 images 

of 1000 different categories with 92.7% accuracy. It is one of the popular algorithms for 

image classification and is easy to use with transfer learning. By this means, this model can 

be classified among the classes in the road segmentation solution. It observes and distin-

guishes classes and outputs large quantities of parameters for segmentation in U-Net variants 

[39]. 
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Figure 17 Example architecture of VGG-16 [32] 

The depth of the configurations increases from the left (A) to the right (E), as more layers 

are added (the added layers are shown in bold). The convolutional layer parameters are de-

noted as “conv<receptive field size> - <number of channels>”. Configurations are following 

with the patterns below [39]:  
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Table 1 Parameter are following these, with, A, A-LRN, B, C, D, and E 

configurations [39] 

 

To follow the table, the size of a layer is stated after the layer name. For example, if the 

configuration A is used, Conv3 means the output of the Layer, block3_pool (MaxPooling2D) 

and its size of the output is 64. The next layer is max pool layer, then comes next with conv3-

128 and so on. In the output layer, it will be connected to Fully Connected layer with size 

4096 (FC-4096) and finally with softmax layer. Based on which configuration, the more 

parameters it will generate, the larger the model it is [39].  

 

ConvNet Configuration 

A A-LRN B C D E 

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight 

layers layers layers layers layers layers 

input (224 × 224 RGB image) 

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 

 LRN conv3-64 conv3-64 conv3-64 conv3-64 

  ma xpool   

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 

  conv3-128 conv3-128 conv3-128 conv3-128 

  ma xpool   

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 

   conv1-256 conv3-256 conv3-256 

conv3-256 

  ma xpool   

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 

   conv1-512 conv3-512 conv3-512 

conv3-512 

  ma xpool   

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 

   conv1-512 conv3-512 conv3-512 

conv3-512 

maxpool 

FC-4096 

FC-4096 

FC-1000 

soft-max 
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3 MACHINE LEARNING TOOLS AND LIBRARIES 

There are several popular machine learning libraries and tools that are widely used in the 

field which can be told as Tensorflow, Keras, PyTorch, or OpenCV. Every library has its 

own advantages such as PyTorch has its simplicity, ease of use, flexibility, efficient memory 

usage, and dynamic computational graphs, but it cannot display the deep details as Tensor-

flow. Tensorflow also supports Keras library to keep the explicit of model construction so 

that it can be tracked down on every layer. Therefore, Tensorflow is chosen for creating and 

measuring models. 

Tensorflow Keras is, briefly described, used for establishing models, training, and testing. It 

provides detailed insights about layers, shapes, and model architecture. 

OpenCV is a library to load and use the image. Because its ease of use, I use this for easy 

access to an image and load it. OpenCV is used for evaluating trained models and to import 

and display images, as well as try trained models with videos. By this means, it can mimic a 

real-life application for road segmentation solutions. 

3.1 Tensorflow.Keras 

In this project, TensorFlow is chosen to measure, train, evaluate, and construct models for 

segmentation. TensorFlow Keras is a high-level neural networks API written in Python and 

integrated into TensorFlow. It serves as TensorFlow's official high-level API for building 

and training deep learning models. Keras provides a user-friendly interface that allows for 

easy and fast prototyping of neural networks, making it suitable for both beginners and ex-

perts in machine learning [40].  

TensorFlow Keras offers several key features and benefits: 

• Modularity: Keras makes it simple to create complicated structures by enabling 

users to construct neural networks by stacking modular building pieces (layers) 

together [40].  

• User-friendly: Keras has an easy-to-understand interface that is straightforward, 

making it a great choice for individuals who are new to deep learning [40].  

• Flexibility: Keras makes it simple to experiment with various network architec-

tures, optimizers, loss functions, and other hyperparameters [40].  
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• Compatibility: TensorFlow Keras works in unison with other TensorFlow compo-

nents, including TensorFlow Es-timators for distributed training and TensorFlow 

Datasets for data loading [40].  

• Performance: Keras leverages the computational power of TensorFlow backend 

for efficient training and inference, while prioritizing simplicity and ease of use. 

This results in excellent performance [40].  

• Community and Resources: As one of the most widely used deep learning librar-

ies, Keras boasts a sizable user and contributor community that offers a wealth of 

resources, including pre-trained models, documentation, and tutorials [40].  

Therefore, TensorFlow Keras is a powerful tool for building and training deep learning mod-

els, offering a balance between simplicity and flexibility, and it can show in detail about 

models and give messages about faults during training [32].  

To define a model using Keras, there is many ways to define one, it depends on user coding 

style. 

inputs = keras.Input(shape=(37,)) 

x = keras.layers.Dense(32, activation="relu")(inputs) 

outputs = keras.layers.Dense(5, activation="softmax")(x) 

model = keras.Model(inputs=inputs, outputs=outputs) 

 

The model to define should have inputs as input layer using keras.Input, it will have multiple 

x variables as hidden layers which is provided by Keras in keras.layers library that will link 

the input layers and be the output for output layer. Then it will define an output layer. Even-

tually, the model is declared with inputs and outputs which are the parameters inputs and 

outputs. A model can be defined as a class with inheritance as keras.Model. To overview the 

model just created, Keras provides summary method from the keras.Model. With this 

method, a summary of the model with shapes and parameter sizes is shown. 

3.2 OpenCV 

In this project, real-time applications for assessing and measuring the performance of the 

trained models are provided by using OpenCV to analyze photos, as well as input and output 

images from the models. An open-source software library for computer vision and machine 

learning is called OpenCV, short for Open Source Computer Vision Library. Originally cre-

ated by Intel, it is currently maintained by the OpenCV Foundation, a community of devel-

opers [41].  
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The library is renowned for its real-time vision applications and computational efficiency, 

supporting interfaces in C++, Python, Java, and MATLAB, and is compatible with Win-

dows, Linux, Android, and Mac OS. Therefore, OpenCV is suitable for implementing eval-

uation application with high performance by using native application like C++. OpenCV's 

algorithms are designed to be highly optimized, taking advantage of hardware acceleration 

where available. Its extensive use in various industries, from Google and Microsoft to 

startups, highlights its versatility in applications like surveillance, robotics, interactive art, 

and automated inspection [41]. 
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 II  ANALYSIS 
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4 DATASETS  

The algorithms are benchmarked and evaluated with dataset Cityscapes contains single view 

images and ground truth images for training. The datasets can be downloaded via their offi-

cial website Cityscapes [43].  

The Datasets contain single view images from an interior camera that it captures urban street 

scenes. They possess many different sets of datasets. In this project, the datasets originally 

have 30 classes but simplify into 13 classes. This is to reduce the resources needed to train 

and validate. 

Alongside with the official datasets, paired image datasets are used to simplify the data pro-

cessing and data structure for training and testing [45].  

 

Figure 18 Image display example of the Cityscapes dataset [45] 

The classes in the datasets are described in their official website as below: 

Table 2 Classes in the datasets [43] 

Group Classes 

flat Road, sidewalk, parking, rail track 

human Person, rider 

vehicle Car, truck, bus, on rails, motorcycle, bicycle, caravan, trailer 

construction Building, wall, fence, guard rail, bridge, tunnel 

object Pole, pole group, traffic sign, traffic light  

nature Vegetation, terrain 

sky sky 

void Ground, dynamic, static 
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The chosen classes in this project are for obstacles as road, sidewalk, person, car, bus, build-

ing, pole, traffic sign, traffic light, vegetation, terrain, and sky; and static as car itself which 

is displayed as black in the ground truth image. Each class is coloured with an RBG code 

and to display it for demonstration and prediction.  

4.1 Data Generator 

Data generator is a function to extract images and ground truth images; and put them sepa-

rately into variables.  

The datasets is delivered without pre-made trainsets and testsets so it has to be done by 

separating all the images into to set. In this project, they are named as ‘train’ and ‘val’ with 

proportion 80% for trainset and 20% for validation sets.  

 

Figure 19 Splitting train sets and test sets 

The code snippet can be broken down as follows: 

1. Data Preparation: The code prepares the dataset for training and testing by iterating 

through each class folder. 

2. File Selection: It selects only files with the ".jpg" extension for further processing. 

3. Shuffling: The file names are randomly shuffled to ensure that the data is not biased 

during training and testing. 

4. Splitting: The shuffled file names are split into training and testing sets based on the 

specified test size ratio. 
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5. Moving Files: Files are moved from their original location to either the train or test 

folder based on the split index. 

6. Directory Creation: Directories for the train and test folders are created if they don't 

already exist. 

7. Copying Files: Files are copied from the source path to the destination path using 

shutil.copy2(). 

8. Feedback: Progress is printed to the console indicating which files are being moved 

to the train and test folders. 

After the trainsets and testsets are partitioned and structured in separate folders, the images 

are loaded to variables for training and testing during fitting the model.  

The function DataGenerator gets all the images in both folder, load into a variable, and split 

them into batches. The data is converted to NumPy array to fit with Keras format. 

 

Figure 20 DataGenerator code snippet 

To access to an image in the output of DataGenerator, it can be queried by using next() 

function. 

train_gen = DataGenerator(train_folder, batch_size=BATCH_SIZE) 

val_gen = DataGenerator(valid_folder, batch_size=BATCH_SIZE) 

 

imgs, segs = next(train_gen) 

imgs.shape, segs.shape 
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Firstly, DataGenerator has to be defined and assigned to a variable train_set or val_set. To 

access to an element in train_set or val_set, next() function is used as in above code snippets. 
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5 TRAINING AND MODELS 

The algorithms are verified by models U-Net, FCN, and a use of U-Net structure with pre-

trained model VGG16 for classification then combine with U-Net structure. 

The U-Net has its specifically designed advantages in image segmentation due to its effi-

ciency and good handling of multi-class tasks. FCN is chosen to measure the performance 

of the chosen dataset because the model has no restrictions from the full connection layer, 

so the size of the input can be flexible. U-Net with VGG16 is to improve the disadvantages 

of both models that the U-Net is more prone to overfitting, especially when working with 

small datasets and FCN is relatively big and slow even if it is with small datasets [46][47]. 

VGG16 is the state-of-the-art pre-trained model in segmentation solutions fine-tuned for 

specific tasks, reducing the need for large annotated datasets. It is famous for its high accu-

racy and well-trained weights. [38] 

5.1 Training 

By training, loss function and some parameters are used for training. It is necessary to declare 

an optimizer and a loss function to validate the model. It can be declared in the compile 

method to compile the model. 

In this project, some state-of-the-art algorithms are used for optimizer and loss function. 

Each model is trained using different algorithms. Initially all models were used the same 

algorithms. After each training and testing phase, I adjusted the algorithms to find which 

models were performed the best and keep them for application evaluation. 

 

5.2 Models for training 

In this project, FCN, U-Net, and pre-trained U-Net (using VGG16) are used to validate the 

dataset and test the performance of the models. 

5.2.1 FCN 

Fully Convolutional Networks are used to measure the accuracy of segmentation in this pro-

ject. This model is simply constructed with a straightforward architecture which include five 

convolutional blocks with ReLU as activation function and then flattens out the data. The 
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Lambda layer is to normalise the input data into a range of 0-1 from RGB values whose data 

is from 0 to 255. 

Because the architecture of FCN is quite big, a table will describe its architecture as below: 

Table 3 Architecture of FCN model 

Layer (type) Output Shape Param # Connected to 
input_1 (InputLayer) [(None, 256, 256, 3)] 0 [] 
lambda (None, 256, 256, 3) 0 ['input_1[0][0]'] 
block1_conv1 
(Conv2D) 

(None, 256, 256, 64) 1792 ['lambda[0][0]'] 

block1_conv2 
(Conv2D) 

(None, 256, 256, 64) 36928 ['block1_conv1[0][0]'] 

block1_pool (Max-
Pooling2D) 

(None, 128, 128, 64) 0 ['block1_conv2[0][0]'] 

block2_conv1 
(Conv2D) 

(None, 128, 128, 128) 73856 ['block1_pool[0][0]'] 

block2_conv2 
(Conv2D) 

(None, 128, 128, 128) 147584 ['block2_conv1[0][0]'] 

block2_pool (Max-
Pooling2D) 

(None, 64, 64, 128) 0 ['block2_conv2[0][0]'] 

block3_conv1 
(Conv2D) 

(None, 64, 64, 256) 295168 ['block2_pool[0][0]'] 

block3_conv2 
(Conv2D) 

(None, 64, 64, 256) 590080 ['block3_conv1[0][0]'] 

block3_conv3 
(Conv2D) 

(None, 64, 64, 256) 590080 ['block3_conv2[0][0]'] 

block3_pool (Max-
Pooling2D) 

(None, 32, 32, 256) 0 ['block3_conv3[0][0]'] 

block4_conv1 
(Conv2D) 

(None, 32, 32, 512) 1180160 ['block3_pool[0][0]'] 

block4_conv2 
(Conv2D) 

(None, 32, 32, 512) 2359808 ['block4_conv1[0][0]'] 

block4_conv3 
(Conv2D) 

(None, 32, 32, 512) 2359808 ['block4_conv2[0][0]'] 

block4_pool (Max-
Pooling2D) 

(None, 16, 16, 512) 0 ['block4_conv3[0][0]'] 

block5_conv1 
(Conv2D) 

(None, 16, 16, 512) 2359808 ['block4_pool[0][0]'] 

block5_conv2 
(Conv2D) 

(None, 16, 16, 512) 2359808 ['block5_conv1[0][0]'] 

block5_conv3 
(Conv2D) 

(None, 16, 16, 512) 2359808 ['block5_conv2[0][0]'] 

block5_pool (Max-
Pooling2D) 

(None, 8, 8, 512) 0 ['block5_conv3[0][0]'] 
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conv2d_transpose (None, 512, 512, 13) 851968 ['block3_pool[0][0]'] 
conv2d_transpose_1 (None, 512, 512, 13) 6815744 ['block4_pool[0][0]'] 
conv2d_transpose_2 (None, 512, 512, 13) 2726297 ['block5_pool[0][0]'] 
add (None, 512, 512, 13) 0 ['conv2d_transpose[0][0]', 

'conv2d_transpose_1[0][0]', 
'conv2d_transpose_2[0][0]'] 

final (MaxPooling2D) (None, 256, 256, 13) 0 ['add[0][0]'] 
conv2d (None, 256, 256, 13) 182 ['final[0][0]'] 
activation (None, 256, 256, 13) 0 ['conv2d[0][0]'] 

 

This model takes approximately longer time to train and more memory to store the parame-

ters during training sessions. Every epoch takes about 160s which is around 550ms/step. The 

accuracy is saturated around 0.8, and the loss is around 0.6. 

298/298 [==============================] - 166s 558ms/step - loss: 0.6785 

- acc: 0.8050 - val_loss: 0.7261 - val_acc: 0.7917 

 

A trained model is exported for testing. The model is quite big due to the transformation of 

pixel-to-pixel classes. The outcome of the model is not high in accuracy because it cannot 

be addressed well in the contextual information. [48] 

Therefore, this model is suitable for being used for measurement and experimentation to 

show the early stage of semantic segmentation model experiment.  

 

Figure 21 Prediction of FCN 
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The prediction image with overlay masks can show that most of details in the original masks 

are not predicted, for example the traffic signs and the traffic poles. However, it does well 

predicting vehicles (cars). 

5.2.2 U-Net 

The U-Net model in this project is constructed with two blocks, down block and up block, 

and a bottle neck with minimal convolutional shape.  

The input layer accepts 256x256 image as default. Then it feeds to Conv2D layer to 16 output 

classes.  

Down block contains the two layers of convolutional computation in between of MaxPooling 

layers. The shape of sample is reduced by 2 by each MaxPooling layer.  

 

 

Figure 22 Sample of Up block in U-Net 

 

The Neck bottle is the bottom of the U-Shape. It is the smallest shape of the samples. And it 

is the transition to start concatenating the samples together, which is reconstructing the im-

age and its shape.  
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Figure 23 Bottleneck part of U-Net 

The Up block contains concatenate layers in between of Convolutional layer with the same 

depth as Down block. And the output of each Concatenate layer is multiplied by 2. 

 

 

Figure 24 Up block architecture of the U-Net 

There are connections between layers of convolutional layer with the same shape output of 

Concatenate layer. For example, Layer Conv2D will connect with layer concatenate_1. 
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Output layer will convolute the image to match the number of configured classes. 

The U-Net can predict small details in an image better than the FCN and has smaller param-

eter size. The predict time is faster compared to FCN, which can be used for systems requir-

ing faster performance instead of quality performance. 

For this model, I use Adam as optimizer and categorical_crossentropy as loss function. It 

sets to 10 epochs and 298 steps per epoch. 

298/298 [==============================] - 66s 223ms/step - loss: 0.6845 - 

acc: 0.8029 - val_loss: 0.7902 - val_acc: 0.7783 

 

 

Figure 25 AUC of the model U-Net 

As shown in Figure 25, the curve shows that the accuracy of the model is improving each 

epoch. At epoch 6, the accuracy is slightly decreasing. But it is improved in later epochs. 

The Figure 26 shows the masks how they are formed compared to the original ground truth 

image. The masks are not formed well in shapes with the pavements. However, the poles on 

the pavement are well predicted. 
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Figure 26 Predict masks using U-Net 

5.2.3 Transfer trained weights using VGG16 

VGG16 is used as pre-trained model for classification.  

In Keras library, a VGG16 model is embedded in its applications class. To load the model 

to my local, I use below a line of code below to import the VGG16 class from library 

keras.applications.vgg16. 

from keras.applications.vgg16 import VGG16 

 

After the class is imported, it must be declared with weights from the applications. Since the 

Keras library contains many pre-trained weight sets which can be used for different scenar-

ios, I have to declare which weight I want for my model. For segmentation solutions, I use 

‘imagenet’ as pre-trained weight. It can be set as ‘None’ to randomize the choice of pre-

trained weight, or a customized pre-trained weight can be loaded by setting the path to the 

weight with parameter ‘weights’ [49].  

The VGG16 consists of 5 blocks of two Conv2D and a MaxPooling2D. By using this, the 

classification weights need to be kept promoting and taking advantages of pre-trained mod-

els. To customize my input, I keep only ‘block1_conv1’ as trainable, so I can put my images 

from the dataset. 

_________________________________________________________________ 

 Layer (type)                Output Shape              Param #    

================================================================= 

 input_1 (InputLayer)        [(None, 256, 256, 3)]     0          
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 block1_conv1 (Conv2D)       (None, 256, 256, 64)      1792       

                                                                  

 block1_conv2 (Conv2D)       (None, 256, 256, 64)      36928      

                                                                  

 block1_pool (MaxPooling2D)  (None, 128, 128, 64)      0          

                                                                  

 block2_conv1 (Conv2D)       (None, 128, 128, 128)     73856      

                                                                  

 block2_conv2 (Conv2D)       (None, 128, 128, 128)     147584     

                                                                  

 block2_pool (MaxPooling2D)  (None, 64, 64, 128)       0          

                                                                  

 block3_conv1 (Conv2D)       (None, 64, 64, 256)       295168     

                                                                  

 block3_conv2 (Conv2D)       (None, 64, 64, 256)       590080     

                                                                  

 block3_conv3 (Conv2D)       (None, 64, 64, 256)       590080     

                                                                  

 block3_pool (MaxPooling2D)  (None, 32, 32, 256)       0          

                                                                  

 block4_conv1 (Conv2D)       (None, 32, 32, 512)       1180160    

                                                                  

 block4_conv2 (Conv2D)       (None, 32, 32, 512)       2359808    

                                                                  

 block4_conv3 (Conv2D)       (None, 32, 32, 512)       2359808    

                                                                  

 block4_pool (MaxPooling2D)  (None, 16, 16, 512)       0          

                                                                  

 block5_conv1 (Conv2D)       (None, 16, 16, 512)       2359808    

                                                                  

 block5_conv2 (Conv2D)       (None, 16, 16, 512)       2359808    

                                                                  

 block5_conv3 (Conv2D)       (None, 16, 16, 512)       2359808    

                                                                  

 block5_pool (MaxPooling2D)  (None, 8, 8, 512)         0          

                                                                  

================================================================= 

List above is the actual structure of VGG16 that is fetched from Keras library. The input 

layer is defined by users which will adapt to the actual dataset. As we set block1_conv1 as 

trainable and the rest are untrainable, so the weights stay remained. The output of VGG16 is 

(None, 8, 8, 512), so bottleneck layer is necessary to merge with the up-block of U-Net. 

re_lu (ReLU)                (None, 8, 8, 512)            0         

['block5_pool[0][0]']          

                                                                                                   

 max_pooling2d (MaxPooling2  (None, 4, 4, 512)            0         

['re_lu[0][0]']                

 D)                                                                                                

                                                                                                   

 dropout (Dropout)           (None, 4, 4, 512)            0         

['max_pooling2d[0][0]']        

                                                                                                   

 conv_middle (Conv2D)        (None, 4, 4, 256)            1179904   

['dropout[0][0]']    
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The bottleneck block consists of ReLU, MaxPooling, Dropout and a Conv2D layer. This is 

to adapt the output of the VGG16 to up-block of U-Net. The up-block of U-Net is reused 

from the previous section. Therefore the shape and the parameters are able to be compatible. 

For this model, I use Adam as optimizer and categorical_crossentropy as loss function. It 

sets to 10 epochs and 298 steps per epoch.  

298/298 [==============================] - 131s 439ms/step - loss: 0.6915 

- acc: 0.8021 - val_loss: 0.7503 - val_acc: 0.7843 

 

The output of accuracy is 0.892 and 0.7877 for validation accuracy. The loss is 0.6542 at 

rate and validation loss is 0.7254. 

 

Figure 27 Training curve of 10 epochs for pre-trained model with VGG16 

The model is tested with random images in the validation set. The model performs very well 

in such complex environments that it can predict pedestrians and traffic signs. The areas of 

objects are not confined well. However, the correct objects within the areas are predicted. 

The model can detect pavement with better straight line and find correct pavement areas. 

The greens and buildings are good defined in such prediction. Vehicles on the road are de-

tected correctly without confusion. 
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Figure 28 Prediction of complex scene on the road using pre-trained model VGG16 

The model performs well on many scenes. Even though the confusion and the misprediction 

are still there. But the accuracy and the performance of the model increase drastically using 

pre-trained models. 



TBU in Zlín, Faculty of Applied Informatics  63 

 

6 EVALUATION 

Three models are taken account to measure based on the accuracy of the output using AUC, 

the performance of the model based on practical measurement, and the observable details of 

output predictions. 

All models can perform well to detect objects with label Cars, Building, and Green. How-

ever, FCNs can segment the road in less complicated scenes. U-Net model can segment 

smaller objects in an urban scene, and it can predict more various objects in more complex 

scenes. Even though the accuracy of both models is approximately the same with 0.8050 for 

FCN and 0.8060 for U-Net, the rapid increase of prediction is observable easily from sample 

images. 

While using the models with real life images, especially images not included in the original 

train sets and test sets, the results are differed and give outcome with good results. 

 

Figure 29 Predict with FCN 

The FCN predicts traffic signs and bicycles, poles on pavement, and buildings in good shape 

and is converged to objects with refined areas. However, the distortion happens on sky area 

and in small details from far away. A disadvantage of FCN is the parameters and weights 

size are relative huge and proceed to generate predicted masks fairly slow.  
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Figure 30 Predict with U-Net 

U-Net model loses its performance using real life scenes. It loses its ability to predict traffic 

signs and objects by the pavement. The pole is surprisingly well detected using U-Net model. 

It also give bad shapes for roads and pavements. The advantage of the model is the parame-

ters and weights small and very fast generate predicted masks.  

 

Figure 31 Predict with pre-trained U-Net 

The pre-trained U-Net remains its accuracy with real life scenes. The traffic signs and the 

pavements are well segmented. The distortion in the predicted masks of the object is negli-

gible but overall, the correct segmentation is formed. The size of the model is relatively 
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bigger than U-Net but still small and reliable. It also generates predicted masks fast relatively 

to U-Net model and faster than FCN. 

Below is the summary of all parameters and output values from the models U-Net, FCN, and 

U-Net with VGG16. 

Table 4 Comparison of FCN, U-Net, and U-Net with VGG16 
 

Total Params (Num - 

Size) 

Loss Val_loss Acc Val_acc val_time 

U-Net 7962829 (7.49 MB) 0.6845 0.7902 0.8029 0.7783 373ms/step 

FCN 49645558 (189.38 MB) 0.6785 0.7261 0.805 0.7917 1s/step 

U-Net 

VGG16 

20927513 (79.83 MB) 0.6915 0.7503 0.8021 0.7843 745ms/step 
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7 FUTURE OF THE SOLUTION 

The U-Net with pre-trained model potentially improves its accuracy by using different pre-

trained models such as DeepLabv3 from Google. DeepLabv3 is well defined model with 

variety of different set of pre-train weights. The model can be adjusted layers and its algo-

rithms namely activation functions, loss functions, or optimizers. 

It can be improved by improving the datasets used. The current solution uses single view 

images from one camera which lack of information of an image such as depth, objects, or 

sharpness. There would be a model to extract the depth of an image, to refine blurred objects 

in far details or in such low quality of camera. 

Beside the images from single view camera, there would be an aid from LiDAR camera that 

capture the real details of the object by objecting millions of dots to front view. Using LiDAR 

as an aid in trainsets and testsets, the accuracy can be improved. 

The solution will be improved in the future with all the potential solutions mentioned above. 

The next generation of it is a desire to extract and reconstruct the objects from one camera. 

The motivation for this solution is that the 3D map can be more accuracy and reliable for 

auto-pilot vehicles. By reconstructing the object, mathematics can be applied to calculate the 

distance between colliders and can predict and extract more complex scenarios in real life 

operation. 
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CONCLUSION 

In conclusion, this thesis has aimed to enhance road segmentation from single-view images 

by refining existing models to achieve superior solutions. The motivation of improving the 

robustness and accuracy of semantic segmentation for road scene using sigle view images is 

led to the novel approach of semantic segmentation that combines available solutions and 

adapts the existing models to it. To summarize the solution, the use of FCN, U-Net, and an 

upgraded U-Net variation based on VGG16 for road segmentation from single-view photos 

has shown encouraging results, with each having individual strengths and shortcomings. 

Both FCN and U-Net recognize common things with impressive precision, such as 

automobiles, buildings, and plants. FCN thrives in simpler settings, easily segmenting 

roadways, but U-Net shines in urban areas, successfully collecting tiny objects and managing 

more complicated scenarios. 

Despite their equivalent overall accuracy, FCN has faster prediction capabilities but suffers 

from distortions in distant features and sky areas due to its considerably greater parameter 

size and slower processing speed. Conversely, U-Net's reduced parameter set allows for 

speedier predictions, but with limits in real-world applications, notably when anticipating 

traffic signs and pavement items. However, its pre-trained version remains accurate and 

effectively partitions objects with minimal distortion. 

Moving forward, integrating the benefits of both models may improve road segmentation 

performance by exploiting FCN's quick prediction capabilities and U-Net's efficacy in real-

world scenarios. Further study might look at solutions to address the observed flaws, such 

as model tuning or dataset augmentation approaches. Finally, the use of these models has 

the potential to improve road safety and enable autonomous navigation systems in a variety 

of environments. 
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