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ABSTRAKT  

 Odhad úsilí při vývoji softwaru, resp. odhad pracnosti vývoje softwarových 

projektů, hraje klíčovou roli v oblasti vývoje softwaru a má velký vliv na 

plánování projektů a přidělování zdrojů. Předkládaná práce přináší významné 

pokroky v oblasti odhadu úsilí při vývoji softwaru zavedením inovativních 

technik jako je tzv. přenosové učení (transfer learning) a analýzy datových 

souborů, s cílem zvýšit přesnost odhadu úsilí, konkrétně v rámci rozšíření metody 

funkčních bodů. Kromě toho jsou v předkládané práci zkoumané různé přístupy 

k identifikaci faktorů analýzy funkčních bodů a relevantních kategoriálních 

faktorů, které přispívají ke zlepšení odhadu úsilí, včetně vícenásobné lineární 

regrese, neuronových sítí atd. 

Prostřednictvím rozsáhlé série experimentů autor práce identifikuje nové 

faktory ovlivňující odhad úsilí, což vede k přesnějším odhadům ve srovnání se 

základními modely. Dále je v práci popsaná aplikace technik LIME (Local 

Interpretable Model-agnostic Explanations) a SHAP (SHapley Additive 

exPlanations), které umožňují hlubší vhled do černé skříňky predikčních modelů. 

Provedený výzkum byl zaměřen na hodnocení účinnosti předem natrénovaných 

modelů a návrh využití metod tzv. hlubokého učení (deep learning) v kombinaci 

se strategiemi pro vyvažování kategoriálních proměnných s cílem zlepšit odhad 

úsilí. Výsledky jasně ukazují, že zahrnutí relevantních faktorů a využití 

hlubokého učení, jakož i technik přenosového učení, výrazně zlepšuje odhad úsilí 

při vývoji softwaru. Toto zlepšení odhadu úsilí nabízí týmům zabývajícím se 

vývojem softwaru přesnější prostředky, což v konečném důsledku vede ke 

zlepšení plánování a řízení projektů. 

Předkládaná práce celkově přispívá k teoretickým i praktickým aspektům 

odhadu úsilí tím, že poskytuje nové poznatky a inovativní strategie pro zvýšení 

přesnosti odhadu úsilí při vývoji softwarových projektů. 

 

Key words in Czech: Odhadování pracnosti vývoje softwarových projektů, 

metoda funkčních bodů, regresní modely, hluboké učení  
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ABSTRACT 

Effort estimation plays a crucial role in the domain of software development, 

employing an influence on project planning and resource allocation. This thesis 

advances the field of Software Development Effort Estimation (SDEE) by 

introducing novel transfer learning and dataset balancing techniques to enhance 

effort estimation accuracy, focusing on the function point analysis. It explores 

multiple linear regression, feedforward neural networks, and ensemble methods 

to identify factors affecting effort estimation. 

Through a comprehensive series of experiments, this study uncovers new 

factors that significantly improve effort estimation, resulting in more precise 

estimates when compared to baseline models. Furthermore, it employs the 

application of Local Interpretable Model-agnostic Explanations (LIME) and 

SHapley Additive exPlanations (SHAP) techniques to provide deeper insights 

into the black-box of predictive models. 

This research evaluates the effectiveness of pre-trained models and suggests 

using deep learning methods in combination with strategies for balancing 

categorical variables to enhance effort estimation. The results indicate that 

incorporating relevant factors and employing deep learning and transfer learning 

techniques enhances SDEE. This improvement in effort estimation offers 

software development teams a more accurate means of estimation, ultimately 

leading to improved project planning and management. 

In summary, this thesis contributes to both theory and practice in effort 

estimation by offering innovative insights and strategies to boost accuracy. 

Key words: Software development effort estimation, function points methods, 

regression models, deep learning, ensemble, deep learning with balancing 

dataset, transfer learning, LIME, SHAP. 
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1. INTRODUCTION 

1.1 Motivation 

The motivation for this thesis is essential to provide the estimating field with 

a new approach to the effort estimation problem, which might supplement current 

practices. The following are the key drivers behind this motivation: 

i) The absence of categorical variables might result in less effort estimation 

accuracy measured by traditional function point analysis (FPA) estimation 

methods. It is a measure based on function points and productivity rate. 

However, in the early stage of software project development, the productivity 

rate of that project might be unknown. In addition, the complexity of FPA 

weight metrics values might be affected by many factors. Suppose the 

complexity weights assigned to the components are not appropriately 

identified, it might lead to inaccurate effort estimation. Hence, to estimate the 

effort required for software development in the initial stages of FPA, the thesis 

considers estimating the effort by incorporating essential categorical variables 

such as Industry Sector and Relative Size alongside factors of FPA. 

ii) The unavailability of pre-trained models for software effort estimation: In the 

context of SDEE, transfer learning could enhance estimation model precision 

by leveraging knowledge from analogous projects or domains [2]–[4], 

significantly decreasing the time and resources necessary for model training. 

Leveraging transfer learning might mitigate the challenge of limited data 

availability often faced in software estimation. However, despite its potential 

benefits, several studies have compared the performance of transfer learning 

with the deep learning approach regarding SDEE. However, they did not 

propose a pre-trained model [3], [4]. This issue promotes the thesis to build a 

pre-trained learning model by leveraging the advantages of transfer learning 

and comparing the performance of transfer learning to the deep learning 

approach in terms of SDEE. 

iii) The existing models utilised for effort estimation remain unclear black-boxes 

covering their internal mechanisms. Consequently, understanding the rationale 

behind their predictions becomes a formidable challenge for scientists and 

practitioners. Advanced methodologies such as LIME and SHAP offer 

promising solutions to tackle this pressing limitation while emphasising the 

importance of result interpretation. By providing interpretable and transparent 

insights into the models' decision-making processes, these techniques delegate 

researchers to understand the influential factors and their complex within the 

software development context. Consequently, leveraging LIME and SHAP 

can significantly enhance the validity and trustworthiness of effort estimation 

models, leading to more informed and scientifically driven project 

management decisions. 



 

6 

 

1.2 Problem Statement 

Among the various approaches to estimating software effort estimation, one 

common technique in the software industry is FPA. This method is advantageous 

as it estimates the size of the software. However, as mentioned in publication [5], 

it is essential to note that FPA has limitations. One significant drawback is that it 

relies on fixed complexity weight values established using data from IBM in the 

1970s [1]. Given the technological progress and changes to the present year, these 

values have become outdated. Furthermore, due to the unique nature of each 

company, using these fixed values tends to result in less accurate estimates. 

Therefore, this study will propose a group of factors to estimate effort 

estimation by incorporating categorical variables such as Industry Sector and 

Relative Size along with factors of FPA based on the International Software 

Benchmarking Standards Group (ISBSG) [6] as the historical dataset. The first 

study uses various approaches such as regression model, random forest, ensemble 

approach, and deep learning based on multilayer perceptron (DLMLP) [7] to 

determine the factors of FPA incorporate with Industry Sector and Relative Size 

lead to more accurate effort estimation. In addition, the effectiveness of these 

models will be further explored by employing balanced datasets in the DLMLP 

model to address the limitation of imbalanced data, a common issue in effort 

estimation research. The thesis might hardly examine all known algorithms and 

all combinations of factors of FPA. Therefore, selecting some experimental 

algorithms and combinations of factors are also matters of concern. 

As highlighted in the motivation section, the advantages of transfer learning are 

substantial [2], [8]. It enhances estimation model accuracy by leveraging insights 

from related projects, significantly reducing the resources and time required for 

model training. This thesis proposes a transfer learning technique that effectively 

estimates effort using the ISBSG dataset. Simultaneously, the thesis evaluates the 

applicability of this technique across similar datasets such as Albrecht, China. 

Additionally, an endeavour is undertaken to construct a pre-trained model 

obtained from the ISBSG dataset, intended as a reusable library for researchers. 

On the other hand, several machine-learning approaches were adopted to 

increase effort estimation accuracy[9]–[12]. However, the resultant models 

remain a mystery. The comprehensive comparison of these influential factors 

within the predictions holds critical importance, as it might give researchers 

invaluable insights grounded in the predictions. As illustrated in the motivation 

section, this research endeavour extensively analyses predicted efforts via LIME 

[13] and SHAP [14]. Specifically, the focus lies on dissecting LIME and SHAP 

within the DLMLP model to illuminate how factors impact effort estimation. Due 

to limited time, this study concentrates on DLMLP models, prioritising a 

comprehensive exploration within this confined scope. 

In summary, this study tackles software effort estimation challenges by 

combining FPA factors with categorical variables. It employs diverse 
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methodologies to find the most accurate estimation approach. Transfer learning 

is utilised on the ISBSG dataset and evaluated on other datasets. The study also 

uses LIME and SHAP techniques for model analysis. 

1.3 Research Questions and Hypothesis 

In this thesis, five RQs and hypothesis must be answered: 

1. RQ1: Which yields greater accuracy in software effort estimation: DLMLP, 

MLR, or Random Forest? 

𝜇𝐷𝐿𝑀𝐿𝑃 =  Mean accuracy of DLMLP     

𝜇𝑀𝐿𝑅 = Mean accuracy of MLR 

𝜇𝑅𝐹 =  Mean accuracy of Random Forest  
o H1: 𝜇𝐷𝐿𝑀𝐿𝑃 >  𝜇𝑀𝐿𝑅 and 𝜇𝐷𝐿𝑀𝐿𝑃 >  𝜇𝑅𝐹 

This hypothesis states that DLMLP accuracy is greater than MLR and RF 

in software effort estimation. 

o The null hypothesis 𝐻0: 𝜇𝐷𝐿𝑀𝐿𝑃 ≤  𝜇𝑀𝐿𝑅 𝑜𝑟 𝜇𝐷𝐿𝑀𝐿𝑃 ≤  𝜇𝑅𝐹 

This hypothesis states that DLMLP is either less or equally accurate as at 

least one of the other two methods in software effort estimation. 

2. RQ2: Does dataset balancing enhance the predictive accuracy of DLMLP 

methods in software effort estimation? 

𝜇𝐷𝐿𝑀𝐿𝑃𝐵 =  Mean accuracy of DLMLP with Balancing 

𝜇𝐷𝐿𝑀𝐿𝑃 =  Mean accuracy of DLMLP without Balancing 

o H1: 𝜇𝐷𝐿𝑀𝐿𝑃𝐵 >  𝜇𝐷𝐿𝑀𝐿𝑃 

This hypothesis states that the accuracy of deep learning with a balancing 

dataset is more significant than without balancing. 

o The null hypothesis H0: 𝜇𝐷𝐿𝑀𝐿𝑃𝐵 ≤ 𝜇𝐷𝐿𝑀𝐿𝑃 

This hypothesis states that deep learning with a balancing dataset is either 

less or equally accurate as deep learning without balancing. 

3. RQ3: For software effort estimation, does a combined ensemble of MLR, 

Random Forest, and DLMLP outperform each standalone model? 

𝜇𝐸𝑁𝑆 =  Mean accuracy of Ensemble 

o H1: 𝜇𝐸𝑁𝑆 >  𝜇𝐷𝐿𝑀𝐿𝑃, 𝜇𝐸𝑁𝑆 >  𝜇𝑀𝐿𝑅, and 𝜇𝐸𝑁𝑆 >  𝜇𝑅𝐹 

This hypothesis states that the accuracy of the ensemble is greater than 

DLMLP, MLR, and RF in software effort estimation. 

o The null hypothesis 𝐻0: 
𝜇𝐸𝑁𝑆 ≤  𝜇𝐷𝐿𝑀𝐿𝑃, 𝑜𝑟 𝜇𝐸𝑁𝑆 ≤  𝜇𝑀𝐿𝑅, 𝑜𝑟 𝜇𝐸𝑁𝑆 ≤  𝜇𝑅𝐹 

This hypothesis states that the ensemble is either less or equally accurate 

as at least one of the other three methods. 

4. RQ4: Does transfer learning offer any accuracy advantages over conventional 

DLMLP approaches in software effort estimation? 

𝜇𝑇𝐿 =  Mean accuracy of Transfer Learning 

o H1: 𝜇𝑇𝐿 >  𝜇𝐷𝐿𝑀𝐿𝑃 
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This hypothesis states that the accuracy of deep learning by applying 

transfer learning is more significant than that of deep learning without 

applying transfer learning. 

o The null hypothesis H0: 𝜇𝑇𝐿 ≤ 𝜇𝐷𝐿𝑀𝐿𝑃 

This hypothesis states that deep learning by applying transfer learning is 

either less or equally accurate as deep learning without applying transfer 

learning. 

5. RQ5: Do the categorical variables (IS and RS) influence effort estimation 

accuracy? 

β𝐼𝑆 =  Regression coefficient for IS 

γ𝑅𝑆 =  Regression coefficient for RS 

o Null Hypothesis (H0): β𝐼𝑆 =  γ𝑅𝑆 = 0 (indicating that IS and RS do not 

affect the accuracy of effort estimation) 

o Alternative Hypothesis (H1): β𝐼𝑆 or γ𝑅𝑆 is not equal to 0 (indicating RS 

or IS effect on the accuracy of effort estimation) 

1.4 Objectives of the Thesis 

This section outlines the objectives pursued in this research, focusing on 

advancing the state-of-the-art in the identified issues. The specific research 

objectives present in this thesis can be summarised as follows: 

1. To enhance the accuracy of effort estimation in terms of FPA. 

2. To evaluate the efficacy of various estimation methodologies, such as 

multiple linear regression, random forest, deep learning based on 

multilayer perceptrons, deep learning with balanced datasets; ensemble 

techniques established by incorporating multiple linear regression, random 

forest, and deep learning models; transfer learning for effort estimation. 

This evaluation involves validating the results using appropriate datasets. 

3. To introduce a pre-trained model based on the ISBSG dataset, providing a 

comprehensive and reliable foundation for effort estimations. The relevant 

other datasets illustrate the performance of effort estimation based on the 

pre-trained model. 

4. To leverage advanced techniques such as LIME and SHAP to gain 

comprehensive insights into the contribution and local importance of 

different features, namely EI, EO, EQ, EIF, ILF, IS, and RS, within the 

proposed effort estimation models in terms of FPA. 

Thus, the research objective of this thesis is to establish innovative approaches 

for estimating the effort required in software product development. These 

approaches will be rigorously compared with the performance of effort estimation 

based on the ISBSG dataset and other relevant datasets, facilitating the 

identification of superior estimation techniques with practical applicability. 
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2. METHODOLOGY 

2.1 Function Point Analysis 

The FPA has the most characteristics that can be applied to estimate software 

projects in their initial stages [15]. First, function points can be fully allotted based 

on the requirements or design standards. The projects are in their initial phases. 

Second, they have nothing to do with language programming, specialist 

development tools, or data processing in general [16]. Furthermore, because the 

function points are built from the user's point of view, non-technical users of the 

software may find them easier to grasp [17]. 

A linear combination of size attributes with appropriate three degrees of 

complexity weights is built to count function points. This function count is also 

known as UFP. The UFP formula is shown in equation (1). 

𝑈𝐹𝑃 = ∑ ∑ 𝐵𝐶𝑠𝑖𝑗 ×

3

𝑗=1

5

𝑖=1

𝐶𝑊𝑠𝑖𝑗                                                 (1) 

where 𝐵𝐶𝑠𝑖𝑗 is the count of component 𝑖 at level 𝑗, and 𝐶𝑊𝑠𝑖𝑗 is an appropriate 

complexity weight. VAF is determined by assessing 14 General Systems 

Characteristics (GSCs), which represent operational aspects of the application 

process. These GSCs are constraints for non-technical users and have associated 

descriptions for calculating their impact. The VAF formula is as follows: 

𝑉𝐴𝐹 =  0.65 + 0.01 × ∑ 𝐹𝑖 ×

14

𝑖=1

 𝐷𝑒𝑔𝑟𝑒𝑒𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒                 (2) 

where 𝐹𝑖 represents the GSC factor's effect. The AFP can be calculated using 

the following equation: 

𝐴𝐹𝑃 = 𝑈𝐹𝑃 ×  𝑉𝐴𝐹                                                                 (3) 

IFPUG-FPA [18] is widely used for calculating software's functional size and 

complexity based on user requirements. AFP can be used as an input to estimate 

the effort. The efforts in terms of IFPUG-FPA will be measured as follow: 

𝐸𝑓𝑓𝑜𝑟𝑡IFPUG−FPA = 𝐴𝐹𝑃 ×  𝑃𝐷𝑅                                        (4) 

2.2 Preprocessing Techniques 

2.2.1 ISBSG Dataset 

The ISBSG dataset includes various attributes, such as Project Rating, 

Development Type, Productivity, Industry Sector, Relative Size, and more. In 

order to ensure that this dataset offers high-quality data valuable for training 

models, it should be filtered based on the following criteria: 
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• The Project Rating field is designated with an ISBSG rating code of A, B, 

C, or D. As mentioned in ISBSG and several publications, the study chose 

high-quality projects by exclusively considering data projects with A and 

B ratings. This action led to the number of projects being reduced to 8,619. 

• EI, EO, EQ, ILF, ELF, and industry sector, relative size; we have excluded 

all those not counted, resulting in 1,654. 

• Productivity rate values (PDR) that fall outside of the Q1 (first quartile) - 

1.5 × IQR to Q3 (third quartile) + 1.5 × IQR range may be eliminated, 

where IQR is the abbreviation of the InterQuartile Range. As a result, the 

final number of projects is 1,073 projects. 

• In addition, IFPUG counting methods are crucial to this study. Out of 1,073 

projects, 1045 are in the IFPUG category (Dataset 1), the main focus of the 

thesis. The rest are in the NESMA category (Dataset 2), used to assess 

transfer learning effectiveness. 

2.2.2 Other Datasets 

The study will expand its analysis to incorporate other datasets, including 

Desharnais, Albrecht, Kitchenham, and China. A Pearson correlation analysis is 

conducted on those datasets to identify the key features significantly influencing 

the actual/effort values. As a results, in the case of Desharnais, the attributes of 

Length, Transactions, Entities, and PointsAdjust exhibit a positive impact on the 

effort required. Given the high correlation coefficients observed, particularly with 

PointsAjust, it was determined that PointsNonAdjust provides redundant 

information and, therefore, has been excluded from further analysis. For Albrecht, 

the attributes of Input, Output, Inquiry, File, RawFPCount, and AdjFP are found 

to affect the effort estimation significantly. Furthermore, in the context of 

Kitchenham, the duration, AFP, and Estimate attributes hold considerable 

importance, while for China, the attributes of AFP, Input, Output, Enquiry, File, 

and Added positively influence the actual development efforts. These findings 

provide valuable guidance for accurately estimating software effort by 

considering the influential attributes in each dataset. 

2.2.3 Balancing Dataset Technique 

The ISBSG dataset encompasses the industry sector feature, which is crucial in 

the analysis. The class weighting approach is utilised specifically for the industry 

sector feature to achieve this. By assigning appropriate weights to each category 

within the industry sector, the deep learning model might effectively account for 

the inherent class imbalance, leading to more accurate and reliable predictions 

across different industry sectors. The following diagram of this approach is given 

in Figure 2-1. Dataset 1 serves as the historical dataset employed in this 

methodology. 
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Figure 2-1: The architecture of the DLMLP model with/without balancing based on 

industry sector factors 

2.3 Model Development 

This section presents the model development and the thesis study models based 

on multiple linear regression, deep learning, transfer learning, deep learning with 

balancing datasets, and ensemble model, which incorporates multiple linear 

regression and deep learning. 

2.3.1 Multiple Linear Regression Model 

The MLR technique is employed for statistical analysis to establish the 

connection between a dependent and two or more independent variables. Multiple 

regression aims to predict the dependent variable's value based on the independent 

variables' value [19]. In a multiple regression model, the dependent variable is 

commonly denoted as the response or outcome variable, whereas the independent 

variables are termed predictor variables or covariates. It might be used to predict 

software effort estimation based on a given set of independent variables. The 

formation of MLR is written as a linear equation between a dependent variable 

and a bunch of p independent variables 𝑋1, 𝑋2, … , 𝑋𝑝 as follow: 

𝑦 ≈  𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 +  𝜀                   (5) 

where 𝑦  is the response variable, it stands for the output of the model; 

𝑋1, 𝑋2, … , 𝑋𝑝  are predictors or independent variables; 𝛽0  is an intercept, 

𝛽1, 𝛽2, … , 𝛽𝑝 are regression coefficients, and 𝜀 is presented as an error residual. 

The intercept and regression coefficients are unknown values. The regression 

model estimates these coefficients based on the observed data, and the goal is to 

find the values of the coefficients that best fit the data. 

2.3.2 Random Forest 

Random Forest (RF), introduced in 2001 by Breiman [20], is a kind of 

ensemble of decision trees trained via the bagging method (or sometimes the 

pasting method). Several poor models are joined to build a superior model. Each 
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tree categorises the attributes of a new entity. The forest chooses the category with 

the most votes and averages the outputs of the different trees. The growth process 

of each tree in a random forest can be summarised as follows: 

• Sampling: N cases are randomly selected from the original data with 

replacements to form the training set for each tree. The number of cases in the 

training set is equal to N. 

• Variable Selection: At each tree node, a subset of m variables is chosen 

randomly from the total M input variables. The value of m is much smaller 

than M. The node is then split based on the best split determined using the 

selected m variables. 

• Constant Variable Selection: Throughout growing the random forest, the 

value of m remains constant for all the trees. 

• Maximum Growth: Each tree is grown to its fullest extent without the use of 

any pruning techniques. 

2.3.3 Gradient Boosting 

This approach involves sequentially fitting new models to improve the 

accuracy of the response variable. The idea is to construct new base learners most 

similar to the negative gradient of the loss function, which connects to the entire 

ensemble. This learning process minimises the traditional squared error loss 

function by iteratively fitting errors. Extreme gradient boosting (XGBoost) and 

Histogram Gradient Boosting (HGBoost) are both implementations of gradient 

boosting, a machine-learning technique employed for predictive modelling. 

XGBoost is a widely used gradient-boosting implementation incorporating a 

gradient-boosting framework with various optimisations to enhance speed and 

precision. This algorithm is an ensemble of gradient boosting that takes advantage 

of second-order derivatives of the loss function to identify the most efficient and 

precise base classifier [21], [22]. Unlike traditional gradient boosting, XGBoost 

employs second-order gradients. 

2.3.4 Multilayer Perceptron Model 

The MLP architecture comprises an input, output, and one or more hidden 

layers. The Input layer receives input data, which is subsequently propagated 

through the hidden layers to generate the output. Figure 2-2 shows the diagram of 

one hidden layer of MLP. The input layer, located on the left most layer, 

comprises a group of neuron features (X) that represent the input features. Every 

neuron in the hidden layer participates in a weighted linear summation 𝑥1𝑤1 +
𝑥2𝑤2 + 𝑥3𝑤3 + ⋯ + 𝑥𝑚𝑤𝑚 to the values from the previous layer, followed by 

an activation function. The activation function used in each neuron can vary, but 

common choices include the sigmoid function, ReLU (rectified linear unit), and 

tanh (hyperbolic tangent) function [23]. The values propagated from the 

preceding hidden layer are accepted by the output layer and transformed to 

produce output values. 
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Figure 2-2: The diagram of one hidden layer of MLP 

2.3.5 Transfer Learning Technique 

This thesis uses Dataset 1 as the source and Dataset 2, Albrecht, and China as 

targets. Dataset1 and Dataset 2 share the same input and output features, whereas 

the remaining datasets exhibit similarities in their features but have fewer input 

features than Dataset 1. Dataset 1 comprises a significantly more extensive set of 

1045 projects in comparison to Dataset 2, which consists of only 28 projects. 

Additionally, when contrasting Dataset 1 with other datasets such as Albrecht and 

China, it becomes evident that Dataset 1 is more significant than the others. 

 

Figure 2-3: The diagram of the transfer learning model 

Figure 2-3 illustrates the diagram of transfer learning models, where Dataset 1 

is used as an extensive dataset to build the pre-trained model, and Dataset 2, 

Albrecht, China, are used to clarify the performance of transfer learning models. 

Features mapping involves translating the characteristics of the new dataset into 

a format that the pre-trained model might understand. The pre-trained model was 

initially designed to work with six input features (EI, EO, EQ, EIF, ILF, and 

Industry Sector). Those features were chosen based on the best performance of 

effort estimation obtained from those features presented in 4.2.1. This step 

updates the pre-trained model's input layer to match the new input's size. The 

scenario is defined into three cases as described below: 

• TL-Case 1: Using DLMLP models trained based on Dataset 1 to validate 

the performance of effort estimation based on a testing dataset of Dataset2. 
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• TL-Case 2/DLMLP: Using DLMLP models, train them based on 80% of 

Albrecht, China, Dataset 2 and validate the performance of effort 

estimation based on 20% of those datasets. 

• TL-Case 3: This is a transfer learning approach. DLMLP models trained 

by Dataset 1 are called pre-trained models and continue to train based on 

80% of Albrecht, China, and Dataset 2 and validate the performance of 

effort estimation based on 20% of the remaining datasets. 

2.3.6 Ensemble Model: Incorporating Multiple Linear Regression, 

Random Forest, and Deep Learning Models 

The idea behind ensemble learning is that by incorporating the predictions of 

multiple models, the variance and bias of the overall model might decline, leading 

to better performance on unseen data. In 1990, Hansen et al. [24] proposed that 

utilising an ensemble of neural networks with a majority agreement technique 

could produce better results than using a single predictor. In this context, an 

ensemble refers to a group of predictors, and ensemble learning is a method that 

integrates predictions from multiple models, referred to as the ensemble method. 

This thesis selects two base regression models, MLR and RF, for creating 

ensemble models through stacking regressors. These ensemble models produce 

predictions, which are then integrated with the output of a DLMLP model using 

a voting-by-averaging method for regression. The performance of this approach 

is evaluated with MLR, RF, and DLMLP approaches. 

2.4 Model Explainability - Interpretability 

Explainability techniques, such as LIME and SHAP, become essential to 

address this issue. These techniques are pivotal in bridging this gap by unveiling 

the intricate relationships between these input features and the predicted effort. 

Doing so gives stakeholders a transparent view of the estimation process, enabling 

them to understand better the underlying factors influencing model predictions. 

This transparency enhances the estimation model's credibility and empowers 

decision-makers to make informed decisions regarding software project planning 

and resource allocation. 

2.4.1 LIME 

Applying LIME in the context of effort estimation assists in illuminating how 

each feature (e.g., EI, EO, EQ) contributed to the predicted effort for a specific 

instance. LIME dissects the contributing factors underlying a prediction, 

facilitating an in-depth understanding of the role played by each feature in the 

model's decision-making process. The positive and negative values associated 

with the feature indicate their impact on the predicted effort. 
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2.4.2 SHAP 

SHAP provides a unified approach to attribute the contribution of each feature 

to the predicted effort estimation. It assigns a value to each feature, representing 

its impact on the prediction in the context of the other features. These values are 

called SHAP values. 

• Positive SHAP Value: A positive SHAP value for an independent variable 

signifies that the presence or increase in that variable contributes positively 

to the predicted effort. Higher values or complexity for EI, EO, EQ, etc., 

features are associated with increased effort. 

• Negative SHAP Value: On the other hand, a negative SHAP value for a 

variable suggests that the presence or increase in that variable contributes 

negatively to the predicted effort. For features such as EIF and ILF, 

negative SHAP values indicate that higher values or complexity in these 

variables are associated with decreased effort in the effort estimation 

model. 

3. EXPERIMENTS 

3.1 Conceptual Framework of the Study 

3.1.1 The Framework of the Study 

As shown in Figure 3-1, there are four primary phases, including collecting the 

datasets, data preprocessing, building the proposed models, and measuring the 

performance of proposed models based on performance metrics. 

 
Figure 3-1: The flow diagram of the proposed software effort estimation 
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Next, data preprocessing is vital in preparing and refining the raw datasets 

before training models. The process of data preprocessing and the results of this 

process are illustrated in Section 2.2. The following presents the steps of data 

preprocessing might summarised as: 

• ISBSG dataset: The primary dataset employed in this study. This dataset 

includes factors relevant to FPA, such as EI, EO, EQ, EIF, ILF, AFP, and a 

range of categorical variables. The central focus of this thesis is to investigate 

the impact of categorical variables in conjunction with FPA factors on effort 

estimation. Due to time constraints, the study narrows its scope to six key 

predictors denoted as P1, P2, P3, P4, P5, and P6 (see Section 3.1.2). The data 

preprocessing for the ISBSG dataset is presented in Section 2.2.1. The study 

adheres to the IFPUG approach, creating two distinct datasets: Dataset 1 and 

Dataset 2. Dataset 1 is selected based on IFPUG criteria, while the remaining 

projects are allocated to Dataset 2. 

• Other datasets: In alignment with the research objectives for the Albrecht, 

Desharnais, Kitchenham, and China datasets, Pearson correlation analysis 

was conducted (see Section 2.2.2). This analysis aims to identify the key 

features significantly influencing actual/effort values in the context of 

software development projects. 

Following that, the thesis studies proposed models, MLR (see Section 3.2), RF 

(see Section 3.3), and DLMLP (see Section 3.4). Further study is conducted on 

the proposed models, including the ensemble (see Section 3.7), deep learning with 

balancing dataset (see Section 3.6) and deep learning with transfer learning (see 

Section 3.5). Ensemble models might combine multiple models, including MLR, 

RF, and DLMLP, to achieve better performance, while deep learning with transfer 

learning might leverage pre-trained models to improve learning efficiency and 

accuracy. Those models are trained based on the training datasets. 

The study designs eleven predictors from P1 to P6, PA, PD, PC, PK, and PDataset2 

(see Section 3.1.2). For models that adopted predictors P1 to P6, they use training 

Dataset 1. The models adopted predictor PA, PD, PC, PK, and PDataset2 use training 

datasets of Albrecht, China, Kitchenham, and Dataset 2, respectively. The cross-

validation with 5-fold is employed for all studied models in the training process. 

The details of predictors and the whole configuration of proposed models are 

shown in the following sections. 

3.1.2 Predictors 

In this study, the predictors, including AFP, EI, EO, EQ, EIF, ILF, RS, and IS, 

are categorised into six groups, with each group comprising different 

combinations of techniques as follows: 

• P1: AFP 

• P2: EI, EO, EQ, EIF, ILF 

• P3: AFP, IS 

• P4: EI, EO, EQ, EIF, ILF, IS 
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• P5: AFP, IS, RS 

• P6: EI, EO, EQ, EIF, ILF, IS, RS 

• PDataset2: the predictor based on EI, EO, EQ, EIF, ILF, IS, RS and Dataset 2. 

Setting one of the lists (from P1 to P6) as independent variables and SWE is 

the dependent variable. The aim of using these predictors is to find the most 

appropriate combination that leads to the highest performance in effort estimation. 

According to the findings of the Pearson correlation of features on the Promise 

repository in section 2.2.2, the following factors are chosen as predictors for 

Desharnais (PD), Albrecht (PA), Kitchenham (PK), and China (PC): 

• PD: Length, Transactions, Entities, and PointsAjust 

• PA: Input (EI), Output (EO), Enquiry (EQ), File (EIF) 

• PK: duration, AFP, estimate 

• PC: Input (EI), Output (EO), Enquiry (EQ), File (EIF) 

3.2 Regression Experiment 

The MLR algorithm is implemented using the robust linear regression 

algorithm available in the Scikit-learn library, a widely used machine learning 

library. The training dataset is divided into five folds using the K-Fold function 

[25] to ensure robust evaluation and minimise bias. The shuffle and random_state 

parameters are incorporated during the data shuffling process to introduce 

randomness and ensure reproducibility. The shuffle parameter randomly reorders 

the data, while the random_state parameter sets a fixed seed, guaranteeing that 

the results can be replicated for further analysis. 

Next, for each fold generated by the 5-fold technique, the data is further divided 

into training and validation sets, leveraging the indices provided by the splitting 

process. An MLR is created using the LinearRegression() function with default 

parameters (such as fit_intercept set to be True). The code then trains the model 

on the training set using the fit() function and uses it to predict the target variable 

on the validation set using the predict() function. 

3.3 Random Forest Experiment 

RF is a popular machine learning algorithm used for classification and 

regression tasks. It might be used for predicting both numerical and categorical 

variables. It might be computationally efficient and is capable of handling large 

datasets. RF is designed to mitigate overfitting by combining multiple decision 

trees and using random subsets of data and features. Having sufficient trees in the 

ensemble might help reduce the overfitting risk and improve generalisation 

performance. 

Table 3-1: The experimental-based parameters of RF 

No Parameters Values 

1 n_estimators {120,150, 180, 210} 
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2 max_depth {5, 10, 15, 20, 25, 30} 

3 random_state 42 

4 min_samples_split Default value 

5 min_samples_leaf Default value 

6 max_features Default value 

7 Num folds 5 

 

The experimental parameters for RF, as outlined in Table 3-1, with 

'n_estimators' and 'max_depth' organised into distinct value sets; 'random_state' 

is set to 42; while leaving 'min_samples_split', 'min_samples_leaf', and 

'max_features' at their default values. The experimentation is conducted within a 

cross-validation with 5-fold. Model performance was evaluated using the MAE, 

and the optimal model configuration is determined based on achieving the 

minimum MAE through the grid search [26] process. 

3.4 DLMLP Experiment 

In DLMLP, each neuron receives input from the previous/input layer. A neuron 

produces an output sent to the next layer after applying an activation function to 

the weighted sum of its inputs. According to Jason Brownlee [23], ReLU is simple 

to compute and requires few computational resources. ReLU addresses the issue 

of vanishing gradients, which might impede learning in deep neural networks. By 

allowing for faster learning and improved performance [27], ReLU has become a 

popular choice in many deep-learning applications. 

Optimisation algorithms are essential for training deep learning models [28]. 

Optimisation aims to find the best set of parameters for a model that minimises 

the loss function, which is the difference between the model's predicted and actual 

output. Root Mean Squared Propagation (RMSProp) and Adam make adaptive 

moment estimations to enhance results among Adam, RMSProp, Adaptive 

Gradient Algorithm and a more robust extension of Adagrad [29]. As a result, the 

study chose Adam as the optimiser of this model. 

This study conducted experiments to evaluate different layer configurations for 

the DLMLP, encompassing architectures with 2, 3, 4, and 5 layers. The optimal 

architecture of models is identified using the grid search [26] based on the 

minimum MAE, early stopping with a monitoring criterion based on the minimum 

MAE also installed. The configuration details provided in Table 3-2 further 

illuminate the design and training aspects of the deep learning model. 

Table 3-2: The experimental-based parameters of DLMLP 

No Parameters Values 

1 Learning rate {0.01,0.001} 

2 Batch size 64 

3 Epoch 1260 
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4 Rate decay 0.999 

5 Num fold 5 

6 Early stop True, patience = 5 

7 Loss function Cross Entropy Loss 

3.5 Transfer Learning Experiment 

As mentioned in 2.2.1, Dataset 1 is a widely recognised and standardised 

dataset containing many software development projects. This thesis chooses the 

best model built based on Dataset 1 as the pre-trained model (called the ISBSG 

model). It is trained on a large amount of data, which allows us to learn 

generalisable features that might be applied to other datasets. 

Table 3-2 presents the input and output variables list among studied datasets 

(Dataset 2, Albrecht, and China). Firstly, considering the output feature, those 

datasets share the same target variable ('effort'). Secondly, observation of input 

variables, those datasets include inputs related to EI, EO, and EQ. They also have 

input features related to file counts, such as EIF and ILF. Based on these 

similarities, there is indeed an overlap between Dataset 1 and the studied datasets 

(Dataset 2, Albrecht, and China) in terms of input variables and output variables. 

This overlap suggests there is potential for transferring knowledge from the pre-

trained model based on Dataset 1 to predicting effort in other datasets. 

Table 3-3: The input and output features list among studied datasets 

No 
Intersect 

Dataset 1 with 

Similarity Overlap with 

Dataset 1? Inputs Output 

2 Dataset2 EI, EO, EQ, EIF, ILF, IS SWE Yes 

3 Albrecht 
Input (EI), Output (EO), 

Inquiry (EQ), File (EIF) 
Effort Yes 

4 China 
Input (EI), Output (EO), 

Inquiry (EQ), File (EIF) 
Effort Yes 

Transfer learning based on the pre-trained model involves several steps as 

follows: 

• Step 1: Choose the best model obtained from DLMLP based on P1 to P6 as 

the pre-trained model. As discussed in Section 4.2.1, DLMLP-P4, with six 

predictors EI, EO, EQ, EIF, ILF, and IS, outperform compared with P1, P2, 

P3, P5, and P6. 

• Step 2: Load the pre-trained model: This model is trained on Dataset 1, and 

then choose the best-proposed model to use as the pre-trained model. 

• Step 3: Feature mapping as following steps: 

o Extract features using the pre-trained model. 

o Map the features between new input features and the features from the pre-

trained model. 

• Step 4: Freeze all layers except for the last one. 
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• Step 5: Create a new optimiser: A new optimiser is created specifically for 

the last layer of the model, which was set to require gradients in the previous 

step. Adam optimiser is chosen as the optimiser (the same optimiser as the 

pre-trained model). 

• Step 6: Continue training the model. 

3.6 Balancing Dataset Experiment 

The number of projects in each industry sector might need to be balanced to 

address this imbalance. In practice, balancing may involve adding more data to 

underrepresented groups or removing data from overrepresented groups until the 

number of data points in each group is approximately equal. 

Determining class weights is a critical step to address the class imbalance issue 

in the dataset. Based on the experiment, a class weighting approach is employed 

to assign different weights to each industry sector based on the number of projects 

within each sector. The primary objective is to give more importance to 

underrepresented sectors while training the model. The class weights are 

determined as follows: 

• For each Industry Sector, the ratio of the number of projects before 

balancing to the number of projects after balancing is calculated. 

• The inverse of these ratios is used as class weights. The less-represented 

sectors are assigned higher weights, while the overrepresented sectors are 

assigned lower weights. 

• The performance of the model is based on the minimum of MAE. 

Finally, DLMLPB with a balanced dataset is applied. The configuration of this 

model is the same as DLMLP presented in Section 3.4. 

3.7 Ensemble Model Experiment 

The stacking ensemble (SE) for regression incorporates two distinct models: 

MLR and RF. Data preprocessing is conducted using a 'tree_preprocessor' object 

to prepare the dataset for modelling. This phase creates two separate pipelines, 

each tailored to one of the models—MLR and RF. These pipelines integrate 

preprocessing with the respective model, resulting in two well-defined modelling 

paths. To summarise, the ensemble model has several steps as follows: 

• Step 1: Create base models (RF, MLR, DLMLP) using predefined 

hyperparameters for each model to generate individual predictions. 

• Step 2: Configure an XGBoost regressor as the meta-model to merge base 

model predictions. 

• Step 3: Set up the stacking ensemble, using base models with the final 

XGBoost model. 

• Step 4: Employ 5-fold cross-validation to rigorously evaluate the 

ensemble's accuracy based on the minimum MAE. 
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• Step 5: Apply a voting mechanism that averages predictions from DLMLP 

and the stacking ensemble in step 5, producing a unified prediction that 

balances insights from both sources for enhanced accuracy. 

3.8 Model Explainability Experiments 
This section uses LIME and SHAP techniques to perform model explainability 

experiments. Due to time limitations, the thesis only analyses LIME and SHAP 

based on DLMLP. 

Regarding LIME, the following steps are undertaken to derive and interpret 

explanations for individual predictions: 

• Step 1: Begin by instantiating a LIME explainer using the 

LimeTabularExplainer library. 

• Step 2: Select an example instance from the testing dataset (see Table 3-4). 

• Step 3: Utilise the LIME explainer to generate an explanation for the 

selected instance. 

• Step 4: The generated LIME explanation offers insights into the 

contribution of each feature to the prediction for the specific instance. 

Regarding SHAP, these values are derived and interpreted as follows: 

• Step 1: Conversion from LIME to SHAP. The LIME explanation obtained 

earlier is converted into a format compatible with SHAP, facilitating a 

broader perspective of feature importance. 

• Step 2: A SHAP explainer is established using the SHAP.Explainer library. 

It takes as input the prediction function and the reshaped training data, 

enabling the computation of SHAP values. 

• Step 3: SHAP values are computed for the entire test dataset using the 

SHAP explainer. 

• Step 4: Visualise the representation and interpretation. 

Table 3-4 presents a specific instance that is being used to demonstrate the 

application of LIME. This instance serves as an example for illustrating how 

LIME might be utilised to explain and interpret the relationship between the 

features and the actual effort in that project. 

Table 3-4: The scenario of instance for illustrating LIME 

Features Instance Specific Unit 

EI 209 Function Points 

EO 129 Function Points 

EQ 24 Function Points 

EIF 15 Function Points 

ILF 83 Function Points 

IS Communication Function Points 

RS M2 Function Points 

Real Effort 10200 Person-Hours 
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3.9 Baseline Models 
This section proposes three baseline models: one statistical model (stepwise-

based regression), one simple artificial neural network (ANN) model from 

previous research, and IFPUG-FPA. IFPUG-FPA is introduced in Section 2.1. 

Three baseline models are used to compare the performance of the best model 

among MLR, RF, and DLMLP based on Dataset 1. The thesis employs a set of 

metrics, namely MMRE, MBRE, MIBRE, MAE, Pred(0.25), and SA, to evaluate 

the performance of the best model compared with the baseline models. It is worth 

noting that the same dataset used for validation by the best-performing model is 

also employed in assessing the baseline models. 

3.9.1 ANN-based Model 

A simple ANN-based model with two hidden layers has been employed as the 

baseline model. The purpose of choosing two hidden layers is to make the model 

simple and naive to determine the minimum performance that might be expected. 

If the best model does not perform significantly better than the baseline, it might 

be overfitting or not appropriately capturing the underly patterns. The parameters 

adopted in the ANN-based model are presented in Table 3-5. 

Table 3-5: The parameters of a simple ANN-based model 

No Parameters Values 

1 Learning rate 0.01 

2 Batch size 64 

3 Epoch 100 

4 Rate decay 0.999 

6 Early stop True, patience = 5 

7 Loss function Cross Entropy Loss 

3.9.2 Stepwise-based Regression Model 

Stepwise-based regression (SWR) [31] is a technique widely used in statistical 

modelling, drawing inspiration from previous publications [31]–[33]. This 

approach to multiple linear regression involves an automated process for selecting 

independent variables and might be summarised as follows: 

• Initialisation: Begin with either a starting model containing predefined 

terms (backward selection) or a null model (forward selection). 

• Model Complexity: Define the desired model complexity, specifying which 

terms should be included, such as linear, quadratic, or interaction terms. 

• Evaluation threshold: Set an evaluation threshold based on the sum of 

residual errors. This threshold determines whether to add or remove features. 

• Iterative Process: The algorithm iteratively adds or removes features while 

re-evaluating the model at each step. 

• Termination: Stepwise regression continues until no further improvement in 

estimation is achievable based on threshold. 
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Forward selection initiates with a null model and progressively adds features 

that meet specific criteria. Conversely, backward selection starts with a full model 

and removes non-significant features. Consequently, SWR necessitates two 

significance levels: one for adding features and another for removing features. 

4. RESULTS AND DISCUSSION 

4.1 Comparison of Model Performance 

Table 4-1 focuses on assessing effort estimation methods using Dataset 1. This 

table provides a detailed analysis of model performance metrics, including 

MMRE, MBRE, MIBRE, MAE, Pred(0.25)/Pred(0.30), and SA. The rows 

represent different models, including MLR, RF, DLMLP, the ensemble, and 

DLMLPB models. The performance evaluation in this table offers insight into the 

effectiveness of these methods when applied to Dataset 1. 

Table 4-1: The performance of effort estimation obtained from MLR, RF, the 

ensemble, and DLMLPB based on testing of Dataset 1 

Predictors

/Models 
MMRE MBRE MIBRE MAE 

PRED 
SA 

0.25 0.30 

P1 

MLR 0.9113 1.0057 0.3831 2173.83 0.27 0.32 0.43 

RF 0.6879 0.8047 0.3661 2150.85 0.28 0.32 0.46 

DLMLP 0.6709 0.7719 0.3637 2066.69 0.29 0.34 0.51 

Ensemble 0.5478 0.7229 0.3582 1986.74 0.29 0.34 0.52 

DLMLPB 0.6228 0.7702 0.3606 2016.14 0.29 0.34 0.52 

P2 

MLR 1.2273 1.3250 0.4134 2254.00 0.26 0.32 0.43 

RF 0.9802 1.0675 0.3786 2118.20 0.30 0.38 0.46 

DLMLP 0.5526 0.7360 0.3044 1768.61 0.46 0.53 0.58 

Ensemble 0.4853 0.6132 0.2920 1669.18 0.46 0.54 0.61 

DLMLPB 0.4568 0.5378 0.2874 1464.35 0.47 0.52 0.65 

P3 

MLR 0.9081 1.0012 0.3824 2172.63 0.28 0.34 0.45 

RF 0.6820 0.7964 0.3626 2123.92 0.32 0.35 0.46 

DLMLP 0.6275 0.7812 0.3619 2033.24 0.32 0.36 0.51 

Ensemble 0.5362 0.7464 0.3553 2024.51 0.34 0.36 0.52 

DLMLPB 0.5639 0.6713 0.3356 1915.79 0.36 0.42 0.54 

P4 

MLR 1.1999 1.2851 0.4090 2018.79 0.27 0.32 0.45 

RF 0.9784 1.0579 0.3750 2012.14 0.31 0.38 0.47 
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DLMLP 0.2478 0.4311 0.1572 530.65 0.79 0.84 0.87 

Ensemble 0.3119 0.3657 0.2189 1007.28 0.62 0.73 0.75 

DLMLPB 0.1871 0.2064 0.1393 494.20 0.82 0.85 0.88 

P5 

MLR 1.1551 1.0378 0.5949 2335.22 0.27 0.30 0.4 

RF 0.6875 0.8028 0.3645 2145.08 0.32 0.35 0.45 

DLMLP 0.6326 0.7830 0.3621 2118.93 0.32 0.36 0.49 

Ensemble 0.6115 0.7281 0.3517 1983.02 0.31 0.36 0.52 

DLMLPB 0.6855 0.7842 0.3567 2069.72 0.33 0.37 0.51 

P6 

MLR 0.8981 1.0129 0.3967 2228.68 0.28 0.32 0.42 

RF 0.7756 0.8632 0.3649 2029.29 0.30 0.39 0.48 

DLMLP 0.3489 0.4750 0.2219 963.71 0.68 0.71 0.77 

Ensemble 0.3599 0.4483 0.2479 1143.07 0.56 0.66 0.72 

DLMLPB 0.2586 0.3551 0.1731 550.82 0.76 0.78 0.86 

Table 4-2 expands the evaluation by examining the performance of effort 

estimation methods across a broad spectrum. In addition to Dataset 2, this table 

incorporates other datasets such as Desharnais, Albrecht, Kitchenham, and China 

datasets. The evaluation includes a comparison of MLR, RF, the ensemble, and 

transfer learning cases 1, 2, and 3 (TL-Case1, TL-Case2, TL-Case3, see in Section 

2.3.5), along with an ensemble-based approach. As mentioned in Section 2.2.2, 

TL-Case1 and TL-Case3 for Desharnais and Kitchenham and TL_Case1 for 

Albrecht and China are not measured due to differences in input features. The 

metrics used for evaluation are consistent with those in Table 4-1. This 

comprehensive analysis allows us to assess the effectiveness of these techniques 

across diverse datasets. 

Table 4-2: The performance of effort estimation obtained from MLR, RF, TL-

Case1, TL-Case2, TL-Case3, and the ensemble based on testing of Dataset 2, 

Desharnais, Albrecht, Kitchenham and China datasets 

Preditors/ 

Models 
MMRE MBRE MIBRE MAE 

PRED 
SA 

0.25 0.30 

PD 

MLR 0.4202 0.5795 0.3340 2539.94 0.25 0.38 0.28 

RF 0.3850 0.5431 0.2989 2514.43 0.44 0.50 0.29 

TL-Case1 - - - - - - - 

TL-Case2 0.2076 0.2507 0.1693 1333.22 0.68 0.75 0.65 

Ensemble 0.2430 0.3397 0.2231 1860.73 0.50 0.75 0.51 

TL-Case3 - - - - - - - 

PA 

MLR 3.2224 0.5479 3.1693 7.13 0.4 0.4 0.54 
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RF 1.8730 1.9115 0.3906 4.73 0.4 0.4 0.65 

TL-Case1 - - - - - - - 

TL-Case2 0.3201 0.3220 0.1950 1.44 0.6 0.6 0.84 

Ensemble 0.8081 0.8397 0.3368 3.66 0.4 0.4 0.61 

TL-Case3 0.1088 0.1839 0.1087 0.38 0.8 0.8 0.90 

PK 

MLR 0.7583 0.5207 0.3193 589.35 0.42 0.43 0.64 

RF 0.4716 0.4870 0.2364 471.52 0.50 0.57 0.71 

TL-Case1 - - - - - - - 

TL-Case2 0.2204 0.3413 0.1594 240.88 0.75 0.78 0.81 

Ensemble 0.2276 0.2435 0.1644 262.80 0.75 0.78 0.81 

TL-Case3 - - - - - - - 

PC 

MLR 1.6664 1.8916 0.4550 2762.83 0.27 0.28 0.25 

RF 1.6386 1.8595 0.4507 2595.62 0.27 0.28 0.29 

TL-Case1 - - - - - - - 

TL-Case2 0.9833 1.0569 0.2659 1034.31 0.58 0.59 0.72 

Ensemble 0.9626 1.0241 0.3235 1447.57 0.47 0.59 0.62 

TL-Case3 0.2092 0.2325 0.1578 247.21 0.79 0.83 0.93 

PDataset 2 

MLR 0.6681 0.9829 0.1471 1162.98 0.33 0.34 0.00 

RF 0.3031 0.3698 0.2571 677.45 0.66 0.67 0.23 

TL-Case1 0.4951 1.0574 0.4539 1165.51 0.17 0.17 0.00 

TL-Case2 0.2480 0.2557 0.1796 438.48 0.66 0.83 0.43 

Ensemble 0.2182 0.2518 0.1872 482.28 0.66 0.67 0.38 

TL-Case3 0.1884 0.2310 0.1731 463.10 0.66 0.83 0.40 

Table 4-3 displays the evaluation results for effort estimation derived from 

three baseline models: ANN-based, SWR-based, and IFPUG-PFA. This table 

offers an in-depth examination of the performance metrics for these models, 

primarily focusing on the testing of Dataset 1. The assessment of model 

performance encompasses the analysis of six predictors, denoted as P1 to P6. 

Table 4-3: The performance of effort estimation obtained from baseline models 

(ANN, SWR, IFPUG) based on Dataset 1 

Predictors

/Models 
MMRE MBRE MIBRE MAE 

PRED 
SA 

0.25 0.30 

P1 

ANN 0.6760 0.7769 0.3592 2067s.64 0.26 0.28 0.47 

SWR 1.5740 1.6748 0.4380 2373.19 0.22 0.28 0.39 

P2 

ANN 0.6081 0.8216 0.3056 1786.68 0.41 0.45 0.54 
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SWR 1.1787 1.2716 0.4075 2177.96 0.24 0.30 0.44 

P3 

ANN 0.6929 0.9452 0.3659 2096.01 0.29 0.35 0.46 

SWR 1.5340 1.6240 0.4330 2364.94 0.25 0.30 0.41 

P4 

ANN 0.3319 0.3716 0.2063 732.24 0.65 0.71 0.81 

SWR 1.1734 1.2640 0.4074 2175.54 0.25 0.31 0.44 

P5 

ANN 0.6455 0.7940 0.4156 2152.72 0.31 0.36 0.48 

SWR 1.1726 1.0276 0.6099 2310.61 0.27 0.30 0.41 

P6 

ANN 0.4628 0.9579 0.2963 1097.54 0.52 0.56 0.72 

SWR 0.9092 0.8835 0.4612 2174.54 0.26 0.32 0.44 

IFPUG 

IFPUG-PFA 1.7977 1.7989 0.5070 6652.55 0.16 0.18 0.00 

4.2 Results and Discussion 

4.2.1 Comparing Predictive Accuracy in SDEE: DLMLP, MLR, RF 

This study comprehensively analyses model performance across different 

predictor groups, focusing on MLR, RF, and DLMLP models (see Table 4-1). 

The objective is to compare the performance of these models individually with 

each predictor group and to answer RQ1: Is the DLMLP more accurate than the 

MLR, RF? 

In predictors P1 and P2, we observe notable performance trends among the 

algorithms. In P1, DLMLP achieves the lowest MAE at 2066.69, surpassing RF 

and MLR. Similarly, in P2, DLMLP consistently outperforms MLR and RF 

across various metrics, with an MAE of 1768.61 compared to higher MAE values 

for MLR and RF. These patterns collectively highlight DLMLP's superior 

predictive performance across different predictors. Similarly, in the P3 predictor 

group, competitive performance is observed between MLR and RF, with RF 

exhibiting advantages across all metrics. Nevertheless, DLMLP consistently 

outperforms RF and MLR within this predictor group. Moreover, in the P4 

predictor group, DLMLP achieves the lowest MAE with a value of 530.64, 

outperforming MLR (2018.79) and RF (2012.14). While other metrics, including 

MMRE, MBRE, MIBRE, Pred(0.25), and SA, favour RF over MLR, DLMLP's 

performance exceeds that of both MLR and RF in terms of all metrics. 

Additionally, P4 predictor group outperforms compared with P1, P2, P3, P5, and 

P6. Consistent with the trends observed in the P5 and P6 predictors, DLMLP 

consistently demonstrates superior predictive performance over MLR and RF 

across multiple metrics, including MNRE, MBRE, MIBRE, and MAE. DLMLP's 

proficiency in prediction is evident through its consistently lower metric values. 
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As previously mentioned, the trends observed in the predictor persist in PD, PA, 

PK, PC, and PDataset2 predictors. Moreover, DLMLP consistently outperforms MLR 

and RF regarding MMRE, MBRE, MIBRE, MAE, Pred(0.25), and SA, 

establishing itself as the preferred model within these scenarios. RF demonstrates 

improved performance over MLR in the majority of cases. 

In conclusion, this study provides definitive answers to the research questions. 

RQ1, which investigates the accuracy of DLMLP compared to MLR and RF 

models, confirms that DLMLP outperforms both models across all predictive 

factors. 

4.2.2 Comparing DLMLP vs. Baseline Models 

The performance of DLMLP compared with baseline models is presented in 

Table 4-3. It is noticeable that those figures reveal that the DLMLP consistently 

outperforms the baseline models across diverse datasets (P1 to P6) based on 

various performance metrics. DLMLP achieves lower values across metrics, 

including MMRE, MBRE, and MIBRE. These results imply that DLMLP 

provides more accurate and less biased effort estimations than the alternative 

models. 

Its superior performance extends to the MAE, demonstrating its effectiveness 

in minimising the absolute difference between predictions and actual effort 

values. The strength of the DLMLP further manifests in its ability to provide 

predictions within a specified tolerance. Higher Pred(0.25) values indicate that 

DLMLP delivers effort estimation that closely aligns with the actual effort. 

4.2.3 Impact of Dataset Balancing on Accuracy of SDEE in DLMLP 

The other aim of this study is to comprehensively assess the impact of using a 

balanced dataset and handling categorical variables in deep learning models in the 

context of effort estimation. Specifically, the thesis compares model performance 

with a balanced dataset based on categorical variable handling (DLMLPB) 

against the model without balancing categorical variables (DLMLP) across 

predictors P1, P2, P3, P4, P5, and P6. This evaluation answers RQ2 that dataset 

balancing might enhance the predictive accuracy of DLMLP methods in software 

effort estimation. Model performance evaluation is based on critical metrics such 

as MMRE, MBRE, MIBRE, MAE, Pred, and SA. Table 4-1 illustrates the 

performance comparison between DLMLP and DLMLPB based on datasets P1 

to P6. The results reveal that DLMLPB consistently outperformed DLMLP in 

estimation accuracy across all predictors. This finding provides strong evidence 

to support the notion that using a balanced dataset and effectively handling 

categorical variables leads to improved estimation accuracy in deep learning 

models. 

This discovery addresses RQ2 by affirming that dataset balancing improves 

DLMLP's predictive accuracy in effort estimation. It underscores the importance 

of dataset balance and proper handling of categorical variables for accurate 
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estimations. Researchers are strongly advised to balance their datasets and use 

suitable techniques for categorical variables to enhance the accuracy and 

reliability of their models. 

4.2.4 Evaluating Ensemble for SDEE: MLR, RF, and DLMLP 

The next objective of this research is to compare the performance of MLR, RF, 

and DLMLP against ensemble models established by incorporating MLR, RF and 

DLMLP for effort estimation using eleven predictors: P1, P2, P3, P4, P5, P6, PD, 

PA, PK, PC, and PDataset2. Table 4-1 and Table 4-2 present the performance of MLR, 

RF, DLMLP, and ensemble models. 

Table 4-1 shows that the ensemble consistently outperforms MLR, RF, and 

DLMLP in the P1 predictor, demonstrating superior accuracy with lower MMRE, 

MBRE, MIBRE, and MAE values, indicating more precise effort estimation. The 

ensemble also excels in predictive power, with higher Pred(0.25) and SA values 

than the other algorithms. These trends extend across various predictors, such as 

P2, P3, P5, PC, PK, and PDataset2, where the ensemble maintains its edge in accuracy 

and predictive prowess. In predictors like P4, P6, PA, and PD, the ensemble still 

outperforms MLR and RF in most metrics, although DLMLP holds a slight 

advantage in specific cases, such as P4, P6, PD, PC, and PK. 

In conclusion, the thorough analysis of different effort estimation scenarios 

shows that ensemble models consistently outperform individual models like MLR 

and RF. This finding suggests that ensemble models have the potential to improve 

effort estimation, mainly when precision is crucial significantly. Considering 

ensemble models is highly recommended when striving for more accurate and 

reliable effort estimations. 

4.2.5 A Comparative Analysis of Transfer Learning and DLMLP 

The other objective of this study is to compare the accuracy of the transferred 

model with the DLMLP-based model trained on the new datasets. This 

comparison addresses RQ4: "Does DLMLP-based transfer learning offer 

accuracy over conventional DLMLP?". The study also introduces a pre-trained 

model based on the ISBSG dataset. 

In TL-Case1, DLMLP-based models trained on Dataset 1 are employed to 

evaluate the performance of effort estimation on Dataset 2. TL-Case2 involves 

training DLMLP-based models on 80% of the Albrecht, China, and Dataset 2 

datasets and evaluating their performance on the remaining 20%. Finally, TL-

Case3 employs DLMLP-based models trained on Dataset 1 (pre-trained model) 

and continued their training on 80% of the new datasets, with an evaluation 

conducted on the remaining 20% of new datasets. 

Table 4-2 illustrates the performance comparison among TL-Case1, TL-Case2, 

and TL-Case3 across the studied datasets. The results obtained from these three 

cases provide insights into the efficacy of transfer learning. TL-Case 1 obtained 

from Dataset2 reveals that the DLMLP model trained on Dataset 1 does not 
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outperform TL-Case2 and TL-Case3. On the other hand, TL-Case3 truly 

showcases its potential. By combining the strengths of the pre-trained model with 

further training on the combined datasets, TL-Case3 achieves the lowest MMRE, 

MBRE, MIBRE, MAE, Pred, and SA values, suggesting superior performance in 

estimating software effort. These findings collectively emphasise the significance 

of transfer learning and its ability to enhance the accuracy of effort estimation 

models in software development projects. 

In conclusion, transfer learning offers significant advantages in effort 

estimation by leveraging prior knowledge and improving the accuracy of 

predictions. Examining three scenarios (TL-Case1, TL-Case2, and TL-Case3) has 

provided valuable insights into the effectiveness of transfer learning techniques 

within this domain. Notably, TL-Case3, which utilised pre-trained models 

adjusted on a combined dataset, emerged as the most effective strategy, 

highlighting the potential of transfer learning to improve effort estimation 

accuracy significantly. 

4.2.6 Exploring the Influence of IS and RS on SDEE 

Table 4-1 shows DLMLP and DLMLPB performance with predictors P1 to P6. 

The results reveal the impact of IS and RS on effort estimation. Comparing P1 

(AFP), P3 (AFP, IS), and P5 (AFP, IS, RS), we see that IS significantly enhances 

accuracy in P3. P3 consistently achieves lower MMRE, MBRE, MIBRE, and 

MAE, highlighting IS's substantial contribution. P5, including IS and RS, 

performs similarly to P3, indicating RS adds a minor improvement when AFP and 

IS are present. These findings stress the importance of including IS in effort 

estimation models for valuable insights into software development complexities. 

Furthermore, when comparing P1 (AFP) against P2 (EI, EO, EQ, EIF, ILF), it 

becomes evident that P2 consistently outperforms P1 regarding accuracy metrics. 

Including complexity-related predictors in P2, such as EI, EO, EQ, EIF, and ILF, 

enhances estimation accuracy. However, it is essential to note that including IS 

and RS in P4 and P6 further improves estimation accuracy beyond the AFP-based 

model of P1. These findings underscore the critical role of IS and RS in capturing 

the complex factors that significantly impact effort estimation. 

Upon examining the experimental results, a difference in performance between 

predictors P4 and P6 becomes evident. Predictor P4 represents the inclusion of IS 

as a predictor, while predictor P6 incorporates both IS and RS as predictors. 

Surprisingly, including RS in predictor P6 results in lower performance than P4 

without RS. This result suggests that RS might have a detrimental effect on the 

model's overall performance. 

Interestingly, the experimental results reveal a surprising outcome: including 

RS in predictor P6 leads to lower performance than P4, which does not include 

RS. This unexpected result suggests a potential negative impact of RS on the 

overall model performance. Further research is needed to understand the 
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underlying factors contributing to this phenomenon and to explore potential 

approaches to mitigating the adverse effects of RS on effort estimation accuracy. 

In conclusion, including IS and RS predictors consistently enhances the 

accuracy of effort estimation models. Predictor sets incorporating IS and RS, such 

as P3 and P5, demonstrate superior performance compared to models solely 

relying on AFP or complexity factors. These findings highlight the importance of 

considering IS and RS predictors to capture the intricate nature of software 

development projects and achieve more precise and reliable effort estimation. 

4.3 Evaluation against Hypotheses 

Table 4-4 and Table 4-5 present the results of the Mann-Whitney U-tests, 

which are conducted to examine potential significant differences in mean among 

various machine learning methodologies: DLMLP, MLR, RF, the ensemble, 

transfer learning, and DLMLPB. The primary aim of these tests is to ascertain 

whether statistically significant variations in performance among these 

methodologies exist. The null hypothesis (H0) stipulates significantly less or 

equal mean accuracy, while the alternative hypothesis (H1) posits the contrary. 

Table 4-4: The Mann-Whitney hypothesis test between DLMLP, MLR, RF, the 

ensemble and DLMLPB models based on P1, P2, P3, P4, P5, P6 

No Model 1 Model 2 
P-value 

P1 P2 P3 P4 P5 P6 

0 DLMLP MLR 0.00 0.01 0.04 0.00 0.04 0.02 

1 DLMLP RF 0.03 0.04 0.00 0.00 0.04 0.00 

2 DLMLP DLMLPB 0.00 0.02 0.04 0.00 0.00 0.02 

3 DLMLP Ensemble 0.01 0.04 0.01 0.60 0.01 0.70 

4 MLR RF 0.02 0.01 0.04 0.00 0.04 0.04 

5 MLR DLMLPB 0.01 0.00 0.03 0.00 0.03 0.01 

6 MLR Ensemble 0.00 0.00 0.00 0.00 0.00 0.00 

7 RF DLMLPB 0.00 0.02 0.04 0.01 0.04 0.00 

8 RF Ensemble 0.00 0.01 0.00 0.00 0.00 0.03 

9 DLMLPB Ensemble 0.01 0.02 0.01 0.04 0.01 0.01 

• DLMLP vs. MLR, and RF: 

As shown in Table 4-4, the p-values resulting from the comparison of DLMLP 

with MLR and RF, using predictors from P1 to P6, are consistently below the 

significance threshold of 0.05. Furthermore, when the study extends this 

comparison to include other predictors (PA, PD, PC, PDataset2), as presented in Table 

4-5, the findings that the p-values remain below 0.05, these findings collectively 

indicate that DLMLP exhibits substantial variations in mean performance 

compared to MLR and RF. Consequently, the null hypothesis (𝜇𝐷𝐿𝑀𝐿𝑃 ≤
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 𝜇𝑀𝐿𝑅 𝑜𝑟 𝜇𝐷𝐿𝑀𝐿𝑃 ≤  𝜇𝑅𝐹 ) is rejected, highlighting that the mean accuracy 

obtained from DLMLP is greater than MLR and RF in software effort estimation. 

Table 4-5: The Mann-Whitney hypothesis test between TL-Case2 (DLMLP), 

MLR, RF, Ensemble and TL-Case3 models based on PA, PD, PC, PDataset2. 

No Model 1 Model 2 
P-value 

PA PD PC PK PDataset2 

0 TL-Case2 MLR 0.00 0.00 0.00 0.02 0.00 

1 TL-Case2 RF 0.02 0.00 0.00 0.01 0.03 

3 TL-Case2 Ensemble 0.25 0.57 0.08 0.08 0.00 

4 MLR RF 0.00 0.00 0.02 0.02 0.04 

6 MLR Ensemble 0.02 0.00 0.00 0.00 0.00 

8 RF Ensemble 0.02 0.00 0.00 0.03 0.00 

10 TL-Case3 Ensemble 0.00 # 0.01 # 0.00 

11 TL-Case3 RF 0.00 # 0.00 # 0.00 

12 TL-Case3 MLR 0.00 # 0.00 # 0.00 

13 TL-Case3 TL-Case2 0.03 # 0.01 # 0.01 

• DLMLP vs. DLMLPB: 

Balancing the dataset in DLMLPB yields notable improvements, as evidenced by 

relatively low p-values: 0.00 for P1, 0.02 for P2, 0.04 for P3, 0.00 for P4, 0.00 for 

P5, and 0.02 for P6 (see Table 4-4). As a result, the alternative hypothesis 

(𝜇𝐷𝐿𝑀𝐿𝑃𝐵 >  𝜇𝐷𝐿𝑀𝐿𝑃) is retained in this case, highlighting that the mean 

accuracy obtained from DLMLPB is greater than DLMLP. 

• Ensemble vs. DLMLP, MLR, and RF: 

In the comparative analysis of mean performance metrics across the ensemble, 

MLR, and RF concerning predictors P1 to P6, PA, PD, PC, PK, and PDataset2, as 

presented in Table 4-4 and Table 4-5, it is evident that the derived p-values for 

these comparisons consistently fall below the 0.05 significance threshold. This 

outcome leads to rejecting the null hypothesis (𝜇𝐸𝑁𝑆 ≤  𝜇𝑀𝐿𝑅, 𝑜𝑟 𝜇𝐸𝑁𝑆 ≤
 𝜇𝑅𝐹), thereby establishing statistically significant mean differences between the 

ensemble and MLR and RF, confirming that the mean accuracy attained from the 

ensemble is better than those obtained from MLR and RF. Moreover, when 

examining the mean accuracy achieved from the ensemble approach in 

comparison to DLMLP, it is observed that predictors P1, P2, P3, P5, PA, PDataset2 

exhibit p-values fall below 0.05 except P4, P6, PD, PC, and PK. Consequently, the 

null hypothesis (𝜇𝐸𝑁𝑆 ≤  𝜇𝐷𝐿𝑀𝐿𝑃) might be rejected. 

In conclusion, this observation suggests that, in general, the mean accuracy 

obtained from the ensemble is more significant than that obtained from DLMLP, 

MLR, and RF in software effort estimation. 

• Transfer Learning (TL-Case3) vs. DLMLP: 

The transfer learning model (TL-Case3) shows significant mean performance 

disparities compared to the DLMLP, as the p-values obtained from those models 
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are less than 0.05 in PA, PC, and PDataset2. The null hypothesis (𝜇𝑇𝐿 ≤  𝜇𝐷𝐿𝑀𝐿𝑃) 

is rejected, indicating that the mean accuracy obtained from the transfer learning 

model (TL-Case3) is significantly greater than DLMLP. 

• Influence of IS and RS in the accuracy of effort estimation: 

Analysing the results in Table 4-6 provides insights into RQ5, which aims to 

determine whether the categorical variables IS and RS significantly influence 

effort estimation accuracy. These values indicate that both.  

β𝐼𝑆 and γ𝑅𝑆 for each predictor are not equal to 0. Consequently, we reject the null 

hypothesis (β𝐼𝑆 =  γ𝑅𝑆 = 0) and accept the alternative hypothesis, suggesting 

that the categorical variables influence the accuracy of effort estimation. 

Table 4-6: The Regression coefficient for IS and RS obtained from MLR. 

Predictors 𝛃𝑰𝑺 𝛄𝑹𝑺 Description 

P5 -2.11 -358.41 β𝐼𝑆 ≠  γ𝑅𝑆 ≠ 0 

P6 24.94 -804.60 β𝐼𝑆 ≠  γ𝑅𝑆 ≠ 0 

Examining the coefficients in this table reveals that RS (-358.41 and -804.60) 

has smaller values than IS (-2.11 and 24.94), suggesting a potentially weaker 

impact on effort estimation accuracy. This finding implies that IS may play a more 

substantial role in accuracy. These coefficient differences highlight the 

importance of these variables in influencing effort estimation accuracy, aiding in 

decision-making for model development and feature selection. 

The Mann-Whitney U-test shows that DLMLP outperforms MLR and RF in 

mean performance. Balancing the dataset in DLMLPB improves mean 

performance compared to DLMLP. Transfer learning differs significantly in mean 

performance from DLMLP, while the ensemble approach performs similarly. 

Regression coefficients for IS and RS from the MLR model reveal their influence: 

IS moderately affects accuracy, while RS has a minor impact. These insights 

guide practitioners in selecting ML methods, emphasising performance and 

categorical variables for informed decisions in practical scenarios. 

4.4 Model Explainability Findings - Analysis of Predictor 

Contributions 

4.4.1 LIME 

This study explores the interpretation of predicted effort values generated by 

DLMLP-P6. This model contains input features EO, EIF, ILF, EQ, EI, IS, and 

RS, where EO, EIF, ILF, EQ, and EI are measured in function points, and IS RS 

are categorical variables, a predicted effort is measured in person-hours. This 

method employed for interpretation is LIME, as illustrated in Figure 4-1. 
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Figure 4-1: Interpreting the predicted effort values obtained from DLMLP-P6 

An exhaustive analysis of the outcomes derived from LIME's interpretations is 

presented below: 

• LIME predicts approximately 8999.69 (person-hours) for a specific 

instance, while the actual prediction is 9171.94 (person-hours). The range 

of predicted effort spans from -13062.35 to 58462.72. 

• The feature contributions in this analysis offer valuable insights into the 

factors influencing the predicted effort. Notably: 

✓ ILF: When ILF falls within the range of 41 to 89.5, it negatively affects 

the predicted effort by contributing to -1393.86 person-hours. This result 

suggests that an increase in ILF within this range correlates with 

reducing the predicted effort. 

✓ EQ: Falling within the range of 6 to 27, EQ negatively affects the 

predicted effort, contributing -938.65 person-hours. This result implies 

that a moderate number of EQ might decrease the predicted effort 

compared to extreme values. 

✓ RS: With values between 1 and 2, RS negatively influences the predicted 

effort by contributing -374.38 person-hours. This result indicates that a 

specific range of RS values tends to decrease the predicted effort. 

✓ EIF: When EIF falls between 5 and 30, it negatively impacts the 

predicted effort, contributing to -344.01 person-hours. This finding 

suggests that an increase in EIFs is associated with a decrease in 

predicted effort within this range. 

✓ EO: When EO exceeds 104.50, it positively influences the predicted 

effort with a contribution of 4234.5 person-hours. This finding indicates 

that more external outputs in the project increase the predicted effort. 
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✓ EI: An EI value more excellent than 126.50 positively contributes 

3485.45 person-hours, signifying that an elevated count of external 

inputs increases predicted effort. 

✓ IS: When IS is 0.0 or 1.0, it positively contributes 210.52 person-hours, 

suggesting that a smaller interface size is associated with higher 

predicted effort. 

The LIME results suggest that EI, EO, and IS are the key features impacting the 

predicted effort. These variations in LIME's interpretations emphasise the 

importance of comparing results. LIME's visualisations further aid in 

understanding these nuanced interpretations, enabling a more comprehensive 

analysis of feature influence. 

4.4.2 SHAP 

Figure 4-2 presents the feature contributions obtained from Dataset 1 of the 

testing dataset for DLMLP-P6. This consistency highlights their crucial roles in 

effort estimation within these models. 

• The EI, EO, EQ, ILF, and EIF features demonstrate relatively consistent 

trends, with a positive contribution associated with higher values and a 

minor negative contribution linked to lower values across all three models, 

while IS has a slight positive contribution. 

• Notably, the feature RS appears to have no significant contribution to 

predictions, irrespective of its value. 

 

Figure 4-2: The contributions of each feature in DLMLP-P6 

The consistency in the contributions of EI, EO, EQ, ILF, and EIF suggests their 

critical roles in effort estimation across these models. However, the negligible 

contribution of RS merits further exploration to comprehend its influence on the 

model's predictive performance. These findings contribute a deeper 

understanding of interpretability and feature importance in software effort 

estimation using deep learning models. 
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5. CONTRIBUTIONS 

This study seeks to provide specific contributions to the domain of SDEE by 

addressing several key research areas: 

• Comparative Analysis of Predictive Models: 

This research extensively evaluates predictive models across distinct predictors, 

specifically MLR, RF, and DLMLP. The objective is to determine the superior 

model for SDEE. Findings reveal that DLMLP consistently surpasses MLR and 

RF across multiple performances, including MMRE, MBRE, MIBRE, MAE, 

Pred(0.25), and SA. Consequently, DLMLP emerges as the preferred predictive 

model for SDEE. 

• Impact of Dataset Balancing on Accuracy: 

This study examines the influence of dataset-balancing techniques and the 

handling of categorical variables in deep learning models by comparing DLMLP 

(unbalanced dataset) to DLMLPB (balanced dataset). The outcomes indicate that 

DLMLPB consistently outperforms DLMLP across all predictor sets, 

underscoring the significance of dataset balancing and effective categorical 

variable management in enhancing estimation accuracy. 

• Ensemble Models for SDEE: 

The research evaluates ensemble models that combine MLR, RF, and DLMLP to 

assess their effectiveness in SDEE across various predictor sets. The findings 

demonstrate that ensemble models, mainly when precision is pivotal, exhibit 

superior performance compared to individual models. Nonetheless, it is 

noteworthy that DLMLP retains a slight advantage in specific scenarios, 

suggesting that the choice between ensemble models and DLMLP should hinge 

on the specific requirements of the effort estimation. 

• Transfer Learning for Enhanced Accuracy: 

The study investigates the efficacy of transfer learning in the context of SDEE by 

comparing DLMLP-based models trained on different datasets. The results 

emphasise the potential of transfer learning, particularly when employing a pre-

trained model and fine-tuning it on the new dataset. By starting with a pre-trained 

model as a foundation, researchers and practitioners might save valuable time and 

resources that would otherwise be required for extensive model training. 

• Influence of Categorical Variables: 

This research examines the impact of IS and RS predictors on effort estimation 

accuracy across diverse predictor sets. The findings underscore the imperative 

nature of incorporating IS predictors into effort estimation models, as they 

encapsulate crucial information regarding the intricacies of the software 

development process. While RS predictors exhibit some influence on accuracy, 

further investigation is warranted to comprehend their nuanced impact. 
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6. CONCLUSION 

The thesis evaluates effort estimation using three methods, MLR, RF, and 

DLMLP, across diverse datasets, primarily from ISBSG (2020), with 

supplementary datasets. Eleven predictors are considered: six combinations (P1-

P6) from ISBSG and individual predictors (PA, PD, PC, PK, and PDataset2). The 

results answer RQ1, showing that DLMLP consistently outperforms MLR and RF 

in SDEE accuracy. Comparative analysis confirms DLMLP's superiority across 

various performance metrics compared to these baseline models. 

Additionally, this study investigates the impact of two categorical variables, 

the industry sector and relative size factor, along with FPA factors as input 

features. These variables are chosen to assess their influence on DLMLP, MLR, 

and RF models. The research aims to address dataset imbalance using class 

weights (RQ2) and compares DLMLP's performance on the original dataset with 

that on the balanced dataset (DLMLPB). The findings may reveal if the dataset-

balancing approach in this study outperforms the unbalanced dataset. 

The thesis explores ensemble techniques that combine the examined models. 

Stacking is applied to MLR and RF, using XGBoost as the final estimator. The 

ensemble results are further combined with DLMLP using a voting method. These 

experiments involve eleven predictor variables (P1 to P6, PA, PD, PC, PK, and 

PDataset2). In general, the ensemble approach performs better than individual 

models. These findings offer insights into addressing RQ3, suggesting the 

ensemble approach may outperform individual models. 

The study explores three scenarios with a pre-trained model. Scenario one 

applies the model to a new test dataset, TL-Case1. In scenario two, the DLMLP 

architecture is used to create a model on a new training dataset, TL-Case2, which 

yields better prediction results than TL-Case1. The final scenario, TL-Case3, 

involves further training the pre-trained model, known as transfer learning, and 

outperforms TL-Case1 and TL-Case2 in predictions. This finding suggests that 

transfer learning improves prediction accuracy, addressing RQ4. A research 

library has also been created (https://github.com/huynhhoc/effort-estimation-by-

using-pre-trained-model) for researchers to use or enhance the pre-trained model 

for improved accuracy. 

As discussed in Section 4.2.6, IS demonstrates a slight effect on the accuracy, 

while RS has a relatively small effect. This observation is supported by analyses 

using LIME and SHAP, which might answer for RQ5 that IS has a positive effect 

on effort estimation, while RS has a negative one. The findings obtained from 

LIME and SHAP also reveal that EI and EO positively impact effort estimation 

compared with EQ, EIF and ILF. 

https://github.com/huynhhoc/effort-estimation-by-using-pre-trained-model
https://github.com/huynhhoc/effort-estimation-by-using-pre-trained-model
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