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ABSTRAKT  
 Odhad úsilí při vývoji softwaru, resp. odhad pracnosti vývoje softwarových 

projektů, hraje klíčovou roli v oblasti vývoje softwaru a má velký vliv na 
plánování projektů a přidělování zdrojů. Předkládaná práce přináší významné 
pokroky v oblasti odhadu úsilí při vývoji softwaru zavedením inovativních 
technik jako je tzv. přenosové učení (transfer learning) a analýzy datových 
souborů, s cílem zvýšit přesnost odhadu úsilí, konkrétně v rámci rozšíření metody 
funkčních bodů. Kromě toho jsou v předkládané práci zkoumané různé přístupy 
k identifikaci faktorů analýzy funkčních bodů a relevantních kategoriálních 
faktorů, které přispívají ke zlepšení odhadu úsilí, včetně vícenásobné lineární 
regrese, neuronových sítí atd. 

Prostřednictvím rozsáhlé série experimentů autor práce identifikuje nové 
faktory ovlivňující odhad úsilí, což vede k přesnějším odhadům ve srovnání se 
základními modely. Dále je v práci popsaná aplikace technik LIME (Local 
Interpretable Model-agnostic Explanations) a SHAP (SHapley Additive 
exPlanations), které umožňují hlubší vhled do černé skříňky predikčních modelů. 

Provedený výzkum byl zaměřen na hodnocení účinnosti předem natrénovaných 
modelů a návrh využití metod tzv. hlubokého učení (deep learning) v kombinaci 
se strategiemi pro vyvažování kategoriálních proměnných s cílem zlepšit odhad 
úsilí. Výsledky jasně ukazují, že zahrnutí relevantních faktorů a využití 
hlubokého učení, jakož i technik přenosového učení, výrazně zlepšuje odhad úsilí 
při vývoji softwaru. Toto zlepšení odhadu úsilí nabízí týmům zabývajícím se 
vývojem softwaru přesnější prostředky, což v konečném důsledku vede ke 
zlepšení plánování a řízení projektů. 

Předkládaná práce celkově přispívá k teoretickým i praktickým aspektům 
odhadu úsilí tím, že poskytuje nové poznatky a inovativní strategie pro zvýšení 
přesnosti odhadu úsilí při vývoji softwarových projektů. 
 
Key words in Czech: Odhadování pracnosti vývoje softwarových projektů, 
metoda funkčních bodů, regresní modely, hluboké učení  
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ABSTRACT 

Effort estimation plays a crucial role in the domain of software development, 
employing an influence on project planning and resource allocation. This thesis 
advances the field of Software Development Effort Estimation (SDEE) by 
introducing novel transfer learning and dataset balancing techniques to enhance 
effort estimation accuracy, focusing on the function point analysis. It explores 
multiple linear regression, feedforward neural networks, and ensemble methods 
to identify factors affecting effort estimation. 

Through a comprehensive series of experiments, this study uncovers new 
factors that significantly improve effort estimation, resulting in more precise 
estimates when compared to baseline models. Furthermore, it employs the 
application of Local Interpretable Model-agnostic Explanations (LIME) and 
SHapley Additive exPlanations (SHAP) techniques to provide deeper insights 
into the black-box of predictive models. 

This research evaluates the effectiveness of pre-trained models and suggests 
using deep learning methods in combination with strategies for balancing 
categorical variables to enhance effort estimation. The results indicate that 
incorporating relevant factors and employing deep learning and transfer learning 
techniques enhances SDEE. This improvement in effort estimation offers 
software development teams a more accurate means of estimation, ultimately 
leading to improved project planning and management. 

In summary, this thesis contributes to both theory and practice in effort 
estimation by offering innovative insights and strategies to boost accuracy. 

 

Key words: Software development effort estimation, function points methods, 
regression models, deep learning, Ensemble, deep learning with balancing 
dataset, transfer learning, LIME, SHAP. 
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1. INTRODUCTION 

This section presents the motivation of the thesis, identifies the specific 
problem that needs to be addressed, and presents the research questions. 
Additionally, it outlines the objectives of the study. 

1.1 Motivation 

The motivation for this thesis is essential to provide the estimating field with 
a new approach to the effort estimation problem, which might supplement current 
practices. The following are the key drivers behind this motivation: 
i) The absence of categorical variables might result in less effort estimation 

accuracy measured by traditional function point analysis (FPA) estimation 
methods. It is a foundational technique for measuring the functional software 
size of projects from the user's perspective [1]. Allan J. Albrecht developed 
this technique in 1979 at IBM, which was extended by the International 
Function Point Users Group (IFPUG) [1]. It is a measure based on function 
points and productivity rate. However, in the early stage of software project 
development, the productivity rate of that project might be unknown. In 
addition, the complexity of FPA weight metrics values might be affected by 
many factors (software development methodologies, systems characteristics). 
Suppose the complexity weights assigned to the components (External Inputs 
(EI), External Outputs (EO), External Inquiry (EQ), External Interface File 
(EIF), Internal Logical File (ILF)) are not appropriately identified (for 
example, assigns higher complexity weights to relatively simple components 
or lower weights to more complex components), it might lead to inaccurate 
effort estimation. Hence, to estimate the effort required for software 
development in the initial stages of FPA, the thesis considers estimating the 
effort by incorporating essential categorical variables such as Industry Sector 
and Relative Size alongside factors of FPA. 

ii) The unavailability of pre-trained models for software effort estimation: 
Transfer learning is a type of deep learning that involves using a pre-trained 
model to solve a new problem with similar features or structure [2]. In the 
context of SDEE, transfer learning could enhance estimation model precision 
by leveraging knowledge from analogous projects or domains [2]–[4], 
significantly decreasing the time and resources necessary for model training. 
Leveraging transfer learning might mitigate the challenge of limited data 
availability often faced in software estimation. However, despite its potential 
benefits, several studies have compared the performance of transfer learning 
with the deep learning approach regarding SDEE. However, they did not 
propose a pre-trained model [3]–[5]. This issue promotes the thesis to build a 
pre-trained learning model by leveraging the advantages of transfer learning 
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and comparing the performance of transfer learning to the deep learning 
approach in terms of SDEE. 

iii) The existing models utilized for effort estimation remain unclear black-boxes 
covering their internal mechanisms. Consequently, understanding the rationale 
behind their predictions becomes a formidable challenge for scientists and 
practitioners. Advanced methodologies such as Local Interpretable Model-
agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) 
offer promising solutions to tackle this pressing limitation while emphasising 
the importance of result interpretation. LIME generates locally faithful 
explanations for individual predictions, showing how features (such as EI, EO, 
EQ, EIF, ILF, and relevant categorical variables) contribute to each prediction, 
significantly positively/negatively impacting the accuracy of software project 
effort estimation. On the other hand, SHAP provides a unified framework for 
interpreting the output of any deep learning model by attributing the prediction 
to different features’ contributions. By providing interpretable and transparent 
insights into the models' decision-making processes, these techniques delegate 
researchers to understand the influential factors and their complexity within 
the software development context. Consequently, leveraging LIME and SHAP 
can significantly enhance the validity and trustworthiness of effort estimation 
models, leading to more informed and scientifically driven project 
management decisions. 

1.2 Problem Statement 

Among the various approaches to estimating software effort estimation, one 
common technique in the software industry is FPA. This method is advantageous 
as it estimates the size of the software. However, as mentioned in publication [6], 
it is essential to note that FPA has limitations. One significant drawback is that it 
relies on fixed complexity weight values established using data from IBM in the 
1970s [1]. Given the technological progress and changes to the present year 
(2023), these values have become outdated. Furthermore, due to the unique nature 
of each company, using these fixed values tends to result in less accurate 
estimates. 

Therefore, this study proposes a group of factors to estimate effort estimation 
by incorporating categorical variables such as Industry Sector and Relative Size 
along with factors of FPA based on the International Software Benchmarking 
Standards Group (ISBSG) [7] as the historical dataset. The first study uses various 
approaches such as regression model, random forest, ensemble approach, and 
deep learning based on feedforward neural network with multilayer perceptron 
(DLMLP) [8], [9] to determine the factors of FPA incorporate with Industry 
Sector and Relative Size lead to more accurate effort estimation. In addition, the 
effectiveness of these models is further explored by employing balanced datasets 
in the DLMLP model to address the limitation of imbalanced data, a common 
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issue in effort estimation research. The thesis might hardly examine all known 
algorithms and all combinations of factors of FPA. Therefore, selecting some 
experimental algorithms and combinations of factors are also matters of concern. 

As highlighted in the motivation section, the advantages of transfer learning are 
substantial [2], [10], [11]. It enhances estimation model accuracy by leveraging 
insights from related projects, significantly reducing the resources and time 
required for model training. This thesis proposes a transfer learning technique that 
effectively estimates effort using the ISBSG dataset. Simultaneously, the thesis 
evaluates the applicability of this technique across similar datasets such as 
Albrecht, China. Additionally, an endeavour is undertaken to construct a pre-
trained model obtained from the ISBSG dataset, intended as a reusable library for 
researchers. 

On the other hand, several machine-learning approaches were adopted to 
increase effort estimation accuracy[12]–[19]. However, the resultant models 
remain a mystery (black box). The comprehensive comparison of these influential 
factors within the predictions holds critical importance, as it might give 
researchers invaluable insights grounded in the predictions. As illustrated in the 
motivation section, this research endeavour extensively analyses predicted efforts 
via LIME [20] and SHAP [21]. Specifically, the focus lies on dissecting LIME 
and SHAP within the DLMLP model to illuminate how factors, especially 
categorical variables such as Industry Sector and Relative Size, impact effort 
estimation. Nevertheless, due to limited time for analysis across all experimental 
models, this study concentrates on DLMLP models, prioritizing a comprehensive 
exploration within this confined scope. 

To sum up, this study addresses the challenges in software effort estimation by 
focusing on FPA limitations and proposing a group of factors that integrates FPA 
factors with categorical variables. The research selectively employs various 
methodologies to determine the most accurate effort estimation approach based 
on that group of factors. Moreover, it harnesses transfer learning's benefits, 
tailoring a model using the ISBSG dataset and evaluating its applicability across 
diverse datasets. The study also sheds light on the black-box of models, 
employing LIME and SHAP techniques for analysis. 

1.3 Research Questions and Hypothesis 

In this thesis, five RQs and hypothesis must be answered: 
1. RQ1: Which yields greater accuracy in software effort estimation: DLMLP, 

MLR, or Random Forest? 
𝜇𝐷𝐿𝑀𝐿𝑃 =  Mean accuracy of DLMLP     
𝜇𝑀𝐿𝑅 = Mean accuracy of MLR 
𝜇𝑅𝐹 =  Mean accuracy of Random Forest  
o H1: 𝜇𝐷𝐿𝑀𝐿𝑃 >  𝜇𝑀𝐿𝑅 and 𝜇𝐷𝐿𝑀𝐿𝑃 >  𝜇𝑅𝐹 
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This hypothesis states that DLMLP accuracy is greater than MLR and RF 
in software effort estimation. 

o The null hypothesis 𝐻଴: 𝜇𝐷𝐿𝑀𝐿𝑃 ≤  𝜇𝑀𝐿𝑅 𝑜𝑟 𝜇𝐷𝐿𝑀𝐿𝑃 ≤  𝜇𝑅𝐹 
This hypothesis states that DLMLP is either less or equally accurate as at 
least one of the other two methods in software effort estimation. 

2. RQ2: Does dataset balancing enhance the predictive accuracy of DLMLP 
methods in software effort estimation? 
𝜇𝐷𝐿𝑀𝐿𝑃𝐵 =  Mean accuracy of DLMLP with Balancing 
𝜇𝐷𝐿𝑀𝐿𝑃 =  Mean accuracy of DLMLP without Balancing 
o H1: 𝜇𝐷𝐿𝑀𝐿𝑃𝐵 >  𝜇𝐷𝐿𝑀𝐿𝑃 

This hypothesis states that the accuracy of deep learning with a balancing 
dataset is more significant than without balancing. 

o The null hypothesis H0: 𝜇𝐷𝐿𝑀𝐿𝑃𝐵 ≤ 𝜇𝐷𝐿𝑀𝐿𝑃 
This hypothesis states that deep learning with a balancing dataset is either 
less or equally accurate as deep learning without balancing. 

3. RQ3: For software effort estimation, does a combined ensemble of MLR, 
Random Forest, and DLMLP outperform each standalone model? 
𝜇𝐸𝑁𝑆 =  Mean accuracy of Ensemble 
o H1: 𝜇𝐸𝑁𝑆 >  𝜇𝐷𝐿𝑀𝐿𝑃, 𝜇𝐸𝑁𝑆 >  𝜇𝑀𝐿𝑅, and 𝜇𝐸𝑁𝑆 >  𝜇𝑅𝐹 

This hypothesis states that the accuracy of the ensemble is greater than 
DLMLP, MLR, and RF in software effort estimation. 

o The null hypothesis 𝐻଴: 
𝜇𝐸𝑁𝑆 ≤  𝜇𝐷𝐿𝑀𝐿𝑃, 𝑜𝑟 𝜇𝐸𝑁𝑆 ≤  𝜇𝑀𝐿𝑅, 𝑜𝑟 𝜇𝐸𝑁𝑆 ≤  𝜇𝑅𝐹 

This hypothesis states that the ensemble is either less or equally accurate 
as at least one of the other three methods. 

4. RQ4: Does transfer learning offer any accuracy advantages over conventional 
DLMLP approaches in software effort estimation? 
𝜇𝑇𝐿 =  Mean accuracy of Transfer Learning 
o H1: 𝜇𝑇𝐿 >  𝜇𝐷𝐿𝑀𝐿𝑃 

This hypothesis states that the accuracy of deep learning by applying 
transfer learning is more significant than that of deep learning without 
applying transfer learning. 

o The null hypothesis H0: 𝜇𝑇𝐿 ≤ 𝜇𝐷𝐿𝑀𝐿𝑃 
This hypothesis states that deep learning by applying transfer learning is 
either less or equally accurate as deep learning without applying transfer 
learning. 

5. RQ5: Do the categorical variables (IS and RS) influence effort estimation 
accuracy? 
β𝐼𝑆 =  Regression coefficient for IS 
γ𝑅𝑆 =  Regression coefficient for RS 
o Null Hypothesis (H0): β𝐼𝑆 =  γ𝑅𝑆 = 0 (indicating that IS and RS do not 

affect the accuracy of effort estimation) 
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o Alternative Hypothesis (H1): β𝐼𝑆 or γ𝑅𝑆 is not equal to 0 (indicating RS 
or IS effect on the accuracy of effort estimation) 

1.4 Objectives of the Thesis 

This section outlines the objectives pursued in this research, focusing on 
advancing the state-of-the-art in the identified issues. The specific research 
objectives present in this thesis can be summarized as follows: 

1. To enhance the accuracy of effort estimation in terms of FPA. 
2. To evaluate the efficacy of various estimation methodologies, such as 

multiple linear regression, random forest, deep learning based on 
multilayer perceptrons, deep learning with balanced datasets; ensemble 
techniques established by incorporating multiple linear regression, random 
forest, and deep learning models; transfer learning for effort estimation. 
This evaluation involves validating the results using appropriate datasets. 

3. To introduce a pre-trained model based on the ISBSG dataset, providing a 
comprehensive and reliable foundation for effort estimations. The relevant 
other datasets illustrate the performance of effort estimation based on the 
pre-trained model. 

4. To leverage advanced techniques such as LIME and SHAP to gain 
comprehensive insights into the contribution and local importance of 
different features, namely EI, EO, EQ, EIF, ILF, IS, and RS, within the 
proposed effort estimation models in terms of FPA. 

Thus, the research objective of this thesis is to establish innovative approaches 
for estimating the effort required in software product development. These 
approaches are rigorously compared with the performance of effort estimation 
based on the ISBSG dataset and other relevant datasets, facilitating the 
identification of superior estimation techniques with practical applicability. 

2. THE CURRENT STATE OF THE ISSUES DEALT 
WITH 

 This section presents the literature review of software development effort 
estimation. 

2.1 Software Development Effort Estimation 

The process of SDEE is complex. Building software might require the highest 
quality and lowest resources. The resources of a project might include budget, 
time, and staff resources. They are used to manage, design, develop, enhance, or 
maintain a project. The duration, budget, or effort to complete a project might 
depend on the project's number of modules or use cases. However, how much 
funding is spent on a project might always be a challenge for project 
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managers/team leaders who are responsible for the entire project [22]. The less 
accurate estimation effort might result in the inexactly allocating budget to 
complete all project phases and lead to project failure [23]. 

Software project failures are the most prominent illustration of the difficulty in 
managing massive, distributed software systems [24]. According to the Standish 
Group, many software companies still put no practical software costs forward or 
work within strict schedules – and completed their projects behind cost overruns 
– (48%- 65%) or failed to complete them at all – (48 % - 56%) [25]. Compared 
to the estimation, most projects' efforts and deadlines are overrun. If the software 
cost is underestimated, the project is inefficient, and the final cost certainly is 
exceeded. Finally, these overestimated projects often extend and consume more 
resources than anticipated, even if they are completed on time. At the same time, 
the functionality and quality of these undervalued initiatives are reduced to meet 
the plan's requirements [26]. These might result in the organisation losing the bid 
or wasting time, funds, employees, and other resources, resulting in a monetary 
loss or even collapse. 

Regarding methods to estimate effort estimation, they might be classified into 
two kinds of methods, as given in Table 2-1, including non-algorithmic and 
algorithmic-based techniques [27]. Non-algorithmic techniques are effort 
estimation based on expert judgment or project expertise [28], such as Expert 
Judgment, Analogy, Wideband Delphi, or Work Breakdown Structure. On the 
other hand, algorithmic techniques might be based on the formula to measure the 
effort of software projects in terms of functional software size [29] or use case 
points [30], NESMA [31], etc. 

Expert opinion refers to the informed judgment provided by an individual or 
group of experts regarding a particular subject or an unknown measurement [32]. 
In the context of the current investigation, expert judgment is employed for 
estimating the effort required for software projects. Expert judgment is crucial in 
software estimation, especially in two significant scenarios. Firstly, when 
empirical data is limited or not easily obtainable, and secondly, when tackling the 
estimation of intricate, unclear, or poorly defined problems [33]. These 
circumstances form the basis for the extensive acceptance of expert judgment as 
an approach to software estimation. It is important to note that the accuracy of 
such estimations largely relies on the extent to which a new project aligns with 
the expert's experience and expertise. 

The primary idea of the analogy technique involves representing a software 
project using various variables or characteristics and then identifying completed 
projects that share similar attributes [34]. These variables might include several 
inputs, outputs, application domains, etc. By leveraging the effort values of these 
completed projects, we might create an effort estimation for the new project. This 
approach might be considered a combination of completed projects and expert 
judgment techniques. According to M. Shepperd et al. [34], while estimating by 
analogy is simple, several challenges must be addressed. Firstly, we must 
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determine the most effective way to describe projects. This determination could 
involve considering factors such as the application domain, the number of inputs, 
the number of distinct entities referenced, and the number of screens. It is crucial 
to select available variables when the prediction is needed, and they should 
accurately characterise the project as much as possible. The second challenge 
involves assessing project similarity and establishing confidence in the analogies. 
How do we determine which projects are comparable, and how much can we rely 
on these analogies?  

Additionally, it is crucial to determine the optimal number of analogies to 
search. Too few analogies might result in including outlier projects, while too 
many could dilute the impact of the closest analogies. Lastly, we must address 
how to utilize the known effort values from analogous projects to derive an 
estimate for the new project. Potential approaches include using means and 
weighted means, where closer analogies significantly influence the estimate. The 
selection depends on the specific context and data available, and careful 
consideration must be given to ensure the most appropriate and reliable estimation 
process. 

Delphi is an organised technique for interactive estimation and symmetric 
prediction derived from expert questionnaires [35], [36]. The method might be 
presented in the following steps. First, a series of questions are provided in a 
questionnaire, and experts must respond anonymously to these questions over 
multiple rounds. Next, the coordinator summarises the predictions made by the 
experts in the previous round. Experts are expected to provide justifications for 
their choices and have the opportunity to review the questions and answers of 
other experts. Through several rounds, a consensus among the experts is reached 
regarding the parameters and stability of the results. This iterative process reduces 
the range of possible answers and brings the group of experts closer to the correct 
solution [37]. A variation of the Delphi method known as Wideband Delphi was 
proposed by Boehm [38]. The term "wideband" indicates more significant 
interaction and communication among the participating experts compared to the 
original Delphi method. 

 
Table 2-1: The classification of techniques adopted in software effort estimation 

Type 
Estimation 
method 

Description 

N
on

-
al

go
ri

th
m

ic
 Expert 

Judgment 
Estimations based on expert experiences and/or 
intuition [24] 

Analogy Estimations are based on the actual cost of similar 
completed projects [24] 

Price-to-win Estimations based on customer budgets [24] 
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Bottom-up Estimations based on customer budgets [24] 

Top-up Estimations based on customer budgets [24] 

Wideband 
Delphi 

Customer and technical teams are involved in the 
estimation process [24] 

Planning 
Poker 

Estimations based on collaboration/consensus 
among team members like Wideband Delphi [24] 

A
lg

or
it

h
m

ic
 

SLOC 
Estimations based on the previous data of the 
completed project. It cannot compare different 
programming language lines of code [24] 

Function Point 
Analysis 

Estimations based on counting essential software 
components [28] 

Object Point 

Estimations are based on objects' numbers and 
complexity. Estimation Steps: counting objects, the 
classification of things, and the weight of items 
related to complexity [24] 

COCOMO 
There are four COCOMO methods [28]: Simple 
COCOMO, Intermediate COCOMO, Detailed 
COCOMO, and Testing steps∙ COCOMO II. 

Use Case 
Points 

Estimations derived by counting use cases [29] 

 
The work breakdown structure (WBS) breaks down an engineering project into 

smaller components such as subprojects, tasks, subtasks, and work packages [35]. 
It holds significance as a planning tool that establishes a logical framework 
linking objectives, resources, and activities. During the project's execution, the 
WBS plays a vital role as it tracks the progress of subtasks against the project 
plan. The primary objectives of creating the WBS include identifying work tasks, 
required resources, necessary, and other pertinent details with the level of 
precision specified in the original plan. Additionally, it enables early accuracy 
assessment and allows for corrective replanning, if necessary, during the project's 
execution. 

FPA is a foundational technique for measuring the functional software size of 
projects from the user's perspective [1]. Allan J. Albrecht developed this 
technique in 1979 at IBM. Then, it was extended by the IFPUG [1]. According to 
[39], FPA estimates software development/maintenance independently of the 
technology used for implementation; for example, the functional size should be 
the same regardless of the problem domain, programming language, or 
development type. The use cases can be beneficial in estimating software effort 



 

9 
 

estimation early in the project – before gathering the necessary information – 
during the software life cycle requirements [40]. Use cases are anticipated to 
provide an accurate estimate of the software effort estimation of the future system 
in question. Publication [40] surveyed the strategies used to elicit, describe, and 
model requirements. They claimed that use cases were used in the initial stages 
of over half of these software initiatives. As a result, using use cases for software 
effort estimation has grown in popularity. 

The Netherlands Software Metrics Association (NESMA) FPA method [31] 
follows the same rules as the IFPUG FPA method. ISO accepted it as an 
international standard in 2005 [41]. NESMA, the user group for function points 
in the Netherlands, recommends three types of function point counts based on the 
level of detail achievable: detailed, estimative, and indicative. The detailed 
function point count corresponds to the IFPUG count. In the estimative function 
point count, the following steps are followed: (1) identification of all functions 
belonging to the five types: ILF, EIF, EI, EO, and EQ; (2) calculation of the total 
unadjusted function point count by assuming low complexity for each data 
function point and average complexity for each transaction point. 

2.2 Regression Models in SDEE 

Several studies have utilised regression models to enhance estimating effort in 
software engineering. For instance, Sharma and Chaudharyin [39] applied MLR 
to estimate the effort required for agile software development. They developed 
three models based on MLR with stepwise regression to estimate agile software 
development effort and assessed the performance metrics using Mean Squared 
Error (MSE) and Mean Magnitude of Relative Error (MMRE). The findings 
revealed that their proposed model outperformed three commonly used 
techniques: decision trees, stochastic gradient boosting, and random forests. Hai 
et al. [40] considered productivity rate (PDR) as the dependent variable and 
independent variables, including Value Adjustment Factor (VAF), EI, EO, EQ, 
EIF, and ILF for measuring the effort of FPA, based on the ISBSG 2018/release 
R2 and multiple regression model. The authors concluded that their approach 
could potentially outperform existing methods. 

In 2013, Nassif et al. [41] compared three models for estimating software: 
effort decision tree forest (DTF), decision tree, and MLR. The authors stated that 
the DTF model fared better than the other two models according to all evaluation 
criteria, and statistical tests were used to verify its robustness. Based on the 
findings, they concluded that the DTF model is a good choice for forecasting 
software efforts. 

Furthermore, the VAF plays a crucial role in improving the accuracy of 
Adjusted Function Points based on 14 General System Characteristics. However, 
according to ISBSG, this component may have gone uncounted for most projects 
recently, and the VAF is assumed to be one of them. As a result of this problem, 
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effort estimation in Function Point Analysis may be inaccurate. Prokopova et al. 
[42] introduced Modified Function Points (MFP) methodologies based on the 
regression model approach in 2018 and investigated the impact of VAF on 
software effort estimation accuracy. Three techniques for estimating effort were 
tested in the variants without and with the VAF factor based on ISBSG. As a 
result, the VAF factor has no bearing on estimating precision. 

Naïve Bayes [38] is a well-known probabilistic classifier in data mining. For 
calculations, it is assumed that project characteristics are unrelated. Even though 
this assumption is false in most cases, Naïve Bayes outperforms other complex 
approaches in various practical applications such as text categorisation [43] and 
kernel density estimation [44]. Zhang et al. [45] presented the Bayesian regression 
and Expectation Maximization algorithm to predict effort estimation based on 
missing values on historical datasets. Their approach was based on the assumption 
that the characteristics of projects are unrelated. They used the ISBSG and 
Chinese Software Benchmarking Standard Group (CSBSG) datasets released in 
2006 as observational datasets. Moreover, this study also proposed the Missing 
Data Toleration and Missing Data Imputation strategy were proposed to handle 
missing data. This paper used PRED(0.25) and Wilcoxon signed-rank tests of the 
MREs as performance metrics. 

In 2013, Fedotova et al. [29] discussed the most popular approaches used in 
software effort estimation. It introduced a study conducted in a software 
development organisation applying the Capability Maturity Model Integrated 
(CMMI) architecture. Currently, a software development organisation (SDO) 
forecasts software initiatives based on the judgment of a single professional. The 
drawbacks of this approach prompted the SDO to replace the current effort 
measurement method with a structured one. The stepwise MLR technique was 
chosen and implemented for the software development and testing processes. The 
MLR findings were compared to the forecasts given by the region expert. As a 
result, the model collected for the research team outperformed expert judgments. 
However, no satisfactory model was found for the development team, and a 
recommendation for obtaining data from new variables was introduced. 

Another research regarding effort estimation by adopting a regression model 
was presented in the publication [46]. The authors compared stepwise with Lasso 
regression. COCOMO81, Desharnais, and Maxwell datasets were used in this 
study. They stated that Lasso-based and stepwise regression illustrated different 
preferences. However, they concluded that Lasso-based selection was preferable 
to stepwise regression. MMRE, PRED (0.25), SA, etc., were performance 
metrics. 

Silhavy P et al. [47] employed the stepwise regression technique to develop 
distinctive estimation models for each segment. Their research involved a 
comparative analysis of the estimation accuracy achieved by these models in 
contrast to clustering-based models and the IFPUG. Their findings revealed that 
the proposed model yielded improved estimation accuracy compared to baseline 
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approaches, including non-clustered functional point analysis and clustering-
based models. 

2.3 Multilayer Perceptron in SDEE 

On the other hand, several machine-learning techniques have been used to 
predict SDEE [12]. One of the techniques mentioned in previous reports [39] is 
MLP. Ramessur and Nagowah [48] proposed a model that assesses and forecasts 
effort estimation while considering various parameters influencing performance. 
The model was validated using a variety of regression algorithms, including linear 
regression, K-nearest neighbour, decision tree, polynomial kernel, radius basis 
function, and MLP. As a result, the model produced more accurate estimates with 
lower error values when using the MLP method. MLP was also proposed by 
Suyash Shukla et al. [49] to improve the SDEE. The authors introduced a 
technique based on a genetic algorithm to adjust the complexity weight metrics 
of Function Point. 

Furthermore, Somya Goyal et al. [14] used MLP with the Back Propagation 
algorithm to develop a non-linear technique for effort estimation. Their goal was 
to compare neural network models unbiasedly, using ISBSG Release 11 as a 
practical dataset with over 5000 completed projects as a practical dataset, 
Adjusted Function Points (AFP) and other categorical variables as input factors 
for their models. On the other hand, deep learning is an approach suggested in 
previous papers [48]. However, the problem is that which method leads to more 
accurate effort estimation efficiency according to FPA has not been mentioned. 

In 2020, M.Ochodek et al. [50] created the Deep-COSMIC-UC model to 
address functional needs that lack specific information. The suggested model was 
an advanced convolutional neural network. They aimed to develop a brand-new 
prediction engine that could roughly forecast the COSMIC size of use cases based 
solely on their names. This model may compare the COSMIC size of the use case 
based on the raw text that represents the use-case name.  

In 2016, Nassif A et al. [51] discussed four neural network models: MLP, along 
with three other models (general regression neural network, radial basis function 
neural network, and cascade correlation neural network) using the ISBSG dataset. 
They were compared based on predictive accuracy, a tendency to 
over/underestimate and how they classify input importance. The cascade 
correlation neural network performed the best on most datasets based on the mean 
absolute residual criterion. 

Madheswaran and Sivakumar [52] used a Multilayer Feed Forward Neural 
Network to accommodate the COCOMO model's prediction performance so that 
the estimated effort was relevant to the actual effort. The network was trained 
using the backpropagation learning technique by repeatedly processing training 
samples and comparing the network's prediction with the actual effort. They 
applied the COCOMO I dataset to train and test the network, and it was 
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discovered that the proposed neural network model enhances the model's 
estimation accuracy. The COCOMO model's test comparison was made to the 
trained neural networks. 

Mukherjee et al. [53] considered the adoption of a neural network for 
optimizing project effort estimation. For improved accuracy in effort estimation, 
they utilized a two-layer FFNN with sigmoid neurons in the hidden layer and 
linear neurons in the output layer. The LevenbergMarquardt backpropagation 
algorithm was used to train the network. They studied the COCOMO 81 dataset 
with evaluation criteria as MRE. They concluded from the experimental results 
that their suggested model outperforms Anupama Kaushik et al.'s proposed and 
Constructive Cost models. 

The FeedForward Neural Network (FFNN) technique to predict the duration of 
a new software project was proposed by [9]. Two models were generated from 
the ISBSG (2009, Release 11) data, whose projects were measured in adjusted 
function points. The accuracy of this FFNN was compared against that of 
a statistical regression model. An accuracy comparison was made based on an 
ANOVA observing its assumptions of residuals. Results accepted the following 
hypothesis: The accuracy of duration prediction for an FFNN was statistically 
better than that obtained from a statistical regression model when an adjusted 
function points value obtained from new software development projects was used 
as the independent variable. 

Based on data acquired from the CMMI organisation [54], comprising 163 
software development projects, Pai et al. [55] developed software effort 
estimation models utilising Artificial Neural Network (ANN) ensembles and 
regression analysis. The paper's primary focus was on creating an effective 
experimental design in order to obtain superior effort estimation results. They also 
compared ANNs and multiple regression analyses regarding software effort 
estimation. They discovered two intriguing outcomes. First, other than size 
(function points), other variables were not valuable for estimating software 
projects. Second, a correctly designed ANN ensemble improved regression 
analysis estimates and could yield excellent effort estimate estimations. 

2.4 Balancing Dataset in SDEE 

Balancing the dataset is a common preprocessing step in various machine-
learning applications to address class imbalances [56]. Class imbalances occur 
when the distribution of classes in the dataset is uneven, with one or a few classes 
having significantly more or fewer instances than others. Machine learning 
algorithms operate assuming a balanced class distribution within the dataset. As 
a result, classifiers tend to exhibit a bias towards the majority class when 
confronted with imbalanced datasets. According to Liu et al. [56], in these 
scenarios, the minority class often represents the focal point of interest. 
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In image processing, several researchers [57]–[59] proposed several 
approaches to dealing with imbalanced datasets in their study. Many methods 
might be used, such as over-sampling/ under-sampling [60], class weighting [61], 
and SMOTE [62]. In 2018, Min Zhu et al. [63] proposed class weights random 
forest to deal with imbalanced datasets in medical applications. Their approach 
addresses assigning individual weights for each class. In 2022, Islam A. et al. [64] 
proposed oversampling based on K-Nearest Neighbor to tackle imbalanced image 
datasets. This method involved identifying pivotal and secured regions for 
augmentation, subsequently generating synthetic data instances for the minority 
class. The researchers reported its superiority over other approaches, such as 
SMOTE and ADASYN, in terms of performance. 

Zhijun Ren et al. [65] also introduced an innovative approach involving loss 
function weighting to enhance the efficacy of intelligent diagnostic models when 
dealing with imbalanced data. In this method, the weight of each sample's loss 
was determined by considering factors such as the distribution and convergence 
of samples and classes. By incorporating weighted losses during model training, 
the contribution of each class to parameter updates was balanced, thereby 
mitigating the impact of dominant majority classes in imbalanced training 
datasets. 

However, research on balancing datasets based on attributes to enhance the 
effectiveness of effort estimation models is currently limited in the field of effort 
estimation. This issue poses a challenge as models trained on imbalanced datasets 
may exhibit bias towards the majority category, resulting in an inadequate 
performance for the minority category. In such instances, the model may achieve 
a high accuracy rate by simply predicting the majority category for all instances, 
but this approach holds limited practical value [66]. 

The term "balanced dataset" pertains to the distribution of data in a dataset, 
aiming to achieve equilibrium concerning the observed attribute [60], [67]. For 
example, when examining the ISBSG training dataset, the Industry Sector 
attribute encompasses categories like banking, government, financial, and more 
[7]. If the number of instances for each category (banking, government, financial) 
is equal in the training data, it might be classified as a balanced dataset regarding 
the industry sector. Conversely, if there is a notable discrepancy in the number of 
instances among the categories within the industry sector, it might be labelled as 
an imbalanced dataset. 

Within the context of imbalanced datasets related to the classification variable 
Industry Sector, this thesis aims to comprehensively evaluate the effectiveness of 
effort estimation by utilizing both balanced and imbalanced datasets. The primary 
objective is to assess and compare the performance of effort estimation models 
when trained on datasets that have been balanced versus those that remain 
unbalanced. Through this rigorous evaluation, the thesis seeks to elucidate the 
influence of dataset-balancing techniques on the accuracy of effort estimation 
outcomes. By addressing this crucial aspect, the research contributes valuable 
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insights into the importance of data balance in effort estimation, aiding 
practitioners in making informed decisions and enhancing the reliability of their 
estimation processes. 

2.5 Ensemble Approach in SDEE 

The ensemble (vice versus sole) methodology [68] aims to combine multiple 
models to create a prediction model. In 2023, Shukla et al. [69] proposed an 
ensemble model for estimating effort estimation based on use case points. There 
were five different techniques to create different ensemble models. They include 
linear regression, K-nearest neighbour, decision tree, support vector regression 
(SVR), and multilayer perceptron as base learners. As a result, the authors stated 
that the boosting ensemble with SVR as the base learner outperformed the other 
models. 

Beesetti et al. [70] introduced an ensemble approach involving regressor 
models, utilizing a voting estimator to enhance the predictive accuracy of effort 
estimation and minimize the bias inherent in individual machine-learning 
algorithms. The outcomes obtained underscore the superiority of ensemble 
models over single models when applied to diverse datasets, effectively 
addressing the bias issue. 

In 2022, Somya Goyal [71] presented a heterogeneous stacked ensemble to 
improve effort estimation based on artificial neural networks, SVR, as base 
learners. The author used five datasets (Desharnais, Cocomo81, China, Maxwell, 
and Miyazaki94) achieved from the PROMISE repository as historical datasets. 
The author concluded that the stacked ensemble outperformed the individual 
model. 

In 2021, P. Suresh Kumar et al. [72] proposed a gradient-boosting regressor 
model and evaluated its performance against various regression models. Their 
analysis included models such as stochastic gradient descent, K-nearest 
neighbour, decision tree, bagging regressor, random forest regressor, Ada-boost 
regressor, and gradient boosting regressor. This assessment was conducted using 
two datasets: COCOMO81 and China. The results highlighted the impressive 
accuracy of the gradient-boosting regressor model, outperforming all other 
models compared to both datasets. 

Varshini et al. [17] suggested a stacked ensemble approach based on Random 
Forest for estimating the effort required for software development. The authors' 
findings indicated that the proposed Random Forest stacking approach 
outperforms single models. This approach might be further for their ability to 
improve prediction accuracy. 

M. Hosni et al. [73] proposed a heterogeneous ensemble that used K-nearest 
Neighbor, Support Vector Machine, MLP, and Regression Trees—four well-
known machine learning approaches. Two widely used datasets were utilised to 
test the ensemble, and three linear rules were used to assess its performance. The 
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results revealed that the proposed heterogeneous ensemble technique performed 
quite well, and no particular optimum combiner rule can be suggested in light of 
the data. 

In 2019, P. K. M. Passakorn [74] conducted a research studied to explore the 
applicability of machine-learning techniques, which had demonstrated excellence 
in recent data science competitions, in estimating software effort. The 
investigation examined 14 machine learning methods, including popular 
approaches liked gradient boosting machine and deep learning, using 13 industry-
standard software effort estimation datasets from PROMISE 2015. The study 
utilised a widely adopted ranking evaluation method for estimating software 
effort. Notably, the research found that combining multiple effort estimators into 
a stacked ensemble, such as taking the average of predicted effort levels, resulted 
in more accurate estimations compared to the individual performance of any of 
the 14 examined estimators. The study considered the average values derived 
from the most accurate overall stacked ensemble in determining the estimated 
effort values. Furthermore, the investigation revealed that employing the boosting 
principle to create an ensemble improved performance in estimating software 
effort. 

Moreover, Palaniswamy and Venkatesan [75] employed an ensemble 
technique to enhance prediction accuracy. Traditionally, determining 
hyperparameters involved a time-consuming process of trial and error tailored to 
the specific problem and dataset. To address this issue, the researchers' utilised 
Particle Swarm Optimization (PSO) and Genetic Algorithms to adjust the 
hyperparameters dynamically. The study constructed a stacking ensemble model 
using data from the ISBSG dataset, which incorporated information from diverse 
software projects across countries and companies. 

In a related investigation by KK Anitha et al. in 2021 [76], software effort 
estimation was examined using ensemble techniques and machine/deep-learning 
algorithms. The authors conducted experiments on multiple datasets, including 
Albrecht, China, Desharnais, Kemerer, Maxwell, Kitchenham, and Cocomo81, to 
evaluate the performance of various models. Comparing different ensemble 
techniques and assessing several stacking models, their results revealed that the 
proposed random forest stacking method exhibited superior performance when 
applied to diverse datasets, outperforming SVM, decision trees, and neural 
networks. 

Based on these insights, exploring the effectiveness of a stacking ensemble that 
incorporates MLR, Random Forest, and Deep learning models for estimation 
tasks would be worthwhile. This approach could potentially yield improved 
estimation accuracy, leveraging the strengths of each model while mitigating their 
weaknesses through ensemble learning techniques. Further experimentation and 
evaluation would be necessary to validate the performance and generalizability of 
such a stacking ensemble for estimation tasks. 
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2.6 Transfer Learning in SDEE 

This technique has been developed to improve the performance of a target task 
by leveraging the knowledge gained while solving a related but different problem 
[2], [10], [11], [77]. It involves using a pre-trained model to train a new model on 
a different task. Typically, the pre-trained model is trained on a large dataset, and 
the learned features are used to initialise the new model's parameters.  

Minku et al. [5] investigated the application of transfer learning techniques and 
demonstrated that incorporating cross-company data might enhance performance. 
In 2014, Minku et al. [78] proposed a novel framework explicitly designed to 
capture the relationship between cross-company and within-company projects. 
This framework facilitated the mapping of cross-company models to the within-
company context. 

In 2015, Ekrem et al. [77] studied whether transfer learners might be used to 
predict software effort. They discovered that using the same transfer learning 
method could estimate transfer effort for cross-company and cross-time 
challenges. They argued that an organisation's past data might be helpful to 
present situations, or data from another company may be used for local solutions. 
They also discovered that transfer learning was a promising research subject in 
which relevant cross-data was moved across time intervals and domains. 
However, whether or not the transfer learning-based model should be adjusted to 
fit the local dataset needs to be stated. 

Kocaguneli et al. [3] studied transfer learning in effort estimation. Their study 
used the Tukutuku dataset, including 125 projects from 8 companies with 19 
independent variables, and they used Cocomo81 and Nasa93 for transfer learning. 
Their findings indicated that a single transfer learning approach might effectively 
tackle both the challenge of cross-company learning and cross-time learning. 
Their results dared the prevailing misconceptions: first, historical organizational 
data held no relevance in the current context, and second, the notion that data from 
different organizations could not contribute to localized solutions. These findings 
highlighted transfer learning's potential as a robust avenue, enabling the seamless 
transfer of pertinent cross-data across various domains and time intervals. 
However, several noteworthy gaps persist within this domain. Firstly, the data 
employed for training such models might be subject to limitations, particularly 
when investigating specific domains or distinct periods. This potential limitation 
could give rise to data imbalance issues, subsequently influencing the predictive 
efficacy of the models. Secondly, it is noteworthy that, at present, a conspicuous 
absence of proposed models or readily available pre-trained libraries exists for 
researchers to incorporate into their studies within the context of effort estimation. 
Integrating pre-trained models might be pivotal in unlocking the data's latent 
potential and catalysing the development of novel applications within this 
domain. Therefore, this aspect requires thorough discussion to address these 
limitations and identify potential future research directions. 
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In 2021, Leandro Minku [4] studied the necessity of using transfer learning in 
effort estimation. The study explored the potential of transfer learning by 
investigating whether treating Cross-Company projects as multiple data streams 
for ongoing learning could enhance effort estimation. An extended model named 
OATES enabled multi-stream online learning, compared against Dycom and 
other approaches. Results demonstrated OATES's improved predictive 
performance when Cross-Company project availability was limited, 
recommending its adoption for such cases. Conversely, with ample Cross-
Company projects available, OATES performed comparably to the state-of-the-
art, implying their optional but non-detrimental use. This finding underscores the 
significance of transfer learning in enhancing SEE outcomes. 

To sum up, several studies on transfer learning in effort estimation have been 
conducted; however, the development of pre-trained models in this domain 
remains scarce, indicating a significant gap in the availability of such resources. 
The thesis proposes creating a pre-trained model for effort estimation, leveraging 
the extensive ISBSG dataset. By harnessing the information within the ISBSG 
dataset, the proposed pre-trained model holds promising potential for accurately 
estimating software development efforts. This pioneering approach seeks to 
bridge the gap and contribute to advancing transfer learning methodologies in the 
context of effort estimation, thereby enhancing the practicality and efficacy of this 
essential software engineering task. 

2.7 Absence of Categorical Variables in FPA 

Effort estimation might still be the most challenging process for estimators in 
software engineering. This challenge might be due to the diverse project lifecycle 
models, which may need varying resources at distinct phases of the project [79]. 
The standard estimation [80] requires more effort to record activities, increasing 
the difficulty and duration of the estimate. Furthermore, the experience of 
software developers, the software team's project history in the same business 
domain, and various other characteristics, as well as the relationships between 
these factors, are sometimes not accurately predicted [81]. 

Moreover, as equation (4) mentioned, effort estimation is measured based on 
the function points and PDR. PDR is the number of hours required to complete 
one function point. Function points (AFP or UFP) are calculated by assessing the 
five main components of a software system: EI, EO, EQ, EIF, and ILF. Each of 
these components is assigned a weight based on its complexity. However, the 
PDR of that project might be unknown in the early stage of software project 
development. At the same time, the complexity of FPA weight metrics values 
might be affected by many factors (such as software development methodologies 
or systems characteristics) [82]. Suppose the complexity weights assigned to the 
components (EI, EO, EQ, EIF, ILF) are not appropriately identified; for example, 
assign higher complexity weights to relatively simple components or lower 
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weights to more complex components. In that case, it might lead to inaccurate 
effort estimation. 

Table 2-2 presents a comprehensive overview of categorical variables in the 
context of effort estimation, highlighting the collective endeavours of various 
researchers to integrate these variables to enhance estimation accuracy. The table 
enumerates diverse categorical variables alongside their corresponding 
references, signifying the studies investigating the potential impact of these 
variables on effort estimation. These categorical variables encompass 
development type, platform, language, industry sector, organization type, relative 
size, application type, business area, primary programming language, application 
group, first data system, methodology, and count approach. The table collectively 
underscores the significance of categorical variables in contributing to the 
refinement of effort estimation models. 

Table 2-2: The survey of categorical variables 

No. Categorical variables References 

1 Development Type [83]–[89] 

2 Development Platform [9], [83], [86]–[89] 

3 Language Type [8], [86]–[90] 

4 Industry Sector 
[47], [86], [88], [91]–

[95] 

5 Organisation Type [83], [84], [89] 

6 Relative Size [47], [88], [94], [96] 

7 Application Type [83], [84], [88], [91] 

8 Business Area Type [47], [94], [97] 

9 
Primary Programming 

Language 
[85], [86] 

10 Application Group [86] 

11 1st Data System [86], [87] 

12 Used Methodology [86], [88] 

13 Count Approach [94], [96] 
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The thesis explores innovative approaches that transcend the conventional 

reliance on complexity weights assigned to components and productivity 
measures. Specifically, this study endeavours to harness proposed methods such 
as deep learning, deep learning with balancing techniques, ensemble models, or 
transfer learning. By directing attention to the fundamental factors of EI, EO, EQ, 
EIF, and ILF alongside categorical variables, these novel approaches strive to 
elevate the accuracy of effort estimation. This research aims to push the 
boundaries of traditional effort estimation methodologies, paving the way for 
more advanced and precise techniques that account for diverse project 
characteristics and intricacies. 

2.8 Model Explainability Approaches: LIME, SHAP 

In deep learning, model explainability refers to the ability to interpret and 
understand the decision-making process of a deep learning model. Deep learning 
models are frequently regarded as opaque systems due to their complexity and 
difficulty in interpretation. Model explainability techniques provide insights into 
why a model makes specific predictions or decisions, shedding light on its internal 
workings. Two commonly used model explainability techniques in deep learning 
are LIME and SHAP. LIME stands for "Local Interpretable Model-agnostic 
Explanations". It is a technique used for explaining the predictions made by 
machine learning models [20]. It provides interpretable explanations at the local 
level, which means it explains why a particular instance or example was classified 
or predicted in a certain way. It is beneficial for black-box models, where 
comprehending the internal workings of the model is challenging. SHAP [98] is 
another technique used to explain machine learning model predictions. Similar to 
LIME, SHAP provides interpretable explanations at the local level. However, 
SHAP is based on game theory and uses Shapley values to attribute the 
contribution of each feature to the prediction [21]. 

To understand clearly LIME, Ribero M et al. [20]  gave an example of a 
medical scenario where a machine learning model was utilised to predict the 
likelihood of a patient having the flu based on input features such as sneeze, 
weight, headache, no fatigue, and age. Their example presented the model that 
produced a flu classification for a given patient. Next, the LIME technique was 
employed to analyse and comprehend the factors influencing flu prediction to 
provide transparency and interpretability. For instance, LIME highlighted the 
sneeze and headache attributes as crucial features in the prediction process. These 
findings contributed to the interpretability of the model and assisted healthcare 
professionals in making informed decisions based on the LIME explanations. 

To enhance interpretability, SHAP was employed as an alternative to LIME. 
SHAP utilises game theory and Shapley values to determine the contribution of 
each feature to the prediction. By leveraging SHAP, healthcare professionals, for 
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example, might have gained insights into the importance of features such as 
sneezing and headaches, enabling informed decision-making based on their 
expertise. 

In 2023, Assia Najm et al. [99] employed the SHAP technique to illustrate the 
effectiveness of model-agnostic approaches in elucidating estimated effort 
predictions derived from the SVR-RBF model, which was optimized through an 
artificial immune network within both agile and non-agile contexts. The authors 
highlighted that this intricate black-box model necessitated interpretation through 
a range of model-agnostic explanation techniques despite its impressive 
performance. 

Both LIME and SHAP techniques might offer valuable insights into the 
contribution of various features within the effort estimation models. These 
methods facilitate understanding the local importance assigned to each feature for 
a specific instance, thereby enabling more transparent and interpretable 
explanations. In the context of effort estimation, features such as EI, EO, EQ, EIF, 
ILF, Industry Sector, or Relative Size might be effectively assessed using LIME 
and SHAP, providing deeper insights into their significance and impact on the 
effort estimation. They dissect the model's inner workings, clarifying how specific 
features (such as EI, EO, EQ, EIF, ILF, IS, and RS) influence 
positively/negatively the predicted effort. This analysis results in a more profound 
grasp of the complex relationships and interactions among these features, 
enhancing the interpretability and reliability of the effort estimation. LIME and 
SHAP are tools for deciphering model predictions and invaluable aids for 
decision-making, offering a deeper appreciation of the variables. Integrating 
LIME and SHAP into the effort estimation landscape enables stakeholders to 
obtain accurate predictions and comprehend the underlying mechanisms driving 
those predictions. 

3. METHODOLOGY 

This section presents the concept of function point analysis for software size. 
Data collection and subsequent preprocessing ensure high-quality datasets. Model 
development involves creating predictive models such as deep learning 
ensembles, while model explainability techniques shed light on predictions 
rational. Finally, comparison criteria are presented to validate models. 

3.1 Function Point Analysis 

A Function Point counts the quantity and complexity of a software's functional 
capabilities depending on user requirements [79]. It was popularised and 
distributed by the IFPUG [79] in 1986. The IFPUG, the FPA's current regulatory 
agency, is in charge of improving and developing the norms outlined in the 
Counting Practices Manual [80]. Since the organisation's inception, the original 
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FCPA approach has been recognised as the IFPUG - FPA ISO/IEC 20926:2010 
is the current standard for it. Similar techniques derived from the baseline FPA 
include COSMIC, FiSMA, Mark-II, and NESMA [6]. 

As presented in Figure 3-1, there are several steps to count function points. 
First, the type of project should be clarified. It might be development, application, 
or enhancement function point count [100]. In the case of development type, 
function points can be counted at every development project stage. Application 
counts are based on the number of function points delivered, excluding any 
transformation effort (e.g., prototypes or temporary solutions) and any already 
implemented functionality, and counting the number of Added, Changed, or 
Removed functions in the enhancement function point. The next step is to collect 
enquiries on the application and system's technical specifications. These might 
contribute to determining the type of counting (data or transactional functions) 
that might be used and the applications and scope's boundaries [100]. Its border 
defines the distinction between the being examined program and the external 
applications. 

 
Figure 3-1: The diagram of function point counting [79] 

 
In the next step, this method counts a size attribute as the number of transaction 

and data function types produced by software projects. The transaction function 
contains EI, EO, and EQ, while the data function includes EIF and ILF. ILF is a 
file that is kept by the counted application. The EIF is a file held by another 
application beyond the border. Table 3-1 shows the complexity weights of each 
component. 

The FPA has the most characteristics that can be applied to estimate software 
projects in their initial stages [101]. First, function points can be fully allotted 
based on the requirements or design standards. The projects are in their initial 
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phases. Second, they have nothing to do with language programming, specialist 
development tools, or data processing in general [102]. Furthermore, because the 
function points are built from the user's point of view, non-technical users of the 
software may find them easier to grasp [103]. 

A linear combination of size attributes with appropriate three degrees of 
complexity weights is built to count function points. This function count is also 
known as UFP. The UFP formula is shown in equation (1). 

𝑈𝐹𝑃 = ෍ ෍ 𝐵𝐶𝑠௜௝ ×
ଷ

௝ୀଵ

ହ

௜ୀଵ

𝐶𝑊𝑠௜௝                                                (1) 

where 𝐵𝐶𝑠௜௝ is the count of component 𝑖 at level 𝑗, and 𝐶𝑊𝑠௜௝ is an appropriate 
complexity weight given in Table 3-1. 

VAF is measured based on 14 GSCs (see Table 3-2) that rate the overall 
operation of the application process under consideration. GSCs are commercial 
constraints imposed on non-technological users. Each attribute includes a 
description that can be used to calculate the degree of influence. The VAF formula 
is defined as follows: 

𝑉𝐴𝐹 =  0.65 + 0.01 × ෍ 𝐹௜ ×
ଵସ

௜ୀଵ

 𝐷𝑒𝑔𝑟𝑒𝑒ூ௡௙௟௨௘௡௖௘                (2)

Table 3-1: Complexity weights of FPA components. 

Size Attribute 
Complexity Weight (CWs) 

Low Medium Large 

EI 3 4 6 

EO 4 5 7 

EQ 3 4 6 

EIF 5 7 10 

ILF 7 10 15 

where 𝐹௜  represents the GSC factor's effect, the degree of influence 
(𝐷𝑒𝑔𝑟𝑒𝑒ூ௡௙௟௨௘௡௖௘) is displayed in Table 3-3. 

 
Table 3-2: General Systems Characteristics (GSCs) 

GSC 
Factors 

Characteristic Description 

F1 
Data 
communications 

Does the system require backup and recovery? 
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F2 
Distributed 
Functions 

Are Data Required for Communication? 

F3 Performance 
Does the system include a distributed processing 
function? 

F4 
Heavily Used 
Configuration 

Is critical performance required? 

F5 Transaction Rate Will the system work during heavy loads? 

F6 
Online Data 
Entry 

Does the system require direct data input? 

F7 
End-User 
Efficiency 

Are multiple screens or operations needed for data 
inputs? 

F8 Online Update Are the main files up to date? 

F9 
Complex 
Processing 

Are inputs, outputs, files, and queries intricate? 

F10 Reusability Is internal processing complicated and complex? 

F11 Installation Ease Is the code designed for reuse? 

F12 Operational Ease 
Are Conversions and Installation Included in 
Design? 

F13 Multiple Sites 
Is the application designed for multiple 
installations in different locations? 

F14 Facilitate Change 
Is the application designed to make it easy for users 
to make changes? 

 
The AFP can be calculated using the following equation: 

𝐴𝐹𝑃 = 𝑈𝐹𝑃 ×  𝑉𝐴𝐹                                                                 (3)

Table 3-3: The degree of influence [1] 

Influence Degree of Influence 
None 0 
Insignificant 1 
Moderate 2 
Average 3 
Significant 4 
Strong significant 5 
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IFPUG-FPA [79] is widely used for calculating software's functional size and 
complexity based on user requirements. AFP can be used as an input to estimate 
the effort. The efforts in terms of IFPUG-FPA is equal to AFP multiplied by PDR. 

𝐸𝑓𝑓𝑜𝑟𝑡୍୊୔୙ୋି୊୔ = 𝐴𝐹𝑃 ×  𝑃𝐷                                         (4) 

3.2 Data Collection 

The thesis incorporates the ISBSG (version R1/2020) [7] and other datasets as 
valuable historical datasets for the research study. By utilising these datasets, the 
study aims to leverage the wealth of data and insights available within the ISBSG 
and other datasets to contribute to the effort estimation methodologies. 

3.2.1 Selection of FPA Dataset (ISBSG) 

The ISBSG dataset contains 9,592 finished software projects. There are a total 
of 251 documented attributes. These are separated into a variety of categories, 
such as Summary Work Effort (SWE), total effort in hours recorded against the 
project; the adjusted functional point (AFP) of the project at the final count; VAF, 
the adjustment to the function points that take into account various technical and 
quality characteristic; functional point variables (EI, EO, EQ, EIF, ELF), PDR, 
and other categorical variables. Furthermore, there are many categorical variables 
in the ISBSG dataset (see Table 2-2). Clarifying these variables might be 
impossible in this study, selecting the representative variables using a survey to 
investigate recent studies that used categorical variables. 

Based on that survey, the Industry Sector (IS) is the most studied among the 
above-mentioned categorical variables. Moreover, Relative Size (RS) is the most 
recent study from 2018-2020. This research proposes a novel approach to estimate 
the SDEE based on IS, RS and EI, EO, EQ, EIF, and ILF. The selection of IS and 
RS from practical time limitations prompted an in-depth analysis of their 
influence on effort estimation. This focused approach neither dismisses nor 
diminishes the relevance of other variables. Instead, it lays the foundation for 
further investigation into a broader spectrum of categorical variables. 
Consequently, this research emphasizes the significance of IS and RS while 
acknowledging the potential for a more expansive exploration in the future. 

3.2.2 Other Datasets 

To diversify the dataset and enhance the prominence and robustness of the 
evaluation outcomes, in addition to utilizing ISBSG, this study also incorporates 
similar datasets based on function points from the PROMISE repository [104]. 
They include Albrecht, Desharnais, Kitchenham, and China datasets. These 
supplementary datasets enrich the research scope, providing a multi-faceted 
perspective on the performance of MLR, RF, DLMLP, ensemble, and transfer 
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learning techniques. The brief information on those datasets is presented in Table 
3-4. Their attributes are illustrated in Table 3-5. 

Table 3-4: Brief information on other datasets studied in this thesis 

No Dataset Source No.features No.records Effort unit 

1 Desharnais [105] 12 81 Person-hours 

2 Albrecht [102] 8 24 Person-hours 

3 Kitchenham [106] 10 145 Person-hours 

4 China [107] 19 499 Person-hours 

• Desharnais dataset: This was introduced in J.M. Desharnais' master thesis 
[105] and is publicly available in the Promise repository. It has 81 software 
projects, which were collected from 10 organisations in Canada between 
1983 and 1988. It has twelve features: Effort, PointsNonAdjust, 
Adjustment, PointsAjust, etc. 

• Albrecht dataset [102] includes information on IBM software projects 
made in the 1970s. The Albrecht dataset has eight features: Input (EI), 
Output (EO), Inquiry (EQ), File (EIF/ILF), Effort, etc. 

• Kitchenham dataset: The Kitchenham dataset [106] is a well-known dataset 
commonly used in software engineering research. The dataset consists of 
information collected from various software projects and includes 
attributes such as AFP, Effort, etc. 

• China dataset: The China dataset [107] consists of 499 projects obtained 
from various companies in China. It contains 19 recorded attributes: Input 
(EI), Output (EO), Enquiry (EQ), File (EIF), Interface (ILF), Effort, etc. 
This dataset was made publicly available in 2010. 

Table 3-5: Attributes of other datasets 

No Dataset Attributes 

1 Desharnais 

TeamExp, ManagerExp, YearEnd, Length, 
Effort, Transactions, Entities, 

PointsNonAdjust, Adjustment, PointsAjust, 
Language 

2 Albrecht 
Input (EI), Output (EO), Inquiry (EQ), File 
(EIF), FPAdj, RawFPCount, AFP, Effort 

3 Kitchenham duration, AFP, Estimate, SWE 

4 China 

AFP, Input (EI), Output (EO), Enquiry 
(EQ), File (EIF), Interface (ILF), Added, 
Changed, Deleted, Resource, Duration, 

AdjFactor, SWE 
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3.3 Preprocessing Techniques 

3.3.1 ISBSG Dataset 

The ISBSG dataset includes various attributes, such as Project Rating, 
Development Type, Productivity, Industry Sector, Relative Size, and more. In 
order to ensure that this dataset offers high-quality data valuable for training 
models, it should be filtered based on the following criteria: 

• The Project Rating field is designated with an ISBSG rating code of A, B, 
C, or D. As mentioned in ISBSG and several publications, the study chose 
high-quality projects by exclusively considering data projects with A and 
B ratings. This action led to the number of projects being reduced to 8,619. 

• EI, EO, EQ, ILF, ELF, and industry sector, relative size; we have excluded 
all those not counted, resulting in 1,654. 

• Productivity rate values (PDR) that fall outside of the Q1 (first quartile) - 
1.5 × IQR to Q3 (third quartile) + 1.5 × IQR range may be eliminated, 
where IQR is the abbreviation of the InterQuartile Range. As a result, the 
final number of projects is 1,073 projects. Figure 3-2 presents the boxplot 
of the productivity rate before and after removing the outlier. The boxplot 
of factors of PFA, such as SWE, AFP, EI, EO, EQ, ILF, and ELF, is also 
illustrated in Figure 3-3 before and after removing the outlier based on the 
productivity rate. The number of projects for each category of Relative Size 
and Industry Sector is presented in Figure 3-4 after removing the outlier 
based on productivity rate. 

• Categorical variables are often transformed into numeric labels to facilitate 
efficient processing and analysis. Various widely used techniques might be 
employed in Python for converting categorical variables into numerical 
form. Notable among these are the LabelEncoder and one-hot encoding 
methods. The LabelEncoder library, for instance, operates by assigning a 
distinct integer value to each category within the input variable. This 
approach retains the dimensionality of the data, which can be beneficial in 
situations where preserving the original feature space is essential. After the 
data filtration process, the encoding outcomes for Relative Size and 
Industry Sector are illustrated in Table 3-6 and Table 3-7, respectively. 

 
Figure 3-2: Box-plot of productivity rate before and after removing outliers 
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Figure 3-3: Box-plot of factors of FPA before and after removing outliers based on 

productivity rate 
Table 3-6: Label encoding for Relative Size 

No RS RS Label 
1 L 0 
2 M1 1 
3 M2 2 
4 S 3 
5 XL 4 
6 XS 5 
7 XXL 6 
8 XXS 7 

 

 
Figure 3-4: The number of selected projects in each RS and IS 
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Table 3-7: Label encoding for Industry Sector 

No IS IS Label 
1 Banking 0 
2 Communication 1 
3 Construction 2 
4 Defence 3 
5 Education 4 
6 Electronics & Computers 5 
7 Financial 6 
8 Government 7 
9 Insurance 8 
10 Manufacturing 9 
11 Medical & Health Care 10 
12 Mining 11 
13 Professional Services 12 
14 Service Industry 13 
15 Utilities 14 
16 Wholesale & Retail 15 

• Moreover, the counting methods developed by the IFPUG for FPAs are 
essential to this investigation. Therefore, out of 1,073 projects, 1045 belong 
to the IFPUG category, referred to as Dataset 1 and used primarily for thesis 
study. The remaining projects fall under the NESMA category (Dataset 2), 
which is utilized to evaluate the effectiveness of the transfer learning 
approach. 

Table 3-8: Division of ISBSG dataset based on the Counting Approach 

No Dataset Counting Approach No. Records 
1 Dataset 1 IFPUG 1045 
2 Dataset 2 NESMA 28 

3.3.2 Other Datasets 

As mentioned in 3.2.2, besides the ISBSG dataset presented above, the study 
expands its analysis to incorporate other datasets, including Desharnais, Albrecht, 
Kitchenham, and China. The primary objective for these additional datasets is to 
evaluate the effectiveness of MLR, RF, DLMLP, and ensemble models and use 
them to clarify the performance of the transfer learning approach. Thus, the initial 
step involves identifying and selecting key features significantly influencing the 
model's performance. 

A Pearson correlation analysis is conducted on those datasets to identify the 
key features significantly influencing the actual/effort values. This 
comprehensive examination aims to uncover the interrelationships between input 
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factors and the corresponding effort required in software development projects. 
By quantifying the strength and direction of linear associations, the analysis 
provides valuable insights into which features exert the most pronounced impact 
on effort estimation accuracy. 

 
Figure 3-5: The Pearson correlation of features on the Desharnais dataset 

 
The obtained results, depicted in Figure 3-5, Figure 3-6, Figure 3-7, and Figure 

3-8, reveal crucial insights into the relationship between the attributes and their 
relevance for effort estimation. Using a threshold greater than 0.5 is a strategic 
approach to discern the most influential attributes that significantly impact the 
accuracy of effort estimation models. This thresholding technique allows us to 
focus on attributes with stronger correlations, effectively filtering out less 
impactful factors and streamlining the feature selection process. 

In the case of Desharnais, the attributes of Length, Transactions, Entities, and 
PointsAdjust exhibit a positive impact on the effort required. Given the high 
correlation coefficients observed, particularly with PointsAjust at 0.74, it is 
determined that PointsNonAdjust provides redundant information and, therefore, 
has been excluded from further analysis. For Albrecht, the attributes of Input, 
Output, Inquiry, File, RawFPCount, and AdjFP affect the effort estimation 
significantly. Furthermore, in the context of Kitchenham, the duration, AFP, and 
Estimate attributes hold considerable importance, while for China, the attributes 
of AFP, Input, Output, Enquiry, File, and Added positively influence the actual 
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development efforts. These findings provide valuable guidance for accurately 
estimating software effort by considering the influential attributes in each dataset. 

 
Figure 3-6: The Pearson correlation of features on the Albrecht dataset 

 
Figure 3-7: The Pearson correlation of features on the Kichenham dataset 
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Figure 3-8: The Pearson correlation of features on the China dataset 

3.3.3 Dataset Description 

The datasets are divided into two segments to showcase the experimental 
results of the studied models and evaluate their effectiveness in effort estimation. 
For small datasets, 20% is designated for testing to ensure meaningful evaluation. 
For larger datasets, allocating 15% for testing and reserving the remainder for 
training enables the model to leverage ample data for robust training. 
Consequently, datasets with limited data, such as Desharnais, Albrecht, and 
Dataset 2, are assigned a 20% test allocation, while Dataset 1, Kitchenham, and 
China datasets receive an 85% training allocation. Detailed descriptions of each 
data type are provided in accompanying tables, outlining the key attributes and 
their ranges, ensuring a clear understanding of the dataset's composition. 

Table 3-9: Data description of training – Dataset 1 

   SWE   AFP   EI   EO   EQ   ILF   EIF  
mean  4,081.72 421.99 125.95 95.35 71.29 83.42 28.14 
std  5,765.54 792.75 361.07 162.24 120.97 160.19 59.67 
min  64.00 9.00 0.00 0.00 0.00 0.00 0.00 
0.25  1,053.00 116.00 21.00 14.00 6.00 14.00 0.00 
0.50  2,391.00 225.00 55.00 42.00 27.00 41.00 5.00 
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0.75  4,691.00 459.00 126.50 104.50 86.50 89.50 30.00 
max  59,809 17,518 9,404 1,831 1,306 2,955 644 

Table 3-10: Data description of testing – Dataset 1 

   SWE   AFP   EI   EO   EQ   ILF   EIF  
mean  4,796.13  514.46  150.12  109.94  84.20  111.52  37.51  
std  6,221.87  784.25  288.92  177.07  131.85  186.31  79.18  
min  38.00  9.00  0.00   0.00 0.00 0.00 0.00 
0.25  1,148.25  116.00  24.75  17.75  9.75  15.00  0.00   
0.50  2,330.50  259.00  65.50  42.00  33.00  45.00  11.00  
0.75  5,706.75  485.50  145.50  129.00  93.25  107.25  42.25  
max  39,358  5,684 2,221  1,337  820 1,252  634  

Table 3-11: Data description of training – Dataset 2 

   SWE   AFP   EI   EO   EQ   ILF   EIF  
mean   22.00   22.00   22.00   22.00   22.00   22.00  22.00  
std  2,915.77   518.91   175.00   177.36   44.82  109.14  24.95  
min   412.00   43.00  0.00    15.00  0.00 0.00 0.00 
0.25  1,707.75   149.25   13.00   72.50   0.75   22.75   0.00   
0.50 1,852.98   273.00   93.50   104.00   9.50   42.50  11.00 
0.75 2,545.50  589.75   245.66   164.55   100.74  146.97  27.25 
max  3,831.25   471.25  151.25  261.00   19.00  105.25  35.47 
Table 3-12: Data description of testing – Dataset 2 

   SWE   AFP   EI   EO   EQ   ILF   EIF  
mean  2,202.17  150.50  29.00  85.33    3.83   23.50  8.00 
std  981.21 56.23 37.22 36.16 4.40 24.44 10.06 
min  951.00 67.00 0.00 25.00 0.00 0.00 0.00 
0.25  1,636.25 121.00 6.50 72.50 0.75 14.00 0.00 
0.50  1,986.00 157.00 16.00 90.00 3.50 14.50 3.50 
0.75  2,931.25 197.50 33.00 106.00 4.00 24.75 16.75 
max  3,524.00 226.00 100.00 129.00 12.00 70.00 21.00 

Table 3-13: Data description of training – Desharnais 

  SWE  Length Transactions Entities 
PointNon 

Adjust 
PointsAjust 

mean  4667.06 11.47 180.23 116.63 296.86 282.71 
std  4336.56 7.71 151.49 84.52 191.64 198.12 
min  546.00 1.00 9.00 7.00 73.00 62.00 
0.25  2282.00 6.00 88.00 52.00 167.00 140.00 
0.50  3542.00 9.00 139.00 89.00 258.00 241.00 
0.75  5817.00 13.00 223.00 145.00 377.00 340.00 
max  23940.0 39.00 886.00 387.00 1127.00 1127.00 
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Table 3-14: Data description of testing – Desharnais 

  SWE  Length Transactions Entities 
PointNon 

Adjust 
PointsAjust 

mean  6587.00 12.43 189.81 145.50 335.31 315.75 
std  4554.40 6.30 112.44 85.05 123.44 124.96 
min  840.00 4.00 58.00 34.00 92.00 86.00 
0.25  3368.75 8.00 111.50 98.25 261.00 227.00 
0.50  5127.50 12.50 170.00 122.50 327.50 320.50 
0.75  9691.50 15.50 244.50 181.00 436.50 426.00 
max  14987.0 27.00 451.00 332.00 507.00 507.00 

Table 3-15: Data description of training – Albrecht 

 SWE Input Output Inquiry File 
mean 24.116 44.526 48.895 17.789 19.789 

std 31.268 40.218 37.962 21.283 16.592 
min 2.900 7.000 12.000 0.000 5.000 
25% 7.050 25.000 18.000 2.000 6.500 
50% 11.800 40.000 38.000 13.000 15.000 
75% 18.650 46.500 65.000 20.500 29.000 
max 105.200 193.000 150.000 75.000 60.000 

 

Table 3-16: Data description of testing – Albrecht 

 SWE Input Output Inquiry File 
mean 13.36 24.00 41.00 13.40 8.20 

std 11.38 11.81 23.78 9.63 3.70 
min 0.50 10.00 15.00 1.00 3.00 
25% 7.50 15.00 20.00 6.00 6.00 
50% 8.90 27.00 41.00 16.00 9.00 
75% 21.10 28.00 60.00 20.00 11.00 
max 28.80 40.00 69.00 24.00 12.00 

Table 3-17: Data description of training – Kitchenham 

 
SWE duration AFP Estimate 

mean 3,390.35 206.74 528.43 3,018.40 
Std 10,635.36 141.35 1,687.21 7,504.70 
min 219.00 37.00 15.36 121.00 
25% 874.00 114.00 121.52 900.00 
50% 1,584.00 166.00 240.84 1,770.00 
75% 2,972.00 259.00 464.00 2,895.00 
max 113,930.00 946.00 18,137.48 79,870.00 
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Table 3-18: Data description of testing – Kitchenham 

 SWE duration AFP Estimate 
mean 1954.67 205.25 524.47 2177.25 
Std 1906.19 100.28 352.65 1809.82 
min 286.00 40.00 74.40 200.00 
25% 813.50 142.25 178.77 862.75 
50% 1316.00 193.50 535.14 1587.00 
75% 2586.00 238.75 796.19 2805.75 
max 8656.00 432.00 1292.56 8690.00 

Table 3-19: Data description of training – China 

 
SWE Input Output Enquiry File Added 

mean 3,876.23  148.17  107.93  60.89  86.88  342.86  
std 6,354.29  262.42  216.00  104.55  172.35  609.13  
min 26.00  0.00 0.00 0.00 0.00 0.00 
25% 712.50  25.00  12.00  6.00  10.00  36.50  
50% 1,801.00   60.00  41.00  24.00  32.00  128.00  
75% 3,807.50  145.00  108.00  67.00  79.50  323.00  
max 49,034.00  2,221.00  2,455.00   952.00  1,732.00  4,943.00  

Table 3-20: Data description of testing – China 

 SWE Input Output Enquiry File Added 
mean 4,091.27  238.97  135.15  64.32  107.77  426.81  

std 6,970.38  934.65  240.14   109.14  315.91  1,380.06  
min 117.00  0.00 0.00 0.00 0.00 0.00 
25% 661.75  32.00  19.00  10.00  14.00  44.75  
50% 1,993.00  71.50  42.00  28.50  41.50  158.50  
75% 3,845.25  162.00  136.00  75.50  87.75  332.25  
max 54,620.00  9,404.00  1,241.00  772.00  2,955.00  13,580.00  

3.3.4 Balancing Dataset Technique 

Several common approaches might be adopted to tackle the problem of 
imbalanced training datasets in deep learning based on data level. They might be 
as follows: 

• Data resampling: this approach involves updating the distribution of the 
training dataset by either oversampling the minority category or 
undersampling the majority category [60]. Oversampling techniques 
include duplication of minority samples and generating synthetic data using 
techniques such as the Synthetic Minority Over-sample Technique 
(SMOTE) [62] and the Adaptive Synthetic Sampling Approach (ADASYN) 
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[108]. On the other hand, undersampling involves reducing the number of 
samples from the majority category to match the minority category. 

• Class weighting: this approach might assign weights to different categories 
during training [61]. By assigning higher weights to the minority category, 
the model might be encouraged to pay more attention to these samples and 
reduce the bias towards the majority category. 

• Generating Augmented Data: data augmentation is the process of generating 
synthetic data that share characteristics with the original dataset while 
incorporating purposeful differences or alterations [109], [110]. This 
procedure comprises applying particular methods or modifications to the 
current data. The main goal of creating augmented data is to increase the 
dataset's diversity, scalability, and representativeness, which helps machine 
learning models perform better and generalise across various applications. 
Gaussian combination model (GMM) [111] might be used to generate those 
datasets. It assumes that the provided data points represent samples [110]. 

The ISBSG dataset encompasses the industry sector feature, which is crucial in 
the analysis. As depicted in Table 3-7, the dataset comprises sixteen distinct 
industry sectors: Banking, Government, Financial, and others. However, it is 
essential to note that the distribution of projects across these industry sectors is 
imbalanced, as indicated in Figure 3-4. Consequently, this section aims to 
investigate the performance of the deep learning model when applied to a 
balanced dataset. The class weighting approach is utilised specifically for the 
industry sector feature to achieve this. By assigning appropriate weights to each 
category within the industry sector, the deep learning model might effectively 
account for the inherent class imbalance, leading to more accurate and reliable 
predictions across different industry sectors. The following diagram of this 
approach is given in Figure 3-9. Dataset 1 serves as the historical dataset 
employed in this methodology. 

 
Figure 3-9: The architecture of the DLMLP model with/without balancing based on 

industry sector factors 
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3.4 Model Development 

This section presents the model development and the thesis study models based 
on multiple linear regression, deep learning, transfer learning, deep learning with 
balancing datasets, and ensemble model, which incorporates multiple linear 
regression and deep learning. 

3.4.1 Multiple Linear Regression Model 

The MLR technique is employed for statistical analysis to establish the 
connection between a dependent and two or more independent variables. Multiple 
regression aims to predict the dependent variable's value based on the independent 
variables' value [23]. In the MLR model, the dependent variable is commonly 
denoted as the response or outcome variable, whereas the independent variables 
are termed predictor variables or covariates. It might be used to predict software 
effort estimation based on a given set of independent variables. The formulation 
of MLR involves an equation that expresses a direct association between a 
dependent variable and a set of p independent variables 𝑋ଵ, 𝑋ଶ, … , 𝑋௣ as follow: 

𝑦 ≈  𝛽଴ +  𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + ⋯ + 𝛽௣𝑋௣ +  𝜀                   (5) 

where 𝑦  is the response variable, it stands for the output of the model; 
𝑋ଵ, 𝑋ଶ, … , 𝑋௣  are predictors or independent variables; 𝛽଴  is an intercept, 
𝛽ଵ, 𝛽ଶ, … , 𝛽௣ are regression coefficients, and 𝜀 is presented as an error residual. 
The intercept and regression coefficients are unknown values. The regression 
model estimates these coefficients based on the observed data, and the goal is to 
find the values of the coefficients that best fit the data. 

Assuming that there are n records in the dataset, where each record i includes 
a value for the dependent variable 𝑦௜  values for p independent variables 
𝑋୧ଵ, 𝑋୧ଶ, … , 𝑋௜௣ , the multiple linear regression equation for record i can be 
expressed as: 

𝑦௜ =  𝛽଴ + 𝛽ଵ𝑋𝒊𝟏 + 𝛽ଶ𝑋୧ଶ + ⋯ + 𝛽௣𝑋௜௣ + 𝜀௜, 𝑖 =  1. . 𝑛തതതതതത     (6) 

Equation 𝑦௜ =  𝛽଴ + 𝛽ଵ𝑋𝒊𝟏 + 𝛽ଶ𝑋୧ଶ + ⋯ +  𝛽௣𝑋௜௣ + 𝜀௜, 𝑖 =  1. . 𝑛തതതതതത     (6 ) 
could be written as follows: 

𝒚 =  𝐗𝛃 +  𝛆                                                                              (7) 

If the inverse (𝐗𝑻𝑿)ି𝟏 exists, the values of the coefficients that minimise the 
sum of squared differences across all n records might be then estimated using the 
least squares method [112]. As a result, vector 𝛃 is given by: 

൭
𝑦ଵ
⋮

𝑦௡
൱ = ቌ

𝑋ଵଵ ⋯ 𝑋ଵ௤
⋮ ⋱ ⋮

𝑋௡ଵ ⋯ 𝑋௡௤

ቍ × ቌ
𝛽ଵ
⋮

𝛽௤

ቍ                                      (8) 
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𝛃 = (𝑿𝒏𝒒
𝑻 𝑿𝒏𝒒)ି𝟏𝑿𝒏𝒒

𝑻 𝒚                                                            (9) 

Moreover, singular value decomposition (SVD) [113] is a matrix factorisation 
technique used in linear algebra. It decomposes a matrix into three separate 
matrices, providing valuable insights into the properties and structure of the 
original matrix. For a given matrix 𝑋௡௤, the SVD might be expressed as: 

𝑋௡௤ =  𝑈௡௠Σ௠௤𝑉௤௤
்                                                            (10) 

where 𝑈௡௠, 𝑉௤௤ are orthogonal matrices, 𝑈்𝑈 = 𝐼 ,  𝑉்𝑉 = 𝐼 , and Σ  is a 
diagonal matrix containing the square roots of eigenvalues from U and V in 
descending order [113]. Vector 𝛃 is given as follows: 

 

𝛃 = 𝐕𝒒𝒒(𝚺𝒎𝒒
𝑻 𝚺𝒎𝒒)ି𝟏𝚺𝒎𝒒

𝑻 𝑼𝒏𝒎
𝑻 𝒚                                    (11) 

3.4.2 Random Forest 

Random Forest (RF), introduced in 2001 by Breiman [114], is a kind of 
ensemble of decision trees trained via the bagging method (or sometimes the 
pasting method). Several poor models are joined to build a superior model. Each 
tree categorises the attributes of a new entity. The forest chooses the category with 
the most votes and averages the outputs of the different trees. The growth process 
of each tree in a random forest, as described in [115], [116], can be summarised 
as follows: 

• Sampling: N cases are randomly selected from the original data with 
replacements to form the training set for each tree. The number of cases in the 
training set is equal to N. 

• Variable Selection: At each tree node, a subset of m variables is chosen 
randomly from the total M input variables. The value of m is much smaller 
than M. The node is then split based on the best split determined using the 
selected m variables. 

• Constant Variable Selection: Throughout growing the random forest, the 
value of m remains constant for all the trees. 

• Maximum Growth: Each tree is grown to its fullest extent without the use of 
any pruning techniques. 

To summarise, the growth process of each tree in a random forest involves 
sampling cases with replacement, selecting a subset of variables at each node, 
constant variable selection across all trees, and allowing each tree to grow to its 
maximum extent without pruning. According to Mustapha et al. [117], it 
outperformed several other classification models and was also resistant to over-
fitting and relatively user-friendly [118]. 



 

38 
 

3.4.3 Gradient Boosting 

Boosting involves adding new models to an existing ensemble in a systematic 
manner, as proposed by Leo Breiman [114]. At each iteration, a new weak learner 
model is trained by considering the errors of the ensemble learned so far. Boosting 
algorithms were originally entirely algorithm-driven, but later, a statistical 
framework was developed for boosting methods, such as the gradient boosting 
machine [119]–[121]. This approach involves sequentially fitting new models to 
improve the accuracy of the response variable. The idea is to construct new base 
learners most similar to the negative gradient of the loss function, which connects 
to the entire ensemble. This learning process minimises the traditional squared 
error loss function by iteratively fitting errors. Extreme gradient boosting 
(XGBoost) and Histogram Gradient Boosting (HGBoost) are both 
implementations of gradient boosting, a machine-learning technique employed 
for predictive modelling. 

XGBoost is a widely used gradient-boosting implementation incorporating a 
gradient-boosting framework with various optimizations to enhance speed and 
precision. This algorithm is an ensemble of gradient boosting that takes advantage 
of second-order derivatives of the loss function to identify the most efficient and 
precise base classifier [122]–[124]. Unlike traditional gradient boosting, 
XGBoost employs second-order gradients. XGBoost supports three primary 
forms of gradient boosting [125] with different variations: 

• Gradient Boosting Algorithm: XGBoost includes the traditional gradient 
boosting algorithm, also known as the gradient boosting machine. This 
algorithm incorporates a learning rate, which controls the contribution of 
each tree in the ensemble. 

• Stochastic Gradient Boosting: XGBoost offers stochastic gradient 
boosting, introducing sub-sampling techniques at multiple levels. This 
approach includes sub-sampling at the row level (sampling a subset of data 
points), column level (sampling a subset of features), and column per split 
level (sampling a subset of features for each split). These techniques 
enhance diversity and reduce overfitting. 

• Regularized Gradient Boosting: XGBoost provides regularized gradient 
boosting with L1 (Lasso) and L2 (Ridge) regularization. This regularization 
helps control the complexity of the model and prevent overfitting. 

On the other hand, Histogram Gradient Boosting (HGBoost), also known as 
histogram-based gradient boosting, is another boosting ensemble that utilizes 
feature histograms to quickly and accurately identify the optimal splits [122], 
[126]. Compared to traditional gradient boosting, HGBoost is more efficient 
regarding processing speed and memory usage. 

3.4.4 Multi-layer Perceptron Model 

Deep learning (DL) is a specialized area within machine learning that involves 
using neural networks with multiple layers to acquire intricate data 
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representations, drawing inspiration from the structure/function of the human 
brain [127], [128]. It involves a machine learning algorithm class that learns these 
representations through non-linear transformations applied to the input data. 
These networks can be composed of different layers, such as convolutional, 
pooling, and recurrent layers, in addition to fully connected layers. DL improves 
prediction accuracy by replying on multiple processing layers to gain knowledge 
representations of the data with varying levels of complexity. According to [127], 
DL has advanced dramatically in various other disciplines, including natural 
language processing, visual object classification, and image recognition, and has 
achieved state-of-the-art performance in many applications. 

 
Figure 3-10: The diagram of deep learning with fully connected four hidden layers 
DL aims to investigate complex systems in massive amounts of the dataset 

using backpropagation techniques to show how a machine adjusts the 
hyperparameters used to measure each class's representation depending on the 
performance of the preceding layer. 

Figure 3-10 illustrates the flow diagram for deep learning with four fully 
connected layers involving an input layer, hidden layers where each neuron 
participates in a weighted linear summation, and an output layer that produces the 
network's final output. Each hidden layer involves a non-linear activation function 
applied to the previous layer's output. During training, the weights of connections 
between neurons are updated by computing the difference between predicted and 
actual outputs for each example in the training set. 

The MLP is a supervised machine learning algorithm and foundational 
feedforward neural network architecture employed extensively in deep learning 
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research and applications. It comprises multiple layers of interconnected artificial 
neurons (perceptrons). It builds a network to simulate the human brain's 
processing [129]. The MLP trains on a dataset to learn the function 𝑓: 𝑅௠  → 𝑅, 
where m is the number of dimensions for input. Function 𝑓 is used to learn the 
improved weight values corresponding to each network link to achieve a minor 
discrepancy between the estimated and actual values in terms of effort estimation. 

 
Figure 3-11: The diagram of one hidden layer of MLP 

The MLP architecture comprises an input, output, and one or more hidden 
layers. The Input layer receives input data, which is subsequently propagated 
through the hidden layers to generate the output. Figure 3-11 shows the diagram 
of one hidden layer of MLP. The input layer, located on the left most layer, 
comprises a group of neuron features (X) that represent the input features. Every 
neuron in the hidden layer participates in a weighted linear summation 𝑥ଵ𝑤ଵ +
𝑥ଶ𝑤ଶ + 𝑥ଷ𝑤ଷ + ⋯ + 𝑥௠𝑤௠ to the values from the previous layer, followed by 
an activation function. The activation function used in each neuron can vary, but 
common choices include the sigmoid function, ReLU (rectified linear unit), and 
tanh (hyperbolic tangent) function [130], [131]. The values propagated from the 
preceding hidden layer are accepted by the output layer and transformed to 
produce output values. 

3.4.5 Transfer Learning Technique 

Transfer learning involves the notions of domain and task [132]. A domain 
consists of a marginal probability distribution over the feature space and the 
feature space itself. A collection of features found in a dataset may be described 
as a feature space (𝑋). The marginal probability distribution 𝑃(𝑋) represents the 
marginal probability of a random variable in the presence of other random 
variables. Given all possible outcomes of a different random variable, the chance 
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of a current event is referred to as a marginal probability. Two domains that are 
distinct from one another could have separate feature spaces with various 
marginal probability distributions. 

The source domain might be denoted as 𝐷ௌ = {(𝑥ௌଵ, 𝑦ௌଵ), … , (𝑥ௌ௡, 𝑦ௌ௡)} , 
where 𝑥ௌ௜ ∈ 𝑋ௌ  is the data instance and 𝑦ௌ௜ ∈ 𝑌ௌ  is the corresponding output 
variable. Similarly, the target domain is defined as 𝐷் =
{(𝑥்ଵ, 𝑦்ଵ), … , (𝑥்௡, 𝑦்௡)} where 𝑥்௜ ∈ 𝑋் , and 𝑦்௜ ∈ 𝑌 . In most cases, 0 ≤
𝑇𝑛 ≤ 𝑆𝑛 . If 𝑋ௌ  differs with 𝑋்  or 𝑃(𝑋ௌ) differs with 𝑃(𝑋்), then the source 
domain differs from the target domain (𝐷ௌ  ≠ 𝐷்). On the other hand, a learning 
task is defined as a pair 𝑇 = {𝑦, 𝑃(𝑌|𝑋)} . If 𝑇ௌ ≠ 𝑇்  so either  𝑌ௌ ≠ 𝑌  or 
𝑃(𝑌ௌ|𝑋ௌ) ≠ 𝑃(𝑌 |𝑋்). 

According to Pan and Yang [132], traditional machine learning is learning 
where the target and the source domain are the same (𝐷ௌ =  𝐷்)  and their 
learning task is the same. In the case of the feature spaces between the source (𝑋ௌ) 
and target domain (𝑋் ) are different or the marginal probability distributions 
between the source (𝑃(𝑋ௌ)) and target domain 𝑃(𝑋்) are different, we state that 
the domains are different (𝐷ௌ ≠ 𝐷். Transfer learning can be classified into three 
primary types: inductive, transductive, and unsupervised transfer learning. 

Inductive transfer learning involves leveraging machine learning techniques 
when the target task differs from the source task, regardless of the similarity 
between their respective domains. This approach makes it possible to train a 
model on a source task and then apply it to other tasks without requiring a 
complete retraining process [133]. Instead, partial retraining of specific layers or 
components may be employed. Notably, during the training process for a specific 
task, the model has the potential to acquire shared features from the data, which 
can help address other tasks effectively. 

According to Arnold et al. [134] and Kocaguneli et al. [3], the source and target 
tasks are identical in transductive transfer learning, while the source and target 
domains are distinct. It involves using a pre-trained model to make predictions on 
a new dataset, and the predictions are used to train a new model [132]. This type 
of transfer learning is proper when there is no available labelled data for the target 
task, and the pre-trained model can generate pseudo-labels for the new dataset 
[135]. The new model is then trained on the pseudo-labelled data. 

Lastly, in unsupervised transfer learning, the target task exhibits differences 
from the source task while maintaining a certain level of relevance or connection. 
It involves training a pre-trained model on an unsupervised task, such as 
autoencoders [136], and the learned features are used to initialise a new model. 
This type of transfer learning is advantageous when the target task has limited 
labelled data, and the pre-trained model can be used to transfer knowledge from 
the unsupervised task to the target task. 
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Figure 3-12: The diagram of the transfer learning model 

This thesis uses Dataset 1 as the source and Dataset 2, Albrecht, and China as 
targets. Dataset 1 and Dataset 2 share the same input and output features, whereas 
the remaining datasets exhibit similarities in their features but have fewer input 
features than Dataset 1. Dataset 1 comprises a significantly more extensive set of 
1045 projects than Dataset 2, which consists of only 28 projects. Additionally, 
when contrasting Dataset 1 with other datasets, such as Albrecht and China, it 
becomes evident that Dataset 1 is more significant than the others. As outlined in 
Section 1, using transductive transfer learning involves leveraging machine 
learning techniques in scenarios where the target task is similar to the source task. 
In this section, we intend to explore the application of transductive transfer 
learning by employing a pre-trained model trained on Dataset 1, incorporating the 
datasets above in the transfer learning process. 

Figure 3-12 illustrates the diagram of transfer learning models, where Dataset 
1 is used as an extensive dataset to build the pre-trained model, and Dataset 2, 
Albrecht, China, are used to clarify the performance of transfer learning models. 
Features mapping involves translating the characteristics of the new dataset into 
a format that the pre-trained model might understand. The pre-trained model was 
initially designed to work with six input features (EI, EO, EQ, EIF, ILF, and 
Industry Sector). Those features were chosen based on the best performance of 
effort estimation obtained from those features presented in 5.2.1. This step 
updates the pre-trained model's input layer to match the new input's size. The 
scenario is defined into three cases as described below: 
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• TL-Case 1: Using DLMLP models trained based on Dataset 1 to validate 
the performance of effort estimation based on a testing dataset of Dataset 
2. 

• TL-Case 2/DLMLP: Using DLMLP models, train them based on 80% of 
Albrecht, China, Dataset 2 and validate the performance of effort 
estimation based on 20% of those datasets. 

• TL-Case 3: This is a transfer learning approach. DLMLP models trained 
by Dataset 1 are called pre-trained models and continue to train based on 
80% of Albrecht, China, and Dataset 2 and validate the performance of 
effort estimation based on 20% of the remaining datasets. 

3.4.6 Ensemble Model: Incorporating Multiple Linear Regression, 
Random Forest, and Deep Learning Models 

Ensemble learning combines the predictions of multiple machine learning 
models to improve the accuracy and generalisation of the overall model. The idea 
behind ensemble learning is that by incorporating the predictions of multiple 
models, the variance and bias of the overall model might decline, leading to better 
performance on unseen data. In 1990, Hansen et al. [68] proposed that utilising 
an ensemble of neural networks with a majority agreement technique could 
produce better results than using a single predictor. In this context, an ensemble 
refers to a group of predictors, and ensemble learning is a method that integrates 
predictions from multiple models, referred to as the ensemble method. Bagging, 
boosting, and stacking are three popular types of ensemble methods, as noted in 
a publication [124]. 

• Bagging and pasting: a strategy that trains each predictor using the same 
training algorithm on distinct random subsets of the training set. The 
procedure is called bagging when sampling is performed with replacement; 
otherwise, (without replacement) is named pasting. Both bagging and 
pasting allow for numerous samples of training cases across multiple 
predictors. However, only bagging allows for various examples of the exact 
predictor. Once all predictors have been trained, the ensemble can forecast 
a new instance by aggregating all predictors' predictions. 

• Boosting: Any ensemble method that may consolidate numerous 
ineffective learners into one robust learner is called boosting. Most 
motivating approaches require predictors to forecast sequentially, with 
each attempt to correct its predecessor. Adaptive Boost (AdaBoost) and 
Gradient Enhancement are the most common boosting methods. 

• Stacking: David Wolpert [128] proposed in 1992, taking prior predictions 
as feed to determine the final prediction (blender/meta learner). 

• Voting: Voting methods combine predictions from multiple models by 
taking the most votes (for classification) or averaging (for regression). 
There are different types of voting ensembles, such as hard voting, where 
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the class with the majority vote is chosen, and soft voting, where the class 
probabilities are averaged. 

As mentioned in Section 2.5, an ensemble learning approach is employed to 
enhance prediction accuracy. Select two base regression models, MLR and RF, 
for creating ensemble models through stacking regressors. These ensemble 
models produce predictions, which are then integrated with the output of a 
DLMLP model using a voting-by-averaging method for regression. The 
performance of this approach is evaluated with MLR, RF, and DLMLP 
approaches. 

3.5 Model Explainability - Interpretability 

In software effort estimation, where precise predictions are pivotal for effective 
project planning and resource allocation, a pressing challenge arises from the 
black-box of the predicted models, especially DLMLP models, chosen in this 
section due to time constraints. These models leverage input features such as EI, 
EO, EQ, EIF, ILF, IS, and RS. However, their opacity makes it difficult for 
stakeholders to comprehend the inner workings of these models and how 
predictions are generated. 

Explainability techniques, such as LIME and SHAP, become essential to 
address this issue. These techniques are pivotal in bridging this gap by unveiling 
the intricate relationships between these input features and the predicted effort. 
Doing so gives stakeholders a transparent view of the estimation process, enabling 
them to understand better the underlying factors influencing model predictions. 
This transparency enhances the estimation model's credibility and empowers 
decision-makers to make informed decisions regarding software project planning 
and resource allocation. 

3.5.1 LIME 

In the context of effort estimation using the LIME model explainability 
framework, assigning positive and negative values to independent variables 
indicates their influence on predicted effort. This numeric representation plays a 
crucial role in comprehending the impact of each variable on model predictions. 
LIME is a valuable tool for gaining insights into individual predictions generated 
by predictive models. Its fundamental purpose lies in approximating predictive 
models locally using interpretable models. LIME's primary objective is to address 
the fundamental question: 'Why did the model produce this specific prediction for 
a given instance?' 

To illustrate, applying LIME in the context of effort estimation assists in 
illuminating how each feature (e.g., EI, EO, EQ) contributed to the predicted 
effort for a specific instance. LIME dissects the contributing factors underlying a 
prediction, facilitating an in-depth understanding of the role played by each 
feature in the model's decision-making process. The positive and negative values 
associated with the feature indicate their impact on the predicted effort. 
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• Positive Contribution: When a feature has a positive value, an increase in 
that variable's value tends to result in a higher predicted effort. For 
example, suppose variables such as EI, EO, EQ, etc., have positive 
contributions. In that case, it suggests that the effort required for software 
development is expected to increase as these features increase in function 
points. 

• Negative Contribution: Conversely, when a feature has a negative value, 
an increase in that feature's value tends to lead to a lower predicted effort. 
For example, if EIF and ILF have negative contributions, it implies that as 
the function points of these features increase, the effort required for 
software development is expected to decrease. 

3.5.2 SHAP 

SHAP provides a unified approach to attribute the contribution of each feature 
to the predicted effort estimation. It assigns a value to each feature, representing 
its impact on the prediction in the context of the other features. These values are 
called SHAP values. 

• Positive SHAP Value: A positive SHAP value for an independent variable 
signifies that the presence or increase in that variable contributes positively 
to the predicted effort. Higher values or complexity for EI, EO, EQ, etc., 
features are associated with increased effort. 

• Negative SHAP Value: On the other hand, a negative SHAP value for a 
variable suggests that the presence or increase in that variable contributes 
negatively to the predicted effort. For features such as EIF and ILF, 
negative SHAP values indicate that higher values or complexity in these 
variables are associated with decreased effort in the effort estimation 
model. 

By examining these SHAP values, analysts and practitioners might gain 
valuable insights into the relative importance and impact of different features on 
predicted effort. SHAP values provide a quantified understanding of each 
feature's influence and consider the intricate interactions and dependencies 
between these features. 

It is worth noting that the sum of SHAP values across all features typically 
equals the difference between the model's prediction for a specific instance and 
the average prediction for all data points. This sum highlights the collective 
contribution of each feature in explaining the model's prediction for a particular 
case, further enhancing the grasp of feature importance in effort estimation. 

3.6 Comparison Criteria 

Several metrics might be used to validate the accurate performance of the 
proposed model compared with other models. These include the Magnitude of 
Relative Error (MRE) (12), MMRE (13), and other measures [137]. MMRE 
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measures the average magnitude of the relative errors between predicted and 
actual observed values. MAE stands for Mean Absolute Error, measuring the 
magnitude of the discrepancies between expected and actual results, making it an 
insightful metric to assess predictive accuracy. It is suitable for interpretability. 

Moreover, the prediction level at 𝑥  (PRED(𝑥) ) (16) is considered further 
research criteria. It is a metric used to evaluate the accuracy of a predictive 
model’s performance. It calculates the percentage of predictions within a specific 
error threshold “𝑥”. Although publications [138] stated that this metric might have 
some significant disadvantages, it is still widely used to validate the effort 
estimation accuracy [139]. 

However, [140] suggests not using these metrics because of their bias; further 
criteria are used to improve the experiment's efficiency. SA is a denotation of 
standardised accuracy (11), where 𝑀𝐴𝐸௣തതതതതതതത is the average value of an enormous 
number (typically 1000), runs of random guessing [141]; it was proposed by 
[140]. Except for PRED(𝑥) and SA objectives are to be maximised; all remaining 
evaluation measures are minimised. In addition, Mean Balance Relative Error 
(MBRE) and Mean Inverted Balance Relative Error (MIBRE) data are considered 
as additional study criteria. MIBRE is especially beneficial when predicted values 
are near 0 since MBRE may become infinite. These criterion formulas are as 
follows: 

𝑀𝑅𝐸௜ =  
|𝑦௜ − 𝑦పෝ|

𝑦௜
                                                                        (12) 

𝑀𝑀𝑅𝐸 =  
1
𝑛 ෍ 𝑀𝑅𝐸௜

௡

௜ୀଵ

                                                                 (13) 

𝑀𝐴𝐸 =  
1
𝑛 ෍|𝑦௜ − 𝑦పෝ|

௡

௜ୀଵ

                                                             (14) 

𝑆𝐴 =  ቆ1 −
𝑀𝐴𝐸
𝑀𝐴𝐸௣തതതതതതതതቇ × 100                                                                 (15)

𝑃𝑅𝐸𝐷(𝑥) =  
1
𝑛 ෍ ൜1, 𝑖𝑓 𝑀𝑅𝐸௜ ≤ 𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

௡

௜ୀଵ

                                          (16)

𝑀𝐵𝑅𝐸 =  
1
𝑛 ෍

|𝑦௜ − 𝑦పෝ|
𝑚𝑖𝑛 (𝑦௜, 𝑦పෝ)                                                  (17)

௡

௜ୀଵ

 

𝑀𝐼𝐵𝑅𝐸 =  
1
𝑛 ෍

|𝑦௜ − 𝑦పෝ|
𝑚𝑎𝑥 (𝑦௜, 𝑦పෝ)

௡

௜ୀଵ

                                                (18) 



 

47 
 

where n is the number of measurements; 𝑦௜ is the observed value, and 𝑦ො௜  is the 
predicted value. 

4. EXPERIMENTS 

This section presents the conceptual framework of the thesis as well as the 
experiment of models such as MLR, RF, DLMLP, transfer learning, deep learning 
with balancing dataset, the ensemble by incorporating regression, random forest 
and deep learning, and model explainability. 

4.1 Conceptual Framework of the Study 

4.1.1 The Framework of the Study 

As shown in Figure 4-1, there are four primary phases, including collecting the 
datasets, data preprocessing, building the proposed models, and measuring the 
performance of proposed models based on performance metrics. 

In the first step, the thesis collects datasets. As mentioned in Section 3.2.1, the 
study mainly uses the ISBSG dataset released in 2020, and further study 
performance of studied models by using other datasets is detailed in Section 3.2.2.  

 
Figure 4-1: The flow diagram of the proposed software effort estimation 

 
Next, data preprocessing is vital in preparing and refining the raw datasets 

before training models. The process of data preprocessing and the results of this 
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process are illustrated in Section 3.3. The following presents the steps of data 
preprocessing might summarized as: 
• ISBSG dataset: The primary dataset employed in this study. This dataset 

includes factors relevant to FPA, such as EI, EO, EQ, EIF, ILF, AFP, and a 
range of categorical variables. The central focus of this thesis is to investigate 
the impact of categorical variables in conjunction with FPA factors on effort 
estimation. Due to time constraints, the study narrows its scope to six key 
predictors denoted as P1, P2, P3, P4, P5, and P6 (see Section 4.1.2). The data 
preprocessing for the ISBSG dataset is presented in Section 3.3.1. The study 
adheres to the IFPUG approach, creating two distinct datasets: Dataset 1 and 
Dataset 2. Dataset 1 is selected based on IFPUG criteria, while the remaining 
projects are allocated to Dataset 2 (see Table 3-8). 

• Other datasets (Albrecht, Desharnais, Kitchenham, and China): In alignment 
with the research objectives for the Albrecht, Desharnais, Kitchenham, and 
China datasets, Pearson correlation analysis was conducted (see Section 
3.3.2). This analysis aims to identify the key features significantly influencing 
actual/effort values in the context of software development projects. 
However, the ISBSG dataset serves as the primary dataset in this study. The 
purpose of the study is to influence categorical variables along with factors of 
FPA based on predictors (see Section 4.1.2), making the application of 
Pearson correlation analysis less suitable. Instead, the analysis for the ISBSG 
dataset focuses on categorical variable exploration and tailored data 
preprocessing methods, as detailed in the data preprocessing section. 

Following that, the thesis studies proposed models, MLR (see Section 4.2), RF 
(see Section 4.3), and DLMLP (see Section 4.4). Further study is conducted on 
the proposed models, including ensemble (see Section 4.7), deep learning with 
balancing dataset (see Section 4.6) and deep learning with transfer learning (see 
Section 4.5). Ensemble models might combine multiple models, including MLR, 
RF, and DLMLP, to achieve better performance, while deep learning with transfer 
learning might leverage pre-trained models to improve learning efficiency and 
accuracy. Those models are trained based on the training datasets. 

The study designs eleven predictors from P1 to P6, PA, PD, PC, PK, and PDataset2 
(see Section 4.1.2). For models that adopted predictors P1 to P6, they use training 
Dataset 1 (see Table 3-9). The models adopted predictor PA, PD, PC, PK, and 
PDataset2 use training datasets of Albrecht (Table 3-15), Desharnais (Table 3-13), 
China (Table 3-19), Kitchenham (Table 3-17), and Dataset 2 (Table 3-11), 
respectively. The cross-validation with 5-fold is employed for all studied models 
in the training process. The performance of those models obtained from P1 to P6 
is validated based on testing Dataset 1 (see Table 3-10). The performance of those 
models obtained from PA, PD, PC, PK, and PDataset2 use the corresponding testing 
datasets (see Table 3-16, Table 3-14, Table 3-20, Table 3-18, and Table 3-12). 

Last but not least, the impact of parameter settings on the models on the 
accuracy of trained effort estimation techniques is widely acknowledged. 
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Nevertheless, determining the most suitable parameter values is challenging due 
to the many predictors considered in this study. A grid search [144] approach is 
introduced to address this challenge. This method systematically tests different 
parameter combinations and selects the one with the highest accuracy, as 
indicated by the minimum MAE. The parameters of each model used in this study 
are presented below. 

The details of predictors and the whole configuration of proposed models are 
shown in the following sections. 

4.1.2 Predictors 

A series of experiments (Figure 4-1) is being carried out to evaluate and 
compare the models' estimation accuracy. Five proposed models are being studied 
in this thesis: MLR, RF, DLMLP, ensemble models, and transfer learning 
approach. 

Regarding a group of factors that might positively impact effort estimation in 
terms of FPA: in this study, the predictors, including AFP, EI, EO, EQ, EIF, ILF, 
RS, and IS, are categorised into six groups, with each group comprising different 
combinations of techniques as follows: 

• P1: AFP 
• P2: EI, EO, EQ, EIF, ILF 
• P3: AFP, IS 
• P4: EI, EO, EQ, EIF, ILF, IS 
• P5: AFP, IS, RS 
• P6: EI, EO, EQ, EIF, ILF, IS, RS 
• PDataset2: the predictor based on EI, EO, EQ, EIF, ILF, IS, RS and Dataset 2. 
Setting one of the lists (from P1 to P6) as independent variables and SWE is 

the dependent variable. The aim of using these predictors is to find the most 
appropriate combination that leads to the highest performance in effort estimation. 

According to the findings of the Pearson correlation of features on the Promise 
repository in section 3.3.2, the following factors are chosen as predictors for 
Desharnais (PD), Albrecht (PA), Kitchenham (PK), and China (PC): 

• PD: Length, Transactions, Entities, PointsAjust 
• PA: Input (EI), Output (EO), Enquiry (EQ), File (EIF) 
• PK: duration, AFP, estimate 
• PC: Input (EI), Output (EO), Enquiry (EQ), File (EIF), Added 
This study is interested in evaluating deep learning models using transfer 

learning. Thus, the predictors selected for analysis exhibit similar characteristics 
to Dataset 1. Moreover, the thesis intends to use PA and PC as predictors to build 
a model based on the pre-trained model obtained from Dataset 1; thus, the study 
chooses similar features to Dataset 1. As a result, predictors for PD, PA, PK, and 
PC are given as follows: 

• PD: Length, Transactions, Entities, and PointsAjust 
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• PA: Input (EI), Output (EO), Enquiry (EQ), File (EIF) 
• PK: duration, AFP, estimate 
• PC: Input (EI), Output (EO), Enquiry (EQ), File (EIF) 

4.1.3 Experimental Framework 

The methodology has been developed to accomplish four main objectives. The 
steps undertaken to achieve these objectives are described below: 

1. Develop DLMLP, RF and MLR: The study intends to construct efficient 
prediction models and compare their performance. The process involves 
the following steps: 

• Implementing DLMLP, RF and MLR models. 
• Conducting initial assessments to compare the performance of these 

models with each other. 
• Conducting experiments on predictors: P1, P2, P3, P4, P5, P6, PD, 

PA, PK, PC. 
2. Apply class weighting: This phase explores class weighting techniques to 

address the class imbalance. The process includes the following: 
• Implementing class weighting methodologies in DLMLP. 
• Conducting experiments on P1, P2, P3, P4, P5, P6 based on 

Dataset1. 
3. Apply ensemble: Similar to the previous steps, the study further explores 

using ensemble techniques to enhance prediction accuracy. Specifically: 
• Implementing stacking ensemble (SE) techniques for MLR and RF, 

the voting by averaging for SE and DLMLP approach; compare the 
performance of this approach with MLR, RF, and DLMLP. 

• Conducting experiments using ensemble methods on P1, P2, P3, P4, 
P5, P6, PD, PA, PK, PC. 

4. Apply transfer learning: The research explores the potential benefits of 
leveraging insights gained from previous training to enhance performance 
on new datasets. This approach includes: 

• Choosing the best DLMLP model obtained from P1 to P6 as the pre-
trained model. 

• Applying the transfer learning based on that pre-trained model and 
continuing to train on a new set of datasets. 

• Conducting experiments on four datasets (Dataset 2, Albrecht, 
China) which share the same target feature ('effort') and the same 
source Input (EI), Output (EO), Enquiry (EQ), File (EIF) with 
Dataset 1. 

5. Evaluate Performance: The final step involves assessing the performance 
of the adopted methods by: 

• Comparing their performances under different scenarios. 
• Evaluating the accuracy of effort estimation achieved by these 

methods. 
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4.2 Regression Experiment 

The MLR algorithm is implemented using the robust linear regression 
algorithm available in the Scikit-learn library, a widely used machine learning 
library. The training dataset is divided into five folds using the K-Fold function 
[142], [143] to ensure robust evaluation and minimize bias. This technique allows 
us to create multiple training-validation splits, comprehensively assessing the 
model's performance. The shuffle and random_state parameters are incorporated 
during the data shuffling process to introduce randomness and ensure 
reproducibility. The shuffle parameter randomly reorders the data, while the 
random_state parameter sets a fixed seed, guaranteeing that the results can be 
replicated for further analysis. 

Next, for each fold generated by the 5-fold technique, the data is further divided 
into training and validation sets, leveraging the indices provided by the splitting 
process. This division enables the model to learn patterns from the training set 
and validate its performance on unseen data. An MLR is created using the 
LinearRegression() function with default parameters (such as fit_intercept set to 
be True). By employing this function with default parameters, we construct a 
multivariate linear regression model capable of capturing complex relationships 
between the independent and target variables. The code then trains the model on 
the training set using the fit() function and uses it to predict the target variable on 
the validation set using the predict() function. 

4.3 Random Forest Experiment 

RF is a popular machine learning algorithm used for classification and 
regression tasks. It might be used for predicting both numerical and categorical 
variables. It might be computationally efficient and is capable of handling large 
datasets. RF is designed to mitigate overfitting by combining multiple decision 
trees and using random subsets of data and features. Having sufficient trees in the 
ensemble might help reduce the overfitting risk and improve generalization 
performance. 
 

Table 4-1: The experimental-based parameters of RF 

No Parameters Values 
1 n_estimators {120,150, 180, 210} 
2 max_depth {5, 10, 15, 20, 25, 30} 
3 random_state 42 
4 min_samples_split Default value 
5 min_samples_leaf Default value 
6 max_features Default value 
7 Num folds 5 
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The experimental parameters for RF, as outlined in Table 4-1, with 
'n_estimators' and 'max_depth' organized into distinct value sets; ‘random_state’ 
is set to 42; while leaving ‘min_samples_split’, ‘min_samples_leaf’, and 
‘max_features’ at their default values. The experimentation is conducted within a 
cross-validation with 5-fold. Model performance is evaluated using the MAE, and 
the optimal model configuration is determined based on achieving the minimum 
MAE through the grid search [144] process. 

• n_estimators: The number of decision trees in the forest. Increasing the 
number of estimators can improve performance and increase the 
computational cost. 

• max_depth: The maximum depth of each decision tree. Restricting the 
depth can help prevent overfitting. Set it to None if the trees grow until all 
leaves are pure or all leaves contain less than min_samples_split samples. 

• random_state: The seed used by the random number generator. Setting it 
to a specific value ensures the reproducibility of the results. 

• min_samples_split: This parameter determines the minimum number of 
samples required to divide an internal node in constructing a decision tree 
within the RF. If the number of samples at a node is smaller than 
min_samples_split, the node is not split further and becomes a leaf node. 
Increasing this value can prevent overfitting by ensuring that a node has 
enough samples to make a reliable split. 

• min_samples_leaf: This parameter sets the minimum number of samples 
needed to be at a leaf node. If the number of samples at a leaf node is less 
than min_samples_leaf, additional splitting attempts are not made, and the 
leaf node is generated. Like min_samples_split, increasing 
min_samples_leaf can help prevent overfitting and control the size of the 
tree. 

• max_features: This parameter determines the maximum number of features 
that are considered when looking for the best split at each node. The 
Random Forest algorithm randomly selects a subset of features from the 
whole feature set, and max_features controls the number of features 
selected. 

4.4 DLMLP Experiment 

In DLMLP, each neuron receives input from the previous/input layer. A neuron 
produces an output sent to the next layer after applying an activation function to 
the weighted sum of its inputs. Several options are available in activation 
functions, including sigmoid, tanh, and Rectified Linear Unit (ReLU) [130]. 
According to Jason Brownlee [131], ReLU is simple to compute and requires few 
computational resources. ReLU addresses the issue of vanishing gradients, which 
might impede learning in deep neural networks. By allowing for faster learning 
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and improved performance [145], ReLU has become a popular choice in many 
deep-learning applications. 

Optimisation algorithms are essential for training deep learning models [128]. 
Optimisation aims to find the best set of parameters for a model that minimises 
the loss function, which is the difference between the model’s predicted and actual 
output. Root Mean Squared Propagation (RMSProp) and Adam make adaptive 
moment estimations to enhance results among Adam, RMSProp, Adaptive 
Gradient Algorithm and a more robust extension of Adagrad [146]. As a result, 
the study chose Adam as the optimizer of this model. 

According to V.N. Gudivada et al. [147], no rigid or universally established 
guidelines exist when determining the appropriate number of hidden layers and 
the number of neurons within each. This study conducted experiments to evaluate 
different layer configurations for the DLMLP, encompassing architectures with 
2, 3, 4, and 5 layers. The optimal architecture of models is identified using the 
grid search [144] based on the minimum MAE, early stopping with a monitoring 
criterion based on the minimum MAE also installed. 

Figure 4-2 presents an example of deep learning architecture with four fully 
connected layers. Input variables are collected from Dataset 1, Desharnais, 
Albrecht, Kitchenham, and China. As mentioned in section 4.1.2, P1 has an input 
size of 1, P2 has an input size of 5, P3 has an input size of 2, and P4, P5, and P6 
have input sizes of 6, 3, and 7, respectively. The input sizes for PD, PA, PK, and PC 
were determined as 5, 6, 3, and 6, respectively. 

 

 
Figure 4-2: An example of the architecture of DLMLP with four fully connected layers 

The configuration details provided in Table 4-2 further illuminate the design 
and training aspects of the deep learning model. Specifically, they encompass 
essential parameters such as learning rates, batch size, epoch count, rate decay, 
and cross-entropy loss function. These parameters collectively contribute to the 
robustness and efficacy of the deep learning model's performance. 
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Table 4-2: The experimental-based parameters of DLMLP 

No Parameters Values 
1 Learning rate {0.01,0.001} 
2 Batch size 64 
3 Epoch 1260 
4 Rate decay 0.999 
5 Num fold 5 
6 Early stop True, patience = 5 
7 Loss function Cross Entropy Loss 

4.5 Transfer Learning Experiment 

As mentioned in 3.3.1, Dataset 1 is a widely recognized and standardized 
dataset containing many software development projects. This thesis chooses the 
best model built based on Dataset 1 as the pre-trained model (called the ISBSG 
model). It is trained on a large amount of data, which allows us to learn 
generalizable features that might be applied to other datasets. 

Table 4-2 presents the input and output variables list among studied datasets 
(Dataset 2, Albrecht, and China). Firstly, considering the output feature, those 
datasets share the same target variable (‘effort’). This similarity indicates that the 
task/objective of predicting the effort required for software development is 
consistent between the datasets. Secondly, observation of input variables, those 
datasets include inputs related to EI, EO, and EQ. They also have input features 
related to file counts, such as EIF and ILF. Based on these similarities, there is 
indeed an overlap between Dataset 1 and the studied datasets (Dataset 2, Albrecht, 
and China) in terms of input variables and output variables. This overlap suggests 
there is potential for transferring knowledge from the pre-trained model based on 
Dataset 1 to predicting effort in other datasets. 

 
Table 4-3: The input and output features list among studied datasets 

No 
Intersect 
Dataset 1 

with 

Similarity Overlap with 
Dataset 1? Inputs Output 

2 Dataset 2 EI, EO, EQ, EIF, ILF, IS SWE Yes 

3 Albrecht 
Input (EI), Output (EO), 
Inquiry (EQ), File (EIF) 

Effort Yes 

4 China 
Input (EI), Output (EO), 
Inquiry (EQ), File (EIF) 

Effort Yes 

 
According to Pan and Yang [132], it is a kind of inductive transfer learning 

setting. To address this problem, we might replace the last layer of the pre-trained 



 

55 
 

model with a new layer that matches the size of new input features in those 
datasets. As a result, the final layer is trained using the fresh datasets while leaving 
the other model parameters unchanged. Training the transfer models on the 
ISBSG pre-trained model might leverage the learned features from the pre-trained 
model, effectively reducing the data required for training while still achieving 
high accuracy. Transfer learning based on the ISBSG model involves several 
steps as follows: 

• Step 1: Choose the best model obtained from DLMLP based on P1 to P6 as 
the pre-trained model. As discussed in Section 5.2.1, DLMLP-P4, with six 
predictors EI, EO, EQ, EIF, ILF, and IS, outperform compared with P1, P2, 
P3, P5, and P6. 

• Step 2: Load the pre-trained model: This model is trained on Dataset 1, and 
then choose the best-proposed model to use as the pre-trained model. 

• Step 3: Feature mapping as following steps: 
o Extract features using the pre-trained model. 
o Map the features between new input features and the features from the pre-

trained model. 
• Step 4: Freeze all layers except for the last one. In this step, set the 

'requires_grad' attribute to False for all layers except the last one. This step 
ensures the preservation of previously learned features from the pre-trained 
model, which is crucial as the model is adapted to work with the specific 
input features of the new dataset. By keeping the lower layers fixed, the 
model might exclusively focus on adjusting the last layer to accommodate 
the unique input characteristics of the new dataset. To implement this 
adaptation, utilize the feature_mapping function. This function performs 
two essential tasks: first, it reorders the input features to match the model's 
input order, ensuring the features are in the correct sequence. Second, it 
prepares the input features by handling any differences between the new 
dataset and the pre-trained model, such as the absence of certain features or 
the presence of additional ones. This function allows the model to 
seamlessly integrate the new dataset while maintaining the integrity of its 
pre-trained features. 

• Step 5: Create a new optimiser: A new optimiser is created specifically for 
the last layer of the model, which is set to require gradients in the previous 
step. Adam optimiser is chosen as the optimiser (the same optimiser as the 
pre-trained model). 

• Step 6: Continue training the model: Train the model on a new dataset. In 
each iteration, the input is forwarded through the model, the loss is 
computed, the gradients are computed, and the weights are updated using 
the optimiser. This process is repeated for several epochs or until the model 
achieves the minimum MAE criterion based on the early stopping. 
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4.6 Balancing Dataset Experiment 

As shown in Table 4-4 (column before balancing), the number of projects 
varies significantly across industry sectors. For example, the Construction, 
Defence, Education, Mining, and Medical Health Care sectors have significantly 
fewer projects than others. On the other hand, the Communication, Financial, 
Government, Insurance, and Service Industry sectors have a significantly higher 
number of projects. 

The number of projects in each industry sector might need to be balanced to 
address this imbalance. In practice, balancing may involve adding more data to 
underrepresented groups or removing data from overrepresented groups until the 
number of data points in each group is approximately equal. 

 

 
Figure 4-3: Based on the experiment, the histogram of the number of projects in each 

industry sector before and after balancing 
 
Determining class weights is a critical step to address the class imbalance issue 

in the dataset. Based on the experiment, a class weighting approach is employed 
to assign different weights to each industry sector based on the number of projects 
within each sector. The primary objective is to give more importance to 
underrepresented sectors while training the model. The class weights are 
determined as follows: 

• For each Industry Sector, the ratio of the number of projects before 
balancing to the number of projects after balancing is calculated. This ratio 
reflects the degree of adjustment required to balance the dataset. 

• The inverse of these ratios is used as class weights. The less-represented 
sectors are assigned higher weights, while the overrepresented sectors are 
assigned lower weights. This approach ensures that the model would pay 
more attention to the underrepresented sectors during training. 
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Several experimental iterations are conducted to adjust the class weighting and 
data balancing techniques in the approach employed to balance the number of 
projects within each industry sector. The following illustrates these iterations in 
more detail: 

•  In the initial iteration, the significant class imbalance in the dataset is 
observed and addressed by determining the class weights based on the pre-
post-balancing project counts for each industry sector, as detailed earlier. 
The initial class weights are then applied, initiating the baseline experiment. 

• Subsequent iterations involve systematic adjustments to the class weights to 
enhance model performance further. 

• Within each iteration, class weights are methodically adjusted based on the 
outcomes of the preceding iteration to identify the most effective weightings 
that optimise accuracy without over-balancing the dataset. 

• The performance of the model is based on the minimum of MAE. 
Figure 4-3 presents the number of projects for each industry sector balancing 

the dataset by class weighting approach after several experimental iterations. The 
number of projects is adjusted to achieve the best possible accuracy without over-
balancing the dataset. For instance, the Defence sector had only two projects, and 
it was impossible to balance it further without compromising the integrity of the 
dataset. 

 
Table 4-4: The number of projects for each industry sector before and after 

balancing 

No Industry Sector Before balancing After balancing 
1 Banking 136 136 
2 Communication 202 202 
3 Construction 8 48 
4 Defence 2 50 
5 Education 3 60 
6 Electronics Computers 15 75 
7 Financial 64 192 
8 Government 197 197 
9 Insurance 199 199 
10 Manufacturing 69 138 
11 Medical Health Care 9 63 
12 Mining 8 56 
13 Professional Services 20 100 
14 Service Industry 84 168 
15 Utilities       26 104 
16 Wholesale Retail 21 126 
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Finally, DLMLPB with a balanced dataset is applied. The configuration of this 
model is the same as DLMLP presented in Section 4.4. 

4.7 Ensemble Model Experiment 

In Figure 4-4, the stacking ensemble (SE) for regression incorporates two 
distinct models: MLR and RF. Data preprocessing is conducted using a 
'tree_preprocessor' object to prepare the dataset for modelling. This phase creates 
two separate pipelines, each tailored to one of the models—MLR and RF. These 
pipelines integrate preprocessing with the respective model, resulting in two well-
defined modelling paths. 

These modelling pipelines are combined into a list of tuples. Each tuple pairs 
the model's name with its corresponding pipeline, establishing a link between 
preprocessing steps and modelling tasks. A 'StackingRegressor' object is 
instantiated in the final ensemble setup, employing the 'estimators' list and 
utilizing an XGBoost model as the ultimate decision-maker. 

The training phase involves independent training for each base model, 
individually refining the MLR and RF models on the training dataset. Predictions 
generated by these models are thoughtfully aggregated and provided as inputs to 
the final decision-maker, the XGBoost model. Throughout this training phase, the 
'cross_validate' function is pivotal in assessing each model's performance and the 
ensemble's overall effectiveness. Robustness and generalization are ensured 
through the use of 5-fold cross-validation. 

 

Figure 4-4: The flow diagram of the ensemble model. RF and MLR are used as based 
estimators, and XGBoost is used as the final estimator. Stacking predictions 
obtained from RF and DLMLP predictions are ensembled by average to 
attain the final predictions 

Incorporating DLMLP into the SE begins with loading the pre-trained DLMLP 
model. This model is configured for predictive tasks by setting it to evaluation 



 

59 
 

mode, ensuring its internal parameters remain unaltered during prediction. Next, 
testing datasets are prepared and converted into tensor format to align with the 
DLMLP architecture's requirements. The DLMLP then generates predictions 
based on the test dataset. 

To summarize, the ensemble model has several steps as follows: 
• Step 1 (Defining Base Models): Create base models (RF, MLR, DLMLP) 

using predefined hyperparameters for each model to generate individual 
predictions. 

• Step 2 (Defining the Meta Model): Configure an XGBoost regressor as the 
meta-model to merge base model predictions. 

• Step 3 (Creating the Stacking Ensemble): Set up the stacking ensemble, 
using StackingRegressor to harmonise base models with the final XGBoost 
model. 

• Step 4 (Cross-validation): Employ 5-fold cross-validation to rigorously 
evaluate the ensemble's accuracy based on the minimum MAE. 

• Step 5 (Voting by Averaging Predictions): Apply a voting mechanism that 
averages predictions from DLMLP and the stacking ensemble in step 5, 
producing a unified prediction that balances insights from both sources for 
enhanced accuracy. 
 

4.8 Model Explainability Experiments 
This section uses LIME and SHAP techniques to perform model explainability 

experiments. Due to time limitations, the thesis only analyses LIME and SHAP 
based on DLMLP. 

As mentioned in Section 3.5, these experiments generate LIME and SHAP 
explanations, allowing us to discern the positive and negative influences on effort 
estimation. By analyzing these explanations, we might answer RQ5 and gain an 
understanding of the features that the model deems significant in making 
predictions. Through these models’ explainability experiments, valuable insights 
might be gleaned regarding the inner workings of the deep learning model, 
enabling us to identify potential biases or limitations. 

Furthermore, the transparency and trustworthiness of the model's decision-
making process might be enhanced as these experiments contribute to developing 
a more interpretable and reliable AI system. The outcomes derived from these 
experiments have the potential to advance the field of AI by fostering the creation 
of AI systems that are both understandable and dependable. 

Regarding LIME, the following steps are undertaken to derive and interpret 
explanations for individual predictions: 

• Step 1: Begin by instantiating a LIME explainer using the 
LimeTabularExplainer library. 

• Step 2: Select an example instance from the testing dataset (see Table 4-5). 
• Step 3: Utilize the LIME explainer to generate an explanation for the 

selected instance. 
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• Step 4: The generated LIME explanation offers insights into the 
contribution of each feature to the prediction for the specific instance. The 
coefficients of the interpretable model guide the magnitude and direction of 
each feature's influence. Positive coefficients indicate that increasing a 
feature's value tends to raise the predicted effort, while negative coefficients 
suggest the opposite effect. 

Regarding SHAP, these values are derived and interpreted as follows: 
• Step 1: Conversion from LIME to SHAP. The LIME explanation obtained 

earlier is converted into a format compatible with SHAP, facilitating a 
broader perspective of feature importance. 

• Step 2: A SHAP explainer is established using the SHAP.Explainer library. 
It takes as input the prediction function and the reshaped training data, 
enabling the computation of SHAP values. 

• Step 3: SHAP values are computed for the entire test dataset using the 
SHAP explainer. These values quantitatively represent the contribution of 
each feature to the prediction for each instance within the dataset. 

• Step 4: Visualize the representation and interpretation. This visual 
representation aids in comprehending the relative importance of features 
across the dataset. 

Table 4-5 presents a specific instance that is being used to demonstrate the 
application of LIME. It presents various features and corresponding values for 
each project. This instance serves as an example for illustrating how LIME might 
be utilized to explain and interpret the relationship between the features and the 
actual effort in that project. 

 
Table 4-5: The scenario of instance for illustrating LIME 

Features Instance Specific Unit 
EI 209 Function Points 
EO 129 Function Points 
EQ 24 Function Points 
EIF 15 Function Points 
ILF 83 Function Points 
IS Communication Function Points 
RS M2 Function Points 

Real Effort 10200 Person-Hours 
 

4.9 Baseline Models 
This section proposes three baseline models: one statistical model (stepwise-

based regression), one simple artificial neural network (ANN) model from 
previous research, and IFPUG-FPA. IFPUG-FPA is introduced in Section 3.1. 
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Three baseline models are used to compare the performance of the best model 
among MLR, RF, and DLMLP based on Dataset 1.  The thesis employs a set of 
metrics, namely MMRE, MBRE, MIBRE, MAE, Pred(0.25), and SA, to evaluate 
the performance of the best model compared with the baseline models. It is worth 
noting that the same dataset used for validation by the best-performing model is 
also employed in assessing the baseline models. 

4.9.1 ANN-based Model 

A simple ANN-based model with two hidden layers has been employed as the 
baseline model. The purpose of choosing two hidden layers is to make the model 
simple and naive to determine the minimum performance that might be expected. 
If the best model does not perform significantly better than the baseline, it might 
be overfitting or not appropriately capturing the underly patterns. The parameters 
adopted in the ANN-based model are presented in Table 4-6. 

Table 4-6: The parameters of a simple ANN-based model 

No Parameters Values 
1 Learning rate 0.01 
2 Batch size 64 
3 Epoch 100 
4 Rate decay 0.999 
6 Early stop True, patience = 5 
7 Loss function Cross Entropy Loss 

4.9.2 Stepwise-based Regression Model 

Stepwise-based regression (SWR) [47], [112] is a technique widely used in 
statistical modelling, drawing inspiration from previous publications [46], [47], 
[148]. This approach to multiple linear regression involves an automated process 
for selecting independent variables and might be summarized as follows: 

• Initialization: Begin with a starting model containing predefined terms 
(backward selection) or a null model (forward selection). 

• Model Complexity: Define the desired model complexity, specifying which 
terms should be included, such as linear, quadratic, or interaction terms. 

• Evaluation threshold: Set an evaluation threshold based on the sum of 
residual errors. This threshold determines whether to add or remove features. 

• Iterative Process: The algorithm iteratively adds or removes features while 
re-evaluating the model at each step. 

• Termination: Stepwise regression continues until no further improvement in 
estimation is achievable based on threshold. 

Forward selection initiates with a null model and progressively adds features 
that meet specific criteria. Conversely, backward selection starts with a full model 
and removes non-significant features. Consequently, stepwise regression 
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necessitates two significance levels: one for adding features and another for 
removing features. 

5. RESULTS AND DISCUSSION 

The results of the experiment and discussion are illustrated in this section. 

5.1 Comparison of Model Performance 

This section presents a comprehensive evaluation of effort estimation methods. 
The evaluation encompasses a range of machine learning techniques, including 
MLR (see Section 4.2), RF (see Section 4.3), DLMLP (see Section 4.4), 
DLMLPB (see Section 4.6), the ensemble by incorporating between RF, MLR, 
DLMLP (see Section 4.7). Two primary evaluation tables, Table 5-1 and Table 
5-2, are employed to assess the performance of these methods under various 
conditions. Table 5-3 illustrates the performance of baseline models. 

Table 5-1 focuses on assessing effort estimation methods using Dataset 1. This 
table provides a detailed analysis of model performance metrics, including 
MMRE, MBRE, MIBRE, MAE, Pred(0.25)/Pred(0.30), and SA. The rows 
represent different models, including MLR, RF, DLMLP, the ensemble, and 
DLMLPB models. The performance evaluation in this table offers insight into the 
effectiveness of these methods when applied to Dataset 1. 

 
Table 5-1: The performance of effort estimation obtained from MLR, RF, the 

ensemble, and DLMLPB based on testing of Dataset 1 

Predictors
/Models 

MMRE MBRE MIBRE MAE 
PRED 

SA 
0.25 0.30 

P1 
MLR 0.9113 1.0057 0.3831 2173.83 0.27 0.32 0.43 

RF 0.6879 0.8047 0.3661 2150.85 0.28 0.32 0.46 

DLMLP 0.6709 0.7719 0.3637 2066.69 0.29 0.34 0.51 

Ensemble 0.5478 0.7229 0.3582 1986.74 0.29 0.34 0.52 

DLMLPB 0.6228 0.7702 0.3606 2016.14 0.29 0.34 0.52 
P2 

MLR 1.2273 1.3250 0.4134 2254.00 0.26 0.32 0.43 

RF 0.9802 1.0675 0.3786 2118.20 0.30 0.38 0.46 

DLMLP 0.5526 0.7360 0.3044 1768.61 0.46 0.53 0.58 

Ensemble 0.4853 0.6132 0.2920 1669.18 0.46 0.54 0.61 

DLMLPB 0.4568 0.5378 0.2874 1464.35 0.47 0.52 0.65 
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P3 

MLR 0.9081 1.0012 0.3824 2172.63 0.28 0.34 0.45 

RF 0.6820 0.7964 0.3626 2123.92 0.32 0.35 0.46 

DLMLP 0.6275 0.7812 0.3619 2033.24 0.32 0.36 0.51 

Ensemble 0.5362 0.7464 0.3553 2024.51 0.34 0.36 0.52 

DLMLPB 0.5639 0.6713 0.3356 1915.79 0.36 0.42 0.54 

P4 

MLR 1.1999 1.2851 0.4090 2018.79 0.27 0.32 0.45 

RF 0.9784 1.0579 0.3750 2012.14 0.31 0.38 0.47 

DLMLP 0.2478 0.4311 0.1572 530.65 0.79 0.84 0.87 

Ensemble 0.3119 0.3657 0.2189 1007.28 0.62 0.73 0.75 

DLMLPB 0.1871 0.2064 0.1393 494.20 0.82 0.85 0.88 

P5 

MLR 1.1551 1.0378 0.5949 2335.22 0.27 0.30 0.4 

RF 0.6875 0.8028 0.3645 2145.08 0.32 0.35 0.45 

DLMLP 0.6326 0.7830 0.3621 2118.93 0.32 0.36 0.49 

Ensemble 0.6115 0.7281 0.3517 1983.02 0.31 0.36 0.52 

DLMLPB 0.6855 0.7842 0.3567 2069.72 0.33 0.37 0.51 

P6 

MLR 0.8981 1.0129 0.3967 2228.68 0.28 0.32 0.42 

RF 0.7756 0.8632 0.3649 2029.29 0.30 0.39 0.48 

DLMLP 0.3489 0.4750 0.2219 963.71 0.68 0.71 0.77 

Ensemble 0.3599 0.4483 0.2479 1143.07 0.56 0.66 0.72 

DLMLPB 0.2586 0.3551 0.1731 550.82 0.76 0.78 0.86 
 
Table 5-2 expands the evaluation by examining the performance of effort 

estimation methods across a broad spectrum. In addition to Dataset 2, this table 
incorporates other datasets such as Desharnais, Albrecht, Kitchenham, and China 
datasets. The evaluation includes a comparison of MLR, RF, the ensemble, and 
transfer learning cases 1, 2, and 3 (TL-Case1, TL-Case2, TL-Case3, see in Section 
3.4.5), along with an ensemble-based approach. As mentioned in Section 3.3.2, 
TL-Case1 and TL-Case3 for Desharnais and Kitchenham and TL-Case1 for 
Albrecht and China are not measured due to differences in input features. The 
metrics used for evaluation are consistent with those in Table 5-1. This 
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comprehensive analysis allows us to assess the effectiveness of these techniques 
across diverse datasets. 

Table 5-2: The performance of effort estimation obtained from MLR, RF, TL-
Case1, TL-Case2, TL-Case3, and the ensemble based on testing of Dataset 2, 
Desharnais, Albrecht, Kitchenham and China datasets 

Preditors/ 
Models 

MMRE MBRE MIBRE MAE 
PRED 

SA 
0.25 0.30 

PD 

MLR 0.4202 0.5795 0.3340 2539.94 0.25 0.38 0.28 

RF 0.3850 0.5431 0.2989 2514.43 0.44 0.50 0.29 

TL-Case1 - - - - - - - 

TL-Case2 0.2076 0.2507 0.1693 1333.22 0.68 0.75 0.65 

Ensemble 0.2430 0.3397 0.2231 1860.73 0.50 0.75 0.51 

TL-Case3 - - - - - - - 

PA 

MLR 3.2224 0.5479 3.1693 7.13 0.4 0.4 0.54 

RF 1.8730 1.9115 0.3906 4.73 0.4 0.4 0.65 

TL-Case1 - - - - - - - 

TL-Case2 0.3201 0.3220 0.1950 1.44 0.6 0.6 0.84 

Ensemble 0.8081 0.8397 0.3368 3.66 0.4 0.4 0.61 

TL-Case3 0.1088 0.1839 0.1087 0.38 0.8 0.8 0.90 

PK 

MLR 0.7583 0.5207 0.3193 589.35 0.42 0.43 0.64 

RF 0.4716 0.4870 0.2364 471.52 0.50 0.57 0.71 

TL-Case1 - - - - - - - 

TL-Case2 0.2204 0.3413 0.1594 240.88 0.75 0.78 0.81 

Ensemble 0.2276 0.2435 0.1644 262.80 0.75 0.78 0.81 

TL-Case3 - - - - - - - 

PC 

MLR 1.6664 1.8916 0.4550 2762.83 0.27 0.28 0.25 

RF 1.6386 1.8595 0.4507 2595.62 0.27 0.28 0.29 

TL-Case1 - - - - - - - 

TL-Case2 0.9833 1.0569 0.2659 1034.31 0.58 0.59 0.72 
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Ensemble 0.9626 1.0241 0.3235 1447.57 0.47 0.59 0.62 

TL-Case3 0.2092 0.2325 0.1578 247.21 0.79 0.83 0.93 

PDataset 2 

MLR 0.6681 0.9829 0.1471 1162.98 0.33 0.34 0.00 

RF 0.3031 0.3698 0.2571 677.45 0.66 0.67 0.23 

TL-Case1 0.4951 1.0574 0.4539 1165.51 0.17 0.17 0.00 

TL-Case2 0.2480 0.2557 0.1796 438.48 0.66 0.83 0.43 

Ensemble 0.2182 0.2518 0.1872 482.28 0.66 0.67 0.38 

TL-Case3 0.1884 0.2310 0.1731 463.10 0.66 0.83 0.40 
 
Table 5-3 displays the evaluation results for effort estimation derived from 

three baseline models: ANN-based, SWR-based, and IFPUG-PFA. This table 
offers an in-depth examination of the performance metrics for these models, 
primarily focusing on the testing of Dataset 1. The assessment of model 
performance encompasses the analysis of six predictors, denoted as P1 to P6. 

Table 5-3: The performance of effort estimation obtained from baseline models 
(ANN, SWR, IFPUG) based on Dataset 1 

Predictors
/Models 

MMRE MBRE MIBRE MAE 
PRED 

SA 
0.25 0.30 

P1 

ANN 0.6760 0.7769 0.3592 2067s.64 0.26 0.28 0.47 

SWR 1.5740 1.6748 0.4380 2373.19 0.22 0.28 0.39 

P2 

ANN 0.6081 0.8216 0.3056 1786.68 0.41 0.45 0.54 

SWR 1.1787 1.2716 0.4075 2177.96 0.24 0.30 0.44 
P3 

ANN 0.6929 0.9452 0.3659 2096.01 0.29 0.35 0.46 

SWR 1.5340 1.6240 0.4330 2364.94 0.25 0.30 0.41 
P4 

ANN 0.3319 0.3716 0.2063 732.24 0.65 0.71 0.81 

SWR 1.1734 1.2640 0.4074 2175.54 0.25 0.31 0.44 

P5 

ANN 0.6455 0.7940 0.4156 2152.72 0.31 0.36 0.48 

SWR 1.1726 1.0276 0.6099 2310.61 0.27 0.30 0.41 

P6 
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ANN 0.4628 0.9579 0.2963 1097.54 0.52 0.56 0.72 

SWR 0.9092 0.8835 0.4612 2174.54 0.26 0.32 0.44 

IFPUG 

IFPUG-PFA 1.7977 1.7989 0.5070 6652.55 0.16 0.18 0.00 

5.2 Discussion of the Results 

This section focuses on addressing and providing insights into five key RQs. 
The aim is to examine and compare various estimation methods and predictor sets 
to determine their accuracy in predicting effort estimation. Each research question 
serves as a crucial inquiry in understanding the effectiveness of different 
approaches. 

5.2.1 Comparing Predictive Accuracy in SDEE: DLMLP, MLR, RF 

This study comprehensively analyses model performance across different 
predictor groups, focusing on MLR, RF, and DLMLP models. The objective is to 
compare the performance of these models individually with each predictor group 
and to answer RQ1: Is the DLMLP more accurate than the MLR, RF? The 
performance of those models is presented in Table 5-1 and Table 5-2. Figure 5-1 
to Figure 5-11 illustrates a detailed comparison of performance metrics for three 
distinct models: DLMLP, MLR, and RF. Each model is illustrated by a unique 
colour on the chart, with MLR depicted as a blue bar, RF as orange, and DLMLP 
as green. 

In the P1 predictor group, MLR achieves an MAE of 2173.83, while RF 
exhibits a slightly improved MAE compared to MLR. However, DLMLP 
achieves the lowest MAE at 2066.69. Similar trends are observed across metrics 
such as MMRE, MBRE, MIBRE, Pred(0.25), and SA (see Figure 5-1). These 
results collectively highlight RF’s superior performance over MLR, with DLMLP 
surpassing both MLR and RF. 

Within the P2 predictor group, across multiple metrics, including MMRE, 
MBRE, MIBRE, and MAE, DLMLP consistently outperforms MLR and RF (see 
Figure 5-2). For instance, MAE values for MLR, RF, and DLMLP are 2254.00, 
2118.20, and 1768.61, respectively. DLMLP’s predictive prowess is notably 
evident through its superior performance across these metrics, with RF 
outperforming MLR. 

Similarly, in the P3 predictor group, competitive performance is observed 
between MLR and RF, with RF exhibiting advantages across all metrics. 
Nevertheless, DLMLP consistently outperforms RF and MLR within this 
predictor group (see Figure 5-3). 

Moreover, in the P4 predictor group, DLMLP achieves the lowest MAE with a 
value of 530.64, outperforming MLR (2018.79) and RF (2012.14). While other 
metrics, including MMRE, MBRE, MIBRE, Pred(0.25), and SA, favour RF over 
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MLR, DLMLP's performance exceeds that of both MLR and RF in terms of all 
metrics (see Figure 5-4). Additionally, P4 predictor group outperforms compared 
with P1, P2, P3, P5, and P6. 

Consistent with the trends observed in the P5 and P6 predictor groups, DLMLP 
consistently demonstrates superior predictive performance over MLR and RF 
across multiple metrics, including MNRE, MBRE, MIBRE, and MAE (see Figure 
5-5, and Figure 5-6). DLMLP's proficiency in prediction is evident through its 
consistently lower metric values. 

 
Figure 5-1: The performance of DLMLP compared to MLR, RF based on P1 

 
Figure 5-2: The performance of DLMLP compared to MLR, RF based on P2 
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Figure 5-3: The performance of DLMLP compared to MLR and RF based on P3 

 
Figure 5-4: The performance of DLMLP compared to MLR RF based on P4 

 
Figure 5-5: The performance of DLMLP compared to MLR RF based on P5 



 

69 
 

 
Figure 5-6: The performance of DLMLP compared to MLR, RF based on P6 

 
Figure 5-7: The performance of DLMLP compared to MLR RF based on PD 

 
Figure 5-8: The performance of DLMLP compared to MLR, RF based on PA 
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Figure 5-9: The performance of DLMLP compared to MLR, RF based on PC 

 
Figure 5-10: The performance of DLMLP compared to MLR RF based on PK 

 
Figure 5-11: The performance of DLMLP compared to MLR, RF based on PDataset2 
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As previously mentioned, the trends observe in the predictor persist in PD, PA, 
PK, PC, and PDataset2 predictors. As presented from Figure 5-7 to Figure 5-11, 
DLMLP consistently outperforms MLR and RF regarding MMRE, MBRE, 
MIBRE, MAE, Pred(0.25), and SA, establishing itself as the preferred model 
within these scenarios. RF demonstrates improved performance over MLR in the 
majority of cases. 

In conclusion, this study provides definitive answers to the research questions. 
RQ1, which investigates the accuracy of DLMLP compared to MLR and RF 
models, confirms that DLMLP consistently outperforms both models across all 
predictive factors. The lower MMRE and MBRE values achieved by DLMLP 
indicate its ability to capture the magnitude and bias of estimation errors more 
effectively than MLR and RF models. These results highlight the potential of DL 
techniques, specifically DLMLP, in improving effort estimation accuracy. 

5.2.2 Comparing DLMLP vs. Baseline Models 

Comparing the best model to baseline models helps gauge its relative 
performance. If the complex model, in this case, DLMLP (as discussed in Section 
5.2.1), does not significantly outperform baseline models, it raises questions about 
its complexity and ability to capture crucial data patterns. 

The performance of DLMLP compared with baseline models is presented in 
Figure 5-12 to Figure 5-17, where the green bar stands for DLMLP, and the 
yellow, red, and black stand for ANN, SWR, and IFPUG-FPA, respectively. 

 
Figure 5-12: The performance of DLMLP compared to baseline models based on P1 
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Figure 5-13: The performance of DLMLP compared to baseline models based on P2 

 
Figure 5-14: The performance of DLMLP compared to baseline models based on P3 

 
Figure 5-15: The performance of DLMLP compared to baseline models based on P4 
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Figure 5-16: The performance of DLMLP compared to baseline models based on P5 

 
Figure 5-17: The performance of DLMLP compared to baseline models based on P6 

It is noticeable that those figures reveal that the DLMLP consistently 
outperforms the baseline models across diverse datasets (P1 to P6) based on 
various performance metrics. DLMLP achieves lower values across metrics, 
including MMRE, MBRE, and MIBRE. These results imply that DLMLP 
provides more accurate and less biased effort estimations than the alternative 
models. 

Its superior performance extends to the MAE, demonstrating its effectiveness 
in minimizing the absolute difference between predictions and actual effort 
values. The strength of the DLMLP further manifests in its ability to provide 
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predictions within a specified tolerance. Higher Pred(0.25) values indicate that 
DLMLP delivers effort estimation that closely aligns with the actual effort. 

5.2.3 Impact of Dataset Balancing on Accuracy of SDEE in DLMLP 

The other aim of this study is to comprehensively assess the impact of using a 
balanced dataset and handling categorical variables in deep learning models in the 
context of effort estimation. Specifically, the thesis compares model performance 
with a balanced dataset based on categorical variable handling (DLMLPB) 
against the model without balancing categorical variables (DLMLP) across 
predictors P1, P2, P3, P4, P5, and P6. This evaluation answers RQ2 that dataset 
balancing might enhance the predictive accuracy of DLMLP methods in software 
effort estimation. Model performance evaluation is based on critical metrics such 
as MMRE, MBRE, MIBRE, MAE, Pred, and SA. 

Figure 5-18 to Figure 5-23 visually illustrate the performance comparison 
between DLMLP and DLMLPB based on datasets P1 to P6. The green bar stands 
for DLMLP, and violet stands for DLMLPB. The results reveal that DLMLPB 
consistently outperformed DLMLP in estimation accuracy across all predictors. 
This finding provides strong evidence to support the notion that using a balanced 
dataset and effectively handling categorical variables leads to improved 
estimation accuracy in deep learning models. 

 
Figure 5-18: The performance of DLMLP compared to DLMLPB based on P1 
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Figure 5-19: The performance of DLMLP compared to DLMLPB based on P2 

 
Figure 5-20: The performance of DLMLP compared to DLMLPB based on P3 

 
Figure 5-21: The performance of DLMLP compared to DLMLPB based on P4 
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Figure 5-22: The performance of DLMLP compared to DLMLPB based on P5 

 
Figure 5-23: The performance of DLMLP compared to DLMLPB based on P6 

 
In a more detailed analysis, DLMLPB consistently outperforms DLMLP across 

various metrics, including MMRE, MBRE, and MAE. These metrics serve as 
indicators of superior accuracy in effort estimation. Specifically, in predictors P1 
and P5, while some metrics exhibit marginal similarities, the values of MMRE, 
MIBRE, and MAE obtained from DLMLPB surpass those acquired from 
DLMLP. In predictors P2, P3, P4, and P6, DLMLPB consistently produces lower 
MMRE, MBRE, MIBRE, and MAE values than DLMLP. Moreover, the 
predictive power of DLMLPB, as represented by Pred(0.25), MAE, is notably 
more significant than that of DLMLP. Additionally, DLMLPB demonstrates 
enhanced performance in capturing the bias of estimation errors, as evident in its 
lower MIBRE values. These findings underscore the significance of dataset 
balancing and effective management of categorical variables within effort 
estimation. 
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The findings presented here strongly emphasize the usefulness of employing a 
balanced dataset when utilizing deep learning models for effort estimation. 
Researchers and practitioners should consider thoroughly checking and balancing 
the dataset before training the models to ensure more accurate estimation 
outcomes. Additionally, adequate handling of categorical variables is critical for 
achieving reliable estimations. By addressing these aspects, researchers might 
enhance the accuracy and reliability of effort estimation models, ultimately 
leading to more informed decision-making and improved project management. 

In conclusion, the comparison between DLMLP and DLMLPB has 
demonstrated that the model with a balanced dataset and effective categorical 
variable handling consistently yields superior accuracy in effort estimation across 
various predictors. This finding not only answers the RQ2 that dataset balancing 
might enhance the predictive accuracy of DLMLP methods in software effort 
estimation but also emphasizes the critical role of dataset balancing and 
categorical variable handling in achieving accurate effort estimation. Therefore, 
researchers are strongly recommended to thoroughly examine and balance their 
datasets and adopt appropriate techniques for handling categorical variables to 
improve the accuracy and reliability of their effort estimation models. 

5.2.4 Evaluating Ensemble for SDEE: MLR, RF, and DLMLP 

The next objective of this research is to compare the performance of MLR, RF, 
and DLMLP against ensemble models established by incorporating MLR, RF and 
DLMLP for effort estimation using eleven predictors: P1, P2, P3, P4, P5, P6, PD, 
PA, PK, PC, and PDataset2. Figure 5-24 to Figure 5-34 present the performance of 
MLR, RF, DLMLP, and ensemble models. The blue bar stands for MLR, the 
orange, the green, and the pink stands for RF, DLMLP, and Ensemble, 
respectively. 

In the context of the P1 predictor (as illustrated in Figure 5-25), the ensemble's 
performance stands out as it consistently outperforms MLR, RF, and DLMLP. 
Specifically, the ensemble demonstrates superior accuracy with lower MMRE, 
MBRE, MIBRE, and MAE values, signifying more precise effort estimation. 
Furthermore, the ensemble excels in predictive power, as evidenced by higher 
Pred(0.25) and SA values compared to MLR, RF, and DLMLP. It is worth noting 
that these trends persist across P2, P3, P5, PC, PK, and PDataset2 predictors, as 
depicted in Figure 5-25, Figure 5-26, Figure 5-28, Figure 5-32, Figure 5-33, and 
Figure 5-34. Across these diverse predictors, the ensemble consistently maintains 
its edge in accuracy and predictive prowess, underscoring its effectiveness in 
effort estimation.  

However, when considering predictors such as P4, P6, PA, and PD, the ensemble 
still outperforms MLR and RF regarding MMRE, MBRE, MIBRE, MAE, and 
SA. Nevertheless, it is worth noting that these values are slightly higher than those 
obtained from DLMLP, indicating that while the ensemble remains competitive, 
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DLMLP holds a marginal advantage in these specific cases (such as in P4, P6, PD, 
PC, and PK). 

 
Figure 5-24: The performance of the ensemble model compared to MLR, RF, and 

DLMLP based on P1 

 
Figure 5-25: The performance of the ensemble model compared to MLR, RF, and 

DLMLP based on P2 

 
Figure 5-26: The performance of the ensemble model compared to MLR, RF, DLMLP 

based on P3 
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Figure 5-27: The performance of the ensemble model compared to MLR, RF, DLMLP 

based on P4 

 
Figure 5-28: The performance of the ensemble model compared to MLR, RF, DLMLP 

based on P5 

 
Figure 5-29: The performance of the ensemble model compared to MLR, RF, DLMLP 

based on P6 
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Figure 5-30: The performance of the ensemble model compared to MLR, RF, DLMLP 

 
Figure 5-31: The performance of the ensemble model compared to MLR, RF, DLMLP 

based on PA 

 
Figure 5-32: The performance of the ensemble model compared to MLR, RF, DLMLP 

based on PK 



 

81 
 

 
Figure 5-33: The performance of the ensemble model compared to MLR, RF, DLMLP 

based on PC 

 
Figure 5-34: The performance of the ensemble model compared to MLR, RF, and 

DLMLP based on PDataset2 
In conclusion, the extensive analysis conducted on various effort estimation 

scenarios presents valuable insights into the choice between ensemble and 
individual models. As demonstrated across multiple predictors, ensemble models 
consistently exhibit superior accuracy and predictive power compared to 
individual models, including MLR and RF. This finding highlights their potential 
to enhance effort estimation outcomes significantly. The recommendation to 
consider ensemble models becomes especially compelling when accuracy and 
precision are essential in estimating effort. Ensemble models might effectively 
leverage the strengths of different individual models to provide more accurate and 
reliable estimations. 
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However, it is essential to exercise caution when opting for ensemble models. 
While they generally outperform individual models, DLMLP retains a marginal 
advantage in specific cases, such as P4, P6, PA, and PD predictors. The 
recommendation is to prioritize ensemble models for effort estimation, 
particularly when seeking superior accuracy and predictive capabilities across 
various predictors. Nevertheless, careful consideration should be given to the 
nature of the task and the individual predictor profiles. When precision is critical, 
ensemble models offer a robust solution, but DLMLP remains a viable alternative, 
particularly in cases where its slight advantage aligns with the specific 
requirements of the effort estimation. 

5.2.5 A Comparative Analysis of Transfer Learning and DLMLP 

The other objective of this study is to compare the accuracy of the transferred 
model with the DLMLP-based model trained on the new datasets (Albrecht, 
China, and Dataset 2). This comparison addresses RQ4: "Does DLMLP-based 
transfer learning offer accuracy over conventional DLMLP?”. The study also 
introduces a pre-trained model based on the ISBSG dataset, providing a 
comprehensive and reliable foundation for effort estimations. 

As mentioned in Section 3.4.5, three transfer learning scenarios, namely TL-
Case1, TL-Case2, and TL-Case3, are investigated to assess the effectiveness of 
transfer learning in effort estimation. In TL-Case1, DLMLP-based models trained 
on Dataset 1 (the old dataset) are employed to evaluate effort estimation 
performance on Dataset 2. TL-Case2 involves training DLMLP-based models on 
80% of the Albrecht, China, and Dataset 2 datasets and evaluating their 
performance on the remaining 20%. Finally, TL-Case3 employs DLMLP-based 
models initially trained on Dataset 1 (pre-trained model) and continues their 
training on 80% of the new datasets, with an evaluation conducted on the 
remaining 20% of new datasets. 

Figure 5-35, Figure 5-36, and Figure 5-37 illustrate the performance 
comparison among TL-Case1, TL-Case2, and TL-Case3 across the studied 
datasets (Albrecht, China, and Dataset 2). The cyan bars represent TL-Case1, 
while TL-Case2 and TL-Case3 are illustrated in green and grey, respectively.  The 
results obtained from these three cases provide insights into the efficacy of 
transfer learning. TL-Case 1, obtained from Dataset 2, reveals that the DLMLP 
model trained on Dataset 1 does not outperform TL-Case2 and TL-Case3. On the 
other hand, TL-Case3 truly showcases its potential. By combining the strengths 
of the pre-trained model with further training on the combined datasets, TL-Case3 
achieves the lowest MMRE, MBRE, MIBRE, MAE, Pred, and SA values, 
suggesting superior performance in estimating software effort. These findings 
collectively emphasize the significance of transfer learning and its ability to 
enhance the accuracy of effort estimation models in software development 
projects. 
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Figure 5-35: The performance of TL_Case 2 compared to TL_Case 3 based on PA 

 
Figure 5-36: The performance of TL_Case 2 compared to TL_Case 3 based on PC 

 
Figure 5-37: The performance of TL_Case 2 compared to TL_Case 3 based on 

PDataset2 
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Furthermore, this thesis introduces a pre-trained model constructed upon the 
ISBSGModel, a neural network architecture derived from the nn.Module class of 
the PyTorch library. The ISBSGModel is specifically designed to process an input 
of size input_size and produce a single output value. The model comprises four 
fully connected linear layers, with the ReLU activation function applied after each 
layer except for the output layer. The structure of the ISBSGModel is defined in 
its initialization method, where the four fully connected layers are instantiated 
(see Figure 3-1). The first layer connects input_size neurons to a hidden layer of 
32 neurons. The ReLU activation function is subsequently applied to the output 
of each layer, introducing non-linearity and facilitating feature extraction. The 
second layer comprises 64 neurons and connects to the preceding layer through 
linear transformations. This pattern is repeated in the third layer, which includes 
32 neurons. Finally, the output of the third layer is fed into a fourth layer 
containing a single neuron, representing the final output of the model. 

 

 
Figure 5-38: The ISBSGModel 

 
In conclusion, transfer learning offers significant advantages in effort 

estimation by leveraging prior knowledge and improving the accuracy of 
predictions. Examining three transfer learning scenarios (TL-Case1, TL-Case2, 
and TL-Case3) has provided valuable insights into the effectiveness of transfer 
learning techniques within this domain. Notably, TL-Case3, which utilized pre-
trained models adjusted on a combined dataset, emerged as the most effective 
strategy, highlighting the potential of transfer learning to improve effort 
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estimation accuracy significantly. These findings contribute to the expanding 
body of research on transfer learning and underscore its relevance in enhancing 
the performance of machine learning-based models for software effort estimation. 
Additionally, this thesis presents a pre-trained model based on the ISBSGModel 
architecture, showcasing the effectiveness of transfer learning for effort 
estimation. A dedicated library for this pre-trained model offers a convenient and 
accessible resource for integration into Python projects, ultimately enhancing the 
accuracy and efficiency of effort estimation in software engineering. 

5.2.6 Exploring the Influence of IS and RS on SDEE 

The influence of IS and RS on software effort estimation using deep learning 
methods is a crucial aspect to consider. This study aims to analyse the impact of 
IS and RS on effort estimation accuracy by comparing predictor sets without 
categorical variables (P1, P2) and those with categorical variables (P3, P4, P5, 
P6) using DLMLP and DLMLPB models. 

Figure 5-39 and Figure 5-40 present the performance of DLMLP and DLMLPB 
among predictors from P1 to P6. The experimental results presented in these 
figures provide insights into the influence of IS and RS on effort estimation. When 
comparing the predictor sets like P1 (AFP), P3 (AFP, IS), and P5 (AFP, IS, RS) 
for effort estimation, it is essential to analyze the effects of the IS and RS 
predictors on the accuracy of estimation. Including the IS predictor in P3 leads to 
significant improvements in accuracy compared to P1. P3 consistently achieves 
lower MMRE, MBRE, MIBRE, and MAE values, indicating the significant 
contribution of IS in enhancing estimation accuracy. Moreover, P5, which 
includes both IS and RS predictors, performs similarly to P3, suggesting that 
adding RS provides an extra but relatively minor improvement when AFP and IS 
are already present. These findings underscore the importance of considering IS 
in effort estimation models, as it captures valuable information related to the 
inherent complexities and intricacies of the software development process. 

Furthermore, when comparing P1 (AFP) against P2 (EI, EO, EQ, EIF, ILF), it 
becomes evident that P2 consistently outperforms P1 regarding accuracy metrics. 
Including complexity-related predictors in P2, such as EI, EO, EQ, EIF, and ILF, 
enhances estimation accuracy. However, it is essential to note that including IS 
and RS in P4 and P6 further improves estimation accuracy beyond the AFP-based 
model of P1. These findings underscore the critical role of IS and RS in capturing 
the complex factors that significantly impact the effort required for software 
development projects. 

Upon examining the experimental results, a difference in performance between 
predictors P4 and P6 becomes evident. Predictor P4 represents the inclusion of IS 
as a predictor, while predictor P6 incorporates both IS and RS as predictors. 
Surprisingly, including RS in predictor P6 results in lower performance than P4 
without RS. This result suggests that RS might have a detrimental effect on the 
model's overall performance. 
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Figure 5-39: The MMRE, MBRE, and MIBRE obtained from DLMLP, DLMLPB 

among six predictors (P1, P2, P3, P4, P5, P6) 

 
Figure 5-40: MAE, Pred(0.25), and SA obtained from DLMLP, DLMLPB among six 

predictors (P1, P2, P3, P4, P5, P6) 
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Interestingly, the experimental results reveal a surprising outcome: the 
inclusion of RS in predictor P6 leads to lower performance than P4, which does 
not include RS. This unexpected result suggests a potential negative impact of RS 
on the overall model performance. Further research is needed to understand the 
underlying factors contributing to this phenomenon and to explore potential 
approaches to mitigating the adverse effects of RS on effort estimation accuracy. 

In conclusion, including IS and RS predictors consistently enhances the 
accuracy of effort estimation models. Predictor sets incorporating IS and RS, such 
as P3 and P5, demonstrate superior performance compared to models solely 
relying on AFP or complexity factors. These findings highlight the importance of 
considering IS and RS predictors to capture the intricate nature of software 
development projects and achieve more precise and reliable effort estimation. 

5.3 Evaluation against Hypotheses 

Table 5-4 and Table 5-5 present the results of the Mann-Whitney U-tests, 
which are conducted to examine potential significant differences in mean among 
various machine learning methodologies: DLMLP, MLR, RF, the ensemble, 
transfer learning, and DLMLPB. The primary aim of these tests is to ascertain 
whether statistically significant variations in performance among these 
methodologies exist. The null hypothesis (H0) stipulates significantly less or 
equal mean accuracy, while the alternative hypothesis (H1) posits the contrary. 

Table 5-4: The Mann-Whitney hypothesis test between DLMLP, MLR, RF, the 
ensemble and DLMLPB models based on P1, P2, P3, P4, P5, P6 

No Model 1 Model 2 
P-value 

P1 P2 P3 P4 P5 P6 

0 DLMLP MLR 0.00 0.01 0.04 0.00 0.04 0.02 

1 DLMLP RF 0.03 0.04 0.00 0.00 0.04 0.00 

2 DLMLP DLMLPB 0.00 0.02 0.04 0.00 0.00 0.02 

3 DLMLP Ensemble 0.01 0.04 0.01 0.60 0.01 0.70 

4 MLR RF 0.02 0.01 0.04 0.00 0.04 0.04 

5 MLR DLMLPB 0.01 0.00 0.03 0.00 0.03 0.01 

6 MLR Ensemble 0.00 0.00 0.00 0.00 0.00 0.00 

7 RF DLMLPB 0.00 0.02 0.04 0.01 0.04 0.00 

8 RF Ensemble 0.00 0.01 0.00 0.00 0.00 0.03 

9 DLMLPB Ensemble 0.01 0.02 0.01 0.04 0.01 0.01 

• DLMLP vs. MLR, and RF: 
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As shown in Table 5-4, the p-values resulting from the comparison of DLMLP 
with MLR and RF, using predictors from P1 to P6, are consistently below the 
significance threshold of 0.05. Furthermore, when the study extends this 
comparison to include other predictors (PA, PD, PC, PDataset2), as presented in Table 
5-5, the findings that the p-values remain below 0.05, these findings collectively 
indicate that DLMLP exhibits substantial variations in mean performance 
compared to MLR and RF. Consequently, the null hypothesis (𝜇𝐷𝐿𝑀𝐿𝑃 ≤
 𝜇𝑀𝐿𝑅 𝑜𝑟 𝜇𝐷𝐿𝑀𝐿𝑃 ≤  𝜇𝑅𝐹 ) is rejected, highlighting that the mean accuracy 
obtained from DLMLP is greater than MLR and RF in software effort estimation. 

Table 5-5: The Mann-Whitney hypothesis test between TL-Case2 (DLMLP), 
MLR, RF, the ensemble and TL-Case3 models based on PA, PD, PC, PDataset2. 

No Model 1 Model 2 
P-value 

PA PD PC PK PDataset2 

0 TL-Case2 MLR 0.00 0.00 0.00 0.02 0.00 

1 TL-Case2 RF 0.02 0.00 0.00 0.01 0.03 

3 TL-Case2 Ensemble 0.25 0.57 0.08 0.08 0.00 

4 MLR RF 0.00 0.00 0.02 0.02 0.04 

6 MLR Ensemble 0.02 0.00 0.00 0.00 0.00 

8 RF Ensemble 0.02 0.00 0.00 0.03 0.00 

10 TL-Case3 Ensemble 0.00 # 0.01 # 0.00 

11 TL-Case3 RF 0.00 # 0.00 # 0.00 

12 TL-Case3 MLR 0.00 # 0.00 # 0.00 

13 TL-Case3 TL-Case2 0.03 # 0.01 # 0.01 
 

• DLMLP vs. DLMLPB: 
Balancing the dataset in DLMLPB yields notable improvements, as evidenced by 
relatively low p-values: 0.00 for P1, 0.02 for P2, 0.04 for P3, 0.00 for P4, 0.00 for 
P5, and 0.02 for P6 (see Table 5-4). As a result, the alternative hypothesis 
(𝜇𝐷𝐿𝑀𝐿𝑃𝐵 >  𝜇𝐷𝐿𝑀𝐿𝑃) is retained in this case, highlighting that the mean 
accuracy obtained from DLMLPB is greater than DLMLP. 

• The Ensemble vs. DLMLP, MLR, and RF: 

In the comparative analysis of mean performance metrics across the ensemble, 
MLR, and RF concerning predictors P1 to P6, PA, PD, PC, PK, and PDataset2, as 
presented in Table 5-4 and Table 5-5, it is evident that the derived p-values for 
these comparisons consistently fall below the 0.05 significance threshold. This 
outcome leads to rejecting the null hypothesis (𝜇𝐸𝑁𝑆 ≤  𝜇𝑀𝐿𝑅, 𝑜𝑟 𝜇𝐸𝑁𝑆 ≤
 𝜇𝑅𝐹), thereby establishing statistically significant mean differences between the 
ensemble and MLR and RF, confirming that the mean accuracy attained from the 
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ensemble is better than those obtained from MLR and RF. Moreover, when 
examining the mean accuracy achieved from the ensemble approach in 
comparison to DLMLP, it is observed that predictors P1, P2, P3, P5, PA, PDataset2 
exhibit p-values fall below 0.05 except P4, P6, PD, PC, and PK. Consequently, the 
null hypothesis (𝜇𝐸𝑁𝑆 ≤  𝜇𝐷𝐿𝑀𝐿𝑃) might be rejected. 

In conclusion, this observation suggests that, in general, the mean accuracy 
obtained from the ensemble is more significant than that obtained from DLMLP, 
MLR, and RF in software effort estimation. 
• Transfer Learning (TL-Case3) vs. DLMLP: 

The transfer learning model (TL-Case3) shows significant mean performance 
disparities compared to the DLMLP, as the p-values obtained from those models 
are less than 0.05 in PA, PC, and PDataset2. The null hypothesis (𝜇𝑇𝐿 ≤  𝜇𝐷𝐿𝑀𝐿𝑃) 
is rejected, indicating that the mean accuracy obtained from the transfer learning 
model (TL-Case3) is significantly greater than DLMLP. 
• Influence of IS and RS in the accuracy of effort estimation: 

Analyzing the results in Table 5-6 provides insights into RQ5, which aims to 
determine whether the categorical variables IS and RS significantly influence 
effort estimation accuracy. These values indicate that both.  
β𝐼𝑆 and γ𝑅𝑆 for each predictor are not equal to 0. Consequently, we reject the null 
hypothesis (β𝐼𝑆 =  γ𝑅𝑆 = 0) and accept the alternative hypothesis, suggesting 
that the categorical variables (IS and RS) influence the accuracy of effort 
estimation. 
 

Table 5-6: The Regression coefficient for IS and RS obtained from MLR. 
Predictors 𝛃𝑰𝑺 𝛄𝑹𝑺 Description 

P5 -2.11 -358.41 β𝐼𝑆 ≠  γ𝑅𝑆 ≠ 0 

P6 24.94 -804.60 β𝐼𝑆 ≠  γ𝑅𝑆 ≠ 0 

 
Upon examining the coefficients presented in this table, it is observed that the 

magnitude of the regression coefficients for RS (-358.41 and -804.60) is notably 
smaller than those for IS (-2.11 and 24.94). This phenomenon indicates that the 
variable RS might have a weaker impact on effort estimation accuracy than IS. 
This observation, in turn, suggests that the IS variable may exert a more 
substantial influence on the accuracy of effort estimation models than the RS 
variable. The differences in the magnitudes of these coefficients provide valuable 
insights into the importance of these categorical variables in influencing effort 
estimation accuracy. This information contributes to a deeper understanding of 
the role of Industry Sector and Relative Size in the accuracy of effort estimation 
models and informs decision-making regarding model development and feature 
selection. 

The Mann-Whitney U-test results suggest that the DLMLP significantly 
outperforms MLR and RF regarding mean performance. Balancing the dataset in 
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DLMLPB does yield significant improvements in mean performance compared 
to DLMLP. The transfer learning model shows significant differences in mean 
performance compared to DLMLP. However, the ensemble approach 
demonstrates comparable mean performances to DLMLP. Notably, the results 
also shed light on the influence of categorical variables, as evidenced by the 
regression coefficients obtained for IS and RS from the MLR model. In this 
regard, while the regression coefficient of IS demonstrates a moderate effect on 
the accuracy, the regression coefficient for RS indicates a relatively minor 
influence. These insights collectively provide crucial guidance for practitioners 
in selecting suitable machine learning methodologies, underlining the 
significance of both model performance and the influence of categorical variables 
for well-informed decision-making in practical scenarios. 

5.4 Model Explainability Findings - Analysis of Predictor 
Contributions 

5.4.1 LIME 

This study explores the interpretation of predicted effort values generated by a 
specific model, DLMLP-P6 (DLMLP trained on P6). This model contains input 
features EO, EIF, ILF, EQ, EI, IS, and RS, where EO, EIF, ILF, EQ, and EI are 
measured in function points, and IS, RS are categorical variables, a predicted 
effort is measured in person-hours. 

 

 
Figure 5-41: Interpreting the predicted effort values obtained from DLMLP-P6 

 
This method employed for interpretation is LIME, as illustrated in Figure 5-41. 

Through applying LIME, the objective is to elucidate the roles of IS and RS within 
the effort estimation process across these models. Subsequently, an exhaustive 
analysis of the outcomes derived from LIME's interpretations is presented below: 



 

91 
 

• LIME predicts approximately 8999.69 (person-hours) for a specific 
instance, while the actual prediction is 9171.94 (person-hours). The range 
of predicted effort (person-hours) spans from -13062.35 (minimum) to 
58462.72 (maximum), indicating a wide variance in predictions. 

• The feature contributions in this analysis offer valuable insights into the 
factors influencing the predicted effort. Notably: 
✓ ILF: When ILF falls within the range of 41 to 89.5, it negatively 

affects the predicted effort by contributing to -1393.86 person-hours. 
This result suggests that an increase in ILF within this range 
correlates with reducing the predicted effort. 

✓ EQ: Falling within the range of 6 to 27, EQ negatively affects the 
predicted effort, contributing -938.65 person-hours. This result 
implies that a moderate number of EQ might decrease the predicted 
effort compared to extreme values. 

✓ RS: With values between 1 (M1) and 2 (M2), RS negatively 
influences the predicted effort by contributing -374.38 person-hours. 
This result indicates that a specific range of RS values tends to 
decrease the predicted effort. 

✓ EIF: When EIF falls between 5 and 30, it negatively impacts the 
predicted effort, contributing to -344.01 person-hours. This finding 
suggests that an increase in EIFs is associated with a decrease in 
predicted effort within this range. 

✓ EO: When EO exceeds 104.50, it positively influences the predicted 
effort with a contribution of 4234.5 person-hours. This finding 
indicates that more external outputs in the project increase the 
predicted effort. 

✓ EI: An EI value more excellent than 126.50 positively contributes 
3485.45 person-hours, signifying that an elevated count of external 
inputs increases predicted effort. 

✓ IS: When IS is 0.0 (Banking) or 1.0 (Communication), it positively 
contributes 210.52 person-hours, suggesting that a smaller interface 
size is associated with higher predicted effort. 

The LIME results suggest that EI, EO, and IS are the key features impacting 
the predicted effort. These variations in LIME's interpretations emphasize the 
importance of comparing results. LIME's visualizations further aid in 
understanding these nuanced interpretations, enabling a more comprehensive 
analysis of feature influence. 

In conclusion, this study underscores the complexity of predictive models in 
software effort estimation and the need for interpretability methods like LIME. 
The differences in feature contributions across models highlight the necessity of 
thorough evaluation and comparison. This analysis might guide practitioners in 
selecting the most suitable model for their projects, considering the strengths and 
weaknesses of each. Moreover, exploring model interpretability methods like 
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LIME enhances understanding of complex predictive models and their practical 
applications in software effort estimation. 

5.4.2 SHAP 

Through applying the SHAP technique to DLMLP-P6, the thesis aims to gain 
comprehensive insights into the contributions of individual features (EI, EO, EQ, 
EIF, ILF, IS, and RS) within these predictive models for effort estimation. SHAP 
values provide a valuable means to assess the significance of each feature in 
predicting the effort required for diverse software development projects. By 
examining these SHAP values, we might better understand the relative impact of 
each feature on the model's predictions, facilitating the identification of critical 
attributes that influence the effort estimation process. 

 
Figure 5-42: The contributions of each feature in DLMLP-P6 

 
Figure 5-42 presents the feature contributions obtained from Dataset 1 of the 

testing dataset for DLMLP-P6. These contributions reveal intriguing patterns. EI, 
EO, EQ, ILF, and EIF feature contributions exhibit consistent trends across all 
three models. These features exhibit significantly positive contributions when 
their values are high, while they display low negative contributions when their 
values are low. This consistency highlights their crucial roles in effort estimation 
within these models. 

• The EI, EO, EQ, ILF, and EIF features demonstrate relatively consistent 
trends, with a positive contribution associated with higher values and a 
minor negative contribution linked to lower values across all three models, 
while IS has a slight positive contribution. 

• Notably, the feature RS appears to have no significant contribution to 
predictions, irrespective of its value. 



 

93 
 

In summary, the analysis of feature contributions using SHAP values offers 
valuable insights into the impact of individual features on the predictions made 
by DLMLP-P6. The consistency in the contributions of EI, EO, EQ, ILF, and EIF 
suggests their critical roles in effort estimation across these models. However, the 
negligible contribution of RS merits further exploration to comprehend its 
influence on the model's predictive performance. These findings contribute a 
deeper understanding of interpretability and feature importance in software effort 
estimation using deep learning models. 

6. CONTRIBUTIONS 

This section summarises contributions and the implications for practice and 
research. 

6.1 Summary of Contributions 

This study seeks to provide specific contributions to the domain of SDEE by 
addressing several key research areas: 

• Comparative Analysis of Predictive Models: 
This research extensively evaluates predictive models across distinct predictors, 
specifically MLR, RF, and DLMLP. The objective is to determine the superior 
model for SDEE. Findings reveal that DLMLP consistently surpasses MLR and 
RF across multiple performances, including MMRE, MBRE, MIBRE, MAE, 
Pred(0.25), and SA. Consequently, DLMLP emerges as the preferred predictive 
model for SDEE. 

• Impact of Dataset Balancing on Accuracy: 
This study examines the influence of dataset-balancing techniques and the 
handling of categorical variables in deep learning models by comparing DLMLP 
(unbalanced dataset) to DLMLPB (balanced dataset). The outcomes indicate that 
DLMLPB consistently outperforms DLMLP across all predictor sets, 
underscoring the significance of dataset balancing and effective categorical 
variable management in enhancing estimation accuracy. 

• Ensemble Models for SDEE: 
The research evaluates ensemble models that combine MLR, RF, and DLMLP to 
assess their effectiveness in SDEE across various predictor sets. The findings 
demonstrate that ensemble models, mainly when precision is pivotal, exhibit 
superior performance compared to individual models. Nonetheless, it is 
noteworthy that DLMLP retains a slight advantage in specific scenarios, 
suggesting that the choice between ensemble models and DLMLP should hinge 
on the specific requirements of the effort estimation. 

• Transfer Learning for Enhanced Accuracy: 
The study investigates the efficacy of transfer learning in the context of SDEE by 
comparing DLMLP-based models trained on different datasets. The results 
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emphasize the potential of transfer learning, particularly when employing a pre-
trained model and fine-tuning it on the new dataset. This approach consistently 
outperforms models exclusively trained on new data. Using a pre-trained model 
is recommended based on the findings of outcomes. This model leverages prior 
knowledge and extensive training on large datasets, which might significantly 
enhance the predictive capabilities. By starting with a pre-trained model as a 
foundation, researchers and practitioners might save valuable time and resources 
that would otherwise be required for extensive model training. 

• Influence of Categorical Variables: 
This research examines the impact of IS and RS predictors on effort estimation 
accuracy across diverse predictor sets. The findings underscore the imperative 
nature of incorporating IS predictors into effort estimation models, as they 
encapsulate crucial information regarding the intricacies of the software 
development process. While RS predictors exhibit some influence on accuracy, 
further investigation is warranted to comprehend their nuanced impact. 

In summation, this study contributes significantly to the domain of SDEE by 
providing precise insights and recommendations. It delivers clear guidance 
regarding predictive model selection, dataset balancing, ensemble models' 
utilisation, transfer learning's advantages, and the pivotal role of IS predictors in 
improving estimation accuracy. These findings empower software development 
teams to conduct more precise estimations, enhancing project planning and 
management within the software industry. 

6.2 Implications for Practice 

The practical implications of this thesis carry considerable significance for the 
software industry. Predictive models might improve effort estimation accuracy by 
balancing datasets based on categorical variables or applying transfer learning 
based on pre-trained models. The study also applied LIME and SHAP to deeply 
analyse insights into the black-box of predictive models. The findings reveal that 
EI, EO, and IS positively impact SDEE among EI, EO, EQ, EIF, ILF, IS, and RS. 

In other words, the research findings strongly suggest that adopting the pre-
trained model and integrating deep learning methods with balancing categorical 
variables might significantly improve effort estimation performance in practice. 
By incorporating these innovative approaches into practical settings, project 
management processes might be streamlined, resource utilization might be 
optimized, and higher-quality software products might be delivered to customers. 

The implications of this thesis extend beyond theoretical constructs, offering 
actionable solutions that directly impact software development. These novel 
approaches empower practitioners with enhanced estimation capabilities and may 
revolutionize project outcomes, ensuring greater efficiency and effectiveness in 
the software development process. In doing so, the software industry benefits 
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from improved project success rates, reduced resource wastage, and heightened 
customer satisfaction, reinforcing the research's value and practicality. 

6.3 Implications for Research 

The research presented in this thesis opens avenues for future investigation in 
SDEE. The effectiveness of pre-trained models in software engineering is 
highlighted, encouraging further exploration of ensemble and transfer learning 
techniques to improve effort estimation accuracy. Moreover, LIME and SHAP 
are known and commonly used for prediction model interpretation. The study's 
use of them to interpret and understand the contribution of different features 
within proposed effort estimation models offers valuable insights into the 
underlying decision-making process. 

In the coming years, prospective research endeavours may concentrate on 
balancing datasets, adopting transfer learning using the pre-trained model, or 
applying an ensemble approach by integrating several models such as MLR, RF, 
and DLMLP. Moreover, the integration of LIME and SHAP with other 
interpretability techniques to attain comprehensive insights into model 
predictions could be explored. 

Overall, the findings of this thesis lay the foundation for future research 
endeavours in the domain of software development effort estimation, advancing 
the field towards more accurate and reliable prediction models. 

7. THREAT AND VALIDATION 

In this study, the assessment of the proposed method's validity encompasses 
both internal and external aspects. Internal validity, crucial for concluding 
experimental research, is addressed by implementing the k-fold cross-validation 
method. This approach ensures a rigorous validation of the statistical sample, 
enhancing the accuracy of the evaluation process. 

External validity, which focuses on the applicability of the results in different 
settings, is evaluated to ascertain the prediction ability of the proposed method. 
The ISBSG repository August 2020 R1 dataset is utilized to achieve this research. 
This dataset comprises various software projects from various organizations 
worldwide, each characterized by distinct features, fields, and sizes. Additionally, 
the proposed model is assessed using other datasets such as Albrecht, Deshairnais, 
Kitchenham, and China, further enhancing the robustness of the evaluation. 

Various evaluation criteria are employed to verify the performance of effort 
estimation obtained from the proposed methods, including MMRE, MBRE, 
MIBRE, MAE, Pred(0.25)/Pred(0.30), and SA. These evaluation criteria have 
been recognized in previous publications [149], [150] as unbiased and reliable for 
accuracy assessment. Consequently, the experimental results of this study are 
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highly generalizable, reflecting the method's performance across diverse datasets 
and real-world scenarios. 

In conclusion, the study adopts a comprehensive approach to validate the 
proposed method's effectiveness. Using k-fold cross-validation ensures internal 
validity while incorporating multiple datasets, including the ISBSG repository 
and others, enhances external validity. The study provides reliable and 
generalizable results by employing established and unbiased evaluation criteria, 
making it a valuable contribution to software project prediction. 

8. CONCLUSION 

This section summarises the thesis and presents the future directions for 
research. 

8.1 Summary of the Thesis 

The thesis assesses effort estimation performance using three distinct 
methodologies: MLR, RF, and DLMLP. The experimental procedures encompass 
a diverse array of datasets, with the primary dataset originating from the ISBSG 
dataset release of 2020, complemented by supplementary datasets obtained from 
the other datasets. The study considers eleven predictors: six predictor 
combinations denoted as P1 through P6 obtained from ISBSG, and individual 
predictors PA, PD, PC, PK, and PDataset2. The research outcomes provide conclusive 
responses to RQ1; the findings indicate that DLMLP consistently delivers 
superior accuracy in SDEE compared to MLR and RF. Additionally, this study 
introduces and evaluates three baseline models: ANN-based models, SWR-based 
models, and IFPUG-FPA methodology. The comparative analysis between 
DLMLP and these baseline models reveals that the DLMLP model consistently 
outperforms them across various performance metrics, including MMRE, MBRE, 
MIBRE, MAE, Pred(0.25), and SA. 

Additionally, this study explores the impact of two categorical variables from 
the ISBSG dataset, the industry sector and relative size factor, alongside factors 
from the FPA as input features. These variables are carefully selected to 
understand their influence on the DLMLP, MLR, and RF models. As illustrated 
in Table 4-4, the industry sector includes various categories, such as banking and 
government, each characterized by differing data distributions. The research 
poses RQ2 and endeavours to rectify dataset imbalance using the class-weight 
approach. The ensuing examination contrasts the performance of DLMLP on the 
original dataset against that on the balanced dataset (DLMLPB). The results may 
offer insights into whether the dataset-balancing approach, as pursued in this 
study, outperforms its unbalanced dataset. 

The thesis also investigates ensemble techniques that combine the previously 
examined models, namely MLR, RF, and DLMLP. Specifically, a stacking 
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ensemble approach is applied to MLR and RF, with XGBoost being chosen as the 
final estimator. Subsequently, the results of this ensemble process are further 
combined with DLMLP using a voting (average) method for regression. These 
experiments encompass eleven predictor variables denoted as P1 to P6, PA, PD, 
PC, PK, and PDataset2. In general, the ensemble approach demonstrates potential 
superiority over each model in most instances. These findings have the potential 
to provide insights into addressing RQ3 by suggesting that the ensemble approach 
may outperform individual models. 

The study examines three scenarios involving the pre-trained model. In the first 
scenario, the model is applied for predictions on a new test dataset called TL-
Case1. The second scenario involves using the architecture of DLMLP to 
construct a model on a new training dataset, TL-Case2. Notably, the prediction 
results on the new test dataset are superior in TL-Case2 compared to TL-Case1. 
The final scenario uses the pre-trained model and further trains it on a new training 
dataset called TL-Case3, commonly called the transfer learning model. When 
comparing the prediction outcomes on the new dataset from TL-Case3 with those 
of TL-Case1 and TL-Case2, TL-Case3 demonstrates the best results. This 
observation might address RQ4 by suggesting that transfer learning enhances 
prediction model accuracy. Based on these findings, the research has also 
constructed a library (https://github.com/huynhhoc/effort-estimation-by-using-
pre-trained-model). While not necessarily the ultimate version, researchers might 
utilize or upgrade it to enhance the accuracy of the pre-trained model. 

Last but not least, this thesis looks at how IS and RS affect effort estimation 
accuracy. As discussed in Section 5.2.6, IS demonstrates a slight effect on the 
accuracy, while RS has a relatively small effect. This observation is supported by 
analyses using LIME and SHAP, which might answer for RQ5 that IS has a 
positive effect on effort estimation, while RS has a negative one. The findings 
obtained from LIME and SHAP also reveal that EI and EO positively impact 
effort estimation compared with EQ, EIF and ILF. 

In summary, this thesis presents a comprehensive analysis of predictive 
models, dataset balancing techniques, ensemble methods, transfer learning, and 
the influence of categorical variables in software development effort estimation. 
The findings provide valuable insights for practitioners and open doors to future 
research in this field. 

8.2 Future Directions for Research 

In future research, it would be valuable to explore additional categorical 
variables within the ISBSG dataset and analyze the distribution patterns of these 
variables. Furthermore, addressing the challenge of imbalanced data, particularly 
in the context of categorical factors, is crucial for deep learning models. 
Investigating techniques to mitigate data imbalance, such as oversampling, 
undersampling, data augmentation, or using advanced algorithms tailored for 
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imbalanced datasets, might enhance effort estimation accuracy and ensure the 
reliability of predictions across various industry domains. 

Furthermore, the current pre-trained model is based on a multilayer perceptron 
architecture. Future developments could involve upgrading the pre-trained model 
by selecting the most suitable architecture from various options, including 
multilayer perceptrons, convolutional neural networks, and recurrent neural 
networks. Moreover, for future developments, extending the scope of the pre-
trained model to incorporate a broader array of categorical variables from the 
updated version of the ISBSG dataset could yield valuable insights for 
practitioners and researchers. 

Moreover, as presented in the preceding sections, ensemble methods 
consistently outperform individual models in predictive accuracy. Nonetheless, 
there are instances where a few predictors are not clear about this trend yet. In the 
future, combining highly effective individual models across diverse datasets may 
be beneficial to verify the optimal ensemble approach for effort estimation 
predictions. 

Last but not least, it is essential to underscore the significance of employing 
LIME and SHAP techniques for comprehensively evaluating the contributions of 
relevant attributes within a model. By applying LIME and SHAP, practitioners 
and researchers might thoroughly understand how various features impact the 
proposed effort estimation models. In future research endeavours involving 
predictive models, practitioners and researchers are strongly encouraged to 
systematically apply LIME and SHAP methodologies to assess model attributes' 
contributions comprehensively. This method will provide a deeper insight into the 
factors influencing model outcomes and guide feature selection and model 
refinement. 

9. REFERENCES 

[1] A. J. Albrecht, “Measuring application development productivity,” in Proc. 
Joint Share, Guide, and IBM Application Development Symposium, 1979, 
1979. 

[2] N. Agarwal, A. Sondhi, K. Chopra, and G. Singh, “Transfer Learning: 
Survey and Classification,” in Smart Innovations in Communication and 
Computational Sciences, S. Tiwari, M. C. Trivedi, K. K. Mishra, A. K. 
Misra, K. K. Kumar, and E. Suryani, Eds., Singapore: Springer Singapore, 
2021, pp. 145–155. 

[3] E. Kocaguneli, T. Menzies, and E. Mendes, “Transfer learning in effort 
estimation,” Empir Softw Eng, vol. 20, no. 3, pp. 813–843, 2015, doi: 
10.1007/s10664-014-9300-5. 

[4] L. L. Minku, “Multi-stream online transfer learning for software effort 
estimation: Is it necessary?,” in Proceedings of the 17th International 



 

99 
 

Conference on Predictive Models and Data Analytics in Software 
Engineering, 2021, pp. 11–20. 

[5] L. L. Minku and X. Yao, “Can cross-company data improve performance in 
software effort estimation?,” in Proceedings of the 8th International 
Conference on Predictive Models in Software Engineering, 2012, pp. 69–
78. 

[6] V. Van Hai, H. Le Thi Kim Nhung, and H. T. Hoc, “A review of software 
effort estimation by using functional points analysis,” in Proceedings of the 
Computational Methods in Systems and Software, Springer, 2019, pp. 408–
422. 

[7] ISBSG, “ISBSG,” International Software Benchmarking Standards Group, 
Release R1, 2020. 

[8] C. López-Martín, A. Chavoya, and M. E. Meda-Campaña, “Use of a 
feedforward neural network for predicting the development duration of 
software projects,” in 2013 12th International Conference on Machine 
Learning and Applications, IEEE, 2013, pp. 156–159. 

[9] C. López-Martín, A. Chavoya, and M. E. Meda-Campaña, “Use of a 
feedforward neural network for predicting the development duration of 
software projects,” in 2013 12th International Conference on Machine 
Learning and Applications, IEEE, 2013, pp. 156–159. 

[10] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “From 
Function Points to COSMIC - A Transfer Learning Approach for Effort 
Estimation,” in Product-Focused Software Process Improvement, P. 
Abrahamsson, L. Corral, M. Oivo, and B. Russo, Eds., Cham: Springer 
International Publishing, 2015, pp. 251–267. 

[11] E. Kocaguneli, T. Menzies, and E. Mendes, “Transfer learning in effort 
estimation,” Empir Softw Eng, vol. 20, no. 3, pp. 813–843, 2015, doi: 
10.1007/s10664-014-9300-5. 

[12] A. Ali and C. Gravino, “A systematic literature review of software effort 
prediction using machine learning methods,” Journal of Software: evolution 
and Process, vol. 31, no. 10, p. e2211, 2019. 

[13] S. Shukla and S. Kumar, “Applicability of neural network based models for 
software effort estimation,” in 2019 IEEE World Congress on Services 
(SERVICES), IEEE, 2019, pp. 339–342. 

[14] S. Goyal and P. K. Bhatia, “A non-linear technique for effective software 
effort estimation using multi-layer perceptrons,” in 2019 International 
Conference on Machine Learning, Big Data, Cloud and Parallel Computing 
(COMITCon), IEEE, 2019, pp. 1–4. 



 

100 
 

[15] K. Srinivasan and D. Fisher, “Machine learning approaches to estimating 
software development effort,” IEEE Transactions on Software Engineering, 
vol. 21, no. 2, pp. 126–137, 1995. 

[16] O. Hidmi and B. E. Sakar, “Software development effort estimation using 
ensemble machine learning,” Int. J. Comput. Commun. Instrum. Eng, vol. 
4, no. 1, pp. 143–147, 2017. 

[17] A. G. Priya Varshini, K. Anitha Kumari, D. Janani, and S. Soundariya, 
“Comparative analysis of Machine learning and Deep learning algorithms 
for Software Effort Estimation,” J Phys Conf Ser, vol. 1767, no. 1, p. 
012019, 2021, doi: 10.1088/1742-6596/1767/1/012019. 

[18] W. Amaral, L. Rivero, G. B. Junior, and D. Viana, “Using Machine 
Learning Technique for Effort Estimation in Software Development,” in 
Proceedings of the XVIII Brazilian Symposium on Software Quality, in 
SBQS’19. New York, NY, USA: Association for Computing Machinery, 
2019, pp. 240–245. doi: 10.1145/3364641.3364670. 

[19] M. Hammad and A. Alqaddoumi, “Features-level software effort estimation 
using machine learning algorithms,” in 2018 International Conference on 
Innovation and Intelligence for Informatics, Computing, and Technologies 
(3ICT), IEEE, 2018, pp. 1–3. 

[20] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘ Why should i trust you?’ 
Explaining the predictions of any classifier,” in Proceedings of the 22nd 
ACM SIGKDD international conference on knowledge discovery and data 
mining, 2016, pp. 1135–1144. 

[21] L. Antwarg, R. M. Miller, B. Shapira, and L. Rokach, “Explaining 
anomalies detected by autoencoders using SHAP,” arXiv preprint 
arXiv:1903.02407, 2019. 

[22] A. Trendowicz and R. Jeffery, “Software project effort estimation,” 
Foundations and Best Practice Guidelines for Success, Constructive Cost 
Model–COCOMO pags, vol. 12, pp. 277–293, 2014. 

[23] Y.-S. Seo, D.-H. Bae, and R. Jeffery, “AREION: Software effort estimation 
based on multiple regressions with adaptive recursive data partitioning,” Inf 
Softw Technol, vol. 55, no. 10, pp. 1710–1725, 2013. 

[24] R. N. Charette, “Why software fails,” IEEE Spectr, vol. 42, no. 9, p. 36, 
2005. 

[25] The Standish Group, “CHAOS Chronicles. Technical report. The Standish 
Group International,” The Standish Group, 2018. 

[26] A. Minkiewicz, “Use case sizing,” in 19th International Forum on 
COCOMO and Software Cost Modeling, Los Angeles, CA (USA), 2004. 



 

101 
 

[27] H. T. Hoc, V. van Hai, and H. le Thi Kim Nhung, “A review of the 
regression models applicable to software project effort estimation,” in 
Proceedings of the Computational Methods in Systems and Software, 
Springer, 2019, pp. 399–407. 

[28] S. W. Munialo and G. M. Muketha, “A review of agile software effort 
estimation methods,” 2016. 

[29] O. Fedotova, L. Teixeira, and H. Alvelos, “Software Effort Estimation with 
Multiple Linear Regression: Review and Practical Application.,” J. Inf. Sci. 
Eng., vol. 29, no. 5, pp. 925–945, 2013. 

[30] H. L. T. K. Nhung, H. T. Hoc, and V. van Hai, “A review of use case-based 
development effort estimation methods in the system development context,” 
in Proceedings of the Computational Methods in Systems and Software, 
Springer, 2019, pp. 484–499. 

[31] D. NESMA, “Counting Guidelines for the Application of Function Point 
Analysis.” Version, 1997. 

[32] P. Faria and E. Miranda, “Expert Judgment in Software Estimation During 
the Bid Phase of a Project--An Exploratory Survey,” in 2012 Joint 
Conference of the 22nd International Workshop on Software Measurement 
and the 2012 Seventh International Conference on Software Process and 
Product Measurement, IEEE, 2012, pp. 126–131. 

[33] S.-W. Lin and V. M. Bier, “A study of expert overconfidence,” Reliab Eng 
Syst Saf, vol. 93, no. 5, pp. 711–721, 2008. 

[34] M. Shepperd, C. Schofield, and B. Kitchenham, “Effort estimation using 
analogy,” in Proceedings of IEEE 18th International Conference on 
Software Engineering, 1996, pp. 170–178. doi: 
10.1109/ICSE.1996.493413. 

[35] V. Mahajan, “The Delphi method: Techniques and Applications,” JMR, 
Journal of Marketing Research (Pre-1986), vol. 13, no. 000003, p. 317, 
1976. 

[36] N. Dalkey and O. Helmer, “An experimental application of the Delphi 
method to the use of experts,” Manage Sci, vol. 9, no. 3, pp. 458–467, 1963. 

[37] G. Rowe and G. Wright, “The Delphi technique as a forecasting tool: issues 
and analysis,” Int J Forecast, vol. 15, no. 4, pp. 353–375, 1999. 

[38] B. Barry, “Software engineering economics,” New York, vol. 197, 1981. 

[39] A. Sharma and N. Chaudhary, “Linear regression model for agile software 
development effort estimation,” in 2020 5th IEEE International Conference 
on Recent Advances and Innovations in Engineering (ICRAIE), IEEE, 2020, 
pp. 1–4. 



 

102 
 

[40] V. Van Hai, H. L. T. K. Nhung, and H. T. Hoc, “A Productivity Optimising 
Model for Improving Software Effort Estimation,” in Software Engineering 
Perspectives in Intelligent Systems, R. Silhavy, P. Silhavy, and Z. 
Prokopova, Eds., Cham: Springer International Publishing, 2020, pp. 735–
746. 

[41] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “A comparison between 
decision trees and decision tree forest models for software development 
effort estimation,” in 2013 Third International Conference on 
Communications and Information Technology (ICCIT), 2013, pp. 220–224. 
doi: 10.1109/ICCITechnology.2013.6579553. 

[42] Z. Prokopova, P. Šilhavý, and R. Šilhavý, “VAF factor influence on the 
accuracy of the effort estimation provided by modified function points 
methods,” in Annals of DAAAM and Proceedings of the International 
DAAAM Symposium, Danube Adria Association for Automation and 
Manufacturing, DAAAM, 2018. 

[43] D. D. Lewis and M. Ringuette, “A comparison of two learning algorithms 
for text categorization,” in Third Annual Symposium on document analysis 
and information retrieval, 1994, pp. 81–93. 

[44] G. H. John, Enhancements to the data mining process. Stanford University, 
1997. 

[45] W. Zhang, Y. Yang, and Q. Wang, “Using Bayesian regression and EM 
algorithm with missing handling for software effort prediction,” Inf Softw 
Technol, vol. 58, pp. 58–70, 2015. 

[46] S. Amasaki and T. Yokogawa, “The effects of variable selection methods 
on linear regression-based effort estimation models,” in 2013 Joint 
Conference of the 23rd International Workshop on Software Measurement 
and the 8th International Conference on Software Process and Product 
Measurement, IEEE, 2013, pp. 98–103. 

[47] P. Silhavy, R. Silhavy, and Z. Prokopova, “Categorical variable 
segmentation model for software development effort estimation,” IEEE 
Access, vol. 7, pp. 9618–9626, 2019. 

[48] M. A. Ramessur and S. D. Nagowah, “A predictive model to estimate effort 
in a sprint using machine learning techniques,” International Journal of 
Information Technology, vol. 13, no. 3, pp. 1101–1110, 2021, doi: 
10.1007/s41870-021-00669-z. 

[49] S. Shukla and S. Kumar, “Applicability of neural network based models for 
software effort estimation,” in 2019 IEEE World Congress on Services 
(SERVICES), IEEE, 2019, pp. 339–342. 



 

103 
 

[50] M. Ochodek, S. Kopczyńska, and M. Staron, “Deep learning model for end-
to-end approximation of COSMIC functional size based on use-case 
names,” Inf Softw Technol, vol. 123, p. 106310, 2020, doi: 
https://doi.org/10.1016/j.infsof.2020.106310. 

[51] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “Neural network models 
for software development effort estimation: a comparative study,” Neural 
Comput Appl, vol. 27, no. 8, pp. 2369–2381, 2016. 

[52] M. Madheswaran and D. Sivakumar, “Enhancement of prediction accuracy 
in COCOMO model for software project using neural network,” in Fifth 
International Conference on Computing, Communications and Networking 
Technologies (ICCCNT), Ieee, 2014, pp. 1–5. 

[53] S. Mukherjee and R. K. Malu, “Optimization of project effort estimate using 
neural network,” in 2014 IEEE International Conference on Advanced 
Communications, Control and Computing Technologies, IEEE, 2014, pp. 
406–410. 

[54] R. Kneuper, CMMI: improving software and systems development 
processes using capability maturity model integration. Rocky Nook, 2008. 

[55] D. R. Pai, K. S. McFall, and G. H. Subramanian, “Software effort estimation 
using a neural network ensemble,” Journal of Computer Information 
Systems, vol. 53, no. 4, pp. 49–58, 2013. 

[56] C.-L. Liu and Y.-H. Chang, “Learning From Imbalanced Data With Deep 
Density Hybrid Sampling,” IEEE Trans Syst Man Cybern Syst, vol. 52, no. 
11, pp. 7065–7077, 2022, doi: 10.1109/TSMC.2022.3151394. 

[57] A. Islam, S. B. Belhaouari, A. U. Rehman, and H. Bensmail, “KNNOR: An 
oversampling technique for imbalanced datasets,” Appl Soft Comput, vol. 
115, p. 108288, 2022, doi: https://doi.org/10.1016/j.asoc.2021.108288. 

[58] T. Wongvorachan, S. He, and O. Bulut, “A Comparison of Undersampling, 
Oversampling, and SMOTE Methods for Dealing with Imbalanced 
Classification in Educational Data Mining,” Information, vol. 14, no. 1, p. 
54, 2023. 

[59] C.-L. Liu and Y.-H. Chang, “Learning From Imbalanced Data With Deep 
Density Hybrid Sampling,” IEEE Trans Syst Man Cybern Syst, vol. 52, no. 
11, pp. 7065–7077, 2022, doi: 10.1109/TSMC.2022.3151394. 

[60] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Handling imbalanced 
datasets: A review,” GESTS international transactions on computer science 
and engineering, vol. 30, no. 1, pp. 25–36, 2006. 

[61] H. T. Hoc, V. Van Hai, H. L. T. K. Nhung, and R. Jasek, “Improving the 
Performance of Effort Estimation in Terms of Function Point Analysis by 
Balancing Datasets,” in Software Engineering Application in Systems 



 

104 
 

Design, R. Silhavy, P. Silhavy, and Z. Prokopova, Eds., Cham: Springer 
International Publishing, 2023, pp. 705–714. 

[62] N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: 
Synthetic Minority Over-sampling Technique,” Journal of Artificial 
Intelligence Research, vol. 16, pp. 321–357, Jun. 2002, doi: 
10.1613/jair.953. 

[63] M. Zhu et al., “Class Weights Random Forest Algorithm for Processing 
Class Imbalanced Medical Data,” IEEE Access, vol. 6, pp. 4641–4652, 
2018, doi: 10.1109/ACCESS.2018.2789428. 

[64] A. Islam, S. B. Belhaouari, A. U. Rehman, and H. Bensmail, “KNNOR: An 
oversampling technique for imbalanced datasets,” Appl Soft Comput, vol. 
115, p. 108288, 2022, doi: https://doi.org/10.1016/j.asoc.2021.108288. 

[65] Z. Ren et al., “Adaptive cost-sensitive learning: Improving the convergence 
of intelligent diagnosis models under imbalanced data,” Knowl Based Syst, 
vol. 241, p. 108296, 2022, doi: 
https://doi.org/10.1016/j.knosys.2022.108296. 

[66] V. Ganganwar, “An overview of classification algorithms for imbalanced 
datasets,” International Journal of Emerging Technology and Advanced 
Engineering, vol. 2, no. 4, pp. 42–47, 2012. 

[67] S. Abdellatif, M. A. Ben Hassine, S. Ben Yahia, and A. Bouzeghoub, 
“ARCID: A New Approach to Deal with Imbalanced Datasets 
Classification,” in SOFSEM 2018: Theory and Practice of Computer 
Science, A. M. Tjoa, L. Bellatreche, S. Biffl, J. van Leeuwen, and J. 
Wiedermann, Eds., Cham: Springer International Publishing, 2018, pp. 
569–580. 

[68] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Trans 
Pattern Anal Mach Intell, vol. 12, no. 10, pp. 993–1001, 1990. 

[69] S. Shukla and S. Kumar, “Towards ensemble-based use case point 
prediction,” Software Quality Journal, 2023, doi: 10.1007/s11219-022-
09612-2. 

[70] K. K. Beesetti, S. Bilgaiyan, and B. S. P. Mishra, “Software Effort 
Estimation through Ensembling of Base Models in Machine Learning using 
a Voting Estimator,” International Journal of Advanced Computer Science 
and Applications, vol. 14, no. 2, 2023. 

[71] S. Goyal, “Effective Software Effort Estimation using Heterogenous 
Stacked Ensemble,” in 2022 IEEE International Conference on Signal 
Processing, Informatics, Communication and Energy Systems (SPICES), 
2022, pp. 584–588. doi: 10.1109/SPICES52834.2022.9774231. 



 

105 
 

[72] P. Suresh Kumar, H. S. Behera, J. Nayak, and B. Naik, “A pragmatic 
ensemble learning approach for effective software effort estimation,” Innov 
Syst Softw Eng, vol. 18, no. 2, pp. 283–299, 2022, doi: 10.1007/s11334-020-
00379-y. 

[73] M. Hosni, A. Idri, A. B. Nassif, and A. Abran, “Heterogeneous Ensembles 
for Software Development Effort Estimation,” in 2016 3rd International 
Conference on Soft Computing & Machine Intelligence (ISCMI), 2016, pp. 
174–178. doi: 10.1109/ISCMI.2016.15. 

[74] P. K. M. Passakorn, “Model-Based software effort estimation – A robust 
comparison of 14 algorithms widely used in the data science community,” 
International Journal of Innovative Computing, Information and Control, 
vol. 15, no. 2, Apr. 2019. 

[75] S. K. Palaniswamy and R. Venkatesan, “Hyperparameters tuning of 
ensemble model for software effort estimation,” J Ambient Intell Humaniz 
Comput, vol. 12, no. 6, pp. 6579–6589, 2021, doi: 10.1007/s12652-020-
02277-4. 

[76] P. V. AG and V. Varadarajan, “Estimating software development efforts 
using a random forest-based stacked ensemble approach,” Electronics 
(Basel), vol. 10, no. 10, p. 1195, 2021. 

[77] E. Kocaguneli, T. Menzies, and E. Mendes, “Transfer learning in effort 
estimation,” Empir Softw Eng, vol. 20, no. 3, pp. 813–843, 2015, doi: 
10.1007/s10664-014-9300-5. 

[78] L. L. Minku and X. Yao, “How to make best use of cross-company data in 
software effort estimation?,” in Proceedings of the 36th International 
Conference on Software Engineering, 2014, pp. 446–456. 

[79] IFPUG, “http://www.ifpug.org/,” International Function Point Users 
Group. 

[80] I. F. P. U. Group, “Function Point Counting Practices Manual.” Princeton 
Junction New Jersey, 2010. 

[81] J. Hihn, L. Juster, J. Johnson, T. Menzies, and G. Michael, “Improving and 
expanding NASA software cost estimation methods,” in 2016 IEEE 
Aerospace Conference, IEEE, 2016, pp. 1–12. 

[82] F. Ahmed, S. Bouktif, A. Serhani, and I. Khalil, “Integrating function point 
project information for improving the accuracy of effort estimation,” in 
2008 The Second International Conference on Advanced Engineering 
Computing and Applications in Sciences, IEEE, 2008, pp. 193–198. 

[83] L. Huang, J. Zhang, and Y. Liu, “Antecedents of student MOOC revisit 
intention: Moderation effect of course difficulty,” Int J Inf Manage, vol. 37, 
no. 2, pp. 84–91, 2017. 



 

106 
 

[84] K. Meridji, K. T. Al-Sarayreh, M. Abu-Arqoub, and W. M. Hadi, 
“Exploration of development projects of renewable energy applications in 
the ISBSG dataset: Empirical study,” in 2017 2nd International Conference 
on the Applications of Information Technology in Developing Renewable 
Energy Processes & Systems (IT-DREPS), IEEE, 2017, pp. 1–6. 

[85] S. P. Pillai, S. D. Madhukumar, and T. Radharamanan, “Consolidating 
evidence-based studies in software cost/effort estimation—A tertiary 
study,” in TENCON 2017-2017 IEEE Region 10 Conference, IEEE, 2017, 
pp. 833–838. 

[86] M. Fernández-Diego and F. González-Ladrón-de-Guevara, “Application of 
mutual information-based sequential feature selection to ISBSG mixed 
data,” Software Quality Journal, vol. 26, pp. 1299–1325, 2018. 

[87] J. Liu, Q. Du, and J. Xu, “A learning-based adjustment model with genetic 
algorithm of function point estimation,” in 2018 IEEE 20th International 
Conference on High Performance Computing and Communications; IEEE 
16th International Conference on Smart City; IEEE 4th International 
Conference on Data Science and Systems (HPCC/SmartCity/DSS), IEEE, 
2018, pp. 51–58. 

[88] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, “An effective 
approach for software project effort and duration estimation with machine 
learning algorithms,” Journal of Systems and Software, vol. 137, pp. 184–
196, 2018. 

[89] L. Song, L. L. Minku, and X. Yao, “Software effort interval prediction via 
Bayesian inference and synthetic bootstrap resampling,” ACM Transactions 
on Software Engineering and Methodology (TOSEM), vol. 28, no. 1, pp. 1–
46, 2019. 

[90] Y. Li, L. Shi, J. Hu, Q. Wang, and J. Zhai, “An empirical study to revisit 
productivity across different programming languages,” in 2017 24th Asia-
Pacific Software Engineering Conference (APSEC), IEEE, 2017, pp. 526–
533. 

[91] K. Kaewbanjong and S. Intakosum, “Statistical analysis with prediction 
models of user satisfaction in software project factors,” in 2020 17th 
International Conference on Electrical Engineering/Electronics, Computer, 
Telecommunications and Information Technology (ECTI-CON), IEEE, 
2020, pp. 637–643. 

[92] V. Van Hai, H. L. T. K. Nhung, Z. Prokopova, R. Silhavy, and P. Silhavy, 
“A new approach to calibrating functional complexity weight in software 
development effort estimation,” Computers, vol. 11, no. 2, p. 15, 2022. 

[93] F. González-Ladrón-de-Guevara, M. Fernández-Diego, and C. Lokan, “The 
usage of ISBSG data fields in software effort estimation: A systematic 



 

107 
 

mapping study,” Journal of Systems and Software, vol. 113, pp. 188–215, 
2016. 

[94] Z. Prokopova, P. Silhavy, and R. Silhavy, “Influence analysis of selected 
factors in the function point work effort estimation,” in Proceedings of the 
Computational Methods in Systems and Software, Springer, 2018, pp. 112–
124. 

[95] V. Van Hai, H. L. T. K. Nhung, Z. Prokopova, R. Silhavy, and P. Silhavy, 
“Toward Improving the Efficiency of Software Development Effort 
Estimation via Clustering Analysis,” IEEE Access, vol. 10, pp. 83249–
83264, 2022, doi: 10.1109/ACCESS.2022.3185393. 

[96] J. I. S. Martínez, F. V. Souto, and M. R. Monje, “Analysis of automated 
estimation models using machine learning,” in 2020 8th International 
Conference in Software Engineering Research and Innovation 
(CONISOFT), IEEE, 2020, pp. 110–116. 

[97] J. Huang, Y.-F. Li, J. W. Keung, Y. T. Yu, and W. K. Chan, “An empirical 
analysis of three-stage data-preprocessing for analogy-based software effort 
estimation on the ISBSG data,” in 2017 IEEE International Conference on 
Software Quality, Reliability and Security (QRS), IEEE, 2017, pp. 442–449. 

[98] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model 
predictions,” Adv Neural Inf Process Syst, vol. 30, 2017. 

[99] A. and M. A. Najm Assia and Zakrani, “Efficient Shapely Explanation 
of Support Vector Regression for Agile and Non-agile Software Effort 
Estimation,” in Intelligent Sustainable Systems, D. and M. D. K. and J. A. 
Nagar Atulya K. and Singh Jat, Ed., Singapore: Springer Nature Singapore, 
2023, pp. 711–729. 

[100] L. A. de Lima, J. M. Abe, C. Z. Kirilo, J. P. da Silva, and K. Nakamatsu, 
“Using Logic Concepts in Software Measurement,” Procedia Comput Sci, 
vol. 131, pp. 600–607, 2018. 

[101] G. C. Low and D. R. Jeffery, “Function points in the estimation and 
evaluation of the software process,” IEEE transactions on Software 
Engineering, vol. 16, no. 1, pp. 64–71, 1990. 

[102] A. J. Albrecht and J. E. Gaffney, “Software function, source lines of code, 
and development effort prediction: a software science validation,” IEEE 
transactions on software engineering, no. 6, pp. 639–648, 1983. 

[103] N. Rankovic, D. Rankovic, M. Ivanovic, and L. Lazic, “A new approach to 
software effort estimation using different artificial neural network 
architectures and Taguchi orthogonal arrays,” IEEE Access, vol. 9, pp. 
26926–26936, 2021. 



 

108 
 

[104] J. Sayyad Shirabad, J. and Menzies, and T.J., “The PROMISE Repository 
of Software Engineering Databases.,” 2005, 2005. 

[105] J. M. Desharnais, “Analyse statistique de la productivitie des projets 
informatique a partie de la technique des point des function,” Masters 
Thesis, University of Montreal, 1989. 

[106] B. Kitchenham, S. L. Pfleeger, B. McColl, and S. Eagan, “An empirical 
study of maintenance and development estimation accuracy,” Journal of 
systems and software, vol. 64, no. 1, pp. 57–77, 2002. 

[107] F. H. Yun, “China: Effort Estimation Dataset,” Apr. 2010, doi: 
10.5281/ZENODO.268446. 

[108] H. He, B. Yang, E. A. Garcia, and S. A. Li, “Adaptive synthetic sampling 
approach for imbalanced learning. Proeedings of the 2008 IEEE 
International Joint Conference on Neural Networks (IEEE World Congress 
on Computational Intelligence); June 2008; Hong Kong, China.” 
ChinaIEEE. 

[109] L. Taylor and G. Nitschke, “Improving Deep Learning with Generic Data 
Augmentation,” in 2018 IEEE Symposium Series on Computational 
Intelligence (SSCI), 2018, pp. 1542–1547. doi: 
10.1109/SSCI.2018.8628742. 

[110] A. Arora, N. Shoeibi, V. Sati, A. González-Briones, P. Chamoso, and E. 
Corchado, “Data Augmentation Using Gaussian Mixture Model on CSV 
Files,” in Distributed Computing and Artificial Intelligence, 17th 
International Conference, Y. Dong, E. Herrera-Viedma, K. Matsui, S. 
Omatsu, A. González Briones, and S. Rodríguez González, Eds., Cham: 
Springer International Publishing, 2021, pp. 258–265. 

[111] D. A. Reynolds, “Gaussian mixture models.,” Encyclopedia of biometrics, 
vol. 741, no. 659–663, 2009. 

[112] A. S. Hadi and S. Chatterjee, Regression analysis by example. John Wiley 
& Sons, 2015. 

[113] K. Baker, “Singular value decomposition tutorial,” The Ohio State 
University, vol. 24, 2005. 

[114] L. Breiman, “Arcing the edge,” Technical Report 486, Statistics 
Department, University of California at …, 1997. 

[115] “http://www.stat.berkeley.edu/~breiman/RandomForests/cc_h ome.htm,” 
#prox Symposium, volume 1, Jul. 01, 2005. 

[116] J. Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random forests and decision 
trees,” International Journal of Computer Science Issues (IJCSI), vol. 9, no. 
5, p. 272, 2012. 



 

109 
 

[117] Z. abdelali, H. Mustapha, and N. Abdelwahed, “Investigating the use of 
random forest in software effort estimation,” Procedia Comput Sci, vol. 
148, pp. 343–352, 2019, doi: https://doi.org/10.1016/j.procs.2019.01.042. 

[118] A. Liaw and M. Wiener, “Classification and Regression by RandomForest,” 
Forest, vol. 23, Nov. 2001. 

[119] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” J Comput Syst Sci, vol. 55, no. 
1, pp. 119–139, 1997. 

[120] J. Friedman, “Greedy boosting approximation: a gradient boosting 
machine,” The Annals of. 

[121] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a 
statistical view of boosting (with discussion and a rejoinder by the authors),” 
The annals of statistics, vol. 28, no. 2, pp. 337–407, 2000. 

[122] H. Aljamaan and A. Alazba, “Software defect prediction using tree-based 
ensembles,” in Proceedings of the 16th ACM international conference on 
predictive models and data analytics in software engineering, 2020, pp. 1–
10. 

[123] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in 
Proceedings of the 22nd acm sigkdd international conference on knowledge 
discovery and data mining, 2016, pp. 785–794. 

[124] Aurélien Géron, “Ensemble Learning and Random Forests,” in Hands-On 
Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd 
ed.O’reilly, 2019, pp. 189–212. 

[125] J. Brownlee, XGBoost With python: Gradient boosted trees with XGBoost 
and scikit-learn. Machine Learning Mastery, 2016. 

[126] A. Guryanov, “Histogram-based algorithm for building gradient boosting 
ensembles of piecewise linear decision trees,” in Analysis of Images, Social 
Networks and Texts: 8th International Conference, AIST 2019, Kazan, 
Russia, July 17–19, 2019, Revised Selected Papers 8, Springer, 2019, pp. 
39–50. 

[127] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 
7553, pp. 436–444, 2015, doi: 10.1038/nature14539. 

[128] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 
2016. 

[129] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: A 
tutorial,” Computer (Long Beach Calif), vol. 29, no. 3, pp. 31–44, 1996. 

[130] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural 
networks,” Towards Data Sci, vol. 6, no. 12, pp. 310–316, 2017. 



 

110 
 

[131] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation 
functions: Comparison of trends in practice and research for deep learning,” 
arXiv preprint arXiv:1811.03378, 2018. 

[132] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans Knowl 
Data Eng, vol. 22, no. 10, pp. 1345–1359, 2010. 

[133] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on 
machine learning applications and trends: algorithms, methods, and 
techniques, IGI Global, 2010, pp. 242–264. 

[134] A. Arnold, R. Nallapati, and W. W. Cohen, “A comparative study of 
methods for transductive transfer learning,” in Seventh IEEE international 
conference on data mining workshops (ICDMW 2007), IEEE, 2007, pp. 77–
82. 

[135] A. Arnold, R. Nallapati, and W. W. Cohen, “A Comparative Study of 
Methods for Transductive Transfer Learning,” in Seventh IEEE 
International Conference on Data Mining Workshops (ICDMW 2007), 
2007, pp. 77–82. doi: 10.1109/ICDMW.2007.109. 

[136] P. Baldi, “Autoencoders, Unsupervised Learning, and Deep Architectures,” 
in Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 
I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver, Eds., in 
Proceedings of Machine Learning Research, vol. 27. Bellevue, Washington, 
USA: PMLR, May 2012, pp. 37–49. [Online]. Available: 
https://proceedings.mlr.press/v27/baldi12a.html 

[137] S. D. Conte, H. E. Dunsmore, and Y. E. Shen, Software engineering metrics 
and models. Benjamin-Cummings Publishing Co., Inc., 1986. 

[138] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and validity in 
comparative studies of software prediction models,” IEEE Transactions on 
Software Engineering, vol. 31, no. 5, pp. 380–391, 2005. 

[139] Y. Mahmood, N. Kama, A. Azmi, A. S. Khan, and M. Ali, “Software effort 
estimation accuracy prediction of machine learning techniques: A 
systematic performance evaluation,” Softw Pract Exp, vol. 52, no. 1, pp. 39–
65, 2022. 

[140] M. Shepperd and S. MacDonell, “Evaluating prediction systems in software 
project estimation,” Inf Softw Technol, vol. 54, no. 8, pp. 820–827, 2012. 

[141] T. Xia, R. Shu, X. Shen, and T. Menzies, “Sequential model optimization 
for software effort estimation,” IEEE Transactions on Software 
Engineering, 2020. 

[142] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation.,” Encyclopedia of 
database systems, vol. 5, pp. 532–538, 2009. 



 

111 
 

[143] R. Kohavi, “A study of cross-validation and bootstrap for accuracy 
estimation and model selection,” in Ijcai, Montreal, Canada, 1995, pp. 
1137–1145. 

[144] X. Ma, Y. Zhang, and Y. Wang, “Performance evaluation of kernel 
functions based on grid search for support vector regression,” in 2015 IEEE 
7th international conference on Cybernetics and intelligent systems (CIS) 
and IEEE Conference on Robotics, automation and mechatronics (RAM), 
IEEE, 2015, pp. 283–288. 

[145] J. Brownlee, “A gentle introduction to the rectified linear unit (ReLU),” 
Machine learning mastery, vol. 6, 2019. 

[146] E. Okewu, S. Misra, and F.-S. Lius, “Parameter tuning using adaptive 
moment estimation in deep learning neural networks,” in International 
Conference on Computational Science and Its Applications, Springer, 2020, 
pp. 261–272. 

[147] V. N. Gudivada, M. T. Irfan, E. Fathi, and D. L. Rao, “Chapter 5 - Cognitive 
Analytics: Going Beyond Big Data Analytics and Machine Learning,” in 
Handbook of Statistics, V. N. Gudivada, V. V Raghavan, V. Govindaraju, 
and C. R. Rao, Eds., Elsevier, 2016, pp. 169–205. doi: 
https://doi.org/10.1016/bs.host.2016.07.010. 

[148] R. Silhavy, P. Silhavy, and Z. Prokopova, “Analysis and selection of a 
regression model for the use case points method using a stepwise approach,” 
Journal of Systems and Software, vol. 125, pp. 1–14, 2017. 

[149] M. Azzeh, A. Bou Nassif, and I. B. Attili, “Predicting software effort from 
use case points: A systematic review,” Sci Comput Program, vol. 204, p. 
102596, 2021, doi: https://doi.org/10.1016/j.scico.2020.102596. 

[150] A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean absolute 
percentage error for regression models,” Neurocomputing, vol. 192, pp. 38–
48, 2016. 

  

LIST OF PUBLICATIONS 

Journals: 

1. Hoc, H. T., R. Silhavy, Z. Prokopova and P. Silhavy, “Comparing Multiple 
Linear Regression, Deep Learning and Multiple Perceptron for Functional 
Points Estimation,” in IEEE Access, vol. 10, pp. 112187-112198, 2022, doi: 
10.1109/ACCESS.2022.3215987. 

2. Hoc, H. T., R. Silhavy, Z. Prokopova and P. Silhavy, "Comparing Stacking 
Ensemble and Deep Learning for Software Project Effort Estimation," in IEEE 



 

112 
 

Access, vol. 11, pp. 60590-60604, 2023, doi: 
10.1109/ACCESS.2023.3286372. 

3. Hoc, H. T., Silhavy P., Fajkus M., Prokopova Z, Silhavy R. Propose-Specific 
Information Related to Prediction Level at x and Mean Magnitude of Relative 
Error: A Case Study of Software Effort Estimation. Mathematics. 2022; 
10(24):4649. https://doi.org/10.3390/math10244649. 

4. Hoc, H. T., Silhavy P., Dey SK, Hoang SD, Prokopova Z, Silhavy R. 
Analysing Public Opinions Regarding Virtual Tourism in the Context of 
COVID-19: Unidirectional vs. 360-Degree Videos. Information. 2023; 
14(1):11. https://doi.org/10.3390/info14010011. 

5. DEY, Sandeep Kumar, Duc Sinh HOANG, Hoc, H. T., Quynh Giao Ngoc 
PHAM. Engaging virtual reality technology to determine pro-environmental 
behaviour: The Indian context. Geojournal of Tourism and Geosites [online]. 
2022, vol. 41, iss. 2, s. 464-471. [cit. 2023-03-14]. ISSN 2065-0817. 

6. Kondamudi, B. R., Hoang, S. D., Tuckova, Z., Dey, S. K., Hoc, H. T., & 
Kumar, B. R. (2023). Tourists’ Perception and Influence Factors in Virtual 
Tourism Using Bayesian Sentimental Analysis Model in Vietnam Based on e 
WOM for Sustainable Development. Journal of Law and Sustainable 
Development, 11(3), e338. https://doi.org/10.55908/sdgs.v11i3.338. 

7. Pham P.T., Hoc, H. T., B.Popesko, Sinh D.H., Tri B.T, "Impact of Fintech’s 
Development on Bank Performance: An Empirical Study from Vietnam.", 
accept submission by GamaIJB, Volume 26 No.1, 2023. 

Conferences: 

8. Hoc, H. T., Van Hai, V., Nhung, H. L. T. K., & Jasek, R. (2023). Improving 
the Performance of Effort Estimation in Terms of Function Point Analysis by 
Balancing Datasets. In Software Engineering Application in Systems Design: 
Proceedings of 6th Computational Methods in Systems and Software 2022, 
Volume 1 (pp. 705-714). Cham: Springer International Publishing. 

9. Hoc, H. T., Van Hai, V., & Le Thi Kim Nhung, H. (2020). AdamOptimizer 
for the optimisation of use case points estimation. In Software Engineering 
Perspectives in Intelligent Systems: Proceedings of 4th Computational 
Methods in Systems and Software 2020, Vol. 1 4 (pp. 747-756). Springer 
International Publishing. 

10. Hoc, H. T., Van Hai, V., & Nhung, H. L. T. K. (2021). An approach to adjust 
effort estimation of function point analysis. In Software Engineering and 
Algorithms: Proceedings of 10th Computer Science On-line Conference 2021, 
Vol. 1 (pp. 522-537). Springer International Publishing 

11. Hoc, H. T., Van Hai, V., & Le Thi Kim Nhung, H. (2019). A review of the 
regression models applicable to software project effort 
estimation. Computational Statistics and Mathematical Modeling Methods in 
Intelligent Systems: Proceedings of 3rd Computational Methods in Systems 
and Software 2019, Vol. 2 3, 399-407. 



 

113 
 

12. Van Hai, V., Le Thi Kim Nhung, H., & Hoc, H. T. (2021). Empirical Evidence 
in Early Stage Software Effort Estimation Using Data Flow Diagram. 
In Software Engineering and Algorithms: Proceedings of 10th Computer 
Science On-line Conference 2021, Vol. 1 (pp. 632-644). Springer International 
Publishing. 

13. Nhung, H. L. T. K., Van Hai, V., Hoc, H. T. Analyzing Correlation of the 
Relationship between Technical Complexity Factors and Environmental 
Complexity Factors for Software Development Effort Estimation. 

14. Hai, V. V., Nhung, H. L. T. K., & Hoc, H. T. (2021). Calibrating Function 
Complexity in Enhancement Project for Improving Function Points Analysis 
Estimation. In Software Engineering Application in Informatics: Proceedings 
of 5th Computational Methods in Systems and Software 2021, Vol. 1 (pp. 857-
869). Springer International Publishing. 

15. Le Thi Kim Nhung, H., Hoc, H. T., & Van Hai, V. (2020). An evaluation of 
technical and environmental complexity factors for improving use case points 
estimation. In Software Engineering Perspectives in Intelligent Systems: 
Proceedings of 4th Computational Methods in Systems and Software 2020, 
Vol. 1 4 (pp. 757-768). Springer International Publishing. 

16. Hai, V. V., Nhung, H. L. T. K., & Hoc, H. T. (2020). A Productivity 
optimising model for improving software effort estimation. In Software 
Engineering Perspectives in Intelligent Systems: Proceedings of 4th 
Computational Methods in Systems and Software 2020, Vol. 1 4 (pp. 735-746). 
Springer International Publishing. 

17. Van Hai, V., Le Thi Kim Nhung, H., & Hoc, H. T. (2019). A review of 
software effort estimation by using functional points analysis. Computational 
Statistics and Mathematical Modeling Methods in Intelligent Systems: 
Proceedings of 3rd Computational Methods in Systems and Software 2019, 
Vol. 2 3, 408-422. 

18. Nhung, H. L. T. K., Hoc, H. T., & Hai, V. V. (2019). A review of use case-
based development effort estimation methods in the system development 
context. Intelligent Systems Applications in Software Engineering: 
Proceedings of 3rd Computational Methods in Systems and Software 2019, 
Vol. 1 3, 484-499. 

19.  Dey, S.K., Hoang, D.S, Hoc, H.T., & Pham, Q.G.N. (2022). ENGAGING 
VIRTUAL REALITY TECHNOLOGY TODETERMINE PRO-
ENVIRONMENTAL BEHAVIOUR: THE INDIAN CONTEXT X. 
GeoJournal of Tourism and Geosites,41(2), 464–471. 
https://doi.org/10.30892/gtg.41217-851. 

20. Dey, S.K., Hung, V.V., Hoc, H.T., Pham, Q.G.N. (2022). AVR Technologies 
in Sustainable Tourism: A Bibliometric Review. In: Bashir, A.K., Fortino, G., 
Khanna, A., Gupta, D. (eds) Proceedings of International Conference on 
Computing and Communication Networks. Lecture Notes in Networks and 



 

114 
 

Systems, vol 394. Springer, Singapore. https://doi.org/10.1007/978-981-19-
0604-6_52. 

21. Nguyen T.T.N., Cartocci A., Hoc H. T., Tong L. T., Mozafari M., Dang 
T.K., Nguyen T.Z., AI-aided automatic severity scoring system for 
Hidradenitis Suppurativa, 12th Hybrid Conference of the EHSF 2023 
Hidradenitis Suppurativa / Acne Inversa-Tagung 2023. 

Book Editor: 

22. Zuzana Tučková, Sandeep Kumar Dey, Hoc H. T., Sinh Duc Hoang, Impact 
of Industry 4.0 on Sustainable Tourism: Perspectives, Challenges and Future, 
published by Emerald, October, 2023. 

  



 

115 
 

CURRICULUM VITAE 

Personal Information 

Full name: Huynh Thai Hoc 

Address: 30/2C Trung My Tan Xuan, Hoc Mon, Ho Chi Minh City, Vietnam 

Nationality: Vietnamese 

Orcid ID: 0000-0003-3845-8466 

Scholar ID: xoesuc8AAAAJ 

Email: huynh_thai@utb.cz; hoc.ht@vlu.edu.vn; huynhhoc@gmail.com 

Work Experiences 

- July 2023 – September 2023: Lead researcher for Internal Geospatial Data 

Science Bootcamp at Valhko company, France. 

- March 2022 – January 2023: Internship at Torus Actions, Toulouse, France. 

- 2018 – ongoing: Lecturer at the Faculty of Information Technology, School 

of Engineering and Technology, Van Lang University, HCMC, Vietnam. 

- 2011 – 2018: Lecture at Faculty of Information Technology, University of 

Industry (UIH), Ho Chi Minh City, Vietnam. 

- 2014 – January 2019: Developer at Capgemini Vietnam, HCMC, Vietnam. 

- 2007 – 2014: Lecture at Faculty of Information Technology, University of 

Natural Resources and Environment (HCMUNRE), HCMC, Vietnam. 

- 2002 – 2007: GIS developer at DITAGIS, HCMC, Vietnam. 

Education 

- 2019 – 10/2023: PhD scholar at the Faculty of Applied Informatics, Tomas 

Bata University, Zlin, the Czech Republic. 

- 2004 – 2007: master’s degree in Geographic Information Systems, 

University of Technology (HCMUT), Ho Chi Minh City, Vietnam. 

- 1998 – 2002: bachelor’s degree in mathematics and computer Science, 

University of Science (HCMUS), Ho Chi Minh City, Vietnam. 

Programming Languages 

- R programming 



 

116 
 

- Python 

- C/C++; Core Java; .NET 

Data scientist skills 

- Pytorch, Tensorflow 

- Random Forest, XGBoost, SVM 

- Regression models, Ensemble 

- LIME/SHAP 

- Generative Models 

- Scikit learns 

Technical skills 

- SQL Server, PostgreSQL/PostGIS, MongoDB 

- .NET 

- Design patterns (MVC) 

- Web service (Restful, SOAP) 

- HTML, CSS, JavaScript 

- Git and Agile methodologies 

Research Interests 

Data Scientist, GIS, Developer. 

Research Activities at Tomas Bata University, Zlin 

- IGA projects: 

o IGA/CebiaTech/2019/002 

o  RO30196021025, RO30196021025 

o IGA/CebiaTech/2020/001, RVO/FAI/2020/002 

o IGA/CebiaTech/2021/001 

o IGA/CebiaTech/2022/001 

- Competition projects: 

o OP RDE Project Junior grants of TBU in Zlin, reg. No. 

CZ.02.2.69/0.0/19_073/0016941. 

o IGA-K-TRINITY/004. 


