

Doctoral Thesis

Regression Models for Software Project Effort
Estimation

Regresní modely pro odhad úsilí softwarového projektu

Author: Huynh Thai Hoc

Degree programme: Engineering Informatics

Degree course: Software Engineering

Supervisor: Assoc. Prof. Ing. Zdenka Prokopová, CSc.

Consulting Supervisor: Assoc. Prof. Ing. Petr Šilhavý, Ph.D.

Zlín, October 2023

i

ACKNOWLEDGEMENT

Completing my PhD degree has been a momentous achievement, and I am
deeply thankful to all the individuals and institutions who supported and
encouraged me throughout this extraordinary journey.

I want to express my heartfelt gratitude to my exceptional supervisors, doc.
Ing. Zdenka Prokopova, CSc., who provided invaluable guidance and unwavering
patience, doc. Ing. Petr Šilhavý, Ph.D, for his continuous support and doc. Ing.
Radek Šilhavý, Ph.D., for his constructive feedback that significantly contributed
to the development of my research.

I also sincerely appreciate the Faculty of Applied Informatics at Tomas Bata
University for allowing me to partake in this doctoral course, which has allowed
me to expand my knowledge and excel in my field of interest.

Special thanks are due to the colleagues whose supportive environment
enriched my learning journey. The collaboration and knowledge sharing among
faculty and staff at the Faculty of Applied Informatics, UTB, has been truly
invaluable.

Furthermore, I wish to extend my appreciation to doc. Ing. Anežka Lengálová,
Ph.D., and Ing. Dagmar Svobodová, MSc., for their assistance in improving my
English language skills.

I am deeply grateful to Professor Hoàng Lê Minh, Head of the Faculty of
Information Technology at Văn Lang University, Dr.Sc., and Doc. Dr Hông Vân
Lê from the Institute of Mathematics, Czech Academy of Sciences, for their
inspiring encouragement.

My sincere thanks go to RNDr. Martin Fajkus, Ph.D., for his collaboration on
the research published in the mathematics journal.

I also want to express my gratitude to Professor Nguyen Tien Zung from the
Institut de Mathématiques de Toulouse, as well as Dr. Susely Figueroa Iglesias,
Dr. Nguyen Thi Thuy Nga, and all my colleagues at Torus Actions, for their
dedicated guidance during my internship.

I am thankful to František Brázdilík and his colleagues for their invaluable
support in visa matters related to my study abroad.

My most profound appreciation goes to my family, especially my spouse,
Nguyen Thi Hanh Uyen, for her unwavering support and sacrifices essential to
my academic pursuits.

Last but not least, I extend my heartfelt gratitude to my parents, Huynh Van
Chien and Tran Thi Thoi, my siblings, my friends, and my children, Huynh
Nguyen Minh Quan, Huynh Nguyen Gia Huy, and Huynh Minh Thanh, for their
love and encouragement throughout my studies.

ii

ABSTRAKT
 Odhad úsilí při vývoji softwaru, resp. odhad pracnosti vývoje softwarových

projektů, hraje klíčovou roli v oblasti vývoje softwaru a má velký vliv na
plánování projektů a přidělování zdrojů. Předkládaná práce přináší významné
pokroky v oblasti odhadu úsilí při vývoji softwaru zavedením inovativních
technik jako je tzv. přenosové učení (transfer learning) a analýzy datových
souborů, s cílem zvýšit přesnost odhadu úsilí, konkrétně v rámci rozšíření metody
funkčních bodů. Kromě toho jsou v předkládané práci zkoumané různé přístupy
k identifikaci faktorů analýzy funkčních bodů a relevantních kategoriálních
faktorů, které přispívají ke zlepšení odhadu úsilí, včetně vícenásobné lineární
regrese, neuronových sítí atd.

Prostřednictvím rozsáhlé série experimentů autor práce identifikuje nové
faktory ovlivňující odhad úsilí, což vede k přesnějším odhadům ve srovnání se
základními modely. Dále je v práci popsaná aplikace technik LIME (Local
Interpretable Model-agnostic Explanations) a SHAP (SHapley Additive
exPlanations), které umožňují hlubší vhled do černé skříňky predikčních modelů.

Provedený výzkum byl zaměřen na hodnocení účinnosti předem natrénovaných
modelů a návrh využití metod tzv. hlubokého učení (deep learning) v kombinaci
se strategiemi pro vyvažování kategoriálních proměnných s cílem zlepšit odhad
úsilí. Výsledky jasně ukazují, že zahrnutí relevantních faktorů a využití
hlubokého učení, jakož i technik přenosového učení, výrazně zlepšuje odhad úsilí
při vývoji softwaru. Toto zlepšení odhadu úsilí nabízí týmům zabývajícím se
vývojem softwaru přesnější prostředky, což v konečném důsledku vede ke
zlepšení plánování a řízení projektů.

Předkládaná práce celkově přispívá k teoretickým i praktickým aspektům
odhadu úsilí tím, že poskytuje nové poznatky a inovativní strategie pro zvýšení
přesnosti odhadu úsilí při vývoji softwarových projektů.

Key words in Czech: Odhadování pracnosti vývoje softwarových projektů,
metoda funkčních bodů, regresní modely, hluboké učení

iii

ABSTRACT

Effort estimation plays a crucial role in the domain of software development,
employing an influence on project planning and resource allocation. This thesis
advances the field of Software Development Effort Estimation (SDEE) by
introducing novel transfer learning and dataset balancing techniques to enhance
effort estimation accuracy, focusing on the function point analysis. It explores
multiple linear regression, feedforward neural networks, and ensemble methods
to identify factors affecting effort estimation.

Through a comprehensive series of experiments, this study uncovers new
factors that significantly improve effort estimation, resulting in more precise
estimates when compared to baseline models. Furthermore, it employs the
application of Local Interpretable Model-agnostic Explanations (LIME) and
SHapley Additive exPlanations (SHAP) techniques to provide deeper insights
into the black-box of predictive models.

This research evaluates the effectiveness of pre-trained models and suggests
using deep learning methods in combination with strategies for balancing
categorical variables to enhance effort estimation. The results indicate that
incorporating relevant factors and employing deep learning and transfer learning
techniques enhances SDEE. This improvement in effort estimation offers
software development teams a more accurate means of estimation, ultimately
leading to improved project planning and management.

In summary, this thesis contributes to both theory and practice in effort
estimation by offering innovative insights and strategies to boost accuracy.

Key words: Software development effort estimation, function points methods,
regression models, deep learning, Ensemble, deep learning with balancing
dataset, transfer learning, LIME, SHAP.

iv

Contents Of the Thesis

Acknowledgement .. i

Abstrakt .. ii

Abstract .. iii

Contents Of the Thesis ...iv

List of Figures... vii

List of Tables ... x

List of Abbreviations and Symbols .. xii

1. Introduction ... 1

1.1 Motivation .. 1

1.2 Problem Statement ... 2

1.3 Research Questions and Hypothesis .. 3

1.4 Objectives of the Thesis ... 5

2. The Current State of The Issues Dealt With ... 5

2.1 Software Development Effort Estimation ... 5

2.2 Regression Models in SDEE ... 9

2.3 Multilayer Perceptron in SDEE ... 11

2.4 Balancing Dataset in SDEE ... 12

2.5 Ensemble Approach in SDEE .. 14

2.6 Transfer Learning in SDEE ... 16

2.7 Absence of Categorical Variables in FPA ... 17

2.8 Model Explainability Approaches: LIME, SHAP 19

3. Methodology ... 20

3.1 Function Point Analysis ... 20

3.2 Data Collection .. 24

3.2.1 Selection of FPA Dataset (ISBSG) .. 24

3.2.2 Other Datasets .. 24

3.3 Preprocessing Techniques ... 26

3.3.1 ISBSG Dataset .. 26

3.3.2 Other Datasets .. 28

3.3.3 Dataset Description .. 31

v

3.3.4 Balancing Dataset Technique .. 34

3.4 Model Development .. 36

3.4.1 Multiple Linear Regression Model .. 36

3.4.2 Random Forest ... 37

3.4.3 Gradient Boosting .. 38

3.4.4 Multi-layer Perceptron Model ... 38

3.4.5 Transfer Learning Technique .. 40

3.4.6 Ensemble Model: Incorporating Multiple Linear Regression,
Random Forest, and Deep Learning Models 43

3.5 Model Explainability - Interpretability ... 44

3.5.1 LIME .. 44

3.5.2 SHAP ... 45

3.6 Comparison Criteria .. 45

4. Experiments .. 47

4.1 Conceptual Framework of the Study .. 47

4.1.1 The Framework of the Study ... 47

4.1.2 Predictors ... 49

4.1.3 Experimental Framework .. 50

4.2 Regression Experiment ... 51

4.3 Random Forest Experiment .. 51

4.4 DLMLP Experiment.. 52

4.5 Transfer Learning Experiment .. 54

4.6 Balancing Dataset Experiment .. 56

4.7 Ensemble Model Experiment .. 58

4.8 Model Explainability Experiments ... 59

4.9 Baseline Models .. 60

4.9.1 ANN-based Model ... 61

4.9.2 Stepwise-based Regression Model .. 61

5. Results and Discussion ... 62

5.1 Comparison of Model Performance .. 62

5.2 Discussion of the Results .. 66

5.2.1 Comparing Predictive Accuracy in SDEE: DLMLP, MLR, RF ...
 ... 66

5.2.2 Comparing DLMLP vs. Baseline Models 71

vi

5.2.3 Impact of Dataset Balancing on Accuracy of SDEE in DLMLP...
 .. 74

5.2.4 Evaluating Ensemble for SDEE: MLR, RF, and DLMLP 77

5.2.5 A Comparative Analysis of Transfer Learning and DLMLP 82

5.2.6 Exploring the Influence of IS and RS on SDEE 85

5.3 Evaluation against Hypotheses .. 87

5.4 Model Explainability Findings - Analysis of Predictor Contributions 90

5.4.1 LIME .. 90

5.4.2 SHAP .. 92

6. Contributions ... 93

6.1 Summary of Contributions .. 93

6.2 Implications for Practice .. 94

6.3 Implications for Research .. 95

7. Threat and Validation ... 95

8. Conclusion .. 96

8.1 Summary of the Thesis .. 96

8.2 Future Directions for Research .. 97

9. References ... 98

LIST OF PUBLICATIONS .. 111

Curriculum Vitae ... 115

vii

LIST OF FIGURES
Figure 3-1: The diagram of function point counting [79] 21

Figure 3-2: Box-plot of productivity rate before and after removing outliers. .. 26

Figure 3-3: Box-plot of factors of FPA before and after removing outliers based
on productivity rate. .. 27

Figure 3-4: The number of selected projects in each RS and IS 27

Figure 3-5: The Pearson correlation of features on the Desharnais dataset 29

Figure 3-6: The Pearson correlation of features on the Albrecht dataset 30

Figure 3-7: The Pearson correlation of features on the Kichenham dataset....... 30

Figure 3-8: The Pearson correlation of features on the China dataset 31

Figure 3-9: The architecture of the DLMLP model with/without balancing based
on industry sector factors .. 35

Figure 3-10: The diagram of deep learning with fully connected four hidden layers
 ... 39

Figure 3-11: The diagram of one hidden layer of MLP 40

Figure 3-12: The diagram of the transfer learning model 42

Figure 4-1: The flow diagram of the proposed software effort estimation 47

Figure 4-2: An example of the architecture of DLMLP with four fully connected
layers ... 53

Figure 4-3: Based on the experiment, the histogram of the number of projects in
each industry sector before and after balancing ... 56

Figure 4-4: The flow diagram of the ensemble model. RF and MLR are used as
based estimators, and XGBoost is used as the final estimator. Stacking predictions
obtained from RF and DLMLP predictions are ensembled by average to attain the
final predictions .. 58

Figure 5-1: The performance of DLMLP compared to MLR, RF based on P1 . 67

Figure 5-2: The performance of DLMLP compared to MLR, RF based on P2 . 67

Figure 5-3: The performance of DLMLP compared to MLR and RF based on P3
 ... 68

Figure 5-4: The performance of DLMLP compared to MLR RF based on P4 .. 68

Figure 5-5: The performance of DLMLP compared to MLR RF based on P5 .. 68

Figure 5-6: The performance of DLMLP compared to MLR, RF based on P6 . 69

Figure 5-7: The performance of DLMLP compared to MLR RF based on PD .. 69

viii

Figure 5-8: The performance of DLMLP compared to MLR, RF based on PA . 69

Figure 5-9: The performance of DLMLP compared to MLR, RF based on PC . 70

Figure 5-10: The performance of DLMLP compared to MLR RF based on PK 70

Figure 5-11: The performance of DLMLP compared to MLR, RF based on
PDataset2 ... 70

Figure 5-12: The performance of DLMLP compared to baseline models based on
P1 ... 71

Figure 5-13: The performance of DLMLP compared to baseline models based on
P2 ... 72

Figure 5-14: The performance of DLMLP compared to baseline models based on
P3 ... 72

Figure 5-15: The performance of DLMLP compared to baseline models based on
P4 ... 72

Figure 5-16: The performance of DLMLP compared to baseline models based on
P5 ... 73

Figure 5-17: The performance of DLMLP compared to baseline models based on
P6 ... 73

Figure 5-18: The performance of DLMLP compared to DLMLPB based on P1
 ... 74

Figure 5-19: The performance of DLMLP compared to DLMLPB based on P2
 ... 75

Figure 5-20: The performance of DLMLP compared to DLMLPB based on P3
 ... 75

Figure 5-21: The performance of DLMLP compared to DLMLPB based on P4
 ... 75

Figure 5-22: The performance of DLMLP compared to DLMLPB based on P5
 ... 76

Figure 5-23: The performance of DLMLP compared to DLMLPB based on P6
 ... 76

Figure 5-24: The performance of the ensemble model compared to MLR, RF, and
DLMLP based on P1 ... 78

Figure 5-25: The performance of the ensemble model compared to MLR, RF, and
DLMLP based on P2 ... 78

Figure 5-26: The performance of the ensemble model compared to MLR, RF,
DLMLP based on P3 ... 78

ix

Figure 5-27: The performance of the ensemble model compared to MLR, RF,
DLMLP based on P4 ... 79

Figure 5-28: The performance of the ensemble model compared to MLR, RF,
DLMLP based on P5 ... 79

Figure 5-29: The performance of the ensemble model compared to MLR, RF,
DLMLP based on P6 ... 79

Figure 5-30: The performance of the ensemble model compared to MLR, RF,
DLMLP ... 80

Figure 5-31: The performance of the ensemble model compared to MLR, RF,
DLMLP based on PA .. 80

Figure 5-32: The performance of the ensemble model compared to MLR, RF,
DLMLP based on PK .. 80

Figure 5-33: The performance of the ensemble model compared to MLR, RF,
DLMLP based on PC .. 81

Figure 5-34: The performance of the ensemble model compared to MLR, RF, and
DLMLP based on PDataset2 ... 81

Figure 5-35: The performance of TL_Case 2 compared to TL_Case 3 based on
PA .. 83

Figure 5-36: The performance of TL_Case 2 compared to TL_Case 3 based on
PC .. 83

Figure 5-37: The performance of TL_Case 2 compared to TL_Case 3 based on
PDataset2 .. 83

Figure 5-38: The ISBSGModel ... 84

Figure 5-39: The MMRE, MBRE, and MIBRE obtained from DLMLP, DLMLPB
among six predictors (P1, P2, P3, P4, P5, P6) .. 86

Figure 5-40: MAE, Pred(0.25), and SA obtained from DLMLP, DLMLPB among
six predictors (P1, P2, P3, P4, P5, P6) .. 86

Figure 5-41: Interpreting the predicted effort values obtained from DLMLP-P6
 ... 90

Figure 5-42: The contributions of each feature in DLMLP-P6 92

x

LIST OF TABLES
Table 2-1: The classification of techniques adopted in software effort estimation
 ... 7

Table 2-2: The survey of categorical variables ... 18

Table 3-1: Complexity weights of FPA components. ... 22

Table 3-2: General Systems Characteristics (GSCs) ... 22

Table 3-3: The degree of influence [1] .. 23

Table 3-4: Brief information on other datasets studied in this thesis 25

Table 3-5: Attributes of other datasets .. 25

Table 3-6: Label encoding for Relative Size ... 27

Table 3-7: Label encoding for Industry Sector ... 28

Table 3-8: Division of ISBSG dataset based on the Counting Approach 28

Table 3-9: Data description of training – Dataset 1 .. 31

Table 3-10: Data description of testing – Dataset 1 .. 32

Table 3-11: Data description of training – Dataset 2 .. 32

Table 3-12: Data description of testing – Dataset 2 .. 32

Table 3-13: Data description of training – Desharnais 32

Table 3-14: Data description of testing – Desharnais ... 33

Table 3-15: Data description of training – Albrecht ... 33

Table 3-16: Data description of testing – Albrecht ... 33

Table 3-17: Data description of training – Kitchenham 33

Table 3-18: Data description of testing – Kitchenham 34

Table 3-19: Data description of training – China .. 34

Table 3-20: Data description of testing – China ... 34

Table 4-1: The experimental-based parameters of RF .. 51

Table 4-2: The experimental-based parameters of DLMLP 54

Table 4-3: The input and output features list among studied datasets 54

Table 4-4: The number of projects for each industry sector before and after
balancing .. 57

Table 4-5: The scenario of instance for illustrating LIME.................................. 60

Table 4-6: The parameters of a simple ANN-based model 61

xi

Table 5-1: The performance of effort estimation obtained from MLR, RF,
ensemble, and DLMLPB based on testing of Dataset 1 62

Table 5-2: The performance of effort estimation obtained from MLR, RF, TL-
Case1, TL-Case2, TL-Case3, and ensemble based on testing of Dataset 2,
Desharnais, Albrecht, Kitchenham and China datasets 64

Table 5-3: The performance of effort estimation obtained from baseline models
(ANN, SWR, IFPUG) based on Dataset 1 .. 65

Table 5-4: The Mann-Whitney hypothesis test between DLMLP, MLR, RF, the
ensemble and DLMLPB models based on P1, P2, P3, P4, P5, P6 87

Table 5-5: The Mann-Whitney hypothesis test between TL-Case2 (DLMLP),
MLR, RF, Ensemble and TL-Case3 models based on PA, PD, PC, PDataset2. 88

Table 5-6: The Regression coefficient for IS and RS obtained from MLR. 89

xii

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviation Definition
ADASYN Adaptive Synthetic Sampling Approach

AFP Adjusted Function Points
ANN Artificial Neural Network

CMMI Capability Maturity Model Integrated
COCOMO Constructive Cost Model

CSBSG Chinese Software Benchmarking Standard Group
DL Deep learning

DLMLP Deep learning - Multilayer perceptron

DLMLPB Deep learning - Multilayer perceptron with balancing dataset

DTF Decision Tree Forest
EI External Inputs

EIF External Interface File
EO External Outputs

EQ External Inquiry
FFNN FeedForward Neural Network

FPA Function Point Analysis

GMM Gaussian Combination Model

GMM Gaussian Combination Model

GSC General Systems Characteristic

HGBoost Histogram Gradient Boosting

IFPUG International Function Point Users Group

ILF Internal Logical File

IQR Interquartile Range

IS Industry Sector

ISBSG International Software Benchmarking Standards Group

LIME Local Interpretable Model-agnostic Explanations

MAE Mean Absolute Error

MBRE Mean Balance Relative Error

MFP Modified Function Points

MIBRE Mean Inverted Balance Relative Error

MLP Multilayer perceptron

MLR Multiple Linear Regression

MMRE Mean Magnitude of Relative Error

xiii

MRE The Magnitude of Relative Error

MSE Mean Square Error
NESMA Netherlands Software Metrics Association

PDR Productivity Rate
PRED(x) Prediction at level x

ReLU Rectified Linear Unit
RF Random Forest

RQ Research Question
RS Relative Size

SA Standardised Accuracy
SDEE Software Development Effort Estimation

SDO Software Development Organization
SHAP SHapley Additive exPlanations

SMOTE Synthetic Minority Over-sample Technique
SVD Singular Value Decomposition

SVM Support Vector Machine
SVR Support Vector Regression

TL-Case 1 Transfer Learning – Case 1
TL-Case 2 Transfer Learning – Case 2

TL-Case 3 Transfer Learning – Case 3
UFP Unadjusted Function Points

VAF Value Adjustment Factor
WBS Work Breakdown Structure

1

1. INTRODUCTION

This section presents the motivation of the thesis, identifies the specific
problem that needs to be addressed, and presents the research questions.
Additionally, it outlines the objectives of the study.

1.1 Motivation

The motivation for this thesis is essential to provide the estimating field with
a new approach to the effort estimation problem, which might supplement current
practices. The following are the key drivers behind this motivation:
i) The absence of categorical variables might result in less effort estimation

accuracy measured by traditional function point analysis (FPA) estimation
methods. It is a foundational technique for measuring the functional software
size of projects from the user's perspective [1]. Allan J. Albrecht developed
this technique in 1979 at IBM, which was extended by the International
Function Point Users Group (IFPUG) [1]. It is a measure based on function
points and productivity rate. However, in the early stage of software project
development, the productivity rate of that project might be unknown. In
addition, the complexity of FPA weight metrics values might be affected by
many factors (software development methodologies, systems characteristics).
Suppose the complexity weights assigned to the components (External Inputs
(EI), External Outputs (EO), External Inquiry (EQ), External Interface File
(EIF), Internal Logical File (ILF)) are not appropriately identified (for
example, assigns higher complexity weights to relatively simple components
or lower weights to more complex components), it might lead to inaccurate
effort estimation. Hence, to estimate the effort required for software
development in the initial stages of FPA, the thesis considers estimating the
effort by incorporating essential categorical variables such as Industry Sector
and Relative Size alongside factors of FPA.

ii) The unavailability of pre-trained models for software effort estimation:
Transfer learning is a type of deep learning that involves using a pre-trained
model to solve a new problem with similar features or structure [2]. In the
context of SDEE, transfer learning could enhance estimation model precision
by leveraging knowledge from analogous projects or domains [2]–[4],
significantly decreasing the time and resources necessary for model training.
Leveraging transfer learning might mitigate the challenge of limited data
availability often faced in software estimation. However, despite its potential
benefits, several studies have compared the performance of transfer learning
with the deep learning approach regarding SDEE. However, they did not
propose a pre-trained model [3]–[5]. This issue promotes the thesis to build a
pre-trained learning model by leveraging the advantages of transfer learning

2

and comparing the performance of transfer learning to the deep learning
approach in terms of SDEE.

iii) The existing models utilized for effort estimation remain unclear black-boxes
covering their internal mechanisms. Consequently, understanding the rationale
behind their predictions becomes a formidable challenge for scientists and
practitioners. Advanced methodologies such as Local Interpretable Model-
agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP)
offer promising solutions to tackle this pressing limitation while emphasising
the importance of result interpretation. LIME generates locally faithful
explanations for individual predictions, showing how features (such as EI, EO,
EQ, EIF, ILF, and relevant categorical variables) contribute to each prediction,
significantly positively/negatively impacting the accuracy of software project
effort estimation. On the other hand, SHAP provides a unified framework for
interpreting the output of any deep learning model by attributing the prediction
to different features’ contributions. By providing interpretable and transparent
insights into the models' decision-making processes, these techniques delegate
researchers to understand the influential factors and their complexity within
the software development context. Consequently, leveraging LIME and SHAP
can significantly enhance the validity and trustworthiness of effort estimation
models, leading to more informed and scientifically driven project
management decisions.

1.2 Problem Statement

Among the various approaches to estimating software effort estimation, one
common technique in the software industry is FPA. This method is advantageous
as it estimates the size of the software. However, as mentioned in publication [6],
it is essential to note that FPA has limitations. One significant drawback is that it
relies on fixed complexity weight values established using data from IBM in the
1970s [1]. Given the technological progress and changes to the present year
(2023), these values have become outdated. Furthermore, due to the unique nature
of each company, using these fixed values tends to result in less accurate
estimates.

Therefore, this study proposes a group of factors to estimate effort estimation
by incorporating categorical variables such as Industry Sector and Relative Size
along with factors of FPA based on the International Software Benchmarking
Standards Group (ISBSG) [7] as the historical dataset. The first study uses various
approaches such as regression model, random forest, ensemble approach, and
deep learning based on feedforward neural network with multilayer perceptron
(DLMLP) [8], [9] to determine the factors of FPA incorporate with Industry
Sector and Relative Size lead to more accurate effort estimation. In addition, the
effectiveness of these models is further explored by employing balanced datasets
in the DLMLP model to address the limitation of imbalanced data, a common

3

issue in effort estimation research. The thesis might hardly examine all known
algorithms and all combinations of factors of FPA. Therefore, selecting some
experimental algorithms and combinations of factors are also matters of concern.

As highlighted in the motivation section, the advantages of transfer learning are
substantial [2], [10], [11]. It enhances estimation model accuracy by leveraging
insights from related projects, significantly reducing the resources and time
required for model training. This thesis proposes a transfer learning technique that
effectively estimates effort using the ISBSG dataset. Simultaneously, the thesis
evaluates the applicability of this technique across similar datasets such as
Albrecht, China. Additionally, an endeavour is undertaken to construct a pre-
trained model obtained from the ISBSG dataset, intended as a reusable library for
researchers.

On the other hand, several machine-learning approaches were adopted to
increase effort estimation accuracy[12]–[19]. However, the resultant models
remain a mystery (black box). The comprehensive comparison of these influential
factors within the predictions holds critical importance, as it might give
researchers invaluable insights grounded in the predictions. As illustrated in the
motivation section, this research endeavour extensively analyses predicted efforts
via LIME [20] and SHAP [21]. Specifically, the focus lies on dissecting LIME
and SHAP within the DLMLP model to illuminate how factors, especially
categorical variables such as Industry Sector and Relative Size, impact effort
estimation. Nevertheless, due to limited time for analysis across all experimental
models, this study concentrates on DLMLP models, prioritizing a comprehensive
exploration within this confined scope.

To sum up, this study addresses the challenges in software effort estimation by
focusing on FPA limitations and proposing a group of factors that integrates FPA
factors with categorical variables. The research selectively employs various
methodologies to determine the most accurate effort estimation approach based
on that group of factors. Moreover, it harnesses transfer learning's benefits,
tailoring a model using the ISBSG dataset and evaluating its applicability across
diverse datasets. The study also sheds light on the black-box of models,
employing LIME and SHAP techniques for analysis.

1.3 Research Questions and Hypothesis

In this thesis, five RQs and hypothesis must be answered:
1. RQ1: Which yields greater accuracy in software effort estimation: DLMLP,

MLR, or Random Forest?
𝜇𝐷𝐿𝑀𝐿𝑃 = Mean accuracy of DLMLP
𝜇𝑀𝐿𝑅 = Mean accuracy of MLR
𝜇𝑅𝐹 = Mean accuracy of Random Forest
o H1: 𝜇𝐷𝐿𝑀𝐿𝑃 > 𝜇𝑀𝐿𝑅 and 𝜇𝐷𝐿𝑀𝐿𝑃 > 𝜇𝑅𝐹

4

This hypothesis states that DLMLP accuracy is greater than MLR and RF
in software effort estimation.

o The null hypothesis 𝐻଴: 𝜇𝐷𝐿𝑀𝐿𝑃 ≤ 𝜇𝑀𝐿𝑅 𝑜𝑟 𝜇𝐷𝐿𝑀𝐿𝑃 ≤ 𝜇𝑅𝐹
This hypothesis states that DLMLP is either less or equally accurate as at
least one of the other two methods in software effort estimation.

2. RQ2: Does dataset balancing enhance the predictive accuracy of DLMLP
methods in software effort estimation?
𝜇𝐷𝐿𝑀𝐿𝑃𝐵 = Mean accuracy of DLMLP with Balancing
𝜇𝐷𝐿𝑀𝐿𝑃 = Mean accuracy of DLMLP without Balancing
o H1: 𝜇𝐷𝐿𝑀𝐿𝑃𝐵 > 𝜇𝐷𝐿𝑀𝐿𝑃

This hypothesis states that the accuracy of deep learning with a balancing
dataset is more significant than without balancing.

o The null hypothesis H0: 𝜇𝐷𝐿𝑀𝐿𝑃𝐵 ≤ 𝜇𝐷𝐿𝑀𝐿𝑃
This hypothesis states that deep learning with a balancing dataset is either
less or equally accurate as deep learning without balancing.

3. RQ3: For software effort estimation, does a combined ensemble of MLR,
Random Forest, and DLMLP outperform each standalone model?
𝜇𝐸𝑁𝑆 = Mean accuracy of Ensemble
o H1: 𝜇𝐸𝑁𝑆 > 𝜇𝐷𝐿𝑀𝐿𝑃, 𝜇𝐸𝑁𝑆 > 𝜇𝑀𝐿𝑅, and 𝜇𝐸𝑁𝑆 > 𝜇𝑅𝐹

This hypothesis states that the accuracy of the ensemble is greater than
DLMLP, MLR, and RF in software effort estimation.

o The null hypothesis 𝐻଴:
𝜇𝐸𝑁𝑆 ≤ 𝜇𝐷𝐿𝑀𝐿𝑃, 𝑜𝑟 𝜇𝐸𝑁𝑆 ≤ 𝜇𝑀𝐿𝑅, 𝑜𝑟 𝜇𝐸𝑁𝑆 ≤ 𝜇𝑅𝐹

This hypothesis states that the ensemble is either less or equally accurate
as at least one of the other three methods.

4. RQ4: Does transfer learning offer any accuracy advantages over conventional
DLMLP approaches in software effort estimation?
𝜇𝑇𝐿 = Mean accuracy of Transfer Learning
o H1: 𝜇𝑇𝐿 > 𝜇𝐷𝐿𝑀𝐿𝑃

This hypothesis states that the accuracy of deep learning by applying
transfer learning is more significant than that of deep learning without
applying transfer learning.

o The null hypothesis H0: 𝜇𝑇𝐿 ≤ 𝜇𝐷𝐿𝑀𝐿𝑃
This hypothesis states that deep learning by applying transfer learning is
either less or equally accurate as deep learning without applying transfer
learning.

5. RQ5: Do the categorical variables (IS and RS) influence effort estimation
accuracy?
β𝐼𝑆 = Regression coefficient for IS
γ𝑅𝑆 = Regression coefficient for RS
o Null Hypothesis (H0): β𝐼𝑆 = γ𝑅𝑆 = 0 (indicating that IS and RS do not

affect the accuracy of effort estimation)

5

o Alternative Hypothesis (H1): β𝐼𝑆 or γ𝑅𝑆 is not equal to 0 (indicating RS
or IS effect on the accuracy of effort estimation)

1.4 Objectives of the Thesis

This section outlines the objectives pursued in this research, focusing on
advancing the state-of-the-art in the identified issues. The specific research
objectives present in this thesis can be summarized as follows:

1. To enhance the accuracy of effort estimation in terms of FPA.
2. To evaluate the efficacy of various estimation methodologies, such as

multiple linear regression, random forest, deep learning based on
multilayer perceptrons, deep learning with balanced datasets; ensemble
techniques established by incorporating multiple linear regression, random
forest, and deep learning models; transfer learning for effort estimation.
This evaluation involves validating the results using appropriate datasets.

3. To introduce a pre-trained model based on the ISBSG dataset, providing a
comprehensive and reliable foundation for effort estimations. The relevant
other datasets illustrate the performance of effort estimation based on the
pre-trained model.

4. To leverage advanced techniques such as LIME and SHAP to gain
comprehensive insights into the contribution and local importance of
different features, namely EI, EO, EQ, EIF, ILF, IS, and RS, within the
proposed effort estimation models in terms of FPA.

Thus, the research objective of this thesis is to establish innovative approaches
for estimating the effort required in software product development. These
approaches are rigorously compared with the performance of effort estimation
based on the ISBSG dataset and other relevant datasets, facilitating the
identification of superior estimation techniques with practical applicability.

2. THE CURRENT STATE OF THE ISSUES DEALT
WITH

 This section presents the literature review of software development effort
estimation.

2.1 Software Development Effort Estimation

The process of SDEE is complex. Building software might require the highest
quality and lowest resources. The resources of a project might include budget,
time, and staff resources. They are used to manage, design, develop, enhance, or
maintain a project. The duration, budget, or effort to complete a project might
depend on the project's number of modules or use cases. However, how much
funding is spent on a project might always be a challenge for project

6

managers/team leaders who are responsible for the entire project [22]. The less
accurate estimation effort might result in the inexactly allocating budget to
complete all project phases and lead to project failure [23].

Software project failures are the most prominent illustration of the difficulty in
managing massive, distributed software systems [24]. According to the Standish
Group, many software companies still put no practical software costs forward or
work within strict schedules – and completed their projects behind cost overruns
– (48%- 65%) or failed to complete them at all – (48 % - 56%) [25]. Compared
to the estimation, most projects' efforts and deadlines are overrun. If the software
cost is underestimated, the project is inefficient, and the final cost certainly is
exceeded. Finally, these overestimated projects often extend and consume more
resources than anticipated, even if they are completed on time. At the same time,
the functionality and quality of these undervalued initiatives are reduced to meet
the plan's requirements [26]. These might result in the organisation losing the bid
or wasting time, funds, employees, and other resources, resulting in a monetary
loss or even collapse.

Regarding methods to estimate effort estimation, they might be classified into
two kinds of methods, as given in Table 2-1, including non-algorithmic and
algorithmic-based techniques [27]. Non-algorithmic techniques are effort
estimation based on expert judgment or project expertise [28], such as Expert
Judgment, Analogy, Wideband Delphi, or Work Breakdown Structure. On the
other hand, algorithmic techniques might be based on the formula to measure the
effort of software projects in terms of functional software size [29] or use case
points [30], NESMA [31], etc.

Expert opinion refers to the informed judgment provided by an individual or
group of experts regarding a particular subject or an unknown measurement [32].
In the context of the current investigation, expert judgment is employed for
estimating the effort required for software projects. Expert judgment is crucial in
software estimation, especially in two significant scenarios. Firstly, when
empirical data is limited or not easily obtainable, and secondly, when tackling the
estimation of intricate, unclear, or poorly defined problems [33]. These
circumstances form the basis for the extensive acceptance of expert judgment as
an approach to software estimation. It is important to note that the accuracy of
such estimations largely relies on the extent to which a new project aligns with
the expert's experience and expertise.

The primary idea of the analogy technique involves representing a software
project using various variables or characteristics and then identifying completed
projects that share similar attributes [34]. These variables might include several
inputs, outputs, application domains, etc. By leveraging the effort values of these
completed projects, we might create an effort estimation for the new project. This
approach might be considered a combination of completed projects and expert
judgment techniques. According to M. Shepperd et al. [34], while estimating by
analogy is simple, several challenges must be addressed. Firstly, we must

7

determine the most effective way to describe projects. This determination could
involve considering factors such as the application domain, the number of inputs,
the number of distinct entities referenced, and the number of screens. It is crucial
to select available variables when the prediction is needed, and they should
accurately characterise the project as much as possible. The second challenge
involves assessing project similarity and establishing confidence in the analogies.
How do we determine which projects are comparable, and how much can we rely
on these analogies?

Additionally, it is crucial to determine the optimal number of analogies to
search. Too few analogies might result in including outlier projects, while too
many could dilute the impact of the closest analogies. Lastly, we must address
how to utilize the known effort values from analogous projects to derive an
estimate for the new project. Potential approaches include using means and
weighted means, where closer analogies significantly influence the estimate. The
selection depends on the specific context and data available, and careful
consideration must be given to ensure the most appropriate and reliable estimation
process.

Delphi is an organised technique for interactive estimation and symmetric
prediction derived from expert questionnaires [35], [36]. The method might be
presented in the following steps. First, a series of questions are provided in a
questionnaire, and experts must respond anonymously to these questions over
multiple rounds. Next, the coordinator summarises the predictions made by the
experts in the previous round. Experts are expected to provide justifications for
their choices and have the opportunity to review the questions and answers of
other experts. Through several rounds, a consensus among the experts is reached
regarding the parameters and stability of the results. This iterative process reduces
the range of possible answers and brings the group of experts closer to the correct
solution [37]. A variation of the Delphi method known as Wideband Delphi was
proposed by Boehm [38]. The term "wideband" indicates more significant
interaction and communication among the participating experts compared to the
original Delphi method.

Table 2-1: The classification of techniques adopted in software effort estimation

Type
Estimation
method

Description

N
on

-
al

go
ri

th
m

ic
 Expert

Judgment
Estimations based on expert experiences and/or
intuition [24]

Analogy Estimations are based on the actual cost of similar
completed projects [24]

Price-to-win Estimations based on customer budgets [24]

8

Bottom-up Estimations based on customer budgets [24]

Top-up Estimations based on customer budgets [24]

Wideband
Delphi

Customer and technical teams are involved in the
estimation process [24]

Planning
Poker

Estimations based on collaboration/consensus
among team members like Wideband Delphi [24]

A
lg

or
it

h
m

ic

SLOC
Estimations based on the previous data of the
completed project. It cannot compare different
programming language lines of code [24]

Function Point
Analysis

Estimations based on counting essential software
components [28]

Object Point

Estimations are based on objects' numbers and
complexity. Estimation Steps: counting objects, the
classification of things, and the weight of items
related to complexity [24]

COCOMO
There are four COCOMO methods [28]: Simple
COCOMO, Intermediate COCOMO, Detailed
COCOMO, and Testing steps∙ COCOMO II.

Use Case
Points

Estimations derived by counting use cases [29]

The work breakdown structure (WBS) breaks down an engineering project into

smaller components such as subprojects, tasks, subtasks, and work packages [35].
It holds significance as a planning tool that establishes a logical framework
linking objectives, resources, and activities. During the project's execution, the
WBS plays a vital role as it tracks the progress of subtasks against the project
plan. The primary objectives of creating the WBS include identifying work tasks,
required resources, necessary, and other pertinent details with the level of
precision specified in the original plan. Additionally, it enables early accuracy
assessment and allows for corrective replanning, if necessary, during the project's
execution.

FPA is a foundational technique for measuring the functional software size of
projects from the user's perspective [1]. Allan J. Albrecht developed this
technique in 1979 at IBM. Then, it was extended by the IFPUG [1]. According to
[39], FPA estimates software development/maintenance independently of the
technology used for implementation; for example, the functional size should be
the same regardless of the problem domain, programming language, or
development type. The use cases can be beneficial in estimating software effort

9

estimation early in the project – before gathering the necessary information –
during the software life cycle requirements [40]. Use cases are anticipated to
provide an accurate estimate of the software effort estimation of the future system
in question. Publication [40] surveyed the strategies used to elicit, describe, and
model requirements. They claimed that use cases were used in the initial stages
of over half of these software initiatives. As a result, using use cases for software
effort estimation has grown in popularity.

The Netherlands Software Metrics Association (NESMA) FPA method [31]
follows the same rules as the IFPUG FPA method. ISO accepted it as an
international standard in 2005 [41]. NESMA, the user group for function points
in the Netherlands, recommends three types of function point counts based on the
level of detail achievable: detailed, estimative, and indicative. The detailed
function point count corresponds to the IFPUG count. In the estimative function
point count, the following steps are followed: (1) identification of all functions
belonging to the five types: ILF, EIF, EI, EO, and EQ; (2) calculation of the total
unadjusted function point count by assuming low complexity for each data
function point and average complexity for each transaction point.

2.2 Regression Models in SDEE

Several studies have utilised regression models to enhance estimating effort in
software engineering. For instance, Sharma and Chaudharyin [39] applied MLR
to estimate the effort required for agile software development. They developed
three models based on MLR with stepwise regression to estimate agile software
development effort and assessed the performance metrics using Mean Squared
Error (MSE) and Mean Magnitude of Relative Error (MMRE). The findings
revealed that their proposed model outperformed three commonly used
techniques: decision trees, stochastic gradient boosting, and random forests. Hai
et al. [40] considered productivity rate (PDR) as the dependent variable and
independent variables, including Value Adjustment Factor (VAF), EI, EO, EQ,
EIF, and ILF for measuring the effort of FPA, based on the ISBSG 2018/release
R2 and multiple regression model. The authors concluded that their approach
could potentially outperform existing methods.

In 2013, Nassif et al. [41] compared three models for estimating software:
effort decision tree forest (DTF), decision tree, and MLR. The authors stated that
the DTF model fared better than the other two models according to all evaluation
criteria, and statistical tests were used to verify its robustness. Based on the
findings, they concluded that the DTF model is a good choice for forecasting
software efforts.

Furthermore, the VAF plays a crucial role in improving the accuracy of
Adjusted Function Points based on 14 General System Characteristics. However,
according to ISBSG, this component may have gone uncounted for most projects
recently, and the VAF is assumed to be one of them. As a result of this problem,

10

effort estimation in Function Point Analysis may be inaccurate. Prokopova et al.
[42] introduced Modified Function Points (MFP) methodologies based on the
regression model approach in 2018 and investigated the impact of VAF on
software effort estimation accuracy. Three techniques for estimating effort were
tested in the variants without and with the VAF factor based on ISBSG. As a
result, the VAF factor has no bearing on estimating precision.

Naïve Bayes [38] is a well-known probabilistic classifier in data mining. For
calculations, it is assumed that project characteristics are unrelated. Even though
this assumption is false in most cases, Naïve Bayes outperforms other complex
approaches in various practical applications such as text categorisation [43] and
kernel density estimation [44]. Zhang et al. [45] presented the Bayesian regression
and Expectation Maximization algorithm to predict effort estimation based on
missing values on historical datasets. Their approach was based on the assumption
that the characteristics of projects are unrelated. They used the ISBSG and
Chinese Software Benchmarking Standard Group (CSBSG) datasets released in
2006 as observational datasets. Moreover, this study also proposed the Missing
Data Toleration and Missing Data Imputation strategy were proposed to handle
missing data. This paper used PRED(0.25) and Wilcoxon signed-rank tests of the
MREs as performance metrics.

In 2013, Fedotova et al. [29] discussed the most popular approaches used in
software effort estimation. It introduced a study conducted in a software
development organisation applying the Capability Maturity Model Integrated
(CMMI) architecture. Currently, a software development organisation (SDO)
forecasts software initiatives based on the judgment of a single professional. The
drawbacks of this approach prompted the SDO to replace the current effort
measurement method with a structured one. The stepwise MLR technique was
chosen and implemented for the software development and testing processes. The
MLR findings were compared to the forecasts given by the region expert. As a
result, the model collected for the research team outperformed expert judgments.
However, no satisfactory model was found for the development team, and a
recommendation for obtaining data from new variables was introduced.

Another research regarding effort estimation by adopting a regression model
was presented in the publication [46]. The authors compared stepwise with Lasso
regression. COCOMO81, Desharnais, and Maxwell datasets were used in this
study. They stated that Lasso-based and stepwise regression illustrated different
preferences. However, they concluded that Lasso-based selection was preferable
to stepwise regression. MMRE, PRED (0.25), SA, etc., were performance
metrics.

Silhavy P et al. [47] employed the stepwise regression technique to develop
distinctive estimation models for each segment. Their research involved a
comparative analysis of the estimation accuracy achieved by these models in
contrast to clustering-based models and the IFPUG. Their findings revealed that
the proposed model yielded improved estimation accuracy compared to baseline

11

approaches, including non-clustered functional point analysis and clustering-
based models.

2.3 Multilayer Perceptron in SDEE

On the other hand, several machine-learning techniques have been used to
predict SDEE [12]. One of the techniques mentioned in previous reports [39] is
MLP. Ramessur and Nagowah [48] proposed a model that assesses and forecasts
effort estimation while considering various parameters influencing performance.
The model was validated using a variety of regression algorithms, including linear
regression, K-nearest neighbour, decision tree, polynomial kernel, radius basis
function, and MLP. As a result, the model produced more accurate estimates with
lower error values when using the MLP method. MLP was also proposed by
Suyash Shukla et al. [49] to improve the SDEE. The authors introduced a
technique based on a genetic algorithm to adjust the complexity weight metrics
of Function Point.

Furthermore, Somya Goyal et al. [14] used MLP with the Back Propagation
algorithm to develop a non-linear technique for effort estimation. Their goal was
to compare neural network models unbiasedly, using ISBSG Release 11 as a
practical dataset with over 5000 completed projects as a practical dataset,
Adjusted Function Points (AFP) and other categorical variables as input factors
for their models. On the other hand, deep learning is an approach suggested in
previous papers [48]. However, the problem is that which method leads to more
accurate effort estimation efficiency according to FPA has not been mentioned.

In 2020, M.Ochodek et al. [50] created the Deep-COSMIC-UC model to
address functional needs that lack specific information. The suggested model was
an advanced convolutional neural network. They aimed to develop a brand-new
prediction engine that could roughly forecast the COSMIC size of use cases based
solely on their names. This model may compare the COSMIC size of the use case
based on the raw text that represents the use-case name.

In 2016, Nassif A et al. [51] discussed four neural network models: MLP, along
with three other models (general regression neural network, radial basis function
neural network, and cascade correlation neural network) using the ISBSG dataset.
They were compared based on predictive accuracy, a tendency to
over/underestimate and how they classify input importance. The cascade
correlation neural network performed the best on most datasets based on the mean
absolute residual criterion.

Madheswaran and Sivakumar [52] used a Multilayer Feed Forward Neural
Network to accommodate the COCOMO model's prediction performance so that
the estimated effort was relevant to the actual effort. The network was trained
using the backpropagation learning technique by repeatedly processing training
samples and comparing the network's prediction with the actual effort. They
applied the COCOMO I dataset to train and test the network, and it was

12

discovered that the proposed neural network model enhances the model's
estimation accuracy. The COCOMO model's test comparison was made to the
trained neural networks.

Mukherjee et al. [53] considered the adoption of a neural network for
optimizing project effort estimation. For improved accuracy in effort estimation,
they utilized a two-layer FFNN with sigmoid neurons in the hidden layer and
linear neurons in the output layer. The LevenbergMarquardt backpropagation
algorithm was used to train the network. They studied the COCOMO 81 dataset
with evaluation criteria as MRE. They concluded from the experimental results
that their suggested model outperforms Anupama Kaushik et al.'s proposed and
Constructive Cost models.

The FeedForward Neural Network (FFNN) technique to predict the duration of
a new software project was proposed by [9]. Two models were generated from
the ISBSG (2009, Release 11) data, whose projects were measured in adjusted
function points. The accuracy of this FFNN was compared against that of
a statistical regression model. An accuracy comparison was made based on an
ANOVA observing its assumptions of residuals. Results accepted the following
hypothesis: The accuracy of duration prediction for an FFNN was statistically
better than that obtained from a statistical regression model when an adjusted
function points value obtained from new software development projects was used
as the independent variable.

Based on data acquired from the CMMI organisation [54], comprising 163
software development projects, Pai et al. [55] developed software effort
estimation models utilising Artificial Neural Network (ANN) ensembles and
regression analysis. The paper's primary focus was on creating an effective
experimental design in order to obtain superior effort estimation results. They also
compared ANNs and multiple regression analyses regarding software effort
estimation. They discovered two intriguing outcomes. First, other than size
(function points), other variables were not valuable for estimating software
projects. Second, a correctly designed ANN ensemble improved regression
analysis estimates and could yield excellent effort estimate estimations.

2.4 Balancing Dataset in SDEE

Balancing the dataset is a common preprocessing step in various machine-
learning applications to address class imbalances [56]. Class imbalances occur
when the distribution of classes in the dataset is uneven, with one or a few classes
having significantly more or fewer instances than others. Machine learning
algorithms operate assuming a balanced class distribution within the dataset. As
a result, classifiers tend to exhibit a bias towards the majority class when
confronted with imbalanced datasets. According to Liu et al. [56], in these
scenarios, the minority class often represents the focal point of interest.

13

In image processing, several researchers [57]–[59] proposed several
approaches to dealing with imbalanced datasets in their study. Many methods
might be used, such as over-sampling/ under-sampling [60], class weighting [61],
and SMOTE [62]. In 2018, Min Zhu et al. [63] proposed class weights random
forest to deal with imbalanced datasets in medical applications. Their approach
addresses assigning individual weights for each class. In 2022, Islam A. et al. [64]
proposed oversampling based on K-Nearest Neighbor to tackle imbalanced image
datasets. This method involved identifying pivotal and secured regions for
augmentation, subsequently generating synthetic data instances for the minority
class. The researchers reported its superiority over other approaches, such as
SMOTE and ADASYN, in terms of performance.

Zhijun Ren et al. [65] also introduced an innovative approach involving loss
function weighting to enhance the efficacy of intelligent diagnostic models when
dealing with imbalanced data. In this method, the weight of each sample's loss
was determined by considering factors such as the distribution and convergence
of samples and classes. By incorporating weighted losses during model training,
the contribution of each class to parameter updates was balanced, thereby
mitigating the impact of dominant majority classes in imbalanced training
datasets.

However, research on balancing datasets based on attributes to enhance the
effectiveness of effort estimation models is currently limited in the field of effort
estimation. This issue poses a challenge as models trained on imbalanced datasets
may exhibit bias towards the majority category, resulting in an inadequate
performance for the minority category. In such instances, the model may achieve
a high accuracy rate by simply predicting the majority category for all instances,
but this approach holds limited practical value [66].

The term "balanced dataset" pertains to the distribution of data in a dataset,
aiming to achieve equilibrium concerning the observed attribute [60], [67]. For
example, when examining the ISBSG training dataset, the Industry Sector
attribute encompasses categories like banking, government, financial, and more
[7]. If the number of instances for each category (banking, government, financial)
is equal in the training data, it might be classified as a balanced dataset regarding
the industry sector. Conversely, if there is a notable discrepancy in the number of
instances among the categories within the industry sector, it might be labelled as
an imbalanced dataset.

Within the context of imbalanced datasets related to the classification variable
Industry Sector, this thesis aims to comprehensively evaluate the effectiveness of
effort estimation by utilizing both balanced and imbalanced datasets. The primary
objective is to assess and compare the performance of effort estimation models
when trained on datasets that have been balanced versus those that remain
unbalanced. Through this rigorous evaluation, the thesis seeks to elucidate the
influence of dataset-balancing techniques on the accuracy of effort estimation
outcomes. By addressing this crucial aspect, the research contributes valuable

14

insights into the importance of data balance in effort estimation, aiding
practitioners in making informed decisions and enhancing the reliability of their
estimation processes.

2.5 Ensemble Approach in SDEE

The ensemble (vice versus sole) methodology [68] aims to combine multiple
models to create a prediction model. In 2023, Shukla et al. [69] proposed an
ensemble model for estimating effort estimation based on use case points. There
were five different techniques to create different ensemble models. They include
linear regression, K-nearest neighbour, decision tree, support vector regression
(SVR), and multilayer perceptron as base learners. As a result, the authors stated
that the boosting ensemble with SVR as the base learner outperformed the other
models.

Beesetti et al. [70] introduced an ensemble approach involving regressor
models, utilizing a voting estimator to enhance the predictive accuracy of effort
estimation and minimize the bias inherent in individual machine-learning
algorithms. The outcomes obtained underscore the superiority of ensemble
models over single models when applied to diverse datasets, effectively
addressing the bias issue.

In 2022, Somya Goyal [71] presented a heterogeneous stacked ensemble to
improve effort estimation based on artificial neural networks, SVR, as base
learners. The author used five datasets (Desharnais, Cocomo81, China, Maxwell,
and Miyazaki94) achieved from the PROMISE repository as historical datasets.
The author concluded that the stacked ensemble outperformed the individual
model.

In 2021, P. Suresh Kumar et al. [72] proposed a gradient-boosting regressor
model and evaluated its performance against various regression models. Their
analysis included models such as stochastic gradient descent, K-nearest
neighbour, decision tree, bagging regressor, random forest regressor, Ada-boost
regressor, and gradient boosting regressor. This assessment was conducted using
two datasets: COCOMO81 and China. The results highlighted the impressive
accuracy of the gradient-boosting regressor model, outperforming all other
models compared to both datasets.

Varshini et al. [17] suggested a stacked ensemble approach based on Random
Forest for estimating the effort required for software development. The authors'
findings indicated that the proposed Random Forest stacking approach
outperforms single models. This approach might be further for their ability to
improve prediction accuracy.

M. Hosni et al. [73] proposed a heterogeneous ensemble that used K-nearest
Neighbor, Support Vector Machine, MLP, and Regression Trees—four well-
known machine learning approaches. Two widely used datasets were utilised to
test the ensemble, and three linear rules were used to assess its performance. The

15

results revealed that the proposed heterogeneous ensemble technique performed
quite well, and no particular optimum combiner rule can be suggested in light of
the data.

In 2019, P. K. M. Passakorn [74] conducted a research studied to explore the
applicability of machine-learning techniques, which had demonstrated excellence
in recent data science competitions, in estimating software effort. The
investigation examined 14 machine learning methods, including popular
approaches liked gradient boosting machine and deep learning, using 13 industry-
standard software effort estimation datasets from PROMISE 2015. The study
utilised a widely adopted ranking evaluation method for estimating software
effort. Notably, the research found that combining multiple effort estimators into
a stacked ensemble, such as taking the average of predicted effort levels, resulted
in more accurate estimations compared to the individual performance of any of
the 14 examined estimators. The study considered the average values derived
from the most accurate overall stacked ensemble in determining the estimated
effort values. Furthermore, the investigation revealed that employing the boosting
principle to create an ensemble improved performance in estimating software
effort.

Moreover, Palaniswamy and Venkatesan [75] employed an ensemble
technique to enhance prediction accuracy. Traditionally, determining
hyperparameters involved a time-consuming process of trial and error tailored to
the specific problem and dataset. To address this issue, the researchers' utilised
Particle Swarm Optimization (PSO) and Genetic Algorithms to adjust the
hyperparameters dynamically. The study constructed a stacking ensemble model
using data from the ISBSG dataset, which incorporated information from diverse
software projects across countries and companies.

In a related investigation by KK Anitha et al. in 2021 [76], software effort
estimation was examined using ensemble techniques and machine/deep-learning
algorithms. The authors conducted experiments on multiple datasets, including
Albrecht, China, Desharnais, Kemerer, Maxwell, Kitchenham, and Cocomo81, to
evaluate the performance of various models. Comparing different ensemble
techniques and assessing several stacking models, their results revealed that the
proposed random forest stacking method exhibited superior performance when
applied to diverse datasets, outperforming SVM, decision trees, and neural
networks.

Based on these insights, exploring the effectiveness of a stacking ensemble that
incorporates MLR, Random Forest, and Deep learning models for estimation
tasks would be worthwhile. This approach could potentially yield improved
estimation accuracy, leveraging the strengths of each model while mitigating their
weaknesses through ensemble learning techniques. Further experimentation and
evaluation would be necessary to validate the performance and generalizability of
such a stacking ensemble for estimation tasks.

16

2.6 Transfer Learning in SDEE

This technique has been developed to improve the performance of a target task
by leveraging the knowledge gained while solving a related but different problem
[2], [10], [11], [77]. It involves using a pre-trained model to train a new model on
a different task. Typically, the pre-trained model is trained on a large dataset, and
the learned features are used to initialise the new model's parameters.

Minku et al. [5] investigated the application of transfer learning techniques and
demonstrated that incorporating cross-company data might enhance performance.
In 2014, Minku et al. [78] proposed a novel framework explicitly designed to
capture the relationship between cross-company and within-company projects.
This framework facilitated the mapping of cross-company models to the within-
company context.

In 2015, Ekrem et al. [77] studied whether transfer learners might be used to
predict software effort. They discovered that using the same transfer learning
method could estimate transfer effort for cross-company and cross-time
challenges. They argued that an organisation's past data might be helpful to
present situations, or data from another company may be used for local solutions.
They also discovered that transfer learning was a promising research subject in
which relevant cross-data was moved across time intervals and domains.
However, whether or not the transfer learning-based model should be adjusted to
fit the local dataset needs to be stated.

Kocaguneli et al. [3] studied transfer learning in effort estimation. Their study
used the Tukutuku dataset, including 125 projects from 8 companies with 19
independent variables, and they used Cocomo81 and Nasa93 for transfer learning.
Their findings indicated that a single transfer learning approach might effectively
tackle both the challenge of cross-company learning and cross-time learning.
Their results dared the prevailing misconceptions: first, historical organizational
data held no relevance in the current context, and second, the notion that data from
different organizations could not contribute to localized solutions. These findings
highlighted transfer learning's potential as a robust avenue, enabling the seamless
transfer of pertinent cross-data across various domains and time intervals.
However, several noteworthy gaps persist within this domain. Firstly, the data
employed for training such models might be subject to limitations, particularly
when investigating specific domains or distinct periods. This potential limitation
could give rise to data imbalance issues, subsequently influencing the predictive
efficacy of the models. Secondly, it is noteworthy that, at present, a conspicuous
absence of proposed models or readily available pre-trained libraries exists for
researchers to incorporate into their studies within the context of effort estimation.
Integrating pre-trained models might be pivotal in unlocking the data's latent
potential and catalysing the development of novel applications within this
domain. Therefore, this aspect requires thorough discussion to address these
limitations and identify potential future research directions.

17

In 2021, Leandro Minku [4] studied the necessity of using transfer learning in
effort estimation. The study explored the potential of transfer learning by
investigating whether treating Cross-Company projects as multiple data streams
for ongoing learning could enhance effort estimation. An extended model named
OATES enabled multi-stream online learning, compared against Dycom and
other approaches. Results demonstrated OATES's improved predictive
performance when Cross-Company project availability was limited,
recommending its adoption for such cases. Conversely, with ample Cross-
Company projects available, OATES performed comparably to the state-of-the-
art, implying their optional but non-detrimental use. This finding underscores the
significance of transfer learning in enhancing SEE outcomes.

To sum up, several studies on transfer learning in effort estimation have been
conducted; however, the development of pre-trained models in this domain
remains scarce, indicating a significant gap in the availability of such resources.
The thesis proposes creating a pre-trained model for effort estimation, leveraging
the extensive ISBSG dataset. By harnessing the information within the ISBSG
dataset, the proposed pre-trained model holds promising potential for accurately
estimating software development efforts. This pioneering approach seeks to
bridge the gap and contribute to advancing transfer learning methodologies in the
context of effort estimation, thereby enhancing the practicality and efficacy of this
essential software engineering task.

2.7 Absence of Categorical Variables in FPA

Effort estimation might still be the most challenging process for estimators in
software engineering. This challenge might be due to the diverse project lifecycle
models, which may need varying resources at distinct phases of the project [79].
The standard estimation [80] requires more effort to record activities, increasing
the difficulty and duration of the estimate. Furthermore, the experience of
software developers, the software team's project history in the same business
domain, and various other characteristics, as well as the relationships between
these factors, are sometimes not accurately predicted [81].

Moreover, as equation (4) mentioned, effort estimation is measured based on
the function points and PDR. PDR is the number of hours required to complete
one function point. Function points (AFP or UFP) are calculated by assessing the
five main components of a software system: EI, EO, EQ, EIF, and ILF. Each of
these components is assigned a weight based on its complexity. However, the
PDR of that project might be unknown in the early stage of software project
development. At the same time, the complexity of FPA weight metrics values
might be affected by many factors (such as software development methodologies
or systems characteristics) [82]. Suppose the complexity weights assigned to the
components (EI, EO, EQ, EIF, ILF) are not appropriately identified; for example,
assign higher complexity weights to relatively simple components or lower

18

weights to more complex components. In that case, it might lead to inaccurate
effort estimation.

Table 2-2 presents a comprehensive overview of categorical variables in the
context of effort estimation, highlighting the collective endeavours of various
researchers to integrate these variables to enhance estimation accuracy. The table
enumerates diverse categorical variables alongside their corresponding
references, signifying the studies investigating the potential impact of these
variables on effort estimation. These categorical variables encompass
development type, platform, language, industry sector, organization type, relative
size, application type, business area, primary programming language, application
group, first data system, methodology, and count approach. The table collectively
underscores the significance of categorical variables in contributing to the
refinement of effort estimation models.

Table 2-2: The survey of categorical variables

No. Categorical variables References

1 Development Type [83]–[89]

2 Development Platform [9], [83], [86]–[89]

3 Language Type [8], [86]–[90]

4 Industry Sector
[47], [86], [88], [91]–

[95]

5 Organisation Type [83], [84], [89]

6 Relative Size [47], [88], [94], [96]

7 Application Type [83], [84], [88], [91]

8 Business Area Type [47], [94], [97]

9
Primary Programming

Language
[85], [86]

10 Application Group [86]

11 1st Data System [86], [87]

12 Used Methodology [86], [88]

13 Count Approach [94], [96]

19

The thesis explores innovative approaches that transcend the conventional

reliance on complexity weights assigned to components and productivity
measures. Specifically, this study endeavours to harness proposed methods such
as deep learning, deep learning with balancing techniques, ensemble models, or
transfer learning. By directing attention to the fundamental factors of EI, EO, EQ,
EIF, and ILF alongside categorical variables, these novel approaches strive to
elevate the accuracy of effort estimation. This research aims to push the
boundaries of traditional effort estimation methodologies, paving the way for
more advanced and precise techniques that account for diverse project
characteristics and intricacies.

2.8 Model Explainability Approaches: LIME, SHAP

In deep learning, model explainability refers to the ability to interpret and
understand the decision-making process of a deep learning model. Deep learning
models are frequently regarded as opaque systems due to their complexity and
difficulty in interpretation. Model explainability techniques provide insights into
why a model makes specific predictions or decisions, shedding light on its internal
workings. Two commonly used model explainability techniques in deep learning
are LIME and SHAP. LIME stands for "Local Interpretable Model-agnostic
Explanations". It is a technique used for explaining the predictions made by
machine learning models [20]. It provides interpretable explanations at the local
level, which means it explains why a particular instance or example was classified
or predicted in a certain way. It is beneficial for black-box models, where
comprehending the internal workings of the model is challenging. SHAP [98] is
another technique used to explain machine learning model predictions. Similar to
LIME, SHAP provides interpretable explanations at the local level. However,
SHAP is based on game theory and uses Shapley values to attribute the
contribution of each feature to the prediction [21].

To understand clearly LIME, Ribero M et al. [20] gave an example of a
medical scenario where a machine learning model was utilised to predict the
likelihood of a patient having the flu based on input features such as sneeze,
weight, headache, no fatigue, and age. Their example presented the model that
produced a flu classification for a given patient. Next, the LIME technique was
employed to analyse and comprehend the factors influencing flu prediction to
provide transparency and interpretability. For instance, LIME highlighted the
sneeze and headache attributes as crucial features in the prediction process. These
findings contributed to the interpretability of the model and assisted healthcare
professionals in making informed decisions based on the LIME explanations.

To enhance interpretability, SHAP was employed as an alternative to LIME.
SHAP utilises game theory and Shapley values to determine the contribution of
each feature to the prediction. By leveraging SHAP, healthcare professionals, for

20

example, might have gained insights into the importance of features such as
sneezing and headaches, enabling informed decision-making based on their
expertise.

In 2023, Assia Najm et al. [99] employed the SHAP technique to illustrate the
effectiveness of model-agnostic approaches in elucidating estimated effort
predictions derived from the SVR-RBF model, which was optimized through an
artificial immune network within both agile and non-agile contexts. The authors
highlighted that this intricate black-box model necessitated interpretation through
a range of model-agnostic explanation techniques despite its impressive
performance.

Both LIME and SHAP techniques might offer valuable insights into the
contribution of various features within the effort estimation models. These
methods facilitate understanding the local importance assigned to each feature for
a specific instance, thereby enabling more transparent and interpretable
explanations. In the context of effort estimation, features such as EI, EO, EQ, EIF,
ILF, Industry Sector, or Relative Size might be effectively assessed using LIME
and SHAP, providing deeper insights into their significance and impact on the
effort estimation. They dissect the model's inner workings, clarifying how specific
features (such as EI, EO, EQ, EIF, ILF, IS, and RS) influence
positively/negatively the predicted effort. This analysis results in a more profound
grasp of the complex relationships and interactions among these features,
enhancing the interpretability and reliability of the effort estimation. LIME and
SHAP are tools for deciphering model predictions and invaluable aids for
decision-making, offering a deeper appreciation of the variables. Integrating
LIME and SHAP into the effort estimation landscape enables stakeholders to
obtain accurate predictions and comprehend the underlying mechanisms driving
those predictions.

3. METHODOLOGY

This section presents the concept of function point analysis for software size.
Data collection and subsequent preprocessing ensure high-quality datasets. Model
development involves creating predictive models such as deep learning
ensembles, while model explainability techniques shed light on predictions
rational. Finally, comparison criteria are presented to validate models.

3.1 Function Point Analysis

A Function Point counts the quantity and complexity of a software's functional
capabilities depending on user requirements [79]. It was popularised and
distributed by the IFPUG [79] in 1986. The IFPUG, the FPA's current regulatory
agency, is in charge of improving and developing the norms outlined in the
Counting Practices Manual [80]. Since the organisation's inception, the original

21

FCPA approach has been recognised as the IFPUG - FPA ISO/IEC 20926:2010
is the current standard for it. Similar techniques derived from the baseline FPA
include COSMIC, FiSMA, Mark-II, and NESMA [6].

As presented in Figure 3-1, there are several steps to count function points.
First, the type of project should be clarified. It might be development, application,
or enhancement function point count [100]. In the case of development type,
function points can be counted at every development project stage. Application
counts are based on the number of function points delivered, excluding any
transformation effort (e.g., prototypes or temporary solutions) and any already
implemented functionality, and counting the number of Added, Changed, or
Removed functions in the enhancement function point. The next step is to collect
enquiries on the application and system's technical specifications. These might
contribute to determining the type of counting (data or transactional functions)
that might be used and the applications and scope's boundaries [100]. Its border
defines the distinction between the being examined program and the external
applications.

Figure 3-1: The diagram of function point counting [79]

In the next step, this method counts a size attribute as the number of transaction

and data function types produced by software projects. The transaction function
contains EI, EO, and EQ, while the data function includes EIF and ILF. ILF is a
file that is kept by the counted application. The EIF is a file held by another
application beyond the border. Table 3-1 shows the complexity weights of each
component.

The FPA has the most characteristics that can be applied to estimate software
projects in their initial stages [101]. First, function points can be fully allotted
based on the requirements or design standards. The projects are in their initial

22

phases. Second, they have nothing to do with language programming, specialist
development tools, or data processing in general [102]. Furthermore, because the
function points are built from the user's point of view, non-technical users of the
software may find them easier to grasp [103].

A linear combination of size attributes with appropriate three degrees of
complexity weights is built to count function points. This function count is also
known as UFP. The UFP formula is shown in equation (1).

𝑈𝐹𝑃 = ෍ ෍ 𝐵𝐶𝑠௜௝ ×
ଷ

௝ୀଵ

ହ

௜ୀଵ

𝐶𝑊𝑠௜௝ (1)

where 𝐵𝐶𝑠௜௝ is the count of component 𝑖 at level 𝑗, and 𝐶𝑊𝑠௜௝ is an appropriate
complexity weight given in Table 3-1.

VAF is measured based on 14 GSCs (see Table 3-2) that rate the overall
operation of the application process under consideration. GSCs are commercial
constraints imposed on non-technological users. Each attribute includes a
description that can be used to calculate the degree of influence. The VAF formula
is defined as follows:

𝑉𝐴𝐹 = 0.65 + 0.01 × ෍ 𝐹௜ ×
ଵସ

௜ୀଵ

 𝐷𝑒𝑔𝑟𝑒𝑒ூ௡௙௟௨௘௡௖௘ (2)

Table 3-1: Complexity weights of FPA components.

Size Attribute
Complexity Weight (CWs)

Low Medium Large

EI 3 4 6

EO 4 5 7

EQ 3 4 6

EIF 5 7 10

ILF 7 10 15

where 𝐹௜ represents the GSC factor's effect, the degree of influence
(𝐷𝑒𝑔𝑟𝑒𝑒ூ௡௙௟௨௘௡௖௘) is displayed in Table 3-3.

Table 3-2: General Systems Characteristics (GSCs)

GSC
Factors

Characteristic Description

F1
Data
communications

Does the system require backup and recovery?

23

F2
Distributed
Functions

Are Data Required for Communication?

F3 Performance
Does the system include a distributed processing
function?

F4
Heavily Used
Configuration

Is critical performance required?

F5 Transaction Rate Will the system work during heavy loads?

F6
Online Data
Entry

Does the system require direct data input?

F7
End-User
Efficiency

Are multiple screens or operations needed for data
inputs?

F8 Online Update Are the main files up to date?

F9
Complex
Processing

Are inputs, outputs, files, and queries intricate?

F10 Reusability Is internal processing complicated and complex?

F11 Installation Ease Is the code designed for reuse?

F12 Operational Ease
Are Conversions and Installation Included in
Design?

F13 Multiple Sites
Is the application designed for multiple
installations in different locations?

F14 Facilitate Change
Is the application designed to make it easy for users
to make changes?

The AFP can be calculated using the following equation:

𝐴𝐹𝑃 = 𝑈𝐹𝑃 × 𝑉𝐴𝐹 (3)

Table 3-3: The degree of influence [1]

Influence Degree of Influence
None 0
Insignificant 1
Moderate 2
Average 3
Significant 4
Strong significant 5

24

IFPUG-FPA [79] is widely used for calculating software's functional size and
complexity based on user requirements. AFP can be used as an input to estimate
the effort. The efforts in terms of IFPUG-FPA is equal to AFP multiplied by PDR.

𝐸𝑓𝑓𝑜𝑟𝑡୍୊୔୙ୋି୊୔ = 𝐴𝐹𝑃 × 𝑃𝐷 (4)

3.2 Data Collection

The thesis incorporates the ISBSG (version R1/2020) [7] and other datasets as
valuable historical datasets for the research study. By utilising these datasets, the
study aims to leverage the wealth of data and insights available within the ISBSG
and other datasets to contribute to the effort estimation methodologies.

3.2.1 Selection of FPA Dataset (ISBSG)

The ISBSG dataset contains 9,592 finished software projects. There are a total
of 251 documented attributes. These are separated into a variety of categories,
such as Summary Work Effort (SWE), total effort in hours recorded against the
project; the adjusted functional point (AFP) of the project at the final count; VAF,
the adjustment to the function points that take into account various technical and
quality characteristic; functional point variables (EI, EO, EQ, EIF, ELF), PDR,
and other categorical variables. Furthermore, there are many categorical variables
in the ISBSG dataset (see Table 2-2). Clarifying these variables might be
impossible in this study, selecting the representative variables using a survey to
investigate recent studies that used categorical variables.

Based on that survey, the Industry Sector (IS) is the most studied among the
above-mentioned categorical variables. Moreover, Relative Size (RS) is the most
recent study from 2018-2020. This research proposes a novel approach to estimate
the SDEE based on IS, RS and EI, EO, EQ, EIF, and ILF. The selection of IS and
RS from practical time limitations prompted an in-depth analysis of their
influence on effort estimation. This focused approach neither dismisses nor
diminishes the relevance of other variables. Instead, it lays the foundation for
further investigation into a broader spectrum of categorical variables.
Consequently, this research emphasizes the significance of IS and RS while
acknowledging the potential for a more expansive exploration in the future.

3.2.2 Other Datasets

To diversify the dataset and enhance the prominence and robustness of the
evaluation outcomes, in addition to utilizing ISBSG, this study also incorporates
similar datasets based on function points from the PROMISE repository [104].
They include Albrecht, Desharnais, Kitchenham, and China datasets. These
supplementary datasets enrich the research scope, providing a multi-faceted
perspective on the performance of MLR, RF, DLMLP, ensemble, and transfer

25

learning techniques. The brief information on those datasets is presented in Table
3-4. Their attributes are illustrated in Table 3-5.

Table 3-4: Brief information on other datasets studied in this thesis

No Dataset Source No.features No.records Effort unit

1 Desharnais [105] 12 81 Person-hours

2 Albrecht [102] 8 24 Person-hours

3 Kitchenham [106] 10 145 Person-hours

4 China [107] 19 499 Person-hours

• Desharnais dataset: This was introduced in J.M. Desharnais' master thesis
[105] and is publicly available in the Promise repository. It has 81 software
projects, which were collected from 10 organisations in Canada between
1983 and 1988. It has twelve features: Effort, PointsNonAdjust,
Adjustment, PointsAjust, etc.

• Albrecht dataset [102] includes information on IBM software projects
made in the 1970s. The Albrecht dataset has eight features: Input (EI),
Output (EO), Inquiry (EQ), File (EIF/ILF), Effort, etc.

• Kitchenham dataset: The Kitchenham dataset [106] is a well-known dataset
commonly used in software engineering research. The dataset consists of
information collected from various software projects and includes
attributes such as AFP, Effort, etc.

• China dataset: The China dataset [107] consists of 499 projects obtained
from various companies in China. It contains 19 recorded attributes: Input
(EI), Output (EO), Enquiry (EQ), File (EIF), Interface (ILF), Effort, etc.
This dataset was made publicly available in 2010.

Table 3-5: Attributes of other datasets

No Dataset Attributes

1 Desharnais

TeamExp, ManagerExp, YearEnd, Length,
Effort, Transactions, Entities,

PointsNonAdjust, Adjustment, PointsAjust,
Language

2 Albrecht
Input (EI), Output (EO), Inquiry (EQ), File
(EIF), FPAdj, RawFPCount, AFP, Effort

3 Kitchenham duration, AFP, Estimate, SWE

4 China

AFP, Input (EI), Output (EO), Enquiry
(EQ), File (EIF), Interface (ILF), Added,
Changed, Deleted, Resource, Duration,

AdjFactor, SWE

26

3.3 Preprocessing Techniques

3.3.1 ISBSG Dataset

The ISBSG dataset includes various attributes, such as Project Rating,
Development Type, Productivity, Industry Sector, Relative Size, and more. In
order to ensure that this dataset offers high-quality data valuable for training
models, it should be filtered based on the following criteria:

• The Project Rating field is designated with an ISBSG rating code of A, B,
C, or D. As mentioned in ISBSG and several publications, the study chose
high-quality projects by exclusively considering data projects with A and
B ratings. This action led to the number of projects being reduced to 8,619.

• EI, EO, EQ, ILF, ELF, and industry sector, relative size; we have excluded
all those not counted, resulting in 1,654.

• Productivity rate values (PDR) that fall outside of the Q1 (first quartile) -
1.5 × IQR to Q3 (third quartile) + 1.5 × IQR range may be eliminated,
where IQR is the abbreviation of the InterQuartile Range. As a result, the
final number of projects is 1,073 projects. Figure 3-2 presents the boxplot
of the productivity rate before and after removing the outlier. The boxplot
of factors of PFA, such as SWE, AFP, EI, EO, EQ, ILF, and ELF, is also
illustrated in Figure 3-3 before and after removing the outlier based on the
productivity rate. The number of projects for each category of Relative Size
and Industry Sector is presented in Figure 3-4 after removing the outlier
based on productivity rate.

• Categorical variables are often transformed into numeric labels to facilitate
efficient processing and analysis. Various widely used techniques might be
employed in Python for converting categorical variables into numerical
form. Notable among these are the LabelEncoder and one-hot encoding
methods. The LabelEncoder library, for instance, operates by assigning a
distinct integer value to each category within the input variable. This
approach retains the dimensionality of the data, which can be beneficial in
situations where preserving the original feature space is essential. After the
data filtration process, the encoding outcomes for Relative Size and
Industry Sector are illustrated in Table 3-6 and Table 3-7, respectively.

Figure 3-2: Box-plot of productivity rate before and after removing outliers

27

Figure 3-3: Box-plot of factors of FPA before and after removing outliers based on

productivity rate
Table 3-6: Label encoding for Relative Size

No RS RS Label
1 L 0
2 M1 1
3 M2 2
4 S 3
5 XL 4
6 XS 5
7 XXL 6
8 XXS 7

Figure 3-4: The number of selected projects in each RS and IS

28

Table 3-7: Label encoding for Industry Sector

No IS IS Label
1 Banking 0
2 Communication 1
3 Construction 2
4 Defence 3
5 Education 4
6 Electronics & Computers 5
7 Financial 6
8 Government 7
9 Insurance 8
10 Manufacturing 9
11 Medical & Health Care 10
12 Mining 11
13 Professional Services 12
14 Service Industry 13
15 Utilities 14
16 Wholesale & Retail 15

• Moreover, the counting methods developed by the IFPUG for FPAs are
essential to this investigation. Therefore, out of 1,073 projects, 1045 belong
to the IFPUG category, referred to as Dataset 1 and used primarily for thesis
study. The remaining projects fall under the NESMA category (Dataset 2),
which is utilized to evaluate the effectiveness of the transfer learning
approach.

Table 3-8: Division of ISBSG dataset based on the Counting Approach

No Dataset Counting Approach No. Records
1 Dataset 1 IFPUG 1045
2 Dataset 2 NESMA 28

3.3.2 Other Datasets

As mentioned in 3.2.2, besides the ISBSG dataset presented above, the study
expands its analysis to incorporate other datasets, including Desharnais, Albrecht,
Kitchenham, and China. The primary objective for these additional datasets is to
evaluate the effectiveness of MLR, RF, DLMLP, and ensemble models and use
them to clarify the performance of the transfer learning approach. Thus, the initial
step involves identifying and selecting key features significantly influencing the
model's performance.

A Pearson correlation analysis is conducted on those datasets to identify the
key features significantly influencing the actual/effort values. This
comprehensive examination aims to uncover the interrelationships between input

29

factors and the corresponding effort required in software development projects.
By quantifying the strength and direction of linear associations, the analysis
provides valuable insights into which features exert the most pronounced impact
on effort estimation accuracy.

Figure 3-5: The Pearson correlation of features on the Desharnais dataset

The obtained results, depicted in Figure 3-5, Figure 3-6, Figure 3-7, and Figure

3-8, reveal crucial insights into the relationship between the attributes and their
relevance for effort estimation. Using a threshold greater than 0.5 is a strategic
approach to discern the most influential attributes that significantly impact the
accuracy of effort estimation models. This thresholding technique allows us to
focus on attributes with stronger correlations, effectively filtering out less
impactful factors and streamlining the feature selection process.

In the case of Desharnais, the attributes of Length, Transactions, Entities, and
PointsAdjust exhibit a positive impact on the effort required. Given the high
correlation coefficients observed, particularly with PointsAjust at 0.74, it is
determined that PointsNonAdjust provides redundant information and, therefore,
has been excluded from further analysis. For Albrecht, the attributes of Input,
Output, Inquiry, File, RawFPCount, and AdjFP affect the effort estimation
significantly. Furthermore, in the context of Kitchenham, the duration, AFP, and
Estimate attributes hold considerable importance, while for China, the attributes
of AFP, Input, Output, Enquiry, File, and Added positively influence the actual

30

development efforts. These findings provide valuable guidance for accurately
estimating software effort by considering the influential attributes in each dataset.

Figure 3-6: The Pearson correlation of features on the Albrecht dataset

Figure 3-7: The Pearson correlation of features on the Kichenham dataset

31

Figure 3-8: The Pearson correlation of features on the China dataset

3.3.3 Dataset Description

The datasets are divided into two segments to showcase the experimental
results of the studied models and evaluate their effectiveness in effort estimation.
For small datasets, 20% is designated for testing to ensure meaningful evaluation.
For larger datasets, allocating 15% for testing and reserving the remainder for
training enables the model to leverage ample data for robust training.
Consequently, datasets with limited data, such as Desharnais, Albrecht, and
Dataset 2, are assigned a 20% test allocation, while Dataset 1, Kitchenham, and
China datasets receive an 85% training allocation. Detailed descriptions of each
data type are provided in accompanying tables, outlining the key attributes and
their ranges, ensuring a clear understanding of the dataset's composition.

Table 3-9: Data description of training – Dataset 1

 SWE AFP EI EO EQ ILF EIF
mean 4,081.72 421.99 125.95 95.35 71.29 83.42 28.14
std 5,765.54 792.75 361.07 162.24 120.97 160.19 59.67
min 64.00 9.00 0.00 0.00 0.00 0.00 0.00
0.25 1,053.00 116.00 21.00 14.00 6.00 14.00 0.00
0.50 2,391.00 225.00 55.00 42.00 27.00 41.00 5.00

32

0.75 4,691.00 459.00 126.50 104.50 86.50 89.50 30.00
max 59,809 17,518 9,404 1,831 1,306 2,955 644

Table 3-10: Data description of testing – Dataset 1

 SWE AFP EI EO EQ ILF EIF
mean 4,796.13 514.46 150.12 109.94 84.20 111.52 37.51
std 6,221.87 784.25 288.92 177.07 131.85 186.31 79.18
min 38.00 9.00 0.00 0.00 0.00 0.00 0.00
0.25 1,148.25 116.00 24.75 17.75 9.75 15.00 0.00
0.50 2,330.50 259.00 65.50 42.00 33.00 45.00 11.00
0.75 5,706.75 485.50 145.50 129.00 93.25 107.25 42.25
max 39,358 5,684 2,221 1,337 820 1,252 634

Table 3-11: Data description of training – Dataset 2

 SWE AFP EI EO EQ ILF EIF
mean 22.00 22.00 22.00 22.00 22.00 22.00 22.00
std 2,915.77 518.91 175.00 177.36 44.82 109.14 24.95
min 412.00 43.00 0.00 15.00 0.00 0.00 0.00
0.25 1,707.75 149.25 13.00 72.50 0.75 22.75 0.00
0.50 1,852.98 273.00 93.50 104.00 9.50 42.50 11.00
0.75 2,545.50 589.75 245.66 164.55 100.74 146.97 27.25
max 3,831.25 471.25 151.25 261.00 19.00 105.25 35.47
Table 3-12: Data description of testing – Dataset 2

 SWE AFP EI EO EQ ILF EIF
mean 2,202.17 150.50 29.00 85.33 3.83 23.50 8.00
std 981.21 56.23 37.22 36.16 4.40 24.44 10.06
min 951.00 67.00 0.00 25.00 0.00 0.00 0.00
0.25 1,636.25 121.00 6.50 72.50 0.75 14.00 0.00
0.50 1,986.00 157.00 16.00 90.00 3.50 14.50 3.50
0.75 2,931.25 197.50 33.00 106.00 4.00 24.75 16.75
max 3,524.00 226.00 100.00 129.00 12.00 70.00 21.00

Table 3-13: Data description of training – Desharnais

 SWE Length Transactions Entities
PointNon

Adjust
PointsAjust

mean 4667.06 11.47 180.23 116.63 296.86 282.71
std 4336.56 7.71 151.49 84.52 191.64 198.12
min 546.00 1.00 9.00 7.00 73.00 62.00
0.25 2282.00 6.00 88.00 52.00 167.00 140.00
0.50 3542.00 9.00 139.00 89.00 258.00 241.00
0.75 5817.00 13.00 223.00 145.00 377.00 340.00
max 23940.0 39.00 886.00 387.00 1127.00 1127.00

33

Table 3-14: Data description of testing – Desharnais

 SWE Length Transactions Entities
PointNon

Adjust
PointsAjust

mean 6587.00 12.43 189.81 145.50 335.31 315.75
std 4554.40 6.30 112.44 85.05 123.44 124.96
min 840.00 4.00 58.00 34.00 92.00 86.00
0.25 3368.75 8.00 111.50 98.25 261.00 227.00
0.50 5127.50 12.50 170.00 122.50 327.50 320.50
0.75 9691.50 15.50 244.50 181.00 436.50 426.00
max 14987.0 27.00 451.00 332.00 507.00 507.00

Table 3-15: Data description of training – Albrecht

 SWE Input Output Inquiry File
mean 24.116 44.526 48.895 17.789 19.789

std 31.268 40.218 37.962 21.283 16.592
min 2.900 7.000 12.000 0.000 5.000
25% 7.050 25.000 18.000 2.000 6.500
50% 11.800 40.000 38.000 13.000 15.000
75% 18.650 46.500 65.000 20.500 29.000
max 105.200 193.000 150.000 75.000 60.000

Table 3-16: Data description of testing – Albrecht

 SWE Input Output Inquiry File
mean 13.36 24.00 41.00 13.40 8.20

std 11.38 11.81 23.78 9.63 3.70
min 0.50 10.00 15.00 1.00 3.00
25% 7.50 15.00 20.00 6.00 6.00
50% 8.90 27.00 41.00 16.00 9.00
75% 21.10 28.00 60.00 20.00 11.00
max 28.80 40.00 69.00 24.00 12.00

Table 3-17: Data description of training – Kitchenham

SWE duration AFP Estimate

mean 3,390.35 206.74 528.43 3,018.40
Std 10,635.36 141.35 1,687.21 7,504.70
min 219.00 37.00 15.36 121.00
25% 874.00 114.00 121.52 900.00
50% 1,584.00 166.00 240.84 1,770.00
75% 2,972.00 259.00 464.00 2,895.00
max 113,930.00 946.00 18,137.48 79,870.00

34

Table 3-18: Data description of testing – Kitchenham

 SWE duration AFP Estimate
mean 1954.67 205.25 524.47 2177.25
Std 1906.19 100.28 352.65 1809.82
min 286.00 40.00 74.40 200.00
25% 813.50 142.25 178.77 862.75
50% 1316.00 193.50 535.14 1587.00
75% 2586.00 238.75 796.19 2805.75
max 8656.00 432.00 1292.56 8690.00

Table 3-19: Data description of training – China

SWE Input Output Enquiry File Added

mean 3,876.23 148.17 107.93 60.89 86.88 342.86
std 6,354.29 262.42 216.00 104.55 172.35 609.13
min 26.00 0.00 0.00 0.00 0.00 0.00
25% 712.50 25.00 12.00 6.00 10.00 36.50
50% 1,801.00 60.00 41.00 24.00 32.00 128.00
75% 3,807.50 145.00 108.00 67.00 79.50 323.00
max 49,034.00 2,221.00 2,455.00 952.00 1,732.00 4,943.00

Table 3-20: Data description of testing – China

 SWE Input Output Enquiry File Added
mean 4,091.27 238.97 135.15 64.32 107.77 426.81

std 6,970.38 934.65 240.14 109.14 315.91 1,380.06
min 117.00 0.00 0.00 0.00 0.00 0.00
25% 661.75 32.00 19.00 10.00 14.00 44.75
50% 1,993.00 71.50 42.00 28.50 41.50 158.50
75% 3,845.25 162.00 136.00 75.50 87.75 332.25
max 54,620.00 9,404.00 1,241.00 772.00 2,955.00 13,580.00

3.3.4 Balancing Dataset Technique

Several common approaches might be adopted to tackle the problem of
imbalanced training datasets in deep learning based on data level. They might be
as follows:

• Data resampling: this approach involves updating the distribution of the
training dataset by either oversampling the minority category or
undersampling the majority category [60]. Oversampling techniques
include duplication of minority samples and generating synthetic data using
techniques such as the Synthetic Minority Over-sample Technique
(SMOTE) [62] and the Adaptive Synthetic Sampling Approach (ADASYN)

35

[108]. On the other hand, undersampling involves reducing the number of
samples from the majority category to match the minority category.

• Class weighting: this approach might assign weights to different categories
during training [61]. By assigning higher weights to the minority category,
the model might be encouraged to pay more attention to these samples and
reduce the bias towards the majority category.

• Generating Augmented Data: data augmentation is the process of generating
synthetic data that share characteristics with the original dataset while
incorporating purposeful differences or alterations [109], [110]. This
procedure comprises applying particular methods or modifications to the
current data. The main goal of creating augmented data is to increase the
dataset's diversity, scalability, and representativeness, which helps machine
learning models perform better and generalise across various applications.
Gaussian combination model (GMM) [111] might be used to generate those
datasets. It assumes that the provided data points represent samples [110].

The ISBSG dataset encompasses the industry sector feature, which is crucial in
the analysis. As depicted in Table 3-7, the dataset comprises sixteen distinct
industry sectors: Banking, Government, Financial, and others. However, it is
essential to note that the distribution of projects across these industry sectors is
imbalanced, as indicated in Figure 3-4. Consequently, this section aims to
investigate the performance of the deep learning model when applied to a
balanced dataset. The class weighting approach is utilised specifically for the
industry sector feature to achieve this. By assigning appropriate weights to each
category within the industry sector, the deep learning model might effectively
account for the inherent class imbalance, leading to more accurate and reliable
predictions across different industry sectors. The following diagram of this
approach is given in Figure 3-9. Dataset 1 serves as the historical dataset
employed in this methodology.

Figure 3-9: The architecture of the DLMLP model with/without balancing based on

industry sector factors

36

3.4 Model Development

This section presents the model development and the thesis study models based
on multiple linear regression, deep learning, transfer learning, deep learning with
balancing datasets, and ensemble model, which incorporates multiple linear
regression and deep learning.

3.4.1 Multiple Linear Regression Model

The MLR technique is employed for statistical analysis to establish the
connection between a dependent and two or more independent variables. Multiple
regression aims to predict the dependent variable's value based on the independent
variables' value [23]. In the MLR model, the dependent variable is commonly
denoted as the response or outcome variable, whereas the independent variables
are termed predictor variables or covariates. It might be used to predict software
effort estimation based on a given set of independent variables. The formulation
of MLR involves an equation that expresses a direct association between a
dependent variable and a set of p independent variables 𝑋ଵ, 𝑋ଶ, … , 𝑋௣ as follow:

𝑦 ≈ 𝛽଴ + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + ⋯ + 𝛽௣𝑋௣ + 𝜀 (5)

where 𝑦 is the response variable, it stands for the output of the model;
𝑋ଵ, 𝑋ଶ, … , 𝑋௣ are predictors or independent variables; 𝛽଴ is an intercept,
𝛽ଵ, 𝛽ଶ, … , 𝛽௣ are regression coefficients, and 𝜀 is presented as an error residual.
The intercept and regression coefficients are unknown values. The regression
model estimates these coefficients based on the observed data, and the goal is to
find the values of the coefficients that best fit the data.

Assuming that there are n records in the dataset, where each record i includes
a value for the dependent variable 𝑦௜ values for p independent variables
𝑋୧ଵ, 𝑋୧ଶ, … , 𝑋௜௣ , the multiple linear regression equation for record i can be
expressed as:

𝑦௜ = 𝛽଴ + 𝛽ଵ𝑋𝒊𝟏 + 𝛽ଶ𝑋୧ଶ + ⋯ + 𝛽௣𝑋௜௣ + 𝜀௜, 𝑖 = 1. . 𝑛തതതതതത (6)

Equation 𝑦௜ = 𝛽଴ + 𝛽ଵ𝑋𝒊𝟏 + 𝛽ଶ𝑋୧ଶ + ⋯ + 𝛽௣𝑋௜௣ + 𝜀௜, 𝑖 = 1. . 𝑛തതതതതത (6)
could be written as follows:

𝒚 = 𝐗𝛃 + 𝛆 (7)

If the inverse (𝐗𝑻𝑿)ି𝟏 exists, the values of the coefficients that minimise the
sum of squared differences across all n records might be then estimated using the
least squares method [112]. As a result, vector 𝛃 is given by:

൭
𝑦ଵ
⋮

𝑦௡
൱ = ቌ

𝑋ଵଵ ⋯ 𝑋ଵ௤
⋮ ⋱ ⋮

𝑋௡ଵ ⋯ 𝑋௡௤

ቍ × ቌ
𝛽ଵ
⋮

𝛽௤

ቍ (8)

37

𝛃 = (𝑿𝒏𝒒
𝑻 𝑿𝒏𝒒)ି𝟏𝑿𝒏𝒒

𝑻 𝒚 (9)

Moreover, singular value decomposition (SVD) [113] is a matrix factorisation
technique used in linear algebra. It decomposes a matrix into three separate
matrices, providing valuable insights into the properties and structure of the
original matrix. For a given matrix 𝑋௡௤, the SVD might be expressed as:

𝑋௡௤ = 𝑈௡௠Σ௠௤𝑉௤௤
் (10)

where 𝑈௡௠, 𝑉௤௤ are orthogonal matrices, 𝑈்𝑈 = 𝐼 , 𝑉்𝑉 = 𝐼 , and Σ is a
diagonal matrix containing the square roots of eigenvalues from U and V in
descending order [113]. Vector 𝛃 is given as follows:

𝛃 = 𝐕𝒒𝒒(𝚺𝒎𝒒
𝑻 𝚺𝒎𝒒)ି𝟏𝚺𝒎𝒒

𝑻 𝑼𝒏𝒎
𝑻 𝒚 (11)

3.4.2 Random Forest

Random Forest (RF), introduced in 2001 by Breiman [114], is a kind of
ensemble of decision trees trained via the bagging method (or sometimes the
pasting method). Several poor models are joined to build a superior model. Each
tree categorises the attributes of a new entity. The forest chooses the category with
the most votes and averages the outputs of the different trees. The growth process
of each tree in a random forest, as described in [115], [116], can be summarised
as follows:

• Sampling: N cases are randomly selected from the original data with
replacements to form the training set for each tree. The number of cases in the
training set is equal to N.

• Variable Selection: At each tree node, a subset of m variables is chosen
randomly from the total M input variables. The value of m is much smaller
than M. The node is then split based on the best split determined using the
selected m variables.

• Constant Variable Selection: Throughout growing the random forest, the
value of m remains constant for all the trees.

• Maximum Growth: Each tree is grown to its fullest extent without the use of
any pruning techniques.

To summarise, the growth process of each tree in a random forest involves
sampling cases with replacement, selecting a subset of variables at each node,
constant variable selection across all trees, and allowing each tree to grow to its
maximum extent without pruning. According to Mustapha et al. [117], it
outperformed several other classification models and was also resistant to over-
fitting and relatively user-friendly [118].

38

3.4.3 Gradient Boosting

Boosting involves adding new models to an existing ensemble in a systematic
manner, as proposed by Leo Breiman [114]. At each iteration, a new weak learner
model is trained by considering the errors of the ensemble learned so far. Boosting
algorithms were originally entirely algorithm-driven, but later, a statistical
framework was developed for boosting methods, such as the gradient boosting
machine [119]–[121]. This approach involves sequentially fitting new models to
improve the accuracy of the response variable. The idea is to construct new base
learners most similar to the negative gradient of the loss function, which connects
to the entire ensemble. This learning process minimises the traditional squared
error loss function by iteratively fitting errors. Extreme gradient boosting
(XGBoost) and Histogram Gradient Boosting (HGBoost) are both
implementations of gradient boosting, a machine-learning technique employed
for predictive modelling.

XGBoost is a widely used gradient-boosting implementation incorporating a
gradient-boosting framework with various optimizations to enhance speed and
precision. This algorithm is an ensemble of gradient boosting that takes advantage
of second-order derivatives of the loss function to identify the most efficient and
precise base classifier [122]–[124]. Unlike traditional gradient boosting,
XGBoost employs second-order gradients. XGBoost supports three primary
forms of gradient boosting [125] with different variations:

• Gradient Boosting Algorithm: XGBoost includes the traditional gradient
boosting algorithm, also known as the gradient boosting machine. This
algorithm incorporates a learning rate, which controls the contribution of
each tree in the ensemble.

• Stochastic Gradient Boosting: XGBoost offers stochastic gradient
boosting, introducing sub-sampling techniques at multiple levels. This
approach includes sub-sampling at the row level (sampling a subset of data
points), column level (sampling a subset of features), and column per split
level (sampling a subset of features for each split). These techniques
enhance diversity and reduce overfitting.

• Regularized Gradient Boosting: XGBoost provides regularized gradient
boosting with L1 (Lasso) and L2 (Ridge) regularization. This regularization
helps control the complexity of the model and prevent overfitting.

On the other hand, Histogram Gradient Boosting (HGBoost), also known as
histogram-based gradient boosting, is another boosting ensemble that utilizes
feature histograms to quickly and accurately identify the optimal splits [122],
[126]. Compared to traditional gradient boosting, HGBoost is more efficient
regarding processing speed and memory usage.

3.4.4 Multi-layer Perceptron Model

Deep learning (DL) is a specialized area within machine learning that involves
using neural networks with multiple layers to acquire intricate data

39

representations, drawing inspiration from the structure/function of the human
brain [127], [128]. It involves a machine learning algorithm class that learns these
representations through non-linear transformations applied to the input data.
These networks can be composed of different layers, such as convolutional,
pooling, and recurrent layers, in addition to fully connected layers. DL improves
prediction accuracy by replying on multiple processing layers to gain knowledge
representations of the data with varying levels of complexity. According to [127],
DL has advanced dramatically in various other disciplines, including natural
language processing, visual object classification, and image recognition, and has
achieved state-of-the-art performance in many applications.

Figure 3-10: The diagram of deep learning with fully connected four hidden layers
DL aims to investigate complex systems in massive amounts of the dataset

using backpropagation techniques to show how a machine adjusts the
hyperparameters used to measure each class's representation depending on the
performance of the preceding layer.

Figure 3-10 illustrates the flow diagram for deep learning with four fully
connected layers involving an input layer, hidden layers where each neuron
participates in a weighted linear summation, and an output layer that produces the
network's final output. Each hidden layer involves a non-linear activation function
applied to the previous layer's output. During training, the weights of connections
between neurons are updated by computing the difference between predicted and
actual outputs for each example in the training set.

The MLP is a supervised machine learning algorithm and foundational
feedforward neural network architecture employed extensively in deep learning

40

research and applications. It comprises multiple layers of interconnected artificial
neurons (perceptrons). It builds a network to simulate the human brain's
processing [129]. The MLP trains on a dataset to learn the function 𝑓: 𝑅௠ → 𝑅,
where m is the number of dimensions for input. Function 𝑓 is used to learn the
improved weight values corresponding to each network link to achieve a minor
discrepancy between the estimated and actual values in terms of effort estimation.

Figure 3-11: The diagram of one hidden layer of MLP

The MLP architecture comprises an input, output, and one or more hidden
layers. The Input layer receives input data, which is subsequently propagated
through the hidden layers to generate the output. Figure 3-11 shows the diagram
of one hidden layer of MLP. The input layer, located on the left most layer,
comprises a group of neuron features (X) that represent the input features. Every
neuron in the hidden layer participates in a weighted linear summation 𝑥ଵ𝑤ଵ +
𝑥ଶ𝑤ଶ + 𝑥ଷ𝑤ଷ + ⋯ + 𝑥௠𝑤௠ to the values from the previous layer, followed by
an activation function. The activation function used in each neuron can vary, but
common choices include the sigmoid function, ReLU (rectified linear unit), and
tanh (hyperbolic tangent) function [130], [131]. The values propagated from the
preceding hidden layer are accepted by the output layer and transformed to
produce output values.

3.4.5 Transfer Learning Technique

Transfer learning involves the notions of domain and task [132]. A domain
consists of a marginal probability distribution over the feature space and the
feature space itself. A collection of features found in a dataset may be described
as a feature space (𝑋). The marginal probability distribution 𝑃(𝑋) represents the
marginal probability of a random variable in the presence of other random
variables. Given all possible outcomes of a different random variable, the chance

41

of a current event is referred to as a marginal probability. Two domains that are
distinct from one another could have separate feature spaces with various
marginal probability distributions.

The source domain might be denoted as 𝐷ௌ = {(𝑥ௌଵ, 𝑦ௌଵ), … , (𝑥ௌ௡, 𝑦ௌ௡)} ,
where 𝑥ௌ௜ ∈ 𝑋ௌ is the data instance and 𝑦ௌ௜ ∈ 𝑌ௌ is the corresponding output
variable. Similarly, the target domain is defined as 𝐷் =
{(𝑥்ଵ, 𝑦்ଵ), … , (𝑥்௡, 𝑦்௡)} where 𝑥்௜ ∈ 𝑋் , and 𝑦்௜ ∈ 𝑌 . In most cases, 0 ≤
𝑇𝑛 ≤ 𝑆𝑛 . If 𝑋ௌ differs with 𝑋் or 𝑃(𝑋ௌ) differs with 𝑃(𝑋்), then the source
domain differs from the target domain (𝐷ௌ ≠ 𝐷்). On the other hand, a learning
task is defined as a pair 𝑇 = {𝑦, 𝑃(𝑌|𝑋)} . If 𝑇ௌ ≠ 𝑇் so either 𝑌ௌ ≠ 𝑌 or
𝑃(𝑌ௌ|𝑋ௌ) ≠ 𝑃(𝑌 |𝑋்).

According to Pan and Yang [132], traditional machine learning is learning
where the target and the source domain are the same (𝐷ௌ = 𝐷்) and their
learning task is the same. In the case of the feature spaces between the source (𝑋ௌ)
and target domain (𝑋்) are different or the marginal probability distributions
between the source (𝑃(𝑋ௌ)) and target domain 𝑃(𝑋்) are different, we state that
the domains are different (𝐷ௌ ≠ 𝐷். Transfer learning can be classified into three
primary types: inductive, transductive, and unsupervised transfer learning.

Inductive transfer learning involves leveraging machine learning techniques
when the target task differs from the source task, regardless of the similarity
between their respective domains. This approach makes it possible to train a
model on a source task and then apply it to other tasks without requiring a
complete retraining process [133]. Instead, partial retraining of specific layers or
components may be employed. Notably, during the training process for a specific
task, the model has the potential to acquire shared features from the data, which
can help address other tasks effectively.

According to Arnold et al. [134] and Kocaguneli et al. [3], the source and target
tasks are identical in transductive transfer learning, while the source and target
domains are distinct. It involves using a pre-trained model to make predictions on
a new dataset, and the predictions are used to train a new model [132]. This type
of transfer learning is proper when there is no available labelled data for the target
task, and the pre-trained model can generate pseudo-labels for the new dataset
[135]. The new model is then trained on the pseudo-labelled data.

Lastly, in unsupervised transfer learning, the target task exhibits differences
from the source task while maintaining a certain level of relevance or connection.
It involves training a pre-trained model on an unsupervised task, such as
autoencoders [136], and the learned features are used to initialise a new model.
This type of transfer learning is advantageous when the target task has limited
labelled data, and the pre-trained model can be used to transfer knowledge from
the unsupervised task to the target task.

42

Figure 3-12: The diagram of the transfer learning model

This thesis uses Dataset 1 as the source and Dataset 2, Albrecht, and China as
targets. Dataset 1 and Dataset 2 share the same input and output features, whereas
the remaining datasets exhibit similarities in their features but have fewer input
features than Dataset 1. Dataset 1 comprises a significantly more extensive set of
1045 projects than Dataset 2, which consists of only 28 projects. Additionally,
when contrasting Dataset 1 with other datasets, such as Albrecht and China, it
becomes evident that Dataset 1 is more significant than the others. As outlined in
Section 1, using transductive transfer learning involves leveraging machine
learning techniques in scenarios where the target task is similar to the source task.
In this section, we intend to explore the application of transductive transfer
learning by employing a pre-trained model trained on Dataset 1, incorporating the
datasets above in the transfer learning process.

Figure 3-12 illustrates the diagram of transfer learning models, where Dataset
1 is used as an extensive dataset to build the pre-trained model, and Dataset 2,
Albrecht, China, are used to clarify the performance of transfer learning models.
Features mapping involves translating the characteristics of the new dataset into
a format that the pre-trained model might understand. The pre-trained model was
initially designed to work with six input features (EI, EO, EQ, EIF, ILF, and
Industry Sector). Those features were chosen based on the best performance of
effort estimation obtained from those features presented in 5.2.1. This step
updates the pre-trained model's input layer to match the new input's size. The
scenario is defined into three cases as described below:

43

• TL-Case 1: Using DLMLP models trained based on Dataset 1 to validate
the performance of effort estimation based on a testing dataset of Dataset
2.

• TL-Case 2/DLMLP: Using DLMLP models, train them based on 80% of
Albrecht, China, Dataset 2 and validate the performance of effort
estimation based on 20% of those datasets.

• TL-Case 3: This is a transfer learning approach. DLMLP models trained
by Dataset 1 are called pre-trained models and continue to train based on
80% of Albrecht, China, and Dataset 2 and validate the performance of
effort estimation based on 20% of the remaining datasets.

3.4.6 Ensemble Model: Incorporating Multiple Linear Regression,
Random Forest, and Deep Learning Models

Ensemble learning combines the predictions of multiple machine learning
models to improve the accuracy and generalisation of the overall model. The idea
behind ensemble learning is that by incorporating the predictions of multiple
models, the variance and bias of the overall model might decline, leading to better
performance on unseen data. In 1990, Hansen et al. [68] proposed that utilising
an ensemble of neural networks with a majority agreement technique could
produce better results than using a single predictor. In this context, an ensemble
refers to a group of predictors, and ensemble learning is a method that integrates
predictions from multiple models, referred to as the ensemble method. Bagging,
boosting, and stacking are three popular types of ensemble methods, as noted in
a publication [124].

• Bagging and pasting: a strategy that trains each predictor using the same
training algorithm on distinct random subsets of the training set. The
procedure is called bagging when sampling is performed with replacement;
otherwise, (without replacement) is named pasting. Both bagging and
pasting allow for numerous samples of training cases across multiple
predictors. However, only bagging allows for various examples of the exact
predictor. Once all predictors have been trained, the ensemble can forecast
a new instance by aggregating all predictors' predictions.

• Boosting: Any ensemble method that may consolidate numerous
ineffective learners into one robust learner is called boosting. Most
motivating approaches require predictors to forecast sequentially, with
each attempt to correct its predecessor. Adaptive Boost (AdaBoost) and
Gradient Enhancement are the most common boosting methods.

• Stacking: David Wolpert [128] proposed in 1992, taking prior predictions
as feed to determine the final prediction (blender/meta learner).

• Voting: Voting methods combine predictions from multiple models by
taking the most votes (for classification) or averaging (for regression).
There are different types of voting ensembles, such as hard voting, where

44

the class with the majority vote is chosen, and soft voting, where the class
probabilities are averaged.

As mentioned in Section 2.5, an ensemble learning approach is employed to
enhance prediction accuracy. Select two base regression models, MLR and RF,
for creating ensemble models through stacking regressors. These ensemble
models produce predictions, which are then integrated with the output of a
DLMLP model using a voting-by-averaging method for regression. The
performance of this approach is evaluated with MLR, RF, and DLMLP
approaches.

3.5 Model Explainability - Interpretability

In software effort estimation, where precise predictions are pivotal for effective
project planning and resource allocation, a pressing challenge arises from the
black-box of the predicted models, especially DLMLP models, chosen in this
section due to time constraints. These models leverage input features such as EI,
EO, EQ, EIF, ILF, IS, and RS. However, their opacity makes it difficult for
stakeholders to comprehend the inner workings of these models and how
predictions are generated.

Explainability techniques, such as LIME and SHAP, become essential to
address this issue. These techniques are pivotal in bridging this gap by unveiling
the intricate relationships between these input features and the predicted effort.
Doing so gives stakeholders a transparent view of the estimation process, enabling
them to understand better the underlying factors influencing model predictions.
This transparency enhances the estimation model's credibility and empowers
decision-makers to make informed decisions regarding software project planning
and resource allocation.

3.5.1 LIME

In the context of effort estimation using the LIME model explainability
framework, assigning positive and negative values to independent variables
indicates their influence on predicted effort. This numeric representation plays a
crucial role in comprehending the impact of each variable on model predictions.
LIME is a valuable tool for gaining insights into individual predictions generated
by predictive models. Its fundamental purpose lies in approximating predictive
models locally using interpretable models. LIME's primary objective is to address
the fundamental question: 'Why did the model produce this specific prediction for
a given instance?'

To illustrate, applying LIME in the context of effort estimation assists in
illuminating how each feature (e.g., EI, EO, EQ) contributed to the predicted
effort for a specific instance. LIME dissects the contributing factors underlying a
prediction, facilitating an in-depth understanding of the role played by each
feature in the model's decision-making process. The positive and negative values
associated with the feature indicate their impact on the predicted effort.

45

• Positive Contribution: When a feature has a positive value, an increase in
that variable's value tends to result in a higher predicted effort. For
example, suppose variables such as EI, EO, EQ, etc., have positive
contributions. In that case, it suggests that the effort required for software
development is expected to increase as these features increase in function
points.

• Negative Contribution: Conversely, when a feature has a negative value,
an increase in that feature's value tends to lead to a lower predicted effort.
For example, if EIF and ILF have negative contributions, it implies that as
the function points of these features increase, the effort required for
software development is expected to decrease.

3.5.2 SHAP

SHAP provides a unified approach to attribute the contribution of each feature
to the predicted effort estimation. It assigns a value to each feature, representing
its impact on the prediction in the context of the other features. These values are
called SHAP values.

• Positive SHAP Value: A positive SHAP value for an independent variable
signifies that the presence or increase in that variable contributes positively
to the predicted effort. Higher values or complexity for EI, EO, EQ, etc.,
features are associated with increased effort.

• Negative SHAP Value: On the other hand, a negative SHAP value for a
variable suggests that the presence or increase in that variable contributes
negatively to the predicted effort. For features such as EIF and ILF,
negative SHAP values indicate that higher values or complexity in these
variables are associated with decreased effort in the effort estimation
model.

By examining these SHAP values, analysts and practitioners might gain
valuable insights into the relative importance and impact of different features on
predicted effort. SHAP values provide a quantified understanding of each
feature's influence and consider the intricate interactions and dependencies
between these features.

It is worth noting that the sum of SHAP values across all features typically
equals the difference between the model's prediction for a specific instance and
the average prediction for all data points. This sum highlights the collective
contribution of each feature in explaining the model's prediction for a particular
case, further enhancing the grasp of feature importance in effort estimation.

3.6 Comparison Criteria

Several metrics might be used to validate the accurate performance of the
proposed model compared with other models. These include the Magnitude of
Relative Error (MRE) (12), MMRE (13), and other measures [137]. MMRE

46

measures the average magnitude of the relative errors between predicted and
actual observed values. MAE stands for Mean Absolute Error, measuring the
magnitude of the discrepancies between expected and actual results, making it an
insightful metric to assess predictive accuracy. It is suitable for interpretability.

Moreover, the prediction level at 𝑥 (PRED(𝑥)) (16) is considered further
research criteria. It is a metric used to evaluate the accuracy of a predictive
model’s performance. It calculates the percentage of predictions within a specific
error threshold “𝑥”. Although publications [138] stated that this metric might have
some significant disadvantages, it is still widely used to validate the effort
estimation accuracy [139].

However, [140] suggests not using these metrics because of their bias; further
criteria are used to improve the experiment's efficiency. SA is a denotation of
standardised accuracy (11), where 𝑀𝐴𝐸௣തതതതതതതത is the average value of an enormous
number (typically 1000), runs of random guessing [141]; it was proposed by
[140]. Except for PRED(𝑥) and SA objectives are to be maximised; all remaining
evaluation measures are minimised. In addition, Mean Balance Relative Error
(MBRE) and Mean Inverted Balance Relative Error (MIBRE) data are considered
as additional study criteria. MIBRE is especially beneficial when predicted values
are near 0 since MBRE may become infinite. These criterion formulas are as
follows:

𝑀𝑅𝐸௜ =
|𝑦௜ − 𝑦పෝ|

𝑦௜
 (12)

𝑀𝑀𝑅𝐸 =
1
𝑛 ෍ 𝑀𝑅𝐸௜

௡

௜ୀଵ

 (13)

𝑀𝐴𝐸 =
1
𝑛 ෍|𝑦௜ − 𝑦పෝ|

௡

௜ୀଵ

 (14)

𝑆𝐴 = ቆ1 −
𝑀𝐴𝐸
𝑀𝐴𝐸௣തതതതതതതതቇ × 100 (15)

𝑃𝑅𝐸𝐷(𝑥) =
1
𝑛 ෍ ൜1, 𝑖𝑓 𝑀𝑅𝐸௜ ≤ 𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

௡

௜ୀଵ

 (16)

𝑀𝐵𝑅𝐸 =
1
𝑛 ෍

|𝑦௜ − 𝑦పෝ|
𝑚𝑖𝑛 (𝑦௜, 𝑦పෝ) (17)

௡

௜ୀଵ

𝑀𝐼𝐵𝑅𝐸 =
1
𝑛 ෍

|𝑦௜ − 𝑦పෝ|
𝑚𝑎𝑥 (𝑦௜, 𝑦పෝ)

௡

௜ୀଵ

 (18)

47

where n is the number of measurements; 𝑦௜ is the observed value, and 𝑦ො௜ is the
predicted value.

4. EXPERIMENTS

This section presents the conceptual framework of the thesis as well as the
experiment of models such as MLR, RF, DLMLP, transfer learning, deep learning
with balancing dataset, the ensemble by incorporating regression, random forest
and deep learning, and model explainability.

4.1 Conceptual Framework of the Study

4.1.1 The Framework of the Study

As shown in Figure 4-1, there are four primary phases, including collecting the
datasets, data preprocessing, building the proposed models, and measuring the
performance of proposed models based on performance metrics.

In the first step, the thesis collects datasets. As mentioned in Section 3.2.1, the
study mainly uses the ISBSG dataset released in 2020, and further study
performance of studied models by using other datasets is detailed in Section 3.2.2.

Figure 4-1: The flow diagram of the proposed software effort estimation

Next, data preprocessing is vital in preparing and refining the raw datasets

before training models. The process of data preprocessing and the results of this

48

process are illustrated in Section 3.3. The following presents the steps of data
preprocessing might summarized as:
• ISBSG dataset: The primary dataset employed in this study. This dataset

includes factors relevant to FPA, such as EI, EO, EQ, EIF, ILF, AFP, and a
range of categorical variables. The central focus of this thesis is to investigate
the impact of categorical variables in conjunction with FPA factors on effort
estimation. Due to time constraints, the study narrows its scope to six key
predictors denoted as P1, P2, P3, P4, P5, and P6 (see Section 4.1.2). The data
preprocessing for the ISBSG dataset is presented in Section 3.3.1. The study
adheres to the IFPUG approach, creating two distinct datasets: Dataset 1 and
Dataset 2. Dataset 1 is selected based on IFPUG criteria, while the remaining
projects are allocated to Dataset 2 (see Table 3-8).

• Other datasets (Albrecht, Desharnais, Kitchenham, and China): In alignment
with the research objectives for the Albrecht, Desharnais, Kitchenham, and
China datasets, Pearson correlation analysis was conducted (see Section
3.3.2). This analysis aims to identify the key features significantly influencing
actual/effort values in the context of software development projects.
However, the ISBSG dataset serves as the primary dataset in this study. The
purpose of the study is to influence categorical variables along with factors of
FPA based on predictors (see Section 4.1.2), making the application of
Pearson correlation analysis less suitable. Instead, the analysis for the ISBSG
dataset focuses on categorical variable exploration and tailored data
preprocessing methods, as detailed in the data preprocessing section.

Following that, the thesis studies proposed models, MLR (see Section 4.2), RF
(see Section 4.3), and DLMLP (see Section 4.4). Further study is conducted on
the proposed models, including ensemble (see Section 4.7), deep learning with
balancing dataset (see Section 4.6) and deep learning with transfer learning (see
Section 4.5). Ensemble models might combine multiple models, including MLR,
RF, and DLMLP, to achieve better performance, while deep learning with transfer
learning might leverage pre-trained models to improve learning efficiency and
accuracy. Those models are trained based on the training datasets.

The study designs eleven predictors from P1 to P6, PA, PD, PC, PK, and PDataset2
(see Section 4.1.2). For models that adopted predictors P1 to P6, they use training
Dataset 1 (see Table 3-9). The models adopted predictor PA, PD, PC, PK, and
PDataset2 use training datasets of Albrecht (Table 3-15), Desharnais (Table 3-13),
China (Table 3-19), Kitchenham (Table 3-17), and Dataset 2 (Table 3-11),
respectively. The cross-validation with 5-fold is employed for all studied models
in the training process. The performance of those models obtained from P1 to P6
is validated based on testing Dataset 1 (see Table 3-10). The performance of those
models obtained from PA, PD, PC, PK, and PDataset2 use the corresponding testing
datasets (see Table 3-16, Table 3-14, Table 3-20, Table 3-18, and Table 3-12).

Last but not least, the impact of parameter settings on the models on the
accuracy of trained effort estimation techniques is widely acknowledged.

49

Nevertheless, determining the most suitable parameter values is challenging due
to the many predictors considered in this study. A grid search [144] approach is
introduced to address this challenge. This method systematically tests different
parameter combinations and selects the one with the highest accuracy, as
indicated by the minimum MAE. The parameters of each model used in this study
are presented below.

The details of predictors and the whole configuration of proposed models are
shown in the following sections.

4.1.2 Predictors

A series of experiments (Figure 4-1) is being carried out to evaluate and
compare the models' estimation accuracy. Five proposed models are being studied
in this thesis: MLR, RF, DLMLP, ensemble models, and transfer learning
approach.

Regarding a group of factors that might positively impact effort estimation in
terms of FPA: in this study, the predictors, including AFP, EI, EO, EQ, EIF, ILF,
RS, and IS, are categorised into six groups, with each group comprising different
combinations of techniques as follows:

• P1: AFP
• P2: EI, EO, EQ, EIF, ILF
• P3: AFP, IS
• P4: EI, EO, EQ, EIF, ILF, IS
• P5: AFP, IS, RS
• P6: EI, EO, EQ, EIF, ILF, IS, RS
• PDataset2: the predictor based on EI, EO, EQ, EIF, ILF, IS, RS and Dataset 2.
Setting one of the lists (from P1 to P6) as independent variables and SWE is

the dependent variable. The aim of using these predictors is to find the most
appropriate combination that leads to the highest performance in effort estimation.

According to the findings of the Pearson correlation of features on the Promise
repository in section 3.3.2, the following factors are chosen as predictors for
Desharnais (PD), Albrecht (PA), Kitchenham (PK), and China (PC):

• PD: Length, Transactions, Entities, PointsAjust
• PA: Input (EI), Output (EO), Enquiry (EQ), File (EIF)
• PK: duration, AFP, estimate
• PC: Input (EI), Output (EO), Enquiry (EQ), File (EIF), Added
This study is interested in evaluating deep learning models using transfer

learning. Thus, the predictors selected for analysis exhibit similar characteristics
to Dataset 1. Moreover, the thesis intends to use PA and PC as predictors to build
a model based on the pre-trained model obtained from Dataset 1; thus, the study
chooses similar features to Dataset 1. As a result, predictors for PD, PA, PK, and
PC are given as follows:

• PD: Length, Transactions, Entities, and PointsAjust

50

• PA: Input (EI), Output (EO), Enquiry (EQ), File (EIF)
• PK: duration, AFP, estimate
• PC: Input (EI), Output (EO), Enquiry (EQ), File (EIF)

4.1.3 Experimental Framework

The methodology has been developed to accomplish four main objectives. The
steps undertaken to achieve these objectives are described below:

1. Develop DLMLP, RF and MLR: The study intends to construct efficient
prediction models and compare their performance. The process involves
the following steps:

• Implementing DLMLP, RF and MLR models.
• Conducting initial assessments to compare the performance of these

models with each other.
• Conducting experiments on predictors: P1, P2, P3, P4, P5, P6, PD,

PA, PK, PC.
2. Apply class weighting: This phase explores class weighting techniques to

address the class imbalance. The process includes the following:
• Implementing class weighting methodologies in DLMLP.
• Conducting experiments on P1, P2, P3, P4, P5, P6 based on

Dataset1.
3. Apply ensemble: Similar to the previous steps, the study further explores

using ensemble techniques to enhance prediction accuracy. Specifically:
• Implementing stacking ensemble (SE) techniques for MLR and RF,

the voting by averaging for SE and DLMLP approach; compare the
performance of this approach with MLR, RF, and DLMLP.

• Conducting experiments using ensemble methods on P1, P2, P3, P4,
P5, P6, PD, PA, PK, PC.

4. Apply transfer learning: The research explores the potential benefits of
leveraging insights gained from previous training to enhance performance
on new datasets. This approach includes:

• Choosing the best DLMLP model obtained from P1 to P6 as the pre-
trained model.

• Applying the transfer learning based on that pre-trained model and
continuing to train on a new set of datasets.

• Conducting experiments on four datasets (Dataset 2, Albrecht,
China) which share the same target feature ('effort') and the same
source Input (EI), Output (EO), Enquiry (EQ), File (EIF) with
Dataset 1.

5. Evaluate Performance: The final step involves assessing the performance
of the adopted methods by:

• Comparing their performances under different scenarios.
• Evaluating the accuracy of effort estimation achieved by these

methods.

51

4.2 Regression Experiment

The MLR algorithm is implemented using the robust linear regression
algorithm available in the Scikit-learn library, a widely used machine learning
library. The training dataset is divided into five folds using the K-Fold function
[142], [143] to ensure robust evaluation and minimize bias. This technique allows
us to create multiple training-validation splits, comprehensively assessing the
model's performance. The shuffle and random_state parameters are incorporated
during the data shuffling process to introduce randomness and ensure
reproducibility. The shuffle parameter randomly reorders the data, while the
random_state parameter sets a fixed seed, guaranteeing that the results can be
replicated for further analysis.

Next, for each fold generated by the 5-fold technique, the data is further divided
into training and validation sets, leveraging the indices provided by the splitting
process. This division enables the model to learn patterns from the training set
and validate its performance on unseen data. An MLR is created using the
LinearRegression() function with default parameters (such as fit_intercept set to
be True). By employing this function with default parameters, we construct a
multivariate linear regression model capable of capturing complex relationships
between the independent and target variables. The code then trains the model on
the training set using the fit() function and uses it to predict the target variable on
the validation set using the predict() function.

4.3 Random Forest Experiment

RF is a popular machine learning algorithm used for classification and
regression tasks. It might be used for predicting both numerical and categorical
variables. It might be computationally efficient and is capable of handling large
datasets. RF is designed to mitigate overfitting by combining multiple decision
trees and using random subsets of data and features. Having sufficient trees in the
ensemble might help reduce the overfitting risk and improve generalization
performance.

Table 4-1: The experimental-based parameters of RF

No Parameters Values
1 n_estimators {120,150, 180, 210}
2 max_depth {5, 10, 15, 20, 25, 30}
3 random_state 42
4 min_samples_split Default value
5 min_samples_leaf Default value
6 max_features Default value
7 Num folds 5

52

The experimental parameters for RF, as outlined in Table 4-1, with
'n_estimators' and 'max_depth' organized into distinct value sets; ‘random_state’
is set to 42; while leaving ‘min_samples_split’, ‘min_samples_leaf’, and
‘max_features’ at their default values. The experimentation is conducted within a
cross-validation with 5-fold. Model performance is evaluated using the MAE, and
the optimal model configuration is determined based on achieving the minimum
MAE through the grid search [144] process.

• n_estimators: The number of decision trees in the forest. Increasing the
number of estimators can improve performance and increase the
computational cost.

• max_depth: The maximum depth of each decision tree. Restricting the
depth can help prevent overfitting. Set it to None if the trees grow until all
leaves are pure or all leaves contain less than min_samples_split samples.

• random_state: The seed used by the random number generator. Setting it
to a specific value ensures the reproducibility of the results.

• min_samples_split: This parameter determines the minimum number of
samples required to divide an internal node in constructing a decision tree
within the RF. If the number of samples at a node is smaller than
min_samples_split, the node is not split further and becomes a leaf node.
Increasing this value can prevent overfitting by ensuring that a node has
enough samples to make a reliable split.

• min_samples_leaf: This parameter sets the minimum number of samples
needed to be at a leaf node. If the number of samples at a leaf node is less
than min_samples_leaf, additional splitting attempts are not made, and the
leaf node is generated. Like min_samples_split, increasing
min_samples_leaf can help prevent overfitting and control the size of the
tree.

• max_features: This parameter determines the maximum number of features
that are considered when looking for the best split at each node. The
Random Forest algorithm randomly selects a subset of features from the
whole feature set, and max_features controls the number of features
selected.

4.4 DLMLP Experiment

In DLMLP, each neuron receives input from the previous/input layer. A neuron
produces an output sent to the next layer after applying an activation function to
the weighted sum of its inputs. Several options are available in activation
functions, including sigmoid, tanh, and Rectified Linear Unit (ReLU) [130].
According to Jason Brownlee [131], ReLU is simple to compute and requires few
computational resources. ReLU addresses the issue of vanishing gradients, which
might impede learning in deep neural networks. By allowing for faster learning

53

and improved performance [145], ReLU has become a popular choice in many
deep-learning applications.

Optimisation algorithms are essential for training deep learning models [128].
Optimisation aims to find the best set of parameters for a model that minimises
the loss function, which is the difference between the model’s predicted and actual
output. Root Mean Squared Propagation (RMSProp) and Adam make adaptive
moment estimations to enhance results among Adam, RMSProp, Adaptive
Gradient Algorithm and a more robust extension of Adagrad [146]. As a result,
the study chose Adam as the optimizer of this model.

According to V.N. Gudivada et al. [147], no rigid or universally established
guidelines exist when determining the appropriate number of hidden layers and
the number of neurons within each. This study conducted experiments to evaluate
different layer configurations for the DLMLP, encompassing architectures with
2, 3, 4, and 5 layers. The optimal architecture of models is identified using the
grid search [144] based on the minimum MAE, early stopping with a monitoring
criterion based on the minimum MAE also installed.

Figure 4-2 presents an example of deep learning architecture with four fully
connected layers. Input variables are collected from Dataset 1, Desharnais,
Albrecht, Kitchenham, and China. As mentioned in section 4.1.2, P1 has an input
size of 1, P2 has an input size of 5, P3 has an input size of 2, and P4, P5, and P6
have input sizes of 6, 3, and 7, respectively. The input sizes for PD, PA, PK, and PC
were determined as 5, 6, 3, and 6, respectively.

Figure 4-2: An example of the architecture of DLMLP with four fully connected layers

The configuration details provided in Table 4-2 further illuminate the design
and training aspects of the deep learning model. Specifically, they encompass
essential parameters such as learning rates, batch size, epoch count, rate decay,
and cross-entropy loss function. These parameters collectively contribute to the
robustness and efficacy of the deep learning model's performance.

54

Table 4-2: The experimental-based parameters of DLMLP

No Parameters Values
1 Learning rate {0.01,0.001}
2 Batch size 64
3 Epoch 1260
4 Rate decay 0.999
5 Num fold 5
6 Early stop True, patience = 5
7 Loss function Cross Entropy Loss

4.5 Transfer Learning Experiment

As mentioned in 3.3.1, Dataset 1 is a widely recognized and standardized
dataset containing many software development projects. This thesis chooses the
best model built based on Dataset 1 as the pre-trained model (called the ISBSG
model). It is trained on a large amount of data, which allows us to learn
generalizable features that might be applied to other datasets.

Table 4-2 presents the input and output variables list among studied datasets
(Dataset 2, Albrecht, and China). Firstly, considering the output feature, those
datasets share the same target variable (‘effort’). This similarity indicates that the
task/objective of predicting the effort required for software development is
consistent between the datasets. Secondly, observation of input variables, those
datasets include inputs related to EI, EO, and EQ. They also have input features
related to file counts, such as EIF and ILF. Based on these similarities, there is
indeed an overlap between Dataset 1 and the studied datasets (Dataset 2, Albrecht,
and China) in terms of input variables and output variables. This overlap suggests
there is potential for transferring knowledge from the pre-trained model based on
Dataset 1 to predicting effort in other datasets.

Table 4-3: The input and output features list among studied datasets

No
Intersect
Dataset 1

with

Similarity Overlap with
Dataset 1? Inputs Output

2 Dataset 2 EI, EO, EQ, EIF, ILF, IS SWE Yes

3 Albrecht
Input (EI), Output (EO),
Inquiry (EQ), File (EIF)

Effort Yes

4 China
Input (EI), Output (EO),
Inquiry (EQ), File (EIF)

Effort Yes

According to Pan and Yang [132], it is a kind of inductive transfer learning

setting. To address this problem, we might replace the last layer of the pre-trained

55

model with a new layer that matches the size of new input features in those
datasets. As a result, the final layer is trained using the fresh datasets while leaving
the other model parameters unchanged. Training the transfer models on the
ISBSG pre-trained model might leverage the learned features from the pre-trained
model, effectively reducing the data required for training while still achieving
high accuracy. Transfer learning based on the ISBSG model involves several
steps as follows:

• Step 1: Choose the best model obtained from DLMLP based on P1 to P6 as
the pre-trained model. As discussed in Section 5.2.1, DLMLP-P4, with six
predictors EI, EO, EQ, EIF, ILF, and IS, outperform compared with P1, P2,
P3, P5, and P6.

• Step 2: Load the pre-trained model: This model is trained on Dataset 1, and
then choose the best-proposed model to use as the pre-trained model.

• Step 3: Feature mapping as following steps:
o Extract features using the pre-trained model.
o Map the features between new input features and the features from the pre-

trained model.
• Step 4: Freeze all layers except for the last one. In this step, set the

'requires_grad' attribute to False for all layers except the last one. This step
ensures the preservation of previously learned features from the pre-trained
model, which is crucial as the model is adapted to work with the specific
input features of the new dataset. By keeping the lower layers fixed, the
model might exclusively focus on adjusting the last layer to accommodate
the unique input characteristics of the new dataset. To implement this
adaptation, utilize the feature_mapping function. This function performs
two essential tasks: first, it reorders the input features to match the model's
input order, ensuring the features are in the correct sequence. Second, it
prepares the input features by handling any differences between the new
dataset and the pre-trained model, such as the absence of certain features or
the presence of additional ones. This function allows the model to
seamlessly integrate the new dataset while maintaining the integrity of its
pre-trained features.

• Step 5: Create a new optimiser: A new optimiser is created specifically for
the last layer of the model, which is set to require gradients in the previous
step. Adam optimiser is chosen as the optimiser (the same optimiser as the
pre-trained model).

• Step 6: Continue training the model: Train the model on a new dataset. In
each iteration, the input is forwarded through the model, the loss is
computed, the gradients are computed, and the weights are updated using
the optimiser. This process is repeated for several epochs or until the model
achieves the minimum MAE criterion based on the early stopping.

56

4.6 Balancing Dataset Experiment

As shown in Table 4-4 (column before balancing), the number of projects
varies significantly across industry sectors. For example, the Construction,
Defence, Education, Mining, and Medical Health Care sectors have significantly
fewer projects than others. On the other hand, the Communication, Financial,
Government, Insurance, and Service Industry sectors have a significantly higher
number of projects.

The number of projects in each industry sector might need to be balanced to
address this imbalance. In practice, balancing may involve adding more data to
underrepresented groups or removing data from overrepresented groups until the
number of data points in each group is approximately equal.

Figure 4-3: Based on the experiment, the histogram of the number of projects in each

industry sector before and after balancing

Determining class weights is a critical step to address the class imbalance issue

in the dataset. Based on the experiment, a class weighting approach is employed
to assign different weights to each industry sector based on the number of projects
within each sector. The primary objective is to give more importance to
underrepresented sectors while training the model. The class weights are
determined as follows:

• For each Industry Sector, the ratio of the number of projects before
balancing to the number of projects after balancing is calculated. This ratio
reflects the degree of adjustment required to balance the dataset.

• The inverse of these ratios is used as class weights. The less-represented
sectors are assigned higher weights, while the overrepresented sectors are
assigned lower weights. This approach ensures that the model would pay
more attention to the underrepresented sectors during training.

57

Several experimental iterations are conducted to adjust the class weighting and
data balancing techniques in the approach employed to balance the number of
projects within each industry sector. The following illustrates these iterations in
more detail:

• In the initial iteration, the significant class imbalance in the dataset is
observed and addressed by determining the class weights based on the pre-
post-balancing project counts for each industry sector, as detailed earlier.
The initial class weights are then applied, initiating the baseline experiment.

• Subsequent iterations involve systematic adjustments to the class weights to
enhance model performance further.

• Within each iteration, class weights are methodically adjusted based on the
outcomes of the preceding iteration to identify the most effective weightings
that optimise accuracy without over-balancing the dataset.

• The performance of the model is based on the minimum of MAE.
Figure 4-3 presents the number of projects for each industry sector balancing

the dataset by class weighting approach after several experimental iterations. The
number of projects is adjusted to achieve the best possible accuracy without over-
balancing the dataset. For instance, the Defence sector had only two projects, and
it was impossible to balance it further without compromising the integrity of the
dataset.

Table 4-4: The number of projects for each industry sector before and after

balancing

No Industry Sector Before balancing After balancing
1 Banking 136 136
2 Communication 202 202
3 Construction 8 48
4 Defence 2 50
5 Education 3 60
6 Electronics Computers 15 75
7 Financial 64 192
8 Government 197 197
9 Insurance 199 199
10 Manufacturing 69 138
11 Medical Health Care 9 63
12 Mining 8 56
13 Professional Services 20 100
14 Service Industry 84 168
15 Utilities 26 104
16 Wholesale Retail 21 126

58

Finally, DLMLPB with a balanced dataset is applied. The configuration of this
model is the same as DLMLP presented in Section 4.4.

4.7 Ensemble Model Experiment

In Figure 4-4, the stacking ensemble (SE) for regression incorporates two
distinct models: MLR and RF. Data preprocessing is conducted using a
'tree_preprocessor' object to prepare the dataset for modelling. This phase creates
two separate pipelines, each tailored to one of the models—MLR and RF. These
pipelines integrate preprocessing with the respective model, resulting in two well-
defined modelling paths.

These modelling pipelines are combined into a list of tuples. Each tuple pairs
the model's name with its corresponding pipeline, establishing a link between
preprocessing steps and modelling tasks. A 'StackingRegressor' object is
instantiated in the final ensemble setup, employing the 'estimators' list and
utilizing an XGBoost model as the ultimate decision-maker.

The training phase involves independent training for each base model,
individually refining the MLR and RF models on the training dataset. Predictions
generated by these models are thoughtfully aggregated and provided as inputs to
the final decision-maker, the XGBoost model. Throughout this training phase, the
'cross_validate' function is pivotal in assessing each model's performance and the
ensemble's overall effectiveness. Robustness and generalization are ensured
through the use of 5-fold cross-validation.

Figure 4-4: The flow diagram of the ensemble model. RF and MLR are used as based
estimators, and XGBoost is used as the final estimator. Stacking predictions
obtained from RF and DLMLP predictions are ensembled by average to
attain the final predictions

Incorporating DLMLP into the SE begins with loading the pre-trained DLMLP
model. This model is configured for predictive tasks by setting it to evaluation

59

mode, ensuring its internal parameters remain unaltered during prediction. Next,
testing datasets are prepared and converted into tensor format to align with the
DLMLP architecture's requirements. The DLMLP then generates predictions
based on the test dataset.

To summarize, the ensemble model has several steps as follows:
• Step 1 (Defining Base Models): Create base models (RF, MLR, DLMLP)

using predefined hyperparameters for each model to generate individual
predictions.

• Step 2 (Defining the Meta Model): Configure an XGBoost regressor as the
meta-model to merge base model predictions.

• Step 3 (Creating the Stacking Ensemble): Set up the stacking ensemble,
using StackingRegressor to harmonise base models with the final XGBoost
model.

• Step 4 (Cross-validation): Employ 5-fold cross-validation to rigorously
evaluate the ensemble's accuracy based on the minimum MAE.

• Step 5 (Voting by Averaging Predictions): Apply a voting mechanism that
averages predictions from DLMLP and the stacking ensemble in step 5,
producing a unified prediction that balances insights from both sources for
enhanced accuracy.

4.8 Model Explainability Experiments
This section uses LIME and SHAP techniques to perform model explainability

experiments. Due to time limitations, the thesis only analyses LIME and SHAP
based on DLMLP.

As mentioned in Section 3.5, these experiments generate LIME and SHAP
explanations, allowing us to discern the positive and negative influences on effort
estimation. By analyzing these explanations, we might answer RQ5 and gain an
understanding of the features that the model deems significant in making
predictions. Through these models’ explainability experiments, valuable insights
might be gleaned regarding the inner workings of the deep learning model,
enabling us to identify potential biases or limitations.

Furthermore, the transparency and trustworthiness of the model's decision-
making process might be enhanced as these experiments contribute to developing
a more interpretable and reliable AI system. The outcomes derived from these
experiments have the potential to advance the field of AI by fostering the creation
of AI systems that are both understandable and dependable.

Regarding LIME, the following steps are undertaken to derive and interpret
explanations for individual predictions:

• Step 1: Begin by instantiating a LIME explainer using the
LimeTabularExplainer library.

• Step 2: Select an example instance from the testing dataset (see Table 4-5).
• Step 3: Utilize the LIME explainer to generate an explanation for the

selected instance.

60

• Step 4: The generated LIME explanation offers insights into the
contribution of each feature to the prediction for the specific instance. The
coefficients of the interpretable model guide the magnitude and direction of
each feature's influence. Positive coefficients indicate that increasing a
feature's value tends to raise the predicted effort, while negative coefficients
suggest the opposite effect.

Regarding SHAP, these values are derived and interpreted as follows:
• Step 1: Conversion from LIME to SHAP. The LIME explanation obtained

earlier is converted into a format compatible with SHAP, facilitating a
broader perspective of feature importance.

• Step 2: A SHAP explainer is established using the SHAP.Explainer library.
It takes as input the prediction function and the reshaped training data,
enabling the computation of SHAP values.

• Step 3: SHAP values are computed for the entire test dataset using the
SHAP explainer. These values quantitatively represent the contribution of
each feature to the prediction for each instance within the dataset.

• Step 4: Visualize the representation and interpretation. This visual
representation aids in comprehending the relative importance of features
across the dataset.

Table 4-5 presents a specific instance that is being used to demonstrate the
application of LIME. It presents various features and corresponding values for
each project. This instance serves as an example for illustrating how LIME might
be utilized to explain and interpret the relationship between the features and the
actual effort in that project.

Table 4-5: The scenario of instance for illustrating LIME

Features Instance Specific Unit
EI 209 Function Points
EO 129 Function Points
EQ 24 Function Points
EIF 15 Function Points
ILF 83 Function Points
IS Communication Function Points
RS M2 Function Points

Real Effort 10200 Person-Hours

4.9 Baseline Models
This section proposes three baseline models: one statistical model (stepwise-

based regression), one simple artificial neural network (ANN) model from
previous research, and IFPUG-FPA. IFPUG-FPA is introduced in Section 3.1.

61

Three baseline models are used to compare the performance of the best model
among MLR, RF, and DLMLP based on Dataset 1. The thesis employs a set of
metrics, namely MMRE, MBRE, MIBRE, MAE, Pred(0.25), and SA, to evaluate
the performance of the best model compared with the baseline models. It is worth
noting that the same dataset used for validation by the best-performing model is
also employed in assessing the baseline models.

4.9.1 ANN-based Model

A simple ANN-based model with two hidden layers has been employed as the
baseline model. The purpose of choosing two hidden layers is to make the model
simple and naive to determine the minimum performance that might be expected.
If the best model does not perform significantly better than the baseline, it might
be overfitting or not appropriately capturing the underly patterns. The parameters
adopted in the ANN-based model are presented in Table 4-6.

Table 4-6: The parameters of a simple ANN-based model

No Parameters Values
1 Learning rate 0.01
2 Batch size 64
3 Epoch 100
4 Rate decay 0.999
6 Early stop True, patience = 5
7 Loss function Cross Entropy Loss

4.9.2 Stepwise-based Regression Model

Stepwise-based regression (SWR) [47], [112] is a technique widely used in
statistical modelling, drawing inspiration from previous publications [46], [47],
[148]. This approach to multiple linear regression involves an automated process
for selecting independent variables and might be summarized as follows:

• Initialization: Begin with a starting model containing predefined terms
(backward selection) or a null model (forward selection).

• Model Complexity: Define the desired model complexity, specifying which
terms should be included, such as linear, quadratic, or interaction terms.

• Evaluation threshold: Set an evaluation threshold based on the sum of
residual errors. This threshold determines whether to add or remove features.

• Iterative Process: The algorithm iteratively adds or removes features while
re-evaluating the model at each step.

• Termination: Stepwise regression continues until no further improvement in
estimation is achievable based on threshold.

Forward selection initiates with a null model and progressively adds features
that meet specific criteria. Conversely, backward selection starts with a full model
and removes non-significant features. Consequently, stepwise regression

62

necessitates two significance levels: one for adding features and another for
removing features.

5. RESULTS AND DISCUSSION

The results of the experiment and discussion are illustrated in this section.

5.1 Comparison of Model Performance

This section presents a comprehensive evaluation of effort estimation methods.
The evaluation encompasses a range of machine learning techniques, including
MLR (see Section 4.2), RF (see Section 4.3), DLMLP (see Section 4.4),
DLMLPB (see Section 4.6), the ensemble by incorporating between RF, MLR,
DLMLP (see Section 4.7). Two primary evaluation tables, Table 5-1 and Table
5-2, are employed to assess the performance of these methods under various
conditions. Table 5-3 illustrates the performance of baseline models.

Table 5-1 focuses on assessing effort estimation methods using Dataset 1. This
table provides a detailed analysis of model performance metrics, including
MMRE, MBRE, MIBRE, MAE, Pred(0.25)/Pred(0.30), and SA. The rows
represent different models, including MLR, RF, DLMLP, the ensemble, and
DLMLPB models. The performance evaluation in this table offers insight into the
effectiveness of these methods when applied to Dataset 1.

Table 5-1: The performance of effort estimation obtained from MLR, RF, the

ensemble, and DLMLPB based on testing of Dataset 1

Predictors
/Models

MMRE MBRE MIBRE MAE
PRED

SA
0.25 0.30

P1
MLR 0.9113 1.0057 0.3831 2173.83 0.27 0.32 0.43

RF 0.6879 0.8047 0.3661 2150.85 0.28 0.32 0.46

DLMLP 0.6709 0.7719 0.3637 2066.69 0.29 0.34 0.51

Ensemble 0.5478 0.7229 0.3582 1986.74 0.29 0.34 0.52

DLMLPB 0.6228 0.7702 0.3606 2016.14 0.29 0.34 0.52
P2

MLR 1.2273 1.3250 0.4134 2254.00 0.26 0.32 0.43

RF 0.9802 1.0675 0.3786 2118.20 0.30 0.38 0.46

DLMLP 0.5526 0.7360 0.3044 1768.61 0.46 0.53 0.58

Ensemble 0.4853 0.6132 0.2920 1669.18 0.46 0.54 0.61

DLMLPB 0.4568 0.5378 0.2874 1464.35 0.47 0.52 0.65

63

P3

MLR 0.9081 1.0012 0.3824 2172.63 0.28 0.34 0.45

RF 0.6820 0.7964 0.3626 2123.92 0.32 0.35 0.46

DLMLP 0.6275 0.7812 0.3619 2033.24 0.32 0.36 0.51

Ensemble 0.5362 0.7464 0.3553 2024.51 0.34 0.36 0.52

DLMLPB 0.5639 0.6713 0.3356 1915.79 0.36 0.42 0.54

P4

MLR 1.1999 1.2851 0.4090 2018.79 0.27 0.32 0.45

RF 0.9784 1.0579 0.3750 2012.14 0.31 0.38 0.47

DLMLP 0.2478 0.4311 0.1572 530.65 0.79 0.84 0.87

Ensemble 0.3119 0.3657 0.2189 1007.28 0.62 0.73 0.75

DLMLPB 0.1871 0.2064 0.1393 494.20 0.82 0.85 0.88

P5

MLR 1.1551 1.0378 0.5949 2335.22 0.27 0.30 0.4

RF 0.6875 0.8028 0.3645 2145.08 0.32 0.35 0.45

DLMLP 0.6326 0.7830 0.3621 2118.93 0.32 0.36 0.49

Ensemble 0.6115 0.7281 0.3517 1983.02 0.31 0.36 0.52

DLMLPB 0.6855 0.7842 0.3567 2069.72 0.33 0.37 0.51

P6

MLR 0.8981 1.0129 0.3967 2228.68 0.28 0.32 0.42

RF 0.7756 0.8632 0.3649 2029.29 0.30 0.39 0.48

DLMLP 0.3489 0.4750 0.2219 963.71 0.68 0.71 0.77

Ensemble 0.3599 0.4483 0.2479 1143.07 0.56 0.66 0.72

DLMLPB 0.2586 0.3551 0.1731 550.82 0.76 0.78 0.86

Table 5-2 expands the evaluation by examining the performance of effort

estimation methods across a broad spectrum. In addition to Dataset 2, this table
incorporates other datasets such as Desharnais, Albrecht, Kitchenham, and China
datasets. The evaluation includes a comparison of MLR, RF, the ensemble, and
transfer learning cases 1, 2, and 3 (TL-Case1, TL-Case2, TL-Case3, see in Section
3.4.5), along with an ensemble-based approach. As mentioned in Section 3.3.2,
TL-Case1 and TL-Case3 for Desharnais and Kitchenham and TL-Case1 for
Albrecht and China are not measured due to differences in input features. The
metrics used for evaluation are consistent with those in Table 5-1. This

64

comprehensive analysis allows us to assess the effectiveness of these techniques
across diverse datasets.

Table 5-2: The performance of effort estimation obtained from MLR, RF, TL-
Case1, TL-Case2, TL-Case3, and the ensemble based on testing of Dataset 2,
Desharnais, Albrecht, Kitchenham and China datasets

Preditors/
Models

MMRE MBRE MIBRE MAE
PRED

SA
0.25 0.30

PD

MLR 0.4202 0.5795 0.3340 2539.94 0.25 0.38 0.28

RF 0.3850 0.5431 0.2989 2514.43 0.44 0.50 0.29

TL-Case1 - - - - - - -

TL-Case2 0.2076 0.2507 0.1693 1333.22 0.68 0.75 0.65

Ensemble 0.2430 0.3397 0.2231 1860.73 0.50 0.75 0.51

TL-Case3 - - - - - - -

PA

MLR 3.2224 0.5479 3.1693 7.13 0.4 0.4 0.54

RF 1.8730 1.9115 0.3906 4.73 0.4 0.4 0.65

TL-Case1 - - - - - - -

TL-Case2 0.3201 0.3220 0.1950 1.44 0.6 0.6 0.84

Ensemble 0.8081 0.8397 0.3368 3.66 0.4 0.4 0.61

TL-Case3 0.1088 0.1839 0.1087 0.38 0.8 0.8 0.90

PK

MLR 0.7583 0.5207 0.3193 589.35 0.42 0.43 0.64

RF 0.4716 0.4870 0.2364 471.52 0.50 0.57 0.71

TL-Case1 - - - - - - -

TL-Case2 0.2204 0.3413 0.1594 240.88 0.75 0.78 0.81

Ensemble 0.2276 0.2435 0.1644 262.80 0.75 0.78 0.81

TL-Case3 - - - - - - -

PC

MLR 1.6664 1.8916 0.4550 2762.83 0.27 0.28 0.25

RF 1.6386 1.8595 0.4507 2595.62 0.27 0.28 0.29

TL-Case1 - - - - - - -

TL-Case2 0.9833 1.0569 0.2659 1034.31 0.58 0.59 0.72

65

Ensemble 0.9626 1.0241 0.3235 1447.57 0.47 0.59 0.62

TL-Case3 0.2092 0.2325 0.1578 247.21 0.79 0.83 0.93

PDataset 2

MLR 0.6681 0.9829 0.1471 1162.98 0.33 0.34 0.00

RF 0.3031 0.3698 0.2571 677.45 0.66 0.67 0.23

TL-Case1 0.4951 1.0574 0.4539 1165.51 0.17 0.17 0.00

TL-Case2 0.2480 0.2557 0.1796 438.48 0.66 0.83 0.43

Ensemble 0.2182 0.2518 0.1872 482.28 0.66 0.67 0.38

TL-Case3 0.1884 0.2310 0.1731 463.10 0.66 0.83 0.40

Table 5-3 displays the evaluation results for effort estimation derived from

three baseline models: ANN-based, SWR-based, and IFPUG-PFA. This table
offers an in-depth examination of the performance metrics for these models,
primarily focusing on the testing of Dataset 1. The assessment of model
performance encompasses the analysis of six predictors, denoted as P1 to P6.

Table 5-3: The performance of effort estimation obtained from baseline models
(ANN, SWR, IFPUG) based on Dataset 1

Predictors
/Models

MMRE MBRE MIBRE MAE
PRED

SA
0.25 0.30

P1

ANN 0.6760 0.7769 0.3592 2067s.64 0.26 0.28 0.47

SWR 1.5740 1.6748 0.4380 2373.19 0.22 0.28 0.39

P2

ANN 0.6081 0.8216 0.3056 1786.68 0.41 0.45 0.54

SWR 1.1787 1.2716 0.4075 2177.96 0.24 0.30 0.44
P3

ANN 0.6929 0.9452 0.3659 2096.01 0.29 0.35 0.46

SWR 1.5340 1.6240 0.4330 2364.94 0.25 0.30 0.41
P4

ANN 0.3319 0.3716 0.2063 732.24 0.65 0.71 0.81

SWR 1.1734 1.2640 0.4074 2175.54 0.25 0.31 0.44

P5

ANN 0.6455 0.7940 0.4156 2152.72 0.31 0.36 0.48

SWR 1.1726 1.0276 0.6099 2310.61 0.27 0.30 0.41

P6

66

ANN 0.4628 0.9579 0.2963 1097.54 0.52 0.56 0.72

SWR 0.9092 0.8835 0.4612 2174.54 0.26 0.32 0.44

IFPUG

IFPUG-PFA 1.7977 1.7989 0.5070 6652.55 0.16 0.18 0.00

5.2 Discussion of the Results

This section focuses on addressing and providing insights into five key RQs.
The aim is to examine and compare various estimation methods and predictor sets
to determine their accuracy in predicting effort estimation. Each research question
serves as a crucial inquiry in understanding the effectiveness of different
approaches.

5.2.1 Comparing Predictive Accuracy in SDEE: DLMLP, MLR, RF

This study comprehensively analyses model performance across different
predictor groups, focusing on MLR, RF, and DLMLP models. The objective is to
compare the performance of these models individually with each predictor group
and to answer RQ1: Is the DLMLP more accurate than the MLR, RF? The
performance of those models is presented in Table 5-1 and Table 5-2. Figure 5-1
to Figure 5-11 illustrates a detailed comparison of performance metrics for three
distinct models: DLMLP, MLR, and RF. Each model is illustrated by a unique
colour on the chart, with MLR depicted as a blue bar, RF as orange, and DLMLP
as green.

In the P1 predictor group, MLR achieves an MAE of 2173.83, while RF
exhibits a slightly improved MAE compared to MLR. However, DLMLP
achieves the lowest MAE at 2066.69. Similar trends are observed across metrics
such as MMRE, MBRE, MIBRE, Pred(0.25), and SA (see Figure 5-1). These
results collectively highlight RF’s superior performance over MLR, with DLMLP
surpassing both MLR and RF.

Within the P2 predictor group, across multiple metrics, including MMRE,
MBRE, MIBRE, and MAE, DLMLP consistently outperforms MLR and RF (see
Figure 5-2). For instance, MAE values for MLR, RF, and DLMLP are 2254.00,
2118.20, and 1768.61, respectively. DLMLP’s predictive prowess is notably
evident through its superior performance across these metrics, with RF
outperforming MLR.

Similarly, in the P3 predictor group, competitive performance is observed
between MLR and RF, with RF exhibiting advantages across all metrics.
Nevertheless, DLMLP consistently outperforms RF and MLR within this
predictor group (see Figure 5-3).

Moreover, in the P4 predictor group, DLMLP achieves the lowest MAE with a
value of 530.64, outperforming MLR (2018.79) and RF (2012.14). While other
metrics, including MMRE, MBRE, MIBRE, Pred(0.25), and SA, favour RF over

67

MLR, DLMLP's performance exceeds that of both MLR and RF in terms of all
metrics (see Figure 5-4). Additionally, P4 predictor group outperforms compared
with P1, P2, P3, P5, and P6.

Consistent with the trends observed in the P5 and P6 predictor groups, DLMLP
consistently demonstrates superior predictive performance over MLR and RF
across multiple metrics, including MNRE, MBRE, MIBRE, and MAE (see Figure
5-5, and Figure 5-6). DLMLP's proficiency in prediction is evident through its
consistently lower metric values.

Figure 5-1: The performance of DLMLP compared to MLR, RF based on P1

Figure 5-2: The performance of DLMLP compared to MLR, RF based on P2

68

Figure 5-3: The performance of DLMLP compared to MLR and RF based on P3

Figure 5-4: The performance of DLMLP compared to MLR RF based on P4

Figure 5-5: The performance of DLMLP compared to MLR RF based on P5

69

Figure 5-6: The performance of DLMLP compared to MLR, RF based on P6

Figure 5-7: The performance of DLMLP compared to MLR RF based on PD

Figure 5-8: The performance of DLMLP compared to MLR, RF based on PA

70

Figure 5-9: The performance of DLMLP compared to MLR, RF based on PC

Figure 5-10: The performance of DLMLP compared to MLR RF based on PK

Figure 5-11: The performance of DLMLP compared to MLR, RF based on PDataset2

71

As previously mentioned, the trends observe in the predictor persist in PD, PA,
PK, PC, and PDataset2 predictors. As presented from Figure 5-7 to Figure 5-11,
DLMLP consistently outperforms MLR and RF regarding MMRE, MBRE,
MIBRE, MAE, Pred(0.25), and SA, establishing itself as the preferred model
within these scenarios. RF demonstrates improved performance over MLR in the
majority of cases.

In conclusion, this study provides definitive answers to the research questions.
RQ1, which investigates the accuracy of DLMLP compared to MLR and RF
models, confirms that DLMLP consistently outperforms both models across all
predictive factors. The lower MMRE and MBRE values achieved by DLMLP
indicate its ability to capture the magnitude and bias of estimation errors more
effectively than MLR and RF models. These results highlight the potential of DL
techniques, specifically DLMLP, in improving effort estimation accuracy.

5.2.2 Comparing DLMLP vs. Baseline Models

Comparing the best model to baseline models helps gauge its relative
performance. If the complex model, in this case, DLMLP (as discussed in Section
5.2.1), does not significantly outperform baseline models, it raises questions about
its complexity and ability to capture crucial data patterns.

The performance of DLMLP compared with baseline models is presented in
Figure 5-12 to Figure 5-17, where the green bar stands for DLMLP, and the
yellow, red, and black stand for ANN, SWR, and IFPUG-FPA, respectively.

Figure 5-12: The performance of DLMLP compared to baseline models based on P1

72

Figure 5-13: The performance of DLMLP compared to baseline models based on P2

Figure 5-14: The performance of DLMLP compared to baseline models based on P3

Figure 5-15: The performance of DLMLP compared to baseline models based on P4

73

Figure 5-16: The performance of DLMLP compared to baseline models based on P5

Figure 5-17: The performance of DLMLP compared to baseline models based on P6

It is noticeable that those figures reveal that the DLMLP consistently
outperforms the baseline models across diverse datasets (P1 to P6) based on
various performance metrics. DLMLP achieves lower values across metrics,
including MMRE, MBRE, and MIBRE. These results imply that DLMLP
provides more accurate and less biased effort estimations than the alternative
models.

Its superior performance extends to the MAE, demonstrating its effectiveness
in minimizing the absolute difference between predictions and actual effort
values. The strength of the DLMLP further manifests in its ability to provide

74

predictions within a specified tolerance. Higher Pred(0.25) values indicate that
DLMLP delivers effort estimation that closely aligns with the actual effort.

5.2.3 Impact of Dataset Balancing on Accuracy of SDEE in DLMLP

The other aim of this study is to comprehensively assess the impact of using a
balanced dataset and handling categorical variables in deep learning models in the
context of effort estimation. Specifically, the thesis compares model performance
with a balanced dataset based on categorical variable handling (DLMLPB)
against the model without balancing categorical variables (DLMLP) across
predictors P1, P2, P3, P4, P5, and P6. This evaluation answers RQ2 that dataset
balancing might enhance the predictive accuracy of DLMLP methods in software
effort estimation. Model performance evaluation is based on critical metrics such
as MMRE, MBRE, MIBRE, MAE, Pred, and SA.

Figure 5-18 to Figure 5-23 visually illustrate the performance comparison
between DLMLP and DLMLPB based on datasets P1 to P6. The green bar stands
for DLMLP, and violet stands for DLMLPB. The results reveal that DLMLPB
consistently outperformed DLMLP in estimation accuracy across all predictors.
This finding provides strong evidence to support the notion that using a balanced
dataset and effectively handling categorical variables leads to improved
estimation accuracy in deep learning models.

Figure 5-18: The performance of DLMLP compared to DLMLPB based on P1

75

Figure 5-19: The performance of DLMLP compared to DLMLPB based on P2

Figure 5-20: The performance of DLMLP compared to DLMLPB based on P3

Figure 5-21: The performance of DLMLP compared to DLMLPB based on P4

76

Figure 5-22: The performance of DLMLP compared to DLMLPB based on P5

Figure 5-23: The performance of DLMLP compared to DLMLPB based on P6

In a more detailed analysis, DLMLPB consistently outperforms DLMLP across

various metrics, including MMRE, MBRE, and MAE. These metrics serve as
indicators of superior accuracy in effort estimation. Specifically, in predictors P1
and P5, while some metrics exhibit marginal similarities, the values of MMRE,
MIBRE, and MAE obtained from DLMLPB surpass those acquired from
DLMLP. In predictors P2, P3, P4, and P6, DLMLPB consistently produces lower
MMRE, MBRE, MIBRE, and MAE values than DLMLP. Moreover, the
predictive power of DLMLPB, as represented by Pred(0.25), MAE, is notably
more significant than that of DLMLP. Additionally, DLMLPB demonstrates
enhanced performance in capturing the bias of estimation errors, as evident in its
lower MIBRE values. These findings underscore the significance of dataset
balancing and effective management of categorical variables within effort
estimation.

77

The findings presented here strongly emphasize the usefulness of employing a
balanced dataset when utilizing deep learning models for effort estimation.
Researchers and practitioners should consider thoroughly checking and balancing
the dataset before training the models to ensure more accurate estimation
outcomes. Additionally, adequate handling of categorical variables is critical for
achieving reliable estimations. By addressing these aspects, researchers might
enhance the accuracy and reliability of effort estimation models, ultimately
leading to more informed decision-making and improved project management.

In conclusion, the comparison between DLMLP and DLMLPB has
demonstrated that the model with a balanced dataset and effective categorical
variable handling consistently yields superior accuracy in effort estimation across
various predictors. This finding not only answers the RQ2 that dataset balancing
might enhance the predictive accuracy of DLMLP methods in software effort
estimation but also emphasizes the critical role of dataset balancing and
categorical variable handling in achieving accurate effort estimation. Therefore,
researchers are strongly recommended to thoroughly examine and balance their
datasets and adopt appropriate techniques for handling categorical variables to
improve the accuracy and reliability of their effort estimation models.

5.2.4 Evaluating Ensemble for SDEE: MLR, RF, and DLMLP

The next objective of this research is to compare the performance of MLR, RF,
and DLMLP against ensemble models established by incorporating MLR, RF and
DLMLP for effort estimation using eleven predictors: P1, P2, P3, P4, P5, P6, PD,
PA, PK, PC, and PDataset2. Figure 5-24 to Figure 5-34 present the performance of
MLR, RF, DLMLP, and ensemble models. The blue bar stands for MLR, the
orange, the green, and the pink stands for RF, DLMLP, and Ensemble,
respectively.

In the context of the P1 predictor (as illustrated in Figure 5-25), the ensemble's
performance stands out as it consistently outperforms MLR, RF, and DLMLP.
Specifically, the ensemble demonstrates superior accuracy with lower MMRE,
MBRE, MIBRE, and MAE values, signifying more precise effort estimation.
Furthermore, the ensemble excels in predictive power, as evidenced by higher
Pred(0.25) and SA values compared to MLR, RF, and DLMLP. It is worth noting
that these trends persist across P2, P3, P5, PC, PK, and PDataset2 predictors, as
depicted in Figure 5-25, Figure 5-26, Figure 5-28, Figure 5-32, Figure 5-33, and
Figure 5-34. Across these diverse predictors, the ensemble consistently maintains
its edge in accuracy and predictive prowess, underscoring its effectiveness in
effort estimation.

However, when considering predictors such as P4, P6, PA, and PD, the ensemble
still outperforms MLR and RF regarding MMRE, MBRE, MIBRE, MAE, and
SA. Nevertheless, it is worth noting that these values are slightly higher than those
obtained from DLMLP, indicating that while the ensemble remains competitive,

78

DLMLP holds a marginal advantage in these specific cases (such as in P4, P6, PD,
PC, and PK).

Figure 5-24: The performance of the ensemble model compared to MLR, RF, and

DLMLP based on P1

Figure 5-25: The performance of the ensemble model compared to MLR, RF, and

DLMLP based on P2

Figure 5-26: The performance of the ensemble model compared to MLR, RF, DLMLP

based on P3

79

Figure 5-27: The performance of the ensemble model compared to MLR, RF, DLMLP

based on P4

Figure 5-28: The performance of the ensemble model compared to MLR, RF, DLMLP

based on P5

Figure 5-29: The performance of the ensemble model compared to MLR, RF, DLMLP

based on P6

80

Figure 5-30: The performance of the ensemble model compared to MLR, RF, DLMLP

Figure 5-31: The performance of the ensemble model compared to MLR, RF, DLMLP

based on PA

Figure 5-32: The performance of the ensemble model compared to MLR, RF, DLMLP

based on PK

81

Figure 5-33: The performance of the ensemble model compared to MLR, RF, DLMLP

based on PC

Figure 5-34: The performance of the ensemble model compared to MLR, RF, and

DLMLP based on PDataset2
In conclusion, the extensive analysis conducted on various effort estimation

scenarios presents valuable insights into the choice between ensemble and
individual models. As demonstrated across multiple predictors, ensemble models
consistently exhibit superior accuracy and predictive power compared to
individual models, including MLR and RF. This finding highlights their potential
to enhance effort estimation outcomes significantly. The recommendation to
consider ensemble models becomes especially compelling when accuracy and
precision are essential in estimating effort. Ensemble models might effectively
leverage the strengths of different individual models to provide more accurate and
reliable estimations.

82

However, it is essential to exercise caution when opting for ensemble models.
While they generally outperform individual models, DLMLP retains a marginal
advantage in specific cases, such as P4, P6, PA, and PD predictors. The
recommendation is to prioritize ensemble models for effort estimation,
particularly when seeking superior accuracy and predictive capabilities across
various predictors. Nevertheless, careful consideration should be given to the
nature of the task and the individual predictor profiles. When precision is critical,
ensemble models offer a robust solution, but DLMLP remains a viable alternative,
particularly in cases where its slight advantage aligns with the specific
requirements of the effort estimation.

5.2.5 A Comparative Analysis of Transfer Learning and DLMLP

The other objective of this study is to compare the accuracy of the transferred
model with the DLMLP-based model trained on the new datasets (Albrecht,
China, and Dataset 2). This comparison addresses RQ4: "Does DLMLP-based
transfer learning offer accuracy over conventional DLMLP?”. The study also
introduces a pre-trained model based on the ISBSG dataset, providing a
comprehensive and reliable foundation for effort estimations.

As mentioned in Section 3.4.5, three transfer learning scenarios, namely TL-
Case1, TL-Case2, and TL-Case3, are investigated to assess the effectiveness of
transfer learning in effort estimation. In TL-Case1, DLMLP-based models trained
on Dataset 1 (the old dataset) are employed to evaluate effort estimation
performance on Dataset 2. TL-Case2 involves training DLMLP-based models on
80% of the Albrecht, China, and Dataset 2 datasets and evaluating their
performance on the remaining 20%. Finally, TL-Case3 employs DLMLP-based
models initially trained on Dataset 1 (pre-trained model) and continues their
training on 80% of the new datasets, with an evaluation conducted on the
remaining 20% of new datasets.

Figure 5-35, Figure 5-36, and Figure 5-37 illustrate the performance
comparison among TL-Case1, TL-Case2, and TL-Case3 across the studied
datasets (Albrecht, China, and Dataset 2). The cyan bars represent TL-Case1,
while TL-Case2 and TL-Case3 are illustrated in green and grey, respectively. The
results obtained from these three cases provide insights into the efficacy of
transfer learning. TL-Case 1, obtained from Dataset 2, reveals that the DLMLP
model trained on Dataset 1 does not outperform TL-Case2 and TL-Case3. On the
other hand, TL-Case3 truly showcases its potential. By combining the strengths
of the pre-trained model with further training on the combined datasets, TL-Case3
achieves the lowest MMRE, MBRE, MIBRE, MAE, Pred, and SA values,
suggesting superior performance in estimating software effort. These findings
collectively emphasize the significance of transfer learning and its ability to
enhance the accuracy of effort estimation models in software development
projects.

83

Figure 5-35: The performance of TL_Case 2 compared to TL_Case 3 based on PA

Figure 5-36: The performance of TL_Case 2 compared to TL_Case 3 based on PC

Figure 5-37: The performance of TL_Case 2 compared to TL_Case 3 based on

PDataset2

84

Furthermore, this thesis introduces a pre-trained model constructed upon the
ISBSGModel, a neural network architecture derived from the nn.Module class of
the PyTorch library. The ISBSGModel is specifically designed to process an input
of size input_size and produce a single output value. The model comprises four
fully connected linear layers, with the ReLU activation function applied after each
layer except for the output layer. The structure of the ISBSGModel is defined in
its initialization method, where the four fully connected layers are instantiated
(see Figure 3-1). The first layer connects input_size neurons to a hidden layer of
32 neurons. The ReLU activation function is subsequently applied to the output
of each layer, introducing non-linearity and facilitating feature extraction. The
second layer comprises 64 neurons and connects to the preceding layer through
linear transformations. This pattern is repeated in the third layer, which includes
32 neurons. Finally, the output of the third layer is fed into a fourth layer
containing a single neuron, representing the final output of the model.

Figure 5-38: The ISBSGModel

In conclusion, transfer learning offers significant advantages in effort

estimation by leveraging prior knowledge and improving the accuracy of
predictions. Examining three transfer learning scenarios (TL-Case1, TL-Case2,
and TL-Case3) has provided valuable insights into the effectiveness of transfer
learning techniques within this domain. Notably, TL-Case3, which utilized pre-
trained models adjusted on a combined dataset, emerged as the most effective
strategy, highlighting the potential of transfer learning to improve effort

85

estimation accuracy significantly. These findings contribute to the expanding
body of research on transfer learning and underscore its relevance in enhancing
the performance of machine learning-based models for software effort estimation.
Additionally, this thesis presents a pre-trained model based on the ISBSGModel
architecture, showcasing the effectiveness of transfer learning for effort
estimation. A dedicated library for this pre-trained model offers a convenient and
accessible resource for integration into Python projects, ultimately enhancing the
accuracy and efficiency of effort estimation in software engineering.

5.2.6 Exploring the Influence of IS and RS on SDEE

The influence of IS and RS on software effort estimation using deep learning
methods is a crucial aspect to consider. This study aims to analyse the impact of
IS and RS on effort estimation accuracy by comparing predictor sets without
categorical variables (P1, P2) and those with categorical variables (P3, P4, P5,
P6) using DLMLP and DLMLPB models.

Figure 5-39 and Figure 5-40 present the performance of DLMLP and DLMLPB
among predictors from P1 to P6. The experimental results presented in these
figures provide insights into the influence of IS and RS on effort estimation. When
comparing the predictor sets like P1 (AFP), P3 (AFP, IS), and P5 (AFP, IS, RS)
for effort estimation, it is essential to analyze the effects of the IS and RS
predictors on the accuracy of estimation. Including the IS predictor in P3 leads to
significant improvements in accuracy compared to P1. P3 consistently achieves
lower MMRE, MBRE, MIBRE, and MAE values, indicating the significant
contribution of IS in enhancing estimation accuracy. Moreover, P5, which
includes both IS and RS predictors, performs similarly to P3, suggesting that
adding RS provides an extra but relatively minor improvement when AFP and IS
are already present. These findings underscore the importance of considering IS
in effort estimation models, as it captures valuable information related to the
inherent complexities and intricacies of the software development process.

Furthermore, when comparing P1 (AFP) against P2 (EI, EO, EQ, EIF, ILF), it
becomes evident that P2 consistently outperforms P1 regarding accuracy metrics.
Including complexity-related predictors in P2, such as EI, EO, EQ, EIF, and ILF,
enhances estimation accuracy. However, it is essential to note that including IS
and RS in P4 and P6 further improves estimation accuracy beyond the AFP-based
model of P1. These findings underscore the critical role of IS and RS in capturing
the complex factors that significantly impact the effort required for software
development projects.

Upon examining the experimental results, a difference in performance between
predictors P4 and P6 becomes evident. Predictor P4 represents the inclusion of IS
as a predictor, while predictor P6 incorporates both IS and RS as predictors.
Surprisingly, including RS in predictor P6 results in lower performance than P4
without RS. This result suggests that RS might have a detrimental effect on the
model's overall performance.

86

Figure 5-39: The MMRE, MBRE, and MIBRE obtained from DLMLP, DLMLPB

among six predictors (P1, P2, P3, P4, P5, P6)

Figure 5-40: MAE, Pred(0.25), and SA obtained from DLMLP, DLMLPB among six

predictors (P1, P2, P3, P4, P5, P6)

87

Interestingly, the experimental results reveal a surprising outcome: the
inclusion of RS in predictor P6 leads to lower performance than P4, which does
not include RS. This unexpected result suggests a potential negative impact of RS
on the overall model performance. Further research is needed to understand the
underlying factors contributing to this phenomenon and to explore potential
approaches to mitigating the adverse effects of RS on effort estimation accuracy.

In conclusion, including IS and RS predictors consistently enhances the
accuracy of effort estimation models. Predictor sets incorporating IS and RS, such
as P3 and P5, demonstrate superior performance compared to models solely
relying on AFP or complexity factors. These findings highlight the importance of
considering IS and RS predictors to capture the intricate nature of software
development projects and achieve more precise and reliable effort estimation.

5.3 Evaluation against Hypotheses

Table 5-4 and Table 5-5 present the results of the Mann-Whitney U-tests,
which are conducted to examine potential significant differences in mean among
various machine learning methodologies: DLMLP, MLR, RF, the ensemble,
transfer learning, and DLMLPB. The primary aim of these tests is to ascertain
whether statistically significant variations in performance among these
methodologies exist. The null hypothesis (H0) stipulates significantly less or
equal mean accuracy, while the alternative hypothesis (H1) posits the contrary.

Table 5-4: The Mann-Whitney hypothesis test between DLMLP, MLR, RF, the
ensemble and DLMLPB models based on P1, P2, P3, P4, P5, P6

No Model 1 Model 2
P-value

P1 P2 P3 P4 P5 P6

0 DLMLP MLR 0.00 0.01 0.04 0.00 0.04 0.02

1 DLMLP RF 0.03 0.04 0.00 0.00 0.04 0.00

2 DLMLP DLMLPB 0.00 0.02 0.04 0.00 0.00 0.02

3 DLMLP Ensemble 0.01 0.04 0.01 0.60 0.01 0.70

4 MLR RF 0.02 0.01 0.04 0.00 0.04 0.04

5 MLR DLMLPB 0.01 0.00 0.03 0.00 0.03 0.01

6 MLR Ensemble 0.00 0.00 0.00 0.00 0.00 0.00

7 RF DLMLPB 0.00 0.02 0.04 0.01 0.04 0.00

8 RF Ensemble 0.00 0.01 0.00 0.00 0.00 0.03

9 DLMLPB Ensemble 0.01 0.02 0.01 0.04 0.01 0.01

• DLMLP vs. MLR, and RF:

88

As shown in Table 5-4, the p-values resulting from the comparison of DLMLP
with MLR and RF, using predictors from P1 to P6, are consistently below the
significance threshold of 0.05. Furthermore, when the study extends this
comparison to include other predictors (PA, PD, PC, PDataset2), as presented in Table
5-5, the findings that the p-values remain below 0.05, these findings collectively
indicate that DLMLP exhibits substantial variations in mean performance
compared to MLR and RF. Consequently, the null hypothesis (𝜇𝐷𝐿𝑀𝐿𝑃 ≤
 𝜇𝑀𝐿𝑅 𝑜𝑟 𝜇𝐷𝐿𝑀𝐿𝑃 ≤ 𝜇𝑅𝐹) is rejected, highlighting that the mean accuracy
obtained from DLMLP is greater than MLR and RF in software effort estimation.

Table 5-5: The Mann-Whitney hypothesis test between TL-Case2 (DLMLP),
MLR, RF, the ensemble and TL-Case3 models based on PA, PD, PC, PDataset2.

No Model 1 Model 2
P-value

PA PD PC PK PDataset2

0 TL-Case2 MLR 0.00 0.00 0.00 0.02 0.00

1 TL-Case2 RF 0.02 0.00 0.00 0.01 0.03

3 TL-Case2 Ensemble 0.25 0.57 0.08 0.08 0.00

4 MLR RF 0.00 0.00 0.02 0.02 0.04

6 MLR Ensemble 0.02 0.00 0.00 0.00 0.00

8 RF Ensemble 0.02 0.00 0.00 0.03 0.00

10 TL-Case3 Ensemble 0.00 # 0.01 # 0.00

11 TL-Case3 RF 0.00 # 0.00 # 0.00

12 TL-Case3 MLR 0.00 # 0.00 # 0.00

13 TL-Case3 TL-Case2 0.03 # 0.01 # 0.01

• DLMLP vs. DLMLPB:
Balancing the dataset in DLMLPB yields notable improvements, as evidenced by
relatively low p-values: 0.00 for P1, 0.02 for P2, 0.04 for P3, 0.00 for P4, 0.00 for
P5, and 0.02 for P6 (see Table 5-4). As a result, the alternative hypothesis
(𝜇𝐷𝐿𝑀𝐿𝑃𝐵 > 𝜇𝐷𝐿𝑀𝐿𝑃) is retained in this case, highlighting that the mean
accuracy obtained from DLMLPB is greater than DLMLP.

• The Ensemble vs. DLMLP, MLR, and RF:

In the comparative analysis of mean performance metrics across the ensemble,
MLR, and RF concerning predictors P1 to P6, PA, PD, PC, PK, and PDataset2, as
presented in Table 5-4 and Table 5-5, it is evident that the derived p-values for
these comparisons consistently fall below the 0.05 significance threshold. This
outcome leads to rejecting the null hypothesis (𝜇𝐸𝑁𝑆 ≤ 𝜇𝑀𝐿𝑅, 𝑜𝑟 𝜇𝐸𝑁𝑆 ≤
 𝜇𝑅𝐹), thereby establishing statistically significant mean differences between the
ensemble and MLR and RF, confirming that the mean accuracy attained from the

89

ensemble is better than those obtained from MLR and RF. Moreover, when
examining the mean accuracy achieved from the ensemble approach in
comparison to DLMLP, it is observed that predictors P1, P2, P3, P5, PA, PDataset2
exhibit p-values fall below 0.05 except P4, P6, PD, PC, and PK. Consequently, the
null hypothesis (𝜇𝐸𝑁𝑆 ≤ 𝜇𝐷𝐿𝑀𝐿𝑃) might be rejected.

In conclusion, this observation suggests that, in general, the mean accuracy
obtained from the ensemble is more significant than that obtained from DLMLP,
MLR, and RF in software effort estimation.
• Transfer Learning (TL-Case3) vs. DLMLP:

The transfer learning model (TL-Case3) shows significant mean performance
disparities compared to the DLMLP, as the p-values obtained from those models
are less than 0.05 in PA, PC, and PDataset2. The null hypothesis (𝜇𝑇𝐿 ≤ 𝜇𝐷𝐿𝑀𝐿𝑃)
is rejected, indicating that the mean accuracy obtained from the transfer learning
model (TL-Case3) is significantly greater than DLMLP.
• Influence of IS and RS in the accuracy of effort estimation:

Analyzing the results in Table 5-6 provides insights into RQ5, which aims to
determine whether the categorical variables IS and RS significantly influence
effort estimation accuracy. These values indicate that both.
β𝐼𝑆 and γ𝑅𝑆 for each predictor are not equal to 0. Consequently, we reject the null
hypothesis (β𝐼𝑆 = γ𝑅𝑆 = 0) and accept the alternative hypothesis, suggesting
that the categorical variables (IS and RS) influence the accuracy of effort
estimation.

Table 5-6: The Regression coefficient for IS and RS obtained from MLR.
Predictors 𝛃𝑰𝑺 𝛄𝑹𝑺 Description

P5 -2.11 -358.41 β𝐼𝑆 ≠ γ𝑅𝑆 ≠ 0

P6 24.94 -804.60 β𝐼𝑆 ≠ γ𝑅𝑆 ≠ 0

Upon examining the coefficients presented in this table, it is observed that the

magnitude of the regression coefficients for RS (-358.41 and -804.60) is notably
smaller than those for IS (-2.11 and 24.94). This phenomenon indicates that the
variable RS might have a weaker impact on effort estimation accuracy than IS.
This observation, in turn, suggests that the IS variable may exert a more
substantial influence on the accuracy of effort estimation models than the RS
variable. The differences in the magnitudes of these coefficients provide valuable
insights into the importance of these categorical variables in influencing effort
estimation accuracy. This information contributes to a deeper understanding of
the role of Industry Sector and Relative Size in the accuracy of effort estimation
models and informs decision-making regarding model development and feature
selection.

The Mann-Whitney U-test results suggest that the DLMLP significantly
outperforms MLR and RF regarding mean performance. Balancing the dataset in

90

DLMLPB does yield significant improvements in mean performance compared
to DLMLP. The transfer learning model shows significant differences in mean
performance compared to DLMLP. However, the ensemble approach
demonstrates comparable mean performances to DLMLP. Notably, the results
also shed light on the influence of categorical variables, as evidenced by the
regression coefficients obtained for IS and RS from the MLR model. In this
regard, while the regression coefficient of IS demonstrates a moderate effect on
the accuracy, the regression coefficient for RS indicates a relatively minor
influence. These insights collectively provide crucial guidance for practitioners
in selecting suitable machine learning methodologies, underlining the
significance of both model performance and the influence of categorical variables
for well-informed decision-making in practical scenarios.

5.4 Model Explainability Findings - Analysis of Predictor
Contributions

5.4.1 LIME

This study explores the interpretation of predicted effort values generated by a
specific model, DLMLP-P6 (DLMLP trained on P6). This model contains input
features EO, EIF, ILF, EQ, EI, IS, and RS, where EO, EIF, ILF, EQ, and EI are
measured in function points, and IS, RS are categorical variables, a predicted
effort is measured in person-hours.

Figure 5-41: Interpreting the predicted effort values obtained from DLMLP-P6

This method employed for interpretation is LIME, as illustrated in Figure 5-41.

Through applying LIME, the objective is to elucidate the roles of IS and RS within
the effort estimation process across these models. Subsequently, an exhaustive
analysis of the outcomes derived from LIME's interpretations is presented below:

91

• LIME predicts approximately 8999.69 (person-hours) for a specific
instance, while the actual prediction is 9171.94 (person-hours). The range
of predicted effort (person-hours) spans from -13062.35 (minimum) to
58462.72 (maximum), indicating a wide variance in predictions.

• The feature contributions in this analysis offer valuable insights into the
factors influencing the predicted effort. Notably:
✓ ILF: When ILF falls within the range of 41 to 89.5, it negatively

affects the predicted effort by contributing to -1393.86 person-hours.
This result suggests that an increase in ILF within this range
correlates with reducing the predicted effort.

✓ EQ: Falling within the range of 6 to 27, EQ negatively affects the
predicted effort, contributing -938.65 person-hours. This result
implies that a moderate number of EQ might decrease the predicted
effort compared to extreme values.

✓ RS: With values between 1 (M1) and 2 (M2), RS negatively
influences the predicted effort by contributing -374.38 person-hours.
This result indicates that a specific range of RS values tends to
decrease the predicted effort.

✓ EIF: When EIF falls between 5 and 30, it negatively impacts the
predicted effort, contributing to -344.01 person-hours. This finding
suggests that an increase in EIFs is associated with a decrease in
predicted effort within this range.

✓ EO: When EO exceeds 104.50, it positively influences the predicted
effort with a contribution of 4234.5 person-hours. This finding
indicates that more external outputs in the project increase the
predicted effort.

✓ EI: An EI value more excellent than 126.50 positively contributes
3485.45 person-hours, signifying that an elevated count of external
inputs increases predicted effort.

✓ IS: When IS is 0.0 (Banking) or 1.0 (Communication), it positively
contributes 210.52 person-hours, suggesting that a smaller interface
size is associated with higher predicted effort.

The LIME results suggest that EI, EO, and IS are the key features impacting
the predicted effort. These variations in LIME's interpretations emphasize the
importance of comparing results. LIME's visualizations further aid in
understanding these nuanced interpretations, enabling a more comprehensive
analysis of feature influence.

In conclusion, this study underscores the complexity of predictive models in
software effort estimation and the need for interpretability methods like LIME.
The differences in feature contributions across models highlight the necessity of
thorough evaluation and comparison. This analysis might guide practitioners in
selecting the most suitable model for their projects, considering the strengths and
weaknesses of each. Moreover, exploring model interpretability methods like

92

LIME enhances understanding of complex predictive models and their practical
applications in software effort estimation.

5.4.2 SHAP

Through applying the SHAP technique to DLMLP-P6, the thesis aims to gain
comprehensive insights into the contributions of individual features (EI, EO, EQ,
EIF, ILF, IS, and RS) within these predictive models for effort estimation. SHAP
values provide a valuable means to assess the significance of each feature in
predicting the effort required for diverse software development projects. By
examining these SHAP values, we might better understand the relative impact of
each feature on the model's predictions, facilitating the identification of critical
attributes that influence the effort estimation process.

Figure 5-42: The contributions of each feature in DLMLP-P6

Figure 5-42 presents the feature contributions obtained from Dataset 1 of the

testing dataset for DLMLP-P6. These contributions reveal intriguing patterns. EI,
EO, EQ, ILF, and EIF feature contributions exhibit consistent trends across all
three models. These features exhibit significantly positive contributions when
their values are high, while they display low negative contributions when their
values are low. This consistency highlights their crucial roles in effort estimation
within these models.

• The EI, EO, EQ, ILF, and EIF features demonstrate relatively consistent
trends, with a positive contribution associated with higher values and a
minor negative contribution linked to lower values across all three models,
while IS has a slight positive contribution.

• Notably, the feature RS appears to have no significant contribution to
predictions, irrespective of its value.

93

In summary, the analysis of feature contributions using SHAP values offers
valuable insights into the impact of individual features on the predictions made
by DLMLP-P6. The consistency in the contributions of EI, EO, EQ, ILF, and EIF
suggests their critical roles in effort estimation across these models. However, the
negligible contribution of RS merits further exploration to comprehend its
influence on the model's predictive performance. These findings contribute a
deeper understanding of interpretability and feature importance in software effort
estimation using deep learning models.

6. CONTRIBUTIONS

This section summarises contributions and the implications for practice and
research.

6.1 Summary of Contributions

This study seeks to provide specific contributions to the domain of SDEE by
addressing several key research areas:

• Comparative Analysis of Predictive Models:
This research extensively evaluates predictive models across distinct predictors,
specifically MLR, RF, and DLMLP. The objective is to determine the superior
model for SDEE. Findings reveal that DLMLP consistently surpasses MLR and
RF across multiple performances, including MMRE, MBRE, MIBRE, MAE,
Pred(0.25), and SA. Consequently, DLMLP emerges as the preferred predictive
model for SDEE.

• Impact of Dataset Balancing on Accuracy:
This study examines the influence of dataset-balancing techniques and the
handling of categorical variables in deep learning models by comparing DLMLP
(unbalanced dataset) to DLMLPB (balanced dataset). The outcomes indicate that
DLMLPB consistently outperforms DLMLP across all predictor sets,
underscoring the significance of dataset balancing and effective categorical
variable management in enhancing estimation accuracy.

• Ensemble Models for SDEE:
The research evaluates ensemble models that combine MLR, RF, and DLMLP to
assess their effectiveness in SDEE across various predictor sets. The findings
demonstrate that ensemble models, mainly when precision is pivotal, exhibit
superior performance compared to individual models. Nonetheless, it is
noteworthy that DLMLP retains a slight advantage in specific scenarios,
suggesting that the choice between ensemble models and DLMLP should hinge
on the specific requirements of the effort estimation.

• Transfer Learning for Enhanced Accuracy:
The study investigates the efficacy of transfer learning in the context of SDEE by
comparing DLMLP-based models trained on different datasets. The results

94

emphasize the potential of transfer learning, particularly when employing a pre-
trained model and fine-tuning it on the new dataset. This approach consistently
outperforms models exclusively trained on new data. Using a pre-trained model
is recommended based on the findings of outcomes. This model leverages prior
knowledge and extensive training on large datasets, which might significantly
enhance the predictive capabilities. By starting with a pre-trained model as a
foundation, researchers and practitioners might save valuable time and resources
that would otherwise be required for extensive model training.

• Influence of Categorical Variables:
This research examines the impact of IS and RS predictors on effort estimation
accuracy across diverse predictor sets. The findings underscore the imperative
nature of incorporating IS predictors into effort estimation models, as they
encapsulate crucial information regarding the intricacies of the software
development process. While RS predictors exhibit some influence on accuracy,
further investigation is warranted to comprehend their nuanced impact.

In summation, this study contributes significantly to the domain of SDEE by
providing precise insights and recommendations. It delivers clear guidance
regarding predictive model selection, dataset balancing, ensemble models'
utilisation, transfer learning's advantages, and the pivotal role of IS predictors in
improving estimation accuracy. These findings empower software development
teams to conduct more precise estimations, enhancing project planning and
management within the software industry.

6.2 Implications for Practice

The practical implications of this thesis carry considerable significance for the
software industry. Predictive models might improve effort estimation accuracy by
balancing datasets based on categorical variables or applying transfer learning
based on pre-trained models. The study also applied LIME and SHAP to deeply
analyse insights into the black-box of predictive models. The findings reveal that
EI, EO, and IS positively impact SDEE among EI, EO, EQ, EIF, ILF, IS, and RS.

In other words, the research findings strongly suggest that adopting the pre-
trained model and integrating deep learning methods with balancing categorical
variables might significantly improve effort estimation performance in practice.
By incorporating these innovative approaches into practical settings, project
management processes might be streamlined, resource utilization might be
optimized, and higher-quality software products might be delivered to customers.

The implications of this thesis extend beyond theoretical constructs, offering
actionable solutions that directly impact software development. These novel
approaches empower practitioners with enhanced estimation capabilities and may
revolutionize project outcomes, ensuring greater efficiency and effectiveness in
the software development process. In doing so, the software industry benefits

95

from improved project success rates, reduced resource wastage, and heightened
customer satisfaction, reinforcing the research's value and practicality.

6.3 Implications for Research

The research presented in this thesis opens avenues for future investigation in
SDEE. The effectiveness of pre-trained models in software engineering is
highlighted, encouraging further exploration of ensemble and transfer learning
techniques to improve effort estimation accuracy. Moreover, LIME and SHAP
are known and commonly used for prediction model interpretation. The study's
use of them to interpret and understand the contribution of different features
within proposed effort estimation models offers valuable insights into the
underlying decision-making process.

In the coming years, prospective research endeavours may concentrate on
balancing datasets, adopting transfer learning using the pre-trained model, or
applying an ensemble approach by integrating several models such as MLR, RF,
and DLMLP. Moreover, the integration of LIME and SHAP with other
interpretability techniques to attain comprehensive insights into model
predictions could be explored.

Overall, the findings of this thesis lay the foundation for future research
endeavours in the domain of software development effort estimation, advancing
the field towards more accurate and reliable prediction models.

7. THREAT AND VALIDATION

In this study, the assessment of the proposed method's validity encompasses
both internal and external aspects. Internal validity, crucial for concluding
experimental research, is addressed by implementing the k-fold cross-validation
method. This approach ensures a rigorous validation of the statistical sample,
enhancing the accuracy of the evaluation process.

External validity, which focuses on the applicability of the results in different
settings, is evaluated to ascertain the prediction ability of the proposed method.
The ISBSG repository August 2020 R1 dataset is utilized to achieve this research.
This dataset comprises various software projects from various organizations
worldwide, each characterized by distinct features, fields, and sizes. Additionally,
the proposed model is assessed using other datasets such as Albrecht, Deshairnais,
Kitchenham, and China, further enhancing the robustness of the evaluation.

Various evaluation criteria are employed to verify the performance of effort
estimation obtained from the proposed methods, including MMRE, MBRE,
MIBRE, MAE, Pred(0.25)/Pred(0.30), and SA. These evaluation criteria have
been recognized in previous publications [149], [150] as unbiased and reliable for
accuracy assessment. Consequently, the experimental results of this study are

96

highly generalizable, reflecting the method's performance across diverse datasets
and real-world scenarios.

In conclusion, the study adopts a comprehensive approach to validate the
proposed method's effectiveness. Using k-fold cross-validation ensures internal
validity while incorporating multiple datasets, including the ISBSG repository
and others, enhances external validity. The study provides reliable and
generalizable results by employing established and unbiased evaluation criteria,
making it a valuable contribution to software project prediction.

8. CONCLUSION

This section summarises the thesis and presents the future directions for
research.

8.1 Summary of the Thesis

The thesis assesses effort estimation performance using three distinct
methodologies: MLR, RF, and DLMLP. The experimental procedures encompass
a diverse array of datasets, with the primary dataset originating from the ISBSG
dataset release of 2020, complemented by supplementary datasets obtained from
the other datasets. The study considers eleven predictors: six predictor
combinations denoted as P1 through P6 obtained from ISBSG, and individual
predictors PA, PD, PC, PK, and PDataset2. The research outcomes provide conclusive
responses to RQ1; the findings indicate that DLMLP consistently delivers
superior accuracy in SDEE compared to MLR and RF. Additionally, this study
introduces and evaluates three baseline models: ANN-based models, SWR-based
models, and IFPUG-FPA methodology. The comparative analysis between
DLMLP and these baseline models reveals that the DLMLP model consistently
outperforms them across various performance metrics, including MMRE, MBRE,
MIBRE, MAE, Pred(0.25), and SA.

Additionally, this study explores the impact of two categorical variables from
the ISBSG dataset, the industry sector and relative size factor, alongside factors
from the FPA as input features. These variables are carefully selected to
understand their influence on the DLMLP, MLR, and RF models. As illustrated
in Table 4-4, the industry sector includes various categories, such as banking and
government, each characterized by differing data distributions. The research
poses RQ2 and endeavours to rectify dataset imbalance using the class-weight
approach. The ensuing examination contrasts the performance of DLMLP on the
original dataset against that on the balanced dataset (DLMLPB). The results may
offer insights into whether the dataset-balancing approach, as pursued in this
study, outperforms its unbalanced dataset.

The thesis also investigates ensemble techniques that combine the previously
examined models, namely MLR, RF, and DLMLP. Specifically, a stacking

97

ensemble approach is applied to MLR and RF, with XGBoost being chosen as the
final estimator. Subsequently, the results of this ensemble process are further
combined with DLMLP using a voting (average) method for regression. These
experiments encompass eleven predictor variables denoted as P1 to P6, PA, PD,
PC, PK, and PDataset2. In general, the ensemble approach demonstrates potential
superiority over each model in most instances. These findings have the potential
to provide insights into addressing RQ3 by suggesting that the ensemble approach
may outperform individual models.

The study examines three scenarios involving the pre-trained model. In the first
scenario, the model is applied for predictions on a new test dataset called TL-
Case1. The second scenario involves using the architecture of DLMLP to
construct a model on a new training dataset, TL-Case2. Notably, the prediction
results on the new test dataset are superior in TL-Case2 compared to TL-Case1.
The final scenario uses the pre-trained model and further trains it on a new training
dataset called TL-Case3, commonly called the transfer learning model. When
comparing the prediction outcomes on the new dataset from TL-Case3 with those
of TL-Case1 and TL-Case2, TL-Case3 demonstrates the best results. This
observation might address RQ4 by suggesting that transfer learning enhances
prediction model accuracy. Based on these findings, the research has also
constructed a library (https://github.com/huynhhoc/effort-estimation-by-using-
pre-trained-model). While not necessarily the ultimate version, researchers might
utilize or upgrade it to enhance the accuracy of the pre-trained model.

Last but not least, this thesis looks at how IS and RS affect effort estimation
accuracy. As discussed in Section 5.2.6, IS demonstrates a slight effect on the
accuracy, while RS has a relatively small effect. This observation is supported by
analyses using LIME and SHAP, which might answer for RQ5 that IS has a
positive effect on effort estimation, while RS has a negative one. The findings
obtained from LIME and SHAP also reveal that EI and EO positively impact
effort estimation compared with EQ, EIF and ILF.

In summary, this thesis presents a comprehensive analysis of predictive
models, dataset balancing techniques, ensemble methods, transfer learning, and
the influence of categorical variables in software development effort estimation.
The findings provide valuable insights for practitioners and open doors to future
research in this field.

8.2 Future Directions for Research

In future research, it would be valuable to explore additional categorical
variables within the ISBSG dataset and analyze the distribution patterns of these
variables. Furthermore, addressing the challenge of imbalanced data, particularly
in the context of categorical factors, is crucial for deep learning models.
Investigating techniques to mitigate data imbalance, such as oversampling,
undersampling, data augmentation, or using advanced algorithms tailored for

98

imbalanced datasets, might enhance effort estimation accuracy and ensure the
reliability of predictions across various industry domains.

Furthermore, the current pre-trained model is based on a multilayer perceptron
architecture. Future developments could involve upgrading the pre-trained model
by selecting the most suitable architecture from various options, including
multilayer perceptrons, convolutional neural networks, and recurrent neural
networks. Moreover, for future developments, extending the scope of the pre-
trained model to incorporate a broader array of categorical variables from the
updated version of the ISBSG dataset could yield valuable insights for
practitioners and researchers.

Moreover, as presented in the preceding sections, ensemble methods
consistently outperform individual models in predictive accuracy. Nonetheless,
there are instances where a few predictors are not clear about this trend yet. In the
future, combining highly effective individual models across diverse datasets may
be beneficial to verify the optimal ensemble approach for effort estimation
predictions.

Last but not least, it is essential to underscore the significance of employing
LIME and SHAP techniques for comprehensively evaluating the contributions of
relevant attributes within a model. By applying LIME and SHAP, practitioners
and researchers might thoroughly understand how various features impact the
proposed effort estimation models. In future research endeavours involving
predictive models, practitioners and researchers are strongly encouraged to
systematically apply LIME and SHAP methodologies to assess model attributes'
contributions comprehensively. This method will provide a deeper insight into the
factors influencing model outcomes and guide feature selection and model
refinement.

9. REFERENCES

[1] A. J. Albrecht, “Measuring application development productivity,” in Proc.
Joint Share, Guide, and IBM Application Development Symposium, 1979,
1979.

[2] N. Agarwal, A. Sondhi, K. Chopra, and G. Singh, “Transfer Learning:
Survey and Classification,” in Smart Innovations in Communication and
Computational Sciences, S. Tiwari, M. C. Trivedi, K. K. Mishra, A. K.
Misra, K. K. Kumar, and E. Suryani, Eds., Singapore: Springer Singapore,
2021, pp. 145–155.

[3] E. Kocaguneli, T. Menzies, and E. Mendes, “Transfer learning in effort
estimation,” Empir Softw Eng, vol. 20, no. 3, pp. 813–843, 2015, doi:
10.1007/s10664-014-9300-5.

[4] L. L. Minku, “Multi-stream online transfer learning for software effort
estimation: Is it necessary?,” in Proceedings of the 17th International

99

Conference on Predictive Models and Data Analytics in Software
Engineering, 2021, pp. 11–20.

[5] L. L. Minku and X. Yao, “Can cross-company data improve performance in
software effort estimation?,” in Proceedings of the 8th International
Conference on Predictive Models in Software Engineering, 2012, pp. 69–
78.

[6] V. Van Hai, H. Le Thi Kim Nhung, and H. T. Hoc, “A review of software
effort estimation by using functional points analysis,” in Proceedings of the
Computational Methods in Systems and Software, Springer, 2019, pp. 408–
422.

[7] ISBSG, “ISBSG,” International Software Benchmarking Standards Group,
Release R1, 2020.

[8] C. López-Martín, A. Chavoya, and M. E. Meda-Campaña, “Use of a
feedforward neural network for predicting the development duration of
software projects,” in 2013 12th International Conference on Machine
Learning and Applications, IEEE, 2013, pp. 156–159.

[9] C. López-Martín, A. Chavoya, and M. E. Meda-Campaña, “Use of a
feedforward neural network for predicting the development duration of
software projects,” in 2013 12th International Conference on Machine
Learning and Applications, IEEE, 2013, pp. 156–159.

[10] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “From
Function Points to COSMIC - A Transfer Learning Approach for Effort
Estimation,” in Product-Focused Software Process Improvement, P.
Abrahamsson, L. Corral, M. Oivo, and B. Russo, Eds., Cham: Springer
International Publishing, 2015, pp. 251–267.

[11] E. Kocaguneli, T. Menzies, and E. Mendes, “Transfer learning in effort
estimation,” Empir Softw Eng, vol. 20, no. 3, pp. 813–843, 2015, doi:
10.1007/s10664-014-9300-5.

[12] A. Ali and C. Gravino, “A systematic literature review of software effort
prediction using machine learning methods,” Journal of Software: evolution
and Process, vol. 31, no. 10, p. e2211, 2019.

[13] S. Shukla and S. Kumar, “Applicability of neural network based models for
software effort estimation,” in 2019 IEEE World Congress on Services
(SERVICES), IEEE, 2019, pp. 339–342.

[14] S. Goyal and P. K. Bhatia, “A non-linear technique for effective software
effort estimation using multi-layer perceptrons,” in 2019 International
Conference on Machine Learning, Big Data, Cloud and Parallel Computing
(COMITCon), IEEE, 2019, pp. 1–4.

100

[15] K. Srinivasan and D. Fisher, “Machine learning approaches to estimating
software development effort,” IEEE Transactions on Software Engineering,
vol. 21, no. 2, pp. 126–137, 1995.

[16] O. Hidmi and B. E. Sakar, “Software development effort estimation using
ensemble machine learning,” Int. J. Comput. Commun. Instrum. Eng, vol.
4, no. 1, pp. 143–147, 2017.

[17] A. G. Priya Varshini, K. Anitha Kumari, D. Janani, and S. Soundariya,
“Comparative analysis of Machine learning and Deep learning algorithms
for Software Effort Estimation,” J Phys Conf Ser, vol. 1767, no. 1, p.
012019, 2021, doi: 10.1088/1742-6596/1767/1/012019.

[18] W. Amaral, L. Rivero, G. B. Junior, and D. Viana, “Using Machine
Learning Technique for Effort Estimation in Software Development,” in
Proceedings of the XVIII Brazilian Symposium on Software Quality, in
SBQS’19. New York, NY, USA: Association for Computing Machinery,
2019, pp. 240–245. doi: 10.1145/3364641.3364670.

[19] M. Hammad and A. Alqaddoumi, “Features-level software effort estimation
using machine learning algorithms,” in 2018 International Conference on
Innovation and Intelligence for Informatics, Computing, and Technologies
(3ICT), IEEE, 2018, pp. 1–3.

[20] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘ Why should i trust you?’
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data
mining, 2016, pp. 1135–1144.

[21] L. Antwarg, R. M. Miller, B. Shapira, and L. Rokach, “Explaining
anomalies detected by autoencoders using SHAP,” arXiv preprint
arXiv:1903.02407, 2019.

[22] A. Trendowicz and R. Jeffery, “Software project effort estimation,”
Foundations and Best Practice Guidelines for Success, Constructive Cost
Model–COCOMO pags, vol. 12, pp. 277–293, 2014.

[23] Y.-S. Seo, D.-H. Bae, and R. Jeffery, “AREION: Software effort estimation
based on multiple regressions with adaptive recursive data partitioning,” Inf
Softw Technol, vol. 55, no. 10, pp. 1710–1725, 2013.

[24] R. N. Charette, “Why software fails,” IEEE Spectr, vol. 42, no. 9, p. 36,
2005.

[25] The Standish Group, “CHAOS Chronicles. Technical report. The Standish
Group International,” The Standish Group, 2018.

[26] A. Minkiewicz, “Use case sizing,” in 19th International Forum on
COCOMO and Software Cost Modeling, Los Angeles, CA (USA), 2004.

101

[27] H. T. Hoc, V. van Hai, and H. le Thi Kim Nhung, “A review of the
regression models applicable to software project effort estimation,” in
Proceedings of the Computational Methods in Systems and Software,
Springer, 2019, pp. 399–407.

[28] S. W. Munialo and G. M. Muketha, “A review of agile software effort
estimation methods,” 2016.

[29] O. Fedotova, L. Teixeira, and H. Alvelos, “Software Effort Estimation with
Multiple Linear Regression: Review and Practical Application.,” J. Inf. Sci.
Eng., vol. 29, no. 5, pp. 925–945, 2013.

[30] H. L. T. K. Nhung, H. T. Hoc, and V. van Hai, “A review of use case-based
development effort estimation methods in the system development context,”
in Proceedings of the Computational Methods in Systems and Software,
Springer, 2019, pp. 484–499.

[31] D. NESMA, “Counting Guidelines for the Application of Function Point
Analysis.” Version, 1997.

[32] P. Faria and E. Miranda, “Expert Judgment in Software Estimation During
the Bid Phase of a Project--An Exploratory Survey,” in 2012 Joint
Conference of the 22nd International Workshop on Software Measurement
and the 2012 Seventh International Conference on Software Process and
Product Measurement, IEEE, 2012, pp. 126–131.

[33] S.-W. Lin and V. M. Bier, “A study of expert overconfidence,” Reliab Eng
Syst Saf, vol. 93, no. 5, pp. 711–721, 2008.

[34] M. Shepperd, C. Schofield, and B. Kitchenham, “Effort estimation using
analogy,” in Proceedings of IEEE 18th International Conference on
Software Engineering, 1996, pp. 170–178. doi:
10.1109/ICSE.1996.493413.

[35] V. Mahajan, “The Delphi method: Techniques and Applications,” JMR,
Journal of Marketing Research (Pre-1986), vol. 13, no. 000003, p. 317,
1976.

[36] N. Dalkey and O. Helmer, “An experimental application of the Delphi
method to the use of experts,” Manage Sci, vol. 9, no. 3, pp. 458–467, 1963.

[37] G. Rowe and G. Wright, “The Delphi technique as a forecasting tool: issues
and analysis,” Int J Forecast, vol. 15, no. 4, pp. 353–375, 1999.

[38] B. Barry, “Software engineering economics,” New York, vol. 197, 1981.

[39] A. Sharma and N. Chaudhary, “Linear regression model for agile software
development effort estimation,” in 2020 5th IEEE International Conference
on Recent Advances and Innovations in Engineering (ICRAIE), IEEE, 2020,
pp. 1–4.

102

[40] V. Van Hai, H. L. T. K. Nhung, and H. T. Hoc, “A Productivity Optimising
Model for Improving Software Effort Estimation,” in Software Engineering
Perspectives in Intelligent Systems, R. Silhavy, P. Silhavy, and Z.
Prokopova, Eds., Cham: Springer International Publishing, 2020, pp. 735–
746.

[41] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “A comparison between
decision trees and decision tree forest models for software development
effort estimation,” in 2013 Third International Conference on
Communications and Information Technology (ICCIT), 2013, pp. 220–224.
doi: 10.1109/ICCITechnology.2013.6579553.

[42] Z. Prokopova, P. Šilhavý, and R. Šilhavý, “VAF factor influence on the
accuracy of the effort estimation provided by modified function points
methods,” in Annals of DAAAM and Proceedings of the International
DAAAM Symposium, Danube Adria Association for Automation and
Manufacturing, DAAAM, 2018.

[43] D. D. Lewis and M. Ringuette, “A comparison of two learning algorithms
for text categorization,” in Third Annual Symposium on document analysis
and information retrieval, 1994, pp. 81–93.

[44] G. H. John, Enhancements to the data mining process. Stanford University,
1997.

[45] W. Zhang, Y. Yang, and Q. Wang, “Using Bayesian regression and EM
algorithm with missing handling for software effort prediction,” Inf Softw
Technol, vol. 58, pp. 58–70, 2015.

[46] S. Amasaki and T. Yokogawa, “The effects of variable selection methods
on linear regression-based effort estimation models,” in 2013 Joint
Conference of the 23rd International Workshop on Software Measurement
and the 8th International Conference on Software Process and Product
Measurement, IEEE, 2013, pp. 98–103.

[47] P. Silhavy, R. Silhavy, and Z. Prokopova, “Categorical variable
segmentation model for software development effort estimation,” IEEE
Access, vol. 7, pp. 9618–9626, 2019.

[48] M. A. Ramessur and S. D. Nagowah, “A predictive model to estimate effort
in a sprint using machine learning techniques,” International Journal of
Information Technology, vol. 13, no. 3, pp. 1101–1110, 2021, doi:
10.1007/s41870-021-00669-z.

[49] S. Shukla and S. Kumar, “Applicability of neural network based models for
software effort estimation,” in 2019 IEEE World Congress on Services
(SERVICES), IEEE, 2019, pp. 339–342.

103

[50] M. Ochodek, S. Kopczyńska, and M. Staron, “Deep learning model for end-
to-end approximation of COSMIC functional size based on use-case
names,” Inf Softw Technol, vol. 123, p. 106310, 2020, doi:
https://doi.org/10.1016/j.infsof.2020.106310.

[51] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “Neural network models
for software development effort estimation: a comparative study,” Neural
Comput Appl, vol. 27, no. 8, pp. 2369–2381, 2016.

[52] M. Madheswaran and D. Sivakumar, “Enhancement of prediction accuracy
in COCOMO model for software project using neural network,” in Fifth
International Conference on Computing, Communications and Networking
Technologies (ICCCNT), Ieee, 2014, pp. 1–5.

[53] S. Mukherjee and R. K. Malu, “Optimization of project effort estimate using
neural network,” in 2014 IEEE International Conference on Advanced
Communications, Control and Computing Technologies, IEEE, 2014, pp.
406–410.

[54] R. Kneuper, CMMI: improving software and systems development
processes using capability maturity model integration. Rocky Nook, 2008.

[55] D. R. Pai, K. S. McFall, and G. H. Subramanian, “Software effort estimation
using a neural network ensemble,” Journal of Computer Information
Systems, vol. 53, no. 4, pp. 49–58, 2013.

[56] C.-L. Liu and Y.-H. Chang, “Learning From Imbalanced Data With Deep
Density Hybrid Sampling,” IEEE Trans Syst Man Cybern Syst, vol. 52, no.
11, pp. 7065–7077, 2022, doi: 10.1109/TSMC.2022.3151394.

[57] A. Islam, S. B. Belhaouari, A. U. Rehman, and H. Bensmail, “KNNOR: An
oversampling technique for imbalanced datasets,” Appl Soft Comput, vol.
115, p. 108288, 2022, doi: https://doi.org/10.1016/j.asoc.2021.108288.

[58] T. Wongvorachan, S. He, and O. Bulut, “A Comparison of Undersampling,
Oversampling, and SMOTE Methods for Dealing with Imbalanced
Classification in Educational Data Mining,” Information, vol. 14, no. 1, p.
54, 2023.

[59] C.-L. Liu and Y.-H. Chang, “Learning From Imbalanced Data With Deep
Density Hybrid Sampling,” IEEE Trans Syst Man Cybern Syst, vol. 52, no.
11, pp. 7065–7077, 2022, doi: 10.1109/TSMC.2022.3151394.

[60] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Handling imbalanced
datasets: A review,” GESTS international transactions on computer science
and engineering, vol. 30, no. 1, pp. 25–36, 2006.

[61] H. T. Hoc, V. Van Hai, H. L. T. K. Nhung, and R. Jasek, “Improving the
Performance of Effort Estimation in Terms of Function Point Analysis by
Balancing Datasets,” in Software Engineering Application in Systems

104

Design, R. Silhavy, P. Silhavy, and Z. Prokopova, Eds., Cham: Springer
International Publishing, 2023, pp. 705–714.

[62] N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic Minority Over-sampling Technique,” Journal of Artificial
Intelligence Research, vol. 16, pp. 321–357, Jun. 2002, doi:
10.1613/jair.953.

[63] M. Zhu et al., “Class Weights Random Forest Algorithm for Processing
Class Imbalanced Medical Data,” IEEE Access, vol. 6, pp. 4641–4652,
2018, doi: 10.1109/ACCESS.2018.2789428.

[64] A. Islam, S. B. Belhaouari, A. U. Rehman, and H. Bensmail, “KNNOR: An
oversampling technique for imbalanced datasets,” Appl Soft Comput, vol.
115, p. 108288, 2022, doi: https://doi.org/10.1016/j.asoc.2021.108288.

[65] Z. Ren et al., “Adaptive cost-sensitive learning: Improving the convergence
of intelligent diagnosis models under imbalanced data,” Knowl Based Syst,
vol. 241, p. 108296, 2022, doi:
https://doi.org/10.1016/j.knosys.2022.108296.

[66] V. Ganganwar, “An overview of classification algorithms for imbalanced
datasets,” International Journal of Emerging Technology and Advanced
Engineering, vol. 2, no. 4, pp. 42–47, 2012.

[67] S. Abdellatif, M. A. Ben Hassine, S. Ben Yahia, and A. Bouzeghoub,
“ARCID: A New Approach to Deal with Imbalanced Datasets
Classification,” in SOFSEM 2018: Theory and Practice of Computer
Science, A. M. Tjoa, L. Bellatreche, S. Biffl, J. van Leeuwen, and J.
Wiedermann, Eds., Cham: Springer International Publishing, 2018, pp.
569–580.

[68] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Trans
Pattern Anal Mach Intell, vol. 12, no. 10, pp. 993–1001, 1990.

[69] S. Shukla and S. Kumar, “Towards ensemble-based use case point
prediction,” Software Quality Journal, 2023, doi: 10.1007/s11219-022-
09612-2.

[70] K. K. Beesetti, S. Bilgaiyan, and B. S. P. Mishra, “Software Effort
Estimation through Ensembling of Base Models in Machine Learning using
a Voting Estimator,” International Journal of Advanced Computer Science
and Applications, vol. 14, no. 2, 2023.

[71] S. Goyal, “Effective Software Effort Estimation using Heterogenous
Stacked Ensemble,” in 2022 IEEE International Conference on Signal
Processing, Informatics, Communication and Energy Systems (SPICES),
2022, pp. 584–588. doi: 10.1109/SPICES52834.2022.9774231.

105

[72] P. Suresh Kumar, H. S. Behera, J. Nayak, and B. Naik, “A pragmatic
ensemble learning approach for effective software effort estimation,” Innov
Syst Softw Eng, vol. 18, no. 2, pp. 283–299, 2022, doi: 10.1007/s11334-020-
00379-y.

[73] M. Hosni, A. Idri, A. B. Nassif, and A. Abran, “Heterogeneous Ensembles
for Software Development Effort Estimation,” in 2016 3rd International
Conference on Soft Computing & Machine Intelligence (ISCMI), 2016, pp.
174–178. doi: 10.1109/ISCMI.2016.15.

[74] P. K. M. Passakorn, “Model-Based software effort estimation – A robust
comparison of 14 algorithms widely used in the data science community,”
International Journal of Innovative Computing, Information and Control,
vol. 15, no. 2, Apr. 2019.

[75] S. K. Palaniswamy and R. Venkatesan, “Hyperparameters tuning of
ensemble model for software effort estimation,” J Ambient Intell Humaniz
Comput, vol. 12, no. 6, pp. 6579–6589, 2021, doi: 10.1007/s12652-020-
02277-4.

[76] P. V. AG and V. Varadarajan, “Estimating software development efforts
using a random forest-based stacked ensemble approach,” Electronics
(Basel), vol. 10, no. 10, p. 1195, 2021.

[77] E. Kocaguneli, T. Menzies, and E. Mendes, “Transfer learning in effort
estimation,” Empir Softw Eng, vol. 20, no. 3, pp. 813–843, 2015, doi:
10.1007/s10664-014-9300-5.

[78] L. L. Minku and X. Yao, “How to make best use of cross-company data in
software effort estimation?,” in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 446–456.

[79] IFPUG, “http://www.ifpug.org/,” International Function Point Users
Group.

[80] I. F. P. U. Group, “Function Point Counting Practices Manual.” Princeton
Junction New Jersey, 2010.

[81] J. Hihn, L. Juster, J. Johnson, T. Menzies, and G. Michael, “Improving and
expanding NASA software cost estimation methods,” in 2016 IEEE
Aerospace Conference, IEEE, 2016, pp. 1–12.

[82] F. Ahmed, S. Bouktif, A. Serhani, and I. Khalil, “Integrating function point
project information for improving the accuracy of effort estimation,” in
2008 The Second International Conference on Advanced Engineering
Computing and Applications in Sciences, IEEE, 2008, pp. 193–198.

[83] L. Huang, J. Zhang, and Y. Liu, “Antecedents of student MOOC revisit
intention: Moderation effect of course difficulty,” Int J Inf Manage, vol. 37,
no. 2, pp. 84–91, 2017.

106

[84] K. Meridji, K. T. Al-Sarayreh, M. Abu-Arqoub, and W. M. Hadi,
“Exploration of development projects of renewable energy applications in
the ISBSG dataset: Empirical study,” in 2017 2nd International Conference
on the Applications of Information Technology in Developing Renewable
Energy Processes & Systems (IT-DREPS), IEEE, 2017, pp. 1–6.

[85] S. P. Pillai, S. D. Madhukumar, and T. Radharamanan, “Consolidating
evidence-based studies in software cost/effort estimation—A tertiary
study,” in TENCON 2017-2017 IEEE Region 10 Conference, IEEE, 2017,
pp. 833–838.

[86] M. Fernández-Diego and F. González-Ladrón-de-Guevara, “Application of
mutual information-based sequential feature selection to ISBSG mixed
data,” Software Quality Journal, vol. 26, pp. 1299–1325, 2018.

[87] J. Liu, Q. Du, and J. Xu, “A learning-based adjustment model with genetic
algorithm of function point estimation,” in 2018 IEEE 20th International
Conference on High Performance Computing and Communications; IEEE
16th International Conference on Smart City; IEEE 4th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), IEEE,
2018, pp. 51–58.

[88] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, “An effective
approach for software project effort and duration estimation with machine
learning algorithms,” Journal of Systems and Software, vol. 137, pp. 184–
196, 2018.

[89] L. Song, L. L. Minku, and X. Yao, “Software effort interval prediction via
Bayesian inference and synthetic bootstrap resampling,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 28, no. 1, pp. 1–
46, 2019.

[90] Y. Li, L. Shi, J. Hu, Q. Wang, and J. Zhai, “An empirical study to revisit
productivity across different programming languages,” in 2017 24th Asia-
Pacific Software Engineering Conference (APSEC), IEEE, 2017, pp. 526–
533.

[91] K. Kaewbanjong and S. Intakosum, “Statistical analysis with prediction
models of user satisfaction in software project factors,” in 2020 17th
International Conference on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology (ECTI-CON), IEEE,
2020, pp. 637–643.

[92] V. Van Hai, H. L. T. K. Nhung, Z. Prokopova, R. Silhavy, and P. Silhavy,
“A new approach to calibrating functional complexity weight in software
development effort estimation,” Computers, vol. 11, no. 2, p. 15, 2022.

[93] F. González-Ladrón-de-Guevara, M. Fernández-Diego, and C. Lokan, “The
usage of ISBSG data fields in software effort estimation: A systematic

107

mapping study,” Journal of Systems and Software, vol. 113, pp. 188–215,
2016.

[94] Z. Prokopova, P. Silhavy, and R. Silhavy, “Influence analysis of selected
factors in the function point work effort estimation,” in Proceedings of the
Computational Methods in Systems and Software, Springer, 2018, pp. 112–
124.

[95] V. Van Hai, H. L. T. K. Nhung, Z. Prokopova, R. Silhavy, and P. Silhavy,
“Toward Improving the Efficiency of Software Development Effort
Estimation via Clustering Analysis,” IEEE Access, vol. 10, pp. 83249–
83264, 2022, doi: 10.1109/ACCESS.2022.3185393.

[96] J. I. S. Martínez, F. V. Souto, and M. R. Monje, “Analysis of automated
estimation models using machine learning,” in 2020 8th International
Conference in Software Engineering Research and Innovation
(CONISOFT), IEEE, 2020, pp. 110–116.

[97] J. Huang, Y.-F. Li, J. W. Keung, Y. T. Yu, and W. K. Chan, “An empirical
analysis of three-stage data-preprocessing for analogy-based software effort
estimation on the ISBSG data,” in 2017 IEEE International Conference on
Software Quality, Reliability and Security (QRS), IEEE, 2017, pp. 442–449.

[98] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Adv Neural Inf Process Syst, vol. 30, 2017.

[99] A. and M. A. Najm Assia and Zakrani, “Efficient Shapely Explanation
of Support Vector Regression for Agile and Non-agile Software Effort
Estimation,” in Intelligent Sustainable Systems, D. and M. D. K. and J. A.
Nagar Atulya K. and Singh Jat, Ed., Singapore: Springer Nature Singapore,
2023, pp. 711–729.

[100] L. A. de Lima, J. M. Abe, C. Z. Kirilo, J. P. da Silva, and K. Nakamatsu,
“Using Logic Concepts in Software Measurement,” Procedia Comput Sci,
vol. 131, pp. 600–607, 2018.

[101] G. C. Low and D. R. Jeffery, “Function points in the estimation and
evaluation of the software process,” IEEE transactions on Software
Engineering, vol. 16, no. 1, pp. 64–71, 1990.

[102] A. J. Albrecht and J. E. Gaffney, “Software function, source lines of code,
and development effort prediction: a software science validation,” IEEE
transactions on software engineering, no. 6, pp. 639–648, 1983.

[103] N. Rankovic, D. Rankovic, M. Ivanovic, and L. Lazic, “A new approach to
software effort estimation using different artificial neural network
architectures and Taguchi orthogonal arrays,” IEEE Access, vol. 9, pp.
26926–26936, 2021.

108

[104] J. Sayyad Shirabad, J. and Menzies, and T.J., “The PROMISE Repository
of Software Engineering Databases.,” 2005, 2005.

[105] J. M. Desharnais, “Analyse statistique de la productivitie des projets
informatique a partie de la technique des point des function,” Masters
Thesis, University of Montreal, 1989.

[106] B. Kitchenham, S. L. Pfleeger, B. McColl, and S. Eagan, “An empirical
study of maintenance and development estimation accuracy,” Journal of
systems and software, vol. 64, no. 1, pp. 57–77, 2002.

[107] F. H. Yun, “China: Effort Estimation Dataset,” Apr. 2010, doi:
10.5281/ZENODO.268446.

[108] H. He, B. Yang, E. A. Garcia, and S. A. Li, “Adaptive synthetic sampling
approach for imbalanced learning. Proeedings of the 2008 IEEE
International Joint Conference on Neural Networks (IEEE World Congress
on Computational Intelligence); June 2008; Hong Kong, China.”
ChinaIEEE.

[109] L. Taylor and G. Nitschke, “Improving Deep Learning with Generic Data
Augmentation,” in 2018 IEEE Symposium Series on Computational
Intelligence (SSCI), 2018, pp. 1542–1547. doi:
10.1109/SSCI.2018.8628742.

[110] A. Arora, N. Shoeibi, V. Sati, A. González-Briones, P. Chamoso, and E.
Corchado, “Data Augmentation Using Gaussian Mixture Model on CSV
Files,” in Distributed Computing and Artificial Intelligence, 17th
International Conference, Y. Dong, E. Herrera-Viedma, K. Matsui, S.
Omatsu, A. González Briones, and S. Rodríguez González, Eds., Cham:
Springer International Publishing, 2021, pp. 258–265.

[111] D. A. Reynolds, “Gaussian mixture models.,” Encyclopedia of biometrics,
vol. 741, no. 659–663, 2009.

[112] A. S. Hadi and S. Chatterjee, Regression analysis by example. John Wiley
& Sons, 2015.

[113] K. Baker, “Singular value decomposition tutorial,” The Ohio State
University, vol. 24, 2005.

[114] L. Breiman, “Arcing the edge,” Technical Report 486, Statistics
Department, University of California at …, 1997.

[115] “http://www.stat.berkeley.edu/~breiman/RandomForests/cc_h ome.htm,”
#prox Symposium, volume 1, Jul. 01, 2005.

[116] J. Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random forests and decision
trees,” International Journal of Computer Science Issues (IJCSI), vol. 9, no.
5, p. 272, 2012.

109

[117] Z. abdelali, H. Mustapha, and N. Abdelwahed, “Investigating the use of
random forest in software effort estimation,” Procedia Comput Sci, vol.
148, pp. 343–352, 2019, doi: https://doi.org/10.1016/j.procs.2019.01.042.

[118] A. Liaw and M. Wiener, “Classification and Regression by RandomForest,”
Forest, vol. 23, Nov. 2001.

[119] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” J Comput Syst Sci, vol. 55, no.
1, pp. 119–139, 1997.

[120] J. Friedman, “Greedy boosting approximation: a gradient boosting
machine,” The Annals of.

[121] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors),”
The annals of statistics, vol. 28, no. 2, pp. 337–407, 2000.

[122] H. Aljamaan and A. Alazba, “Software defect prediction using tree-based
ensembles,” in Proceedings of the 16th ACM international conference on
predictive models and data analytics in software engineering, 2020, pp. 1–
10.

[123] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, 2016, pp. 785–794.

[124] Aurélien Géron, “Ensemble Learning and Random Forests,” in Hands-On
Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd
ed.O’reilly, 2019, pp. 189–212.

[125] J. Brownlee, XGBoost With python: Gradient boosted trees with XGBoost
and scikit-learn. Machine Learning Mastery, 2016.

[126] A. Guryanov, “Histogram-based algorithm for building gradient boosting
ensembles of piecewise linear decision trees,” in Analysis of Images, Social
Networks and Texts: 8th International Conference, AIST 2019, Kazan,
Russia, July 17–19, 2019, Revised Selected Papers 8, Springer, 2019, pp.
39–50.

[127] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436–444, 2015, doi: 10.1038/nature14539.

[128] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press,
2016.

[129] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: A
tutorial,” Computer (Long Beach Calif), vol. 29, no. 3, pp. 31–44, 1996.

[130] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural
networks,” Towards Data Sci, vol. 6, no. 12, pp. 310–316, 2017.

110

[131] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation
functions: Comparison of trends in practice and research for deep learning,”
arXiv preprint arXiv:1811.03378, 2018.

[132] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans Knowl
Data Eng, vol. 22, no. 10, pp. 1345–1359, 2010.

[133] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on
machine learning applications and trends: algorithms, methods, and
techniques, IGI Global, 2010, pp. 242–264.

[134] A. Arnold, R. Nallapati, and W. W. Cohen, “A comparative study of
methods for transductive transfer learning,” in Seventh IEEE international
conference on data mining workshops (ICDMW 2007), IEEE, 2007, pp. 77–
82.

[135] A. Arnold, R. Nallapati, and W. W. Cohen, “A Comparative Study of
Methods for Transductive Transfer Learning,” in Seventh IEEE
International Conference on Data Mining Workshops (ICDMW 2007),
2007, pp. 77–82. doi: 10.1109/ICDMW.2007.109.

[136] P. Baldi, “Autoencoders, Unsupervised Learning, and Deep Architectures,”
in Proceedings of ICML Workshop on Unsupervised and Transfer Learning,
I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver, Eds., in
Proceedings of Machine Learning Research, vol. 27. Bellevue, Washington,
USA: PMLR, May 2012, pp. 37–49. [Online]. Available:
https://proceedings.mlr.press/v27/baldi12a.html

[137] S. D. Conte, H. E. Dunsmore, and Y. E. Shen, Software engineering metrics
and models. Benjamin-Cummings Publishing Co., Inc., 1986.

[138] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and validity in
comparative studies of software prediction models,” IEEE Transactions on
Software Engineering, vol. 31, no. 5, pp. 380–391, 2005.

[139] Y. Mahmood, N. Kama, A. Azmi, A. S. Khan, and M. Ali, “Software effort
estimation accuracy prediction of machine learning techniques: A
systematic performance evaluation,” Softw Pract Exp, vol. 52, no. 1, pp. 39–
65, 2022.

[140] M. Shepperd and S. MacDonell, “Evaluating prediction systems in software
project estimation,” Inf Softw Technol, vol. 54, no. 8, pp. 820–827, 2012.

[141] T. Xia, R. Shu, X. Shen, and T. Menzies, “Sequential model optimization
for software effort estimation,” IEEE Transactions on Software
Engineering, 2020.

[142] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation.,” Encyclopedia of
database systems, vol. 5, pp. 532–538, 2009.

111

[143] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in Ijcai, Montreal, Canada, 1995, pp.
1137–1145.

[144] X. Ma, Y. Zhang, and Y. Wang, “Performance evaluation of kernel
functions based on grid search for support vector regression,” in 2015 IEEE
7th international conference on Cybernetics and intelligent systems (CIS)
and IEEE Conference on Robotics, automation and mechatronics (RAM),
IEEE, 2015, pp. 283–288.

[145] J. Brownlee, “A gentle introduction to the rectified linear unit (ReLU),”
Machine learning mastery, vol. 6, 2019.

[146] E. Okewu, S. Misra, and F.-S. Lius, “Parameter tuning using adaptive
moment estimation in deep learning neural networks,” in International
Conference on Computational Science and Its Applications, Springer, 2020,
pp. 261–272.

[147] V. N. Gudivada, M. T. Irfan, E. Fathi, and D. L. Rao, “Chapter 5 - Cognitive
Analytics: Going Beyond Big Data Analytics and Machine Learning,” in
Handbook of Statistics, V. N. Gudivada, V. V Raghavan, V. Govindaraju,
and C. R. Rao, Eds., Elsevier, 2016, pp. 169–205. doi:
https://doi.org/10.1016/bs.host.2016.07.010.

[148] R. Silhavy, P. Silhavy, and Z. Prokopova, “Analysis and selection of a
regression model for the use case points method using a stepwise approach,”
Journal of Systems and Software, vol. 125, pp. 1–14, 2017.

[149] M. Azzeh, A. Bou Nassif, and I. B. Attili, “Predicting software effort from
use case points: A systematic review,” Sci Comput Program, vol. 204, p.
102596, 2021, doi: https://doi.org/10.1016/j.scico.2020.102596.

[150] A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean absolute
percentage error for regression models,” Neurocomputing, vol. 192, pp. 38–
48, 2016.

LIST OF PUBLICATIONS

Journals:

1. Hoc, H. T., R. Silhavy, Z. Prokopova and P. Silhavy, “Comparing Multiple
Linear Regression, Deep Learning and Multiple Perceptron for Functional
Points Estimation,” in IEEE Access, vol. 10, pp. 112187-112198, 2022, doi:
10.1109/ACCESS.2022.3215987.

2. Hoc, H. T., R. Silhavy, Z. Prokopova and P. Silhavy, "Comparing Stacking
Ensemble and Deep Learning for Software Project Effort Estimation," in IEEE

112

Access, vol. 11, pp. 60590-60604, 2023, doi:
10.1109/ACCESS.2023.3286372.

3. Hoc, H. T., Silhavy P., Fajkus M., Prokopova Z, Silhavy R. Propose-Specific
Information Related to Prediction Level at x and Mean Magnitude of Relative
Error: A Case Study of Software Effort Estimation. Mathematics. 2022;
10(24):4649. https://doi.org/10.3390/math10244649.

4. Hoc, H. T., Silhavy P., Dey SK, Hoang SD, Prokopova Z, Silhavy R.
Analysing Public Opinions Regarding Virtual Tourism in the Context of
COVID-19: Unidirectional vs. 360-Degree Videos. Information. 2023;
14(1):11. https://doi.org/10.3390/info14010011.

5. DEY, Sandeep Kumar, Duc Sinh HOANG, Hoc, H. T., Quynh Giao Ngoc
PHAM. Engaging virtual reality technology to determine pro-environmental
behaviour: The Indian context. Geojournal of Tourism and Geosites [online].
2022, vol. 41, iss. 2, s. 464-471. [cit. 2023-03-14]. ISSN 2065-0817.

6. Kondamudi, B. R., Hoang, S. D., Tuckova, Z., Dey, S. K., Hoc, H. T., &
Kumar, B. R. (2023). Tourists’ Perception and Influence Factors in Virtual
Tourism Using Bayesian Sentimental Analysis Model in Vietnam Based on e
WOM for Sustainable Development. Journal of Law and Sustainable
Development, 11(3), e338. https://doi.org/10.55908/sdgs.v11i3.338.

7. Pham P.T., Hoc, H. T., B.Popesko, Sinh D.H., Tri B.T, "Impact of Fintech’s
Development on Bank Performance: An Empirical Study from Vietnam.",
accept submission by GamaIJB, Volume 26 No.1, 2023.

Conferences:

8. Hoc, H. T., Van Hai, V., Nhung, H. L. T. K., & Jasek, R. (2023). Improving
the Performance of Effort Estimation in Terms of Function Point Analysis by
Balancing Datasets. In Software Engineering Application in Systems Design:
Proceedings of 6th Computational Methods in Systems and Software 2022,
Volume 1 (pp. 705-714). Cham: Springer International Publishing.

9. Hoc, H. T., Van Hai, V., & Le Thi Kim Nhung, H. (2020). AdamOptimizer
for the optimisation of use case points estimation. In Software Engineering
Perspectives in Intelligent Systems: Proceedings of 4th Computational
Methods in Systems and Software 2020, Vol. 1 4 (pp. 747-756). Springer
International Publishing.

10. Hoc, H. T., Van Hai, V., & Nhung, H. L. T. K. (2021). An approach to adjust
effort estimation of function point analysis. In Software Engineering and
Algorithms: Proceedings of 10th Computer Science On-line Conference 2021,
Vol. 1 (pp. 522-537). Springer International Publishing

11. Hoc, H. T., Van Hai, V., & Le Thi Kim Nhung, H. (2019). A review of the
regression models applicable to software project effort
estimation. Computational Statistics and Mathematical Modeling Methods in
Intelligent Systems: Proceedings of 3rd Computational Methods in Systems
and Software 2019, Vol. 2 3, 399-407.

113

12. Van Hai, V., Le Thi Kim Nhung, H., & Hoc, H. T. (2021). Empirical Evidence
in Early Stage Software Effort Estimation Using Data Flow Diagram.
In Software Engineering and Algorithms: Proceedings of 10th Computer
Science On-line Conference 2021, Vol. 1 (pp. 632-644). Springer International
Publishing.

13. Nhung, H. L. T. K., Van Hai, V., Hoc, H. T. Analyzing Correlation of the
Relationship between Technical Complexity Factors and Environmental
Complexity Factors for Software Development Effort Estimation.

14. Hai, V. V., Nhung, H. L. T. K., & Hoc, H. T. (2021). Calibrating Function
Complexity in Enhancement Project for Improving Function Points Analysis
Estimation. In Software Engineering Application in Informatics: Proceedings
of 5th Computational Methods in Systems and Software 2021, Vol. 1 (pp. 857-
869). Springer International Publishing.

15. Le Thi Kim Nhung, H., Hoc, H. T., & Van Hai, V. (2020). An evaluation of
technical and environmental complexity factors for improving use case points
estimation. In Software Engineering Perspectives in Intelligent Systems:
Proceedings of 4th Computational Methods in Systems and Software 2020,
Vol. 1 4 (pp. 757-768). Springer International Publishing.

16. Hai, V. V., Nhung, H. L. T. K., & Hoc, H. T. (2020). A Productivity
optimising model for improving software effort estimation. In Software
Engineering Perspectives in Intelligent Systems: Proceedings of 4th
Computational Methods in Systems and Software 2020, Vol. 1 4 (pp. 735-746).
Springer International Publishing.

17. Van Hai, V., Le Thi Kim Nhung, H., & Hoc, H. T. (2019). A review of
software effort estimation by using functional points analysis. Computational
Statistics and Mathematical Modeling Methods in Intelligent Systems:
Proceedings of 3rd Computational Methods in Systems and Software 2019,
Vol. 2 3, 408-422.

18. Nhung, H. L. T. K., Hoc, H. T., & Hai, V. V. (2019). A review of use case-
based development effort estimation methods in the system development
context. Intelligent Systems Applications in Software Engineering:
Proceedings of 3rd Computational Methods in Systems and Software 2019,
Vol. 1 3, 484-499.

19. Dey, S.K., Hoang, D.S, Hoc, H.T., & Pham, Q.G.N. (2022). ENGAGING
VIRTUAL REALITY TECHNOLOGY TODETERMINE PRO-
ENVIRONMENTAL BEHAVIOUR: THE INDIAN CONTEXT X.
GeoJournal of Tourism and Geosites,41(2), 464–471.
https://doi.org/10.30892/gtg.41217-851.

20. Dey, S.K., Hung, V.V., Hoc, H.T., Pham, Q.G.N. (2022). AVR Technologies
in Sustainable Tourism: A Bibliometric Review. In: Bashir, A.K., Fortino, G.,
Khanna, A., Gupta, D. (eds) Proceedings of International Conference on
Computing and Communication Networks. Lecture Notes in Networks and

114

Systems, vol 394. Springer, Singapore. https://doi.org/10.1007/978-981-19-
0604-6_52.

21. Nguyen T.T.N., Cartocci A., Hoc H. T., Tong L. T., Mozafari M., Dang
T.K., Nguyen T.Z., AI-aided automatic severity scoring system for
Hidradenitis Suppurativa, 12th Hybrid Conference of the EHSF 2023
Hidradenitis Suppurativa / Acne Inversa-Tagung 2023.

Book Editor:

22. Zuzana Tučková, Sandeep Kumar Dey, Hoc H. T., Sinh Duc Hoang, Impact
of Industry 4.0 on Sustainable Tourism: Perspectives, Challenges and Future,
published by Emerald, October, 2023.

115

CURRICULUM VITAE

Personal Information

Full name: Huynh Thai Hoc

Address: 30/2C Trung My Tan Xuan, Hoc Mon, Ho Chi Minh City, Vietnam

Nationality: Vietnamese

Orcid ID: 0000-0003-3845-8466

Scholar ID: xoesuc8AAAAJ

Email: huynh_thai@utb.cz; hoc.ht@vlu.edu.vn; huynhhoc@gmail.com

Work Experiences

- July 2023 – September 2023: Lead researcher for Internal Geospatial Data

Science Bootcamp at Valhko company, France.

- March 2022 – January 2023: Internship at Torus Actions, Toulouse, France.

- 2018 – ongoing: Lecturer at the Faculty of Information Technology, School

of Engineering and Technology, Van Lang University, HCMC, Vietnam.

- 2011 – 2018: Lecture at Faculty of Information Technology, University of

Industry (UIH), Ho Chi Minh City, Vietnam.

- 2014 – January 2019: Developer at Capgemini Vietnam, HCMC, Vietnam.

- 2007 – 2014: Lecture at Faculty of Information Technology, University of

Natural Resources and Environment (HCMUNRE), HCMC, Vietnam.

- 2002 – 2007: GIS developer at DITAGIS, HCMC, Vietnam.

Education

- 2019 – 10/2023: PhD scholar at the Faculty of Applied Informatics, Tomas

Bata University, Zlin, the Czech Republic.

- 2004 – 2007: master’s degree in Geographic Information Systems,

University of Technology (HCMUT), Ho Chi Minh City, Vietnam.

- 1998 – 2002: bachelor’s degree in mathematics and computer Science,

University of Science (HCMUS), Ho Chi Minh City, Vietnam.

Programming Languages

- R programming

116

- Python

- C/C++; Core Java; .NET

Data scientist skills

- Pytorch, Tensorflow

- Random Forest, XGBoost, SVM

- Regression models, Ensemble

- LIME/SHAP

- Generative Models

- Scikit learns

Technical skills

- SQL Server, PostgreSQL/PostGIS, MongoDB

- .NET

- Design patterns (MVC)

- Web service (Restful, SOAP)

- HTML, CSS, JavaScript

- Git and Agile methodologies

Research Interests

Data Scientist, GIS, Developer.

Research Activities at Tomas Bata University, Zlin

- IGA projects:

o IGA/CebiaTech/2019/002

o RO30196021025, RO30196021025

o IGA/CebiaTech/2020/001, RVO/FAI/2020/002

o IGA/CebiaTech/2021/001

o IGA/CebiaTech/2022/001

- Competition projects:

o OP RDE Project Junior grants of TBU in Zlin, reg. No.

CZ.02.2.69/0.0/19_073/0016941.

o IGA-K-TRINITY/004.

