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RESUMÉ 
Hlavním cílem disertační práce je ukázat, že výkonný nástroj, jakými jsou 

zcela určitě evoluční algoritmy, je možno v praxi použít k optimalizaci řízení 
deterministického chaosu. Tato práce je především zaměřena na vysvětlení jak 
správně použít evoluční algoritmy, jak nadefinovat účelovou funkci a dále je 
zaměřena na výběr vhodné řídící metody a samozřejmě na vysvětlení všech 
možných problémů, které mohou nastat v tak obtížné úloze, jakou je řízení 
chaosu. 

Nejdříve jsou zde popsány nejběžnější a zároveň nejpoužívanější metody 
řízení chaosu – Linearizace Poincarého mapy (OGY metoda), metoda zpožděné 
zpětné vazby (Pyragasova metoda) a zmíněny jsou mnohé další, jež jsou často 
využívány v mnoha vědeckých a výzkumných pracích. Druhá zmíněná, 
Pyragasova metoda byla zvolena jako vhodná pro otestování optimalizace řízení 
chaosu a byla použita při experimentech v rámci této práce. 

Další část této práce je zaměřena na popis nejznámějších příkladů 
chaotických systémů, jednak diskrétních (Logistická rovnice, Henonova mapa), 
které jsou použity jako modely chaotického systému při optimalizaci řízení 
chaosu v této práci, a jednak stručně jsou popsány spojité systémy, kde mezi 
nejznámější patří Lorenzův a Rösslerův systém. 

Následující a největší část je zaměřena na popis dosažených výsledku 
optimalizace řízení chaosu. Skládá se ze sedmi samostatných případových 
studií. Každá z nich je zaměřena na testování návrhu účelové funkce, která byla 
použita ve veškerých optimalizacích v rámci dané případové studie. Získané 
výsledky jsou vždy průběžně popsány a diskutovány v závěru každé případové 
studie.  

Tato práce se zabývá zkoumáním optimalizace řízení chaosu za pomoci 
evolučních algoritmů a návrhu účelové funkce, jež by měla zajistit nalezení 
optimálních výsledků, které by vedly ke zlepšení chování systému a rychlému 
dosažení žádaného stavu. Řízení probíhá za pomocí dvou Pyragasových metod 
– TDAS a rozšířené ETDAS verze. Jako model chaotického systému byla 
zvolena jedno-dimenzionální logistická rovnice a dvou-dimenzionální 
Henonova mapa. Jako evoluční algoritmy byly použity tyto: algoritmus SOMA 
(Samo-Organizační-Migrační-Algoritmus) ve čtyřech verzích a Diferenciální 
Evoluce (DE) v šesti verzích. Pro každou verzi byly simulace opakovány 
několikrát, aby se ukázala a prověřila účinnost a robustnost použité metody.  



Na konci praktické části jsou všechny dosažené výsledky porovnány mezi 
sebou a taktéž již v jednotlivých případových studiích jsou uvedeny dílčí 
shrnutí výsledků, přičemž srovnání s klasickou řídící technikou – OGY je v této 
práci též uvedeno, a to na konci případové studie č.1. 

Na základě získaných výsledků je možno tvrdit, že všechny simulace podaly 
velmi uspokojivé výsledky, a také že evoluční algoritmy jsou schopné řešit i tak 
složitý problém, a především, že kvalita výsledků nezávisí jen na problému, 
který je řešen, ale je extrémně závislá na správné definici účelové funkce, 
výběru řídící techniky, či nastavení samotného evolučního algoritmu. 



ABSTRACT 
The main aim of this dissertation is to show that powerful optimizing tools 

like evolutionary algorithms can be in reality used for the optimization of 
deterministic chaos control. This work is aimed on explanation of how to use 
evolutionary algorithms (EAs) and how to properly define the cost function 
(CF). It is also focused on selection of control method and, the explanation of 
all possible problems with optimization which comes together in such a 
difficult task, which is chaos control. 

Firstly, the most common and used chaos control methods are described – 
Linearization of Poincaré Map (OGY method), Time – Delayed Feedback 
(Pyragas method) and many others which are often used in many variations in 
research works are mentioned. The second one (Pyragas Method) was chosen as 
a suitable method for successful optimization and is used in this study. 

The next part is focused on the description of the most known examples of 
chaotic systems, discrete – time systems (Logistic equation, Henon map), which 
are also used in this thesis as a model of chaotic systems used in optimization of 
chaos control; and also briefly is focused on time – continuous systems (Lorenz 
system, Rossler system). 

The following and the biggest part describes the results of optimization of 
chaos control. It consists of seven case studies and each one is aimed on testing 
the proposal of cost function used for optimizations within this case study. The 
obtained results are continuously described in partial conclusions at the end of 
each case study. 

This work deals with an investigation on the optimization of the control of 
chaos by means of EA and constructing of the cost function securing the 
improvement of system behavior and faster stabilization to desired periodic 
orbits. The control law is based on two Pyragas methods: Delay feedback 
control – TDAS and Extended delay feedback control – ETDAS. As models of 
deterministic chaotic systems, one dimensional Logistic equation and two 
dimensional Henon map were used. The evolutionary algorithm SOMA (Self-
Organizing Migrating Algorithm) was used in four versions and Differential 
Evolution (DE) in six versions. For each version, simulations were repeated 
several times to show and check robustness of used method. At the end of this 
work, the results of optimized chaos control for each case study are compared 



and also the comparison with classical control technique – OGY is presented at 
the end of case study 1. 

From the obtained results, it is possible to say that all simulations gave 
satisfactory results and thus evolutionary algorithms are capable of solving this 
class of difficult problems and the quality of results does not depend only on the 
problem being solved, but they are extremely sensitive on the proper definition 
of the CF, selection of control method or parameter settings of evolutionary 
algorithms. 
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NOMENCLATURE 

List of Abbrevations 

UPO  Unstable Periodic Orbit 

OGY Ott-Grebogi-York method for controlling Chaos 

TDAS Time Delay Auto Synchronization 

ETDAS Extended Time Delay Auto Synchronization 

EA Evolutionary Algorithm 

CF Cost Function 

CFE Cost Function Evaluation 

NA Version of Cost function, also mentioned as Non-Auto 

DE Differential Evolution 

SOMA Self Organizing Migrating Algorithm 

LQ Logistic Equation – one dimensional chaotic system 

ATO All To One strategy of SOMA, all individuals search in the 
direction to Leader 

ATR All To one Rand strategy of SOMA, all individuals search in 
the direction to one randomly selected 

ATA All To All strategy of SOMA, all individual search in the 
direction to all individuals 

ATAA All To All Adaptive strategy of SOMA, all individuals search 
in the direction to all by means of adaptive way 

DERand1Bin Version of DE 

DERand2Bin Version of DE 

DEBest2Bin Version of DE 

DELocalToBest Version of DE 

DERand1DIter Version of DE 

DEBest1JIter Version of DE 
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List of symbols 

t time  

x space variable  

y space variable  

R weight constant in ETDAS method  

K weight constant in TDAS/ETDAS method  

Fmax Limitation of perturbation in TDAS/ETDAS method 

n step in iteration 

τ time – delay in TDAS/ETDAS method 

τi simulation interval 

τs short time interval 

r, a, b constants 

PopSize Number of individuals in population 

CR Control parameter of DE, crossover constant 

F Control parameter of DE, mutable constant 

Generations Stopping parameter of DE, number of loops in all evolution 

Migrations Stopping parameter of SOMA, number of migration loops 

MinDiv Stopping parameter of SOMA, minimal accepted error between 
the best and worst individual in population 

NP Number of individuals in population 

PathLength Control parameter of SOMA; it determines the stopping position 
of the movement of an individual 

PRTVector Vector of zeros and ones, it interacts with the movement of an 
individual 

Step Control parameter of SOMA, length of step of an individual 
during search 

i, j indexes 

IStab Number of iterations required for stabilization of system 
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AbgIStab Average number of iterations required for stabilization of system 

CFVal Cost Function Value 

AvgCFVal Average Cost Function Value for EA version runs. 
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1 INTRODUCTION AND STATE OF ART 
The chaos theory together with quintals theory and universal relativity theory 

are most considerable products of physics in the 20th century. Latest of these 
theories is chaos theory. 

In mathematics and physics, chaos theory deals with the certain nonlinear 
dynamical systems that under certain conditions, the phenomenon known as 
chaos, exhibits in their behavior. This is most famously characterized by 
sensitivity to initial conditions. Examples of such systems can be seen in almost 
every science disciplines include the atmosphere, the solar system, turbulent 
fluids, economies, and population growth. 

Systems that exhibit mathematical chaos are deterministic, and thus orderly 
in some sense, which suggests that the use of the word chaos is at odds with 
common meaning, which suggests complete disorder. When we say that chaos 
theory studies deterministic systems, it means that these systems are exactly 
given by the system of mathematic relations and in spite of it, exhibits chaotic 
behavior. 

Since the early 1990's, many methods for control of chaos [1] have been 
developed and based on the original OGY control method [2]. But there is 
generally one big disadvantage of OGY and it is the long initial chaotic 
transient before trajectories are stabilized. Consequently many targeting 
algorithms were introduced [3 - 11] to shorten the time of stabilization. Unlike 
the OGY the Pyragas’s delayed feedback control technique [12], [13] can be 
simply considered as targeting and stabilizing algorithm together in one 
package. From the point of view of soft computing and optimizations another 
big advantage of Pyragas method is the amount of accessible control parameters, 
which are set up by using a priori knowledge or mathematical analysis. This is 
very advantageous for successful use of optimization of parameters set up by 
means of EA, leading to improvement of system behavior and better and faster 
stabilization to the desired periodic orbits.  

These days the evolutionary algorithms (EA) are known as powerful tool for 
almost any difficult and complex optimization problem. But the quality of 
optimization process results mostly depends on proper design of used cost 
function, especially when the EAs are used for optimization of chaos control. It 
is well known that deterministic chaos in general and also any technique to 
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control of chaos are sensitive to parameter set up, initial conditions and in the 
case of optimization they are also extremely sensitive to the construction of 
used cost function.  

The main aim of the dissertation will be focused on the examples of EA 
implementation to methods for chaos control for the purpose of obtaining better 
results, which means faster reaching of desired stable state and superior 
stabilization, which could be robust and effective to optimize difficult problems 
in the world. Some research in this field has been recently done using the 
evolutionary algorithms for optimization of local control of chaos based on a 
Lyapunov approach [14], [15]. But the approach described here is unique and 
novel and up to date were not used or mentioned anywhere. We use EA to 
search for optimal setting of adjustable parameters of arbitrary control method 
to reach desired state or behavior of chaotic system. 

The work is divided in the eight main numbered chapters.  

The first chapter gives the overview of the research area of chaos control, 
whereas the second chapter formulates the main goals of this dissertation.  

The following section, number three is focused on the description and 
theoretical knowledge about the most common and used chaos control methods. 

The next part number four is focused on description of the most known 
examples of chaotic systems, discrete – time systems, which are also used in 
this thesis; and also briefly is focused on time – continuous systems. 

The fifth chapter deals with the description of evolutionary algorithms used 
in the work. 

The sixth chapter is the biggest one from the main part of the work (except 
Appendix) and shows the results of optimization of chaos control. This chapter 
consists of seven case studies and at the end all results are compared and 
discussed  

The seventh part gives the brief discussion of the main obtained optimization 
results from all case studies and conclusion of the achieved goals in this work 
together with an outlook for the future research. 

The last part, Appendix contains complete overview of all simulation results. 
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2 DISSERTATION GOALS 
In this dissertation I would like to show how evolutionary algorithms can be 

used in the challenging task of optimization of deterministic chaos control. The 
main aim of the dissertation will be focused on the investigation of EA 
implementation to methods for chaos control in order to reach better results 
from the point of view of speed and quality of stabilization (i.e. control process). 

As can be seen from the results and conclusions of all presented case studies, 
evolution algorithms were able to find optimal solution for selected control 
technique Thus to avoid complicated mathematical analysis of chaotic system 
due to the finding of settings for control method.  

In my further work, I would like to continue with research in this field of 
optimization of chaos control by means of evolutionary algorithms. The 
dissertation goals could be summarized into following points. 

 

• To prove that EAs are able to find optimal solution in case of chaos 
control. 

• To test several examples of chaotic systems (one and higher 
dimensional). 

• To test a stabilization for various states (stable state – a fixed point) or 
higher dimensional periodic orbits.  

• To compare the results between different EAs 
• To try a various designs of cost functions and compare their 

performance (faster stabilization – targeting to close neighborhood of 
desired UPO, solving the small problems described in the individual 
case study). 
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3 METHODS FOR CONTROLLING OF CHAOS 
In general, methods for control of chaos deal with a process wherein a tiny 

perturbation is applied to a chaotic system in order to realize a desirable chaotic, 
periodic or stationary behavior. The problems of control of chaos has attracted 
the attention of researchers and engineers since the early 1990's. 

The idea of chaos control was enunciated at the beginning of the last decade 
at the University of Maryland. The main principle consisted in waiting for a 
natural passage of the chaotic orbit close to the desired periodic behavior and 
then applying a small reasonably chosen perturbation, in order to stabilize such 
periodic dynamics. 

Here is given a list of the most important and often used methods. 

 

3.1 Linearization of Poincaré Map (OGY method) 
This control method is in general based on waiting for the entering of 

attractor into close neighborhood of desired fixed point, or arbitrary Unstable 
Periodic Orbit – UPO, and thereafter applying a tiny perturbation – p to the 
system. The size of this perturbation is strictly limited and can be applied only 
within the small neighborhood due to very limited validity of the linearization 
[13], [16 - 17]. 

The fixed point has one stable direction ser  with eigenvalue sλ  and one 
unstable direction uer  with eigenvalue uλ . The OGY scheme for control is easily 
understood pictorially. Figure 3.1 depicts the unstable fixed point fxr  with its 

stable and unstable eigenvectors, and also the path g of the fixed point for small 
changes in p given by (3.1) [18]. 

 

p
x

g f

∂
∂

=
r

r  (3.1) 
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Figure 3.1: The OGY approach to control. 

 

Figure 3.1 (a) shows the unstable fixed point, stable and unstable eigenvectors, 

ser and uer , and their adjoint vectors, sf
r

and uf
r

. The dotted line is the path g of 
the fixed point as the control parameter is varied. Figure 3.1 (b) shows the 
control process. Shifting the fixed point to the new (solid) position allows 1+nx  
to be directed to the stable manifold of the unshifted (dashed) fixed point. 

 

If an iteration point nxr  comes close to fxr  i.e. nfn xxx rrr δ+=  with nxrδ  being 
small (close neighborhood), the parameter p is changed nppp δ+= 0  After the 
next iteration 1+nxr  lies along the stable direction of fxr . The n+1 iteration can 

be calculated by linearization about the moved position of the fixed point (3.2). 

 

( ) ( )gpxfefegpx nnsssuuunn
rrrrrrrr δδλλδδ −⋅+=−+1  (3.2) 

 

And uf
r

 and sf
r

 as the unit adjoint eigenvectors are given by (3.3): 
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The condition for 1+nxr  to lie along the stable direction of fxr  is then 

01 =⋅∂ + un fx
rr  which together with (3.2) and (3.3) gives the final solution for the 

perturbation p. 
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λ
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 (3.4) 

 

This is very simple to implement if the analytic knowledge of the map function 
F is known. The control is done in these three stages: 

 

1. Find the desired UPO 

2. Calculate the stable and unstable directions at each component of UPO 

3. When the trajectory reaches the close neighborhood of the desired UPO, 
calculate the perturbations in each iteration and take the possible 
limitation into account. 

 

There also exist more variations of this control technique from the simplest 
version used for controlling to the fixed point in one-dimensional maps, to 
higher dimensional control. And of course there exist special versions which 
uses an element from general linear control theory – the pole placement [19], 
[20] or the version, which was developed for the purpose of shortening the 
initial waiting passage and should secure faster targeting to close neighborhood 
of desired UPO - the targeting OGY, also called SOGY version [10], [11]. 
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3.2 Delayed Feedback Control (Pyragas Method) 
This is a method developed to stabilize UPO by means of applying small 

time- continuous control (perturbation) to a system parameter, while it evolves 
in continuous time. This is the main difference from OGY method which is 
suitable for a discrete control at the points of Poincaré map (attractor’s crossing 
of a surface). It is also known as the Time Delayed Auto Synchronization 
(TDAS method) and it was proven that it is very easy to implement and is 
effective for the less order UPOs, i.e. orbits with smaller periods. This is one of 
the most important limitations for this technique. There also exists the discrete 
version suitable for control the chaos within chaotic maps [21]. 

It is assumed the system P is described by variables x with F as an external 
controllable parameter, which has numerical value F = 0 in the absence of 
control (external perturbation) (3.5). 

 

)()( tFxP
dt
dx

+=  (3.5) 

 

Desired UPO of period τ which fulfills the following logical condition 
( ) ( )txtx =+τ  can be stabilized by means of delayed feedback control by 

calculating and applying control parameter F to the system based on following 
control law (3.6). 

 

( )[ ])()( txtxKtF −−= τ  (3.6) 

 

where: the parameter K represents the strength of the perturbation. By proper 
choice of the value of K, the desired UPO may be stabilized. The big advantage 
of this method lies in the fact, that there is no need of additional information 
about UPO except its period τ or only its order in case of discrete-time control.  

Once the control is achieved, the size of the perturbation is very small, 
although during the previous chaotic transient passage it may be very large and 
of have to be limited. But this kind of absence of perturbation can lead to either 
low quality stabilization or none, especially in case of higher periodic orbits. 
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Due to this problem, the extended version of delayed feedback control method 
was developed to solve it. (Also called ETDAS – Extended Time Delayed Auto 
Synchronization) (3.7) [22] 

 

)()( tFxP
dt
dx

+=  

( ) ( )[ ])(1)( txtSRKtF −−−= τ  (3.7) 

( )τ−+= tRStxtS )()(  

 

where: R is adjustable constant and S is given by a delay equation utilizing 
previous states of the system. 

This modification particularly solved the problems with stabilization of 
higher order UPOs in discrete or continuous time systems. 

This method is very simple and can be applicable to a wide variety of 
systems, of course it is possible to use it for discrete-time systems. There are 
only small changes in the form of equations 3.6 and 3.7. The discrete-time 
version of TDAS method has the following form (3.8): 

 

( ) nnn FxPx +=+1  

[ ]nmnn xxKF −= −  (3.8) 

 

The discrete-time version of ETDAS method has form (3.9): 

( ) nnn FxPx +=+1  

( )[ ]nmnn xSRKF −−= −1  (3.9) 

mnnn RSxS −+=  

 

Where the symbol m represents the order of desired UPO. 
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3.3 Others Methods 
During recent years, a lot of other control techniques have been developed. 

Some of them are based on classical linear control law - Open loop and Open 
plus loop [17], [23], or they represent new approaches in linear/nonlinear 
deterministic chaos control such as adaptive nonlinear control [24 - 27], 
impulsive control [28 - 30], sliding modes technique [31], using of neural 
network controller [32] or back-stepping design [33 - 34]. 
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4 CHAOTIC SYSTEMS 
Here is the description of the most used and investigated examples of chaotic 

systems divided into two groups – discrete and continuous-time systems. 

4.1 Discrete-Time Systems 

4.1.1 Logistic Equation 

The logistic equation (logistic map) is a one-dimensional discrete-time 
example of how complex chaotic behavior can arise from very simple  
non-linear dynamical equation. This chaotic system was introduced and 
popularized by the biologist Robert May [35]. It was originally introduced as a 
demographic model by Pierre François Verhulst as a typical predator – prey 
relationship. Mathematical notation is given by (4.10) [36]:  

 

( )nnn xrxx −=+ 11  (4.10) 

 

where (in case of biological meaning) xn is the population at year n, and r is 
a positive number, which represents a special parameter - combination of rate 
for reproduction and starvation.  

The chaotic behavior can be observed by varying the parameter r. At  
r = 3.57 is the beginning of chaos, at the end of the period-doubling behavior. 
At r > 3.57 the system exhibit chaotic behavior  

All of this behavior can be clearly seen from bifurcation diagram (Figure 
4.1). The horizontal axis shows the values of the parameter r while the vertical 
axis shows the possible long-term values of x. 
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Figure 4.1 Bifurcation diagram of Logistic equation 

 

4.1.2 Henon Map  

This is a model invented with a mathematical motivation to investigate chaos. 
The Henon map is a discrete-time dynamical system, which was introduced as a 
simplified model of the Poincaré map for the Lorenz system. It is one of the 
most studied examples of dynamical systems that exhibit chaotic behavior and 
in fact it is also a two-dimensional extension of the one-dimensional quadratic 
map. 

Mathematical notation is given by (4.11) [36]: 

 
2

1 1 nnn axyx −+=+   

nn bxy =+1  (4.11) 

 

The map depends on two parameters, a and b, which for the canonical 
Henon map have values of a = 1.4 and b = 0.3. For the canonical values the 
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Henon map is chaotic. For other values of a and b the map may be chaotic, 
intermittent, or converge to a periodic orbit.  

As a dynamical system, the canonical Henon map is interesting because, 
unlike the logistic map, its orbits defy a simple description (they are also called 
strange attractors).  

Figure 4.2 shows the bifurcation diagram for the Henon map created by 
plotting of variable x as a function of the one control parameter for the fixed 
second parameter. 

 

 
 

Figure 4.2 Bifurcation diagram of Henon map 
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4.2  Continuous-Time Systems 
 

4.2.1 Lorenz system 

The Lorenz system is a 3-dimensional dynamical flow which exhibits 
chaotic behavior.  

It was introduced by Edward Lorenz in 1963, who derived it from the 
simplified equations of convection rolls arising in the equations of the 
atmosphere. It is a very simple model of the dynamics of a fluid heated from 
below in the gravitation field, thus it was first used to study a problem of 
weather predictability. The system also arises in lasers, dynamos, and specific 
waterwheels. 

The equations which describes the Lorenz system are given in (4.12) [36]: 

 

( )

( )

zxy
dt
dz

yzx
dt
dy

xy
dt
dx

β

ρ

σ

−=

−−=

−=

 (4.12) 

 

where σ is called the Prandtl number and ρ is called the Rayleigh number. 
The Lorenz attractor is depicted on Figure 4.3. 
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Figure 4.3 Lorenz attractor 

 

4.2.2 Rössler system 

The Rössler system is a system of three non-linear ordinary differential 
equations. These differential equations define a continuous-time dynamical 
system that exhibits chaotic dynamics associated with the fractal properties of 
the attractor. It was originally introduced as an example of very simple chaotic 
flow containing chaos, in fact it was intended to behave similarly to the Lorenz 
attractor, but also be easier to analyze qualitatively. This attractor has some 
similarities to the Lorenz attractor, but is simpler and has only one manifold. 
The attractor was designed in 1976, but the originally theoretical equations 
were later found to be useful in modeling equilibrium in chemical reactions. 
The Rössler system is given by following set of equations (4.13) [36]: 
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( )cxzb
dt
dz

ayx
dt
dy

zy
dt
dx

−+=

+=

−−=

 (4.13) 

 

Rössler studied the chaotic attractor with a = 0.2, b = 0.2, and c = 5.7, which 
shows a simple chaotic attractor with the trajectory rotating around a fixed point. 
Together with increasing of value a chaotic behavior and period doubling in the 
attractor is achieved. Figure 4.4 shows the Rössler attractor. 

 

 
 

Figure 4.4 Rössler attractor 



-38- 

5 EVOLUTIONARY ALGORITHMS 
Here, an overview is given of the algorithms, which were used in all 

simulations in this dissertation. 

5.1 Self Organizing Migrating Algorithm (SOMA) 
SOMA works with groups of individuals (population) whose behavior can be 

described as a competitive – cooperative strategy. The construction of a new 
population of individuals is not based on evolutionary principles (two parents 
produce offspring) but on the behavior of social group, e.g. a herd of animals 
looking for food [37]. This algorithm can be classified as an algorithm of a 
social environment. To the same group of algorithms particle swarm algorithm 
can also be put in, sometimes called swarm intelligence. In the case of SOMA, 
no velocity vector works as in particle swarm algorithm, only the position of 
individuals in the search space is changed during one generation, here called 
‘Migration loop’. 

The rules are as follows: In every migration loop, the best individual is 
chosen, i.e. individual with the minimum cost value, which is called “Leader”. 
An active individual from the population moves in the direction towards Leader 
in the search space. At the end of the movement, the position of the individual 
with minimum cost value is chosen. If the cost value of the new position is 
better than the cost value of an individual from the old population, the new 
individual appears in new population. Otherwise the old one remains for the 
next migration loop. The graphical explanation of movement can be seen on 
Figure 5.1. 

There exist four versions of SOMA – AllToOne (ATO), AllToOneRand 
(ATR), AllToAll (ATA), AllToAllAdaptive (ATAA). [38] 

All of them are used in this work despite the fact that the versions AllToAll 
and AllToAllAdaptive are much better in searching. They can search a wider 
area of solutions and the possibility of finding the global optimum is then more 
probable. On the other hand, these two variations of SOMA need more time for 
its successful end of evolution. Thus the combination of properties of versions 
ATO / ATR (fast searching) and ATA / ATAA (thorough searching in CF 
surface) was used with success in this work, where the CF surfaces are very 
complex and erratic (See Appendix, section 8.1 – 8.6). 
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Figure 5.1 Principle of SOMA 

 



-40- 

5.2 Differential Evolution (DE) 
DE works also with a population of individuals but there is one exception 

compared to other evolution algorithms. Four parents are used to produce 
offspring, not only two parents as the norm. Three individuals are randomly 
chosen with the active one as the current solution from the population. Then 
one of randomly chosen parents is subtracted from the second parent and so 
called differential vector is produced. This one multiplies by a mutable constant 
and the result of this operation is a weighted differential vector. The third parent 
plus the weighted differential vector gives a noise vector. After that, trial vector 
is created where there appears some arguments from the active individual and 
some from the noise vector. The probability of selection depends on a crossover 
constant CR. All these actions are repeated in each generation to find the best 
solution. [39]. The graphical explanation of this algorithm can be seen on 
Figure 5.2.  
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Figure 5.2 Principle of DE 
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6  OPTIMIZATION OF CHAOS CONTROL 
 

6.1 Problem design 
This chapter primarily consists of seven case studies. All of them are focused 

on estimation of accessible control parameters for TDAS or EDTAS method for 
seven proposed Cost Functions used in optimizations to stabilize selected UPOs, 
which are the following: p-1 (a fixed point), p-2 and p-4 (examples of higher 
periodic orbits). The chosen examples of chaotic systems were one dimensional 
Logistic equation in the form (4.10) [36] and two dimensional Henon map in 
the form (4.11) [36]. Here is the list of desired UPOs:. 

 

Logistic Equation with r = 3.8: 

p-1 (fixed point): xF = 0.73842 

p-2 orbit: x1 = 0.3737, x2 = 0.8894 

p-4 orbit: x1 = 0.3038, x2 = 0.8037, x3 = -0.5995, x4 = 0.9124 

 

Henon Map with a = 1.2 and b = 0.3: 

p-1 (fixed point): xF = 0.8 

p-2 orbit: x1 = -0.562414, x2 = 1.26241 

p-4 orbit: x1 = 0.139, x2 = 1.4495, x3 = -0.8595, x4 = 0.8962 

 

All simulations were mostly repeated 50 times for each EA version (with 
only one exception – as written in section 6.3), in order to find the actual 
optimum and to show and check robustness of used method. The control 
method – original TDAS has the form (3.5, 3.6) [21] and ETDAS has the form 
(3.7) [22]. 

In the case of Logistic Equation (LQ), optimization proceeded with these 
parameters: K and maxF for TDAS control method, which is obtained in the form 
(6.14) after modification into discrete form suitable for logistic equation.  



-44- 

( ) nnnn Fxrxx +−=+ 11  

[ ]nmnn xxKF −= −  (6.14) 

 

Due to problems with stabilization of higher periodic orbits described in 
section 6.3, it was necessary to try the optimization by EA for another control 
method – ETDAS in the form (6.15) suitable for the logistic equation. 
Thereafter optimization proceeded with these parameters: K, maxF  and R. 

 

( ) nnnn Fxrxx +−=+ 11  

( )[ ]nmnn xSRKF −−= −1  (6.15) 

mnnn RSxS −+=  

 

In case of the Henon map, the ETDAS control method was used for all 
simulations in the form (6.16) after modification into discrete form suitable for 
the used system. 

 

nnnn Fbyxax ++−=+
2

1  

( )[ ]nmnn xSRKF −−= −1  (6.16) 

mnnn RSxS −+=  

 

All results are shown only for variable x of two dimensional Henon map 
because of its form (9), where the variable y has the same values as variable x 
but it is only phase shifted. 

The perturbation nF  in equations (6.14 – 6.16) may have arbitrarily large 
value, which can cause diverging of the system outside the interval {0, 1} for 
logistic equation or {-1.5, 1.5} in the case of Henon map.  Therefore, nF should 
have a value between - maxF , maxF  and EA should find an appropriate value of 
this limitation to avoid diverging of the system. 
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Four versions of SOMA and six versions of DE were used for all simulations. 
See Table 6.1 and Table 6.2 for correlation between each version of 
evolutionary algorithm and index mark in all following Figures and Tables. See 
also Table 6.3 and Table 6.4 for parameter setting. These parameters for 
optimizing algorithms were set up in this “common” way in order to reach the 
same value of maximal CF evaluations. This fact is very important due to 
further possibility of creating the complete statistical overview of EAs 
performance. This statistical summary is significant not only for comparison of 
both used evolutionary algorithms and its versions but for example in the task 
of the decision, as to which algorithm gives better results for all 50 runs when 
final CF value of the best individual solution is the same as the CF Value of 
other best individual solution given by different versions or algorithms. The 
ranges of all estimated parameters were in general these:  

 

-2 ≤ K ≤ 2, 0 ≤ maxF  ≤ 0.5 and 0 ≤ R ≤ 0.5 

 

If other ranges were used, these exceptions are described in concrete cases. 

 

The optimization interval for p-1 orbit was τi = 100 iterations, for higher 
periodic orbits it was mostly τi = 150 iterations, exceptions being described in 
each concrete cases. 

Table 6.1 Used versions of SOMA 

Index Algorithm / Version 

1 SOMA AllToOne 

2 SOMA AllToRandom 

3 SOMA AllToAll 

4 SOMA AllToAllAdaptive 
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Table 6.2 Used versions of DE 

Index Algorithm / Version 

5 DERand1Bin 

6 DERand2Bin 

7 DEBest2Bin 

8 DELocalToBest 

9 DERand1DIter 

10 DEBest1JIter 

 

Table 6.3 Parameter settings for SOMA 

Parameter / Version ATO/ATR ATA/ATAA 

PathLength 3 3 

Step 0.33 0.33 

PRT 0.1 0.1 

PopSize 25 10 

Migrations 25 7 

Max. CF Evaluations (CFE) 5400 5670 
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Table 6.4 Parameter settings for DE 

Parameter  

F 0.9 

Cr 0.2 

PopSize 25 

Generations 215 

Max. CF Evaluations (CFE) 5375 

 

All the results within the following seven case studies (chapters 6.3 - 6.9) are 
depicted in this way: 

Each case study is divided into two main sections, which are focused to 
optimizations and simulations with one dimensional system - LQ and two 
dimensional system - HENON. These two sections are mostly divided into three 
subsections for three desired UPOs. In two case studies (2 and 3) there is 
exception, because the designed CF is not suitable for all UPOs. Thus each case 
study includes six subsections, when the above mentioned exceptions are not 
taken into consideration. These subsections always contain a brief description, 
two tables and two figures for further illustration.  

The first table shows the best individual solutions for four SOMA versions 
and the second one shows the best results for six DE versions.  

The results shows the following data: Estimated parameters K, Fmax, R,  
CF value, Average CF Value, number of iterations required to stabilization  
(IStab value) and the average IStab value for all repeated simulations of EA 
version.  

The best solution with lowest CF value for SOMA or DE is highlighted by 
bold number corresponding to EA version in the first column of the table. In the 
case when the final CF value is the same for more EA versions, then the rule for 
decision is better distribution of final CF values in histograms depicted in the 
Appendix.  
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The two figures shows the simulation of the best individual solutions given 
by SOMA and DE under identical initial conditions used in optimization (left 
part of the figures) and for the uniformly distributed initial conditions in the 
range 0 < xinitial < 1, 100 samples were used in this kind of simulation (right part 
of the figures). 

At the end of each case study there is brief conclusion of all related results. 
Furthermore the conclusion of the first case study contains the comparison of 
presented results with classical control method  - OGY. The subsequent 
conclusions include the comparison with previous case studies and the 
discussion about the most important changes in results of optimizations and 
possible problems and their elimination. 

The results from all seven case studies are finally concluded at the end of 
this chapter 6.  

 

6.2 Case studies – Cost Function Design 
In this work several types of cost function (CF) were developed and tested 

for stabilization of p-1 orbit (fixed point) and higher periodic orbits (p-2 and  
p-4). The CF has been calculated in general from the distance between desired 
state and actual system output. The minimal value of this cost function 
revealing the best solution is zero. The aim of all the simulations was to find the 
best solution that returns the cost function value as close as possible to zero. 

 Each described case study of CF design contains the illustrative example of 
CF surface depicted as a dependence of CF value on parameters K and maxF  
(3D graphics) and a dependence of CF value only on parameter K (2D graphics) 
for two dimensional Henon map. Complete overview of CF surfaces for both 
systems and all case studies can be found in Appendix (sections 8.1 - 8.7). 

6.2.1 Basic CF 

This proposal of the basic cost function is in general based on the most 
simple CF, which could be used only for the stabilization of p-1 orbit. The idea 
was to minimize the area created by the difference between the required state 
and the real system output on the whole simulation interval – τi.  
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But another cost function (CF) had to be used for stabilizing of higher 
periodic orbit. It was synthesized from the simple CF and other terms were 
added. In this case, it is not possible to use the simple rule of minimizing the 
area created by the difference between the required and actual state on the 
whole simulation interval – τi, due to the many serious reasons, for example: 
degrading of the possible best solution by phase shift of periodic orbit.  

This CF, is in general based on searching for desired stabilized periodic orbit 
and thereafter calculation of the difference between desired and found actual 
periodic orbit on the short time interval - τs (approx. 20 - 50 iterations) from the 
point, where the first min. value of difference between desired and actual 
system output is found. Such a design of CF should secure the successful 
stabilization of higher periodic orbit anywise phase shifted.  

Furthermore, because of CF values being very close to zero, this CF also 
allows using of decision rule avoiding very time demanding simulations. This 
rule stops EA immediately, when the first individual with good parameter 
structure is reached, thus the value of CF is lower then the acceptable (CFacc) 
one. Typically CFacc = 0.001 at time interval τs = 20 iterations, thus difference 
between desired and actual output has value 0.0005 per iteration – i.e. 
successful stabilization for used control technique. This CF was also used for  
p-1 orbit. The CFBasic has the form (6.17). 

 

∑
=

−+=
2

1
1

τ

τt
ttBasic ASTSonpenalizatiCF  (6.17) 

 

where:  TS - target state, AS - actual state 

τ1 - the first min. value of difference between TS and AS 

  τ2 – the end of optimalizing interval (τ1+ τs) 

  penalization1= 0 if τi - τ2 ≥ τs;  

  penalization1= 10*( τi - τ2) if τi - τ2 < τs (i.e. late stabilization) 

 

See Figure 6.1 and Figure 6.2 for the example of CF surfaces, corresponding 
to this CF design. 
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Figure 6.1 Dependence of CF value on parameters K and maxF ; R = 0.24 (left); and parameter K; 

maxF  = 0.39, R = 0.24 (right); CF Basic, p-1 orbit, xinitial = 0.7 

 
Figure 6.2 Dependence of CF value on parameters K and maxF ; R = 0.46 (left); and parameter K, 

maxF  = 0.16, R = 0.46 (right); CF Basic, p-2 orbit, xinitial = 0.7 

 

6.2.2 Targeting CF 

In this section two types of CF were developed and tested. 

CF Simple 

In this section the most simple CF proposal outlined above was used. It is 
based on minimizing the area created by the difference between the required 
state (stabilized fixed point) and the real system output on the whole simulation 
interval – τ, thus this proposal of CF should secure fast targeting into the close 
neighborhood of p-1 orbit and its stabilization. The CFSimple is given by (6.18). 
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∑
=

−=
i

t
ttSimple ASTSCF

τ

0
 (6.18) 

 

where:  TS - target state, AS - actual state 

 

This CF was used in case study 2 only for optimization in the task of 
improvement of stabilization of p-1 orbit. Following proposal of CF NA was 
used for both p-1 and p-2 orbit. 

See Figure 6.3 for example of CF simple surface. 

 

 
Figure 6.3 Dependence of CF value on parameters K and maxF ; R = 0.17 (left); and parameter K; 

maxF  = 0.30, R = 0.17 (right); CF Simple, p-1 orbit, xinitial = 0.7 

 

Targeting CF NA 

Due to the reasons outlined in later details (section 6.3), it was necessary to 
modify the definition of CF in order to decrease the average number of iteration 
required for successful stabilization and avoidance of any associated problem. 
The CF1 is not suitable for adding any term of penalization for slowly 
stabilizing solutions, thus the CF2 was modified to use for all required UPOs. 
The CF value is multiplied by the number of iterations (NI) of the first found 
minimal value of difference between desired and actual system output (i.e. the 
beginning of fully stabilized UPO). To avoid problems associated with CF 
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returning value 0 and to put the penalization to similar level as the non-
penalized CF value, the small constant (SC) is added to CF value before 
penalization (multiplying by NI). The modified CFNA has the form (6.19). 

 

⎟
⎠

⎞
⎜
⎝

⎛
−++= ∑

=

2

1
1

τ

τt
ttNA ASTSonpenalizatiSCNICF  (6.19) 

where:  TS - target state, AS - actual state 

τ1 - the first min. value of difference between TS and AS  

τ2 – the end of optimalizing interval (τ1+ τs) 

penalization1= 0 if τi - τ2 ≥ τs 

penalization1= 10*( τi - τ2) if τi - τ2 < τs (late stabilization) 

SC = 10-16 for p-1 orbit 

SC = 10-8 for p-2 orbit 

 

See Figure 6.4 and Figure 6.5 for examples of CF surfaces corresponding to this 
CF design. 

 

 
Figure 6.4 Dependence of CF value on parameters K and maxF ; R = 0.22 (left); and parameter K; 

maxF  = 0.17, R = 0.22 (right); CF NA, p-1 orbit, xinitial = 0.7 
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Figure 6.5 Dependence of CF value on parameters K and maxF ; R = 0.42 (left); and parameter K; 

maxF  = 0.20, R = 0.42 (right); CF Basic, p-1 orbit, xinitial = 0.7 

 

6.2.3 Targeting CF – CF Targ1 

The next proposal of CF design is based on the previous one with small 
change, which should avoid any problems with defining the value of small 
constant SC in advance (especially for stabilization of higher periodic orbit). 
The SC value (6.22) here is computed with the aid of power of non-penalized 
basic part of CF.  

In general, there exists two possible ways for applying the multiplication by 
number of iterations required for stabilization (NI). The first version of final 
design of targeting CF (CFTARG1) has the form (6.20). Here the sum of basic 
part of CF and automatically computed SC is multiplied by NI. Consequently, 
the EA should find the solutions securing the fast targeting into desired 
behavior of system.  

⎟
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τ

τt
tt ASTS  (6.21) 

SC = 10EXPCF (6.22) 

TS - target state, AS - actual state 
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τ1 - the first min. value of difference between TS and AS  

τ2 – the end of optimalizing interval (τ1+ τs) 

penalization1= 0 if τi - τ2 ≥ τs 

penalization1= 10*( τi - τ2) if τi - τ2 < τs (late stabilization) 

 

See Figure 6.6 and Figure 6.7 for illustrative examples of CF Targ1 surfaces. 

 

 
Figure 6.6 Dependence of CF value on parameters K and maxF ; R = 0.23 (left); and parameter K; 

maxF  = 0.29, R = 0.23 (right); CF Targ1, p-1 orbit, xinitial = 0.7 

 
Figure 6.7 Dependence of CF value on parameters K and maxF ; R = 0.50 (left); and parameter K; 

maxF  = 0.18, R = 0.50 (right); CF Targ1, p-2 orbit, xinitial = 0.7 
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6.2.4 Targeting CF – CF Targ2 

In the second version of targeting CF (CFTARG2), there is only slight change 
in comparison with the previous proposal. Here the number of steps for 
stabilization (NI) multiplies only the small constant (SC) which is counted in 
the same way as in the previous case (6.20) This version of targeting CF 
(CFTARG2) has the form (6.23) 

 

( ) ∑
=
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τ
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ttTARG ASTSonpenalizatiSCNICF  (6.23) 

where: 

EXPCF = ⎟
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τ

τt
tt ASTS  (6.24) 

SC = 10EXPCF (6.25) 

TS - target state, AS - actual state 

τ1 - the first min. value of difference between TS and AS  

τ2 – the end of optimalizing interval (τ1+ τs) 

penalization1= 0 if τi - τ2 ≥ τs 

penalization1= 10*( τi - τ2) if τi - τ2 < τs (late stabilization) 

 

The differences in performance of both targeting CFs from the point of view 
of design are depicted in figures and described in details in the chapter 6.10. 
The examples of CF surfaces are depicted in Figure 6.8 and Figure 6.9. 
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Figure 6.8 Dependence of CF value on parameters K and maxF ; R = 0.21 (left); and parameter K; 

maxF  = 0.20, R = 0.21 (right); CF Targ2, p-1 orbit, xinitial = 0.7 

 
Figure 6.9 Dependence of CF value on parameters K and maxF ; R = 0.49 (left); and parameter K; 

maxF  = 0.16, R = 0.49 (right); CF Targ2, p-2 orbit, xinitial = 0.7 

 

6.2.5 Targeting CF Targ1 & CF Targ2 – Advanced Design 

Finally, to avoid the problems with fast stabilization only for limited range 
of initial conditions two previously proposed targeting Cost functions (CF 
Targ1 and CF Targ2) were modified. More about this problem is written at the 
end of each case study and it can be clearly seen from the complex simulations 
of best individual solutions for uniformly distributed initial conditions in 
Appendix (sections 8.7 - 8.20) In this case, the final CF value is computed from 
n repeated simulations of CF Targ1 or CF Targ2 with different initial conditions. 
The constant SC is computed as in case of CF Targ1 (6.22).  
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The advanced CF Targ1 has the form (6.26) and the CF surfaces are 
displayed in Figure 6.10 and Figure 6.11. 
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 (6.26) 

 

where:  xinitial is from the range 0.05 – 0.95 and uses step 0.1. 

TS - target state, AS - actual state 

τ1 - the first min. value of difference between TS and AS  

τ2 – the end of optimalizing interval (τ1+ τs) 

penalization1= 0 if τi - τ2 ≥ τs 

penalization1= 10*( τi - τ2) if τi - τ2 < τs (late stabilization) 

 

 
Figure 6.10 Dependence of CF value on parameters K and maxF ; R = 0.31 (left); and parameter 

K; maxF  = 0.41, R = 0.31 (right); CF Targ1 Advanced, p-1 orbit, xinitial = 0.7 
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Figure 6.11 Dependence of CF value on parameters K and maxF ; R = 0.10 (left); and parameter 

K; maxF  = 0.15, R = 0.10 (right); CF Targ1 Advanced, p-2 orbit, xstart = 0.7 

 

The advanced CF Targ2 has the form (6.27) and its surfaces are depicted in 
Figure 6.12 and Figure 6.13. 
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where:  xinitial is from the range 0.05 – 0.95 and uses step 0.1. 

TS - target state, AS - actual state 

τ1 - the first min. value of difference between TS and AS  

τ2 – the end of optimalizing interval (τ1+ τs) 

penalization1= 0 if τi - τ2 ≥ τs 

penalization1= 10*( τi - τ2) if τi - τ2 < τs (late stabilization) 
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Figure 6.12 Dependence of CF value on parameters K and maxF ; R = 0.21 (left); and parameter 

K; maxF  = 0.47, R = 0.21 (right); CF Targ2 Advanced, p-1 orbit, xinitial = 0.7 

 
Figure 6.13 Dependence of CF value on parameters K and maxF ; R = 0.35 (left); and parameter 

K; maxF  = 0.18, R = 0.35 (right); CF Targ2 Advanced, p-2 orbit, xinitial = 0.7 
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6.3 Simulation Results – Case study 1: Basic CF 

6.3.1 One-Dimensional Example 

1p 

In this case the objective was to estimate the optimum value of feedback 
adjustable constants to stabilize p-1 orbit. Each version of SOMA and DE has 
been applied 100 times due to relatively low cost function evaluation (CFE) 
demands and thus to obtain more results for successful finding of the actual 
optimum and to form better statistical comparison of them. 

From the presented results given in Table 6.5 and Table 6.6, it is obvious 
that each SOMA version gave the same result of CF value for the best solution. 
The same phenomenon occurs also in case of DE. Small divergence between 
these results is given by robustness of control method together with searching in 
three-dimensional space, where more combinations of estimated parameters 
lead to the optimal solution. From the histograms (see Appendix) follows that 
SOMA ATA and DERand1Bin gave better results from the point of view of CF 
distribution. On average, around 97 iterations are required for stabilization. See 
Figure 6.14 and Figure 6.15 for the results of optimization in this case. 

Table 6.5 Best individual solutions, LQ, p-1 orbit, CF Basic, SOMA 

EA K Fmax CFVal AvgCFVal IStab AvgIStab 
1 -0,5471 0,1944 0 1,66.10-15 101 97 
2 -0,5471 0,1944 0 1,29.10-15 101 97 
3 -0,5471 0,1944 0 1,55.10-7 101 98 
4 -0,5471 0,1944 0 2,42.10-6 101 97 

 

Table 6.6 Best individual solutions, LQ, p-1 orbit, CF Basic, DE 

EA K Fmax CFVal AvgCFVal IStab AvgIStab 
5 -0.5571 0.1479 0 1.11.10-15 101 98 
6 -0.5571 0.1479 0 3.98.10-6 101 97 
7 -0.5571 0.1479 0 6.40.10-6 101 96 
8 -0.5571 0.1479 0 4.32.10-6 101 96 
9 -0.5571 0.1479 0 9.94.10-7 101 97 

10 -0.5571 0.1479 0 1.97.10-6 101 97 
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Figure 6.14 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Basic, p-1 orbit, SOMA ATA 

 

Figure 6.15 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Basic, p-1 orbit, DERand1Bin 

2p 

The second case is focused on the stabilization of p-2 orbit for logistic 
equation. Unfortunately, the EA were not able to fully stabilize the unstable p-2 
orbit by means of TDAS control method. The EA found the solution where the 
stabilization is only temporary and of low quality. This may be caused by 
properties of TDAS method that there is no perturbation when the periodic orbit 
is achieved. Consequently, the ETDAS method was used. The optimization 
proceeded with two parameters as in previous case and the third one was added, 
namely the weight parameter R. As can be seen from Table 6.7 and Table 6.8, 
both EA produced identical results of the best solution; SOMA ATR has found 
the lowest CF value. As in the previous case, the small divergence between the 
results is given by searching for the global minimum in higher-dimensional 
space (four dimensions), where even more combinations of parameters lead to 
the optimal results. For fully stabilization, on average, about 120 iterations are 
required. See also Figure 6.16 and Figure 6.17. 
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Table 6.7 Best individual solutions, LQ, p-2 orbit, CF Basic, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 0.5691 0.2117 0.4996 1.03.10-14 0.0003 122 124 
2 0.5250 0.2139 0.4483 5.33.10-15 0.0003 130 123 
3 0.5522 0.1453 0.3944 4.00.10-7 0.0003 126 123 
4 0.5522 0.0774 0.4945 1.41.10-14 0.0002 125 123 

Table 6.8 Best individual solutions, LQ, p-2 orbit, CF Basic, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 0.5503 0.0666 0.4901 1.02.10-14 0.0003 128 122 
6 0.5386 0.0673 0.4726 1.28.10-14 0.0003 116 124 
7 0.5001 0.0611 0.3871 3.07.10-8 0.0003 123 122 
8 0.5338 0.0894 0.4524 1.62.10-14 0.0002 129 124 
9 0.5440 0.0369 0.4767 7.33.10-15 0.0003 128 122 

10 0.5395 0.1382 0.4733 7.11.10-15 0.0003 129 122 

 

 
Figure 6.16 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) LQ, CF Basic, p-2 orbit, SOMA ATR 

 
Figure 6.17 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) LQ, CF Basic, p-2 orbit, DEBest1JIter 
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4p 

Also in this case TDAS method totally failed and EAs were not able to 
estimate combination of parameters which will secure at least temporary 
stabilization. Thus ETDAS method was also used in order to achieve 
stabilization of desired p-4 orbit. Consequently, this method was used in all 
following optimizations. For the results see Table 6.9 and Table 6.10. The best 
solution has been obtained by SOMA ATO due to better final CF value. From 
Figure 6.18 and Figure 6.19, it follows that both best solutions ensure relatively 
fast stabilization (on average 210 iterations are required). But on the other hand 
also here (as in previous case of p-2 orbit, results given by DE) occurs the 
paradox that the best individual solutions do not give satisfactory results for 
simulation with initial conditions distributed in the range 0 < xinitial < 1. They 
secures only the stabilization of almost all samples. However, several samples 
were stabilized in the fixed point xF  = 0. This problem can be solved by 
additional penalization rule in the CF as it is described in following case studies. 
From the above mentioned figures and tables it can be clearly seen, that to 
estimate parameters, which will give good results, it was proven to be a quite a 
difficult task for EAs. Even the optimization interval had to be increased to  
τi = 300 iterations. To obtain better solution the range of estimated parameter 
Fmax  and R was changed as well to 0 ≤ Fmax  ≤ 0.9 and 0 ≤ R ≤ 0.9. This setting 
is used in all following case studies for LQ and p-4 orbit. 

Table 6.9 Best individual solutions, LQ, p-4 orbit, CF Basic, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.6277 0.2555 0.7110 3.04.10-05 0.0809 265 211 
2 -0.5184 0.1733 0.6048 3.23.10-05 0.0748 263 183 
3 -0.6398 0.6378 0.7327 3.27.10-05 0.0684 274 202 
4 -0.5060 0.0466 0.5691 3.24.10-05 0.0638 262 190 

Table 6.10 Best individual solutions, LQ, p-4 orbit, CF Basic, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.6076 0.4570 0.7019 3.13.10-05 0.0200 221 224 
6 -0.5620 0.2567 0.7279 3.25.10-05 0.0371 281 213 
7 -0.5846 0.3279 0.6700 3.13.10-05 0.0358 239 215 
8 -0.5395 0.0348 0.6629 3.18.10-05 0.0287 273 228 
9 -0.5356 0.1214 0.6517 3.19.10-05 0.0322 269 220 

10 -0.6339 0.3707 0.7187 3.07.10-05 0.0428 258 208 
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Figure 6.18 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Basic, p-4 orbit, SOMA ATO 

 

Figure 6.19 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Basic, p-4 orbit, DEBest1JIter 

 

6.3.2 Two-Dimensional Example 

1p 

This part is focused on the stabilization of p-1 orbit for two dimensional 
Henon map. The best results of each version of SOMA and DE are shown in 
Table 6.11 and Table 6.12. The simulation results are depicted in Figure 6.20 
and Figure 6.21. 

Based on obtained results, it may be stated that the control parameters 
estimated in the optimizations ensured very fast reaching of desired state and in 
case of results given by DE (global minimum – CF Value = 0) for any initial 
conditions. And also all SOMA and DE versions required, on average, only 50 
CFE to find a satisfactory solution. These facts show the possibility of using EA 
for real time chaos control to p-1 orbit (fixed point). 
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Table 6.11 Best individual solutions, HENON, p-1 orbit, CF Basic, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.9246 0.3400 0.3503 2.22.10-16 2.16.10-15 61 81 
2 -1.2237 0.2745 0.3729 9.99.10-16 2.00.10-15 78 76 
3 -1.2237 0.2745 0.3729 9.99.10-16 2.31.10-15 78 78 
4 -0.8309 0.1379 0.1644 6.66.10-16 2.10.10-15 44 73 

Table 6.12 Best individual solutions, HENON, p-1 orbit, CF Basic, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.8957 0.3865 0.2966 0 2.07.10-15 55 74 
6 -0.8957 0.3865 0.2966 0 2.04.10-15 55 73 
7 -1.1644 0.4153 0.2774 2.22.10-16 1.93.10-15 85 77 
8 -0.8957 0.3865 0.2966 0 2.60.10-15 55 71 
9 -0.8957 0.3865 0.2966 0 2.74.10-15 55 77 

10 -1.1644 0.4153 0.2774 2.22.10-16 2.18.10-15 85 80 

 

 
Figure 6.20 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) HENON, CF Basic, p-1 orbit, SOMA ATO 

 
Figure 6.21 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) HENON, CF Basic, p-1 orbit, DERand2Bin 
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2p 

The best obtained results for this particular orbit are shown in Table 6.13 and 
Table 6.14. SOMA ATR has found the lowest value of CF. From Figure 6.22 
and Figure 6.23, it follows that the stabilization was achieved relatively quickly 
and in the case of simulation for distributed initial conditions, the desired 
periodic orbit was fully reached in first 600 iterations for more than 90% cases. 

 

Table 6.13 Best individual solutions, HENON, p-2 orbit, CF Basic, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 0.3893 0.0986 0.2718 2.17.10-7 0.0003 130 123 
2 0.4724 0.1559 0.4614 1.60.10-14 0.0003 124 124 
3 0.5580 0.1526 0.4215 1.57.10-7 0.0003 128 125 
4 0.5478 0.1534 0.4315 1.53.10-8 0.0003 128 125 

 

Table 6.14 Best individual solutions, HENON, p-2 orbit, CF Basic, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 0.5322 0.0799 0.4236 1.10.10-7 0.0002 130 125 
6 0.4973 0.1586 0.4785 1.95.10-14 0.0003 128 122 
7 0.4784 0.1494 0.3320 1.29.10-6 0.0004 126 125 
8 0.5315 0.1614 0.4811 3.25.10-12 0.0002 130 125 
9 0.4231 0.0912 0.3498 1.13.10-11 0.0003 128 126 

10 0.5000 0.2101 0.4031 5.63.10-9 0.0003 128 124 

 

 

Figure 6.22 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Basic, p-2 orbit, SOMA ATR 
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Figure 6.23 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Basic, p-2 orbit, DERand2Bin 

 

4p 

The last case is focused on the stabilization of p-4 orbit. For the simulation 
results please see Table 6.15 and Table 6.16. From Figure 6.24 and Figure 6.25, 
it is obvious that for the stabilization of p-4 orbit more than 1000 CF 
evaluations are required. This fact is related to highly increasing complexity of 
CF surface for higher period orbits. This kind of CF surface contains huge 
amount of local minimums and a lot of them lead only to successful 
stabilization only for limited set of initial conditions xinitial. In the case of the 
best individual solution the same initial conditions were used for optimization 
process and for simulation of results, desired state was stabilized very quickly 
(on average 125 iterations), whereas in the second case for some initial 
conditions the stabilization is reached after more than 1000 iterations. This 
problem can be solved by further modification of used CF as written above in 
case of p-4 orbit and Logistic equation. 

 

Table 6.15 Best individual solutions, HENON, p-4 orbit, CF Basic, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.3833 0.3123 0.4370 9.57.10-8 0.0003 125 122 
2 -0.4258 0.2830 0.4572 5.39.10-8 0.0003 129 122 
3 -0.3696 0.1130 0.4103 9.43.10-9 0.0003 129 124 
4 -0.4124 0.3419 0.4673 9.90.10-8 0.0003 121 121 
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Table 6.16 Best individual solutions, HENON, p-4 orbit, CF Basic, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.3899 0.1191 0.4465 7.90.10-8 0.0003 113 123 
6 -0.4000 0.2847 0.4221 1.16.10-8 0.0003 129 121 
7 -0.3651 0.2392 0.3978 3.19.10-8 0.0003 129 122 
8 -0.3759 0.3171 0.4116 3.68.10-8 0.0003 129 122 
9 -0.3810 0.1107 0.4197 9.16.10-9 0.0003 129 123 

10 -0.3720 0.4487 0.4161 1.01.10-8 0.0003 129 123 

 

 

Figure 6.24 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Basic, p-4 orbit, SOMA ATA 

 

Figure 6.25 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Basic, p-4 orbit, DERand1DIter 

 

6.3.3 Conclusion of Results – Case Study 1 

As a conclusion of performed optimizations, it is possible to say that all 
SOMA and DE versions give almost the same satisfactory results of the best 
individual solution securing fast and fine stabilization of desired UPOs. On the 
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other hand, EAs has found many solutions that do not give expected good 
results, especially in the case of simulation for distributed initial condition 
where the stabilization was only either temporary and of low quality or was 
achieved after too many iterations. This problem is solved by constructing more 
complex CFs and is described in details in further case studies 2 - 7. Such a new 
complex CF should secure faster stabilization not only for initial conditions 
used in optimization process, but for the whole range of the initial conditions. 
The question as to why the TDAS was chosen and used in case of LQ and p-1 
orbit, although it has proven lower stabilizing performance, has this simple 
answer. To avoid any long simulations and evolutionary computations it is 
better to search in lower dimensional space and to work with simpler control 
algorithm, which is not so demanding for computational time. For the 
comparison of average number of iterations required for successful stabilization 
see Table 6.17 and Table 6.18. These numbers were computed from all 50 (100) 
repeated simulations of all SOMA or DE versions. 

 

Table 6.17 Average IStab values – LQ – Case study1 

UPO p-1 p-2 p-4 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 97 97 123 123 197 218 

 

Table 6.18 Average IStab values – HENON – Case study1 

UPO p-1 p-2 p-4 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 77 75 124 125 122 122 
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6.3.4 Comparison with Classical control Method - OGY 

Logistic Equation 

Standard OGY method was chosen to compare optimized TDAS or ETDAS 
with classical control technique. The comparison was done for these two cases: 
p-1 orbit and p-2 orbit. In the first case TDAS was set up identically as the best 
solution given by SOMA ATA (see Table 6.5).  

 As can be seen from Figure 6.26, TDAS method steers the chaotic system 
very quickly to the desired state. The OGY stabilize 50% of examples in first 
100 iterations, but TDAS stabilize more than 50% of examples in first 20 
iterations. Thus this supports the theory that TDAS based control method can 
be simply considered as targeting and stabilizing algorithm. 

In the second case, ETDAS was set up identically as the best solution given 
by SOMA ATR (see Table 6.7). From Figure 6.26 it follows that ETDAS 
method steers the chaotic system very quickly to close neighborhood of p-2 
orbit. To stabilize all of the examples around 150 iterations are required. 
However, more than 50% of examples oscillate in the close neighborhood after 
first 50 iterations. Then the stage of reducing of the neighborhood size, caused 
by progressive converging into p-2 orbit, ensues. This stage can by markedly 
shortened by targeting CF used in further case studies. The OGY method 
stabilizes about 50% of examples in first 400 iterations and to stabilize all of the 
examples about 900 iterations are required. 
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Figure 6.26 Comparison of OGY, optimized TDAS for p-1 orbit (left) and ETDAS for p-2 orbit 
(right), LQ, CF Basic, 0 < xinitial < 1 

 

Henon map 

As with the previous case, optimized ETDAS was compared with standard 
OGY method. The comparison was done for these two cases: p-1 orbit and p-2 
orbit. In the first case, ETDAS was set up identically as the best solution given 
by DERand2Bin (see Table 6.12.).  

From Figure 6.27 it follows, that optimized ETDAS method steers the 
chaotic system very quickly to the stable state. The difference between two 
compared methods is very considerable because the OGY stabilize 50% of 
examples in first 200 iterations, whereas EDAS stabilize more than 50% of 
examples in first 10 iterations. From the similar comparison for logistic 
equation given in Figure 6.26 it can be clearly seen the difference between these 
two control methods increase together with higher dimension or complexity of 
controlled system. The performance of TDAS or ETDAS is almost the same 
whereas OGY needs twice more iterations to achieve stabilization. In this case 
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the performance of ETDAS with Henon map is even better then the 
performance of TDAS with simpler one dimensional equation. 

In the second case, ETDAS was set up identically as the best solution given 
by SOMA ATO (see Table 6.13). From Figure 6.27 it follows that optimized 
ETDAS method needs approximately 200 iterations to stabilize 50% of chaotic 
samples system at desired p-2 orbit. To stabilize the rest of the samples around 
800 iterations are required. As in previous case the OGY stabilizes about 50% 
of examples in first 500 iterations and to stabilize all of the examples more than 
1000 iterations are required. 

 

 
Figure 6.27 Comparison of OGY, optimized ETDAS for p-1 orbit (left) and ETDAS for p-2 

orbit (right), HENON, CF Basic, 0 < xinitial < 1 
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6.4 Simulation Results – Case study 2: Targeting CF Simple 
This section presents the new proposal of the simplest targeting CF, which 

represents the first step in resolving the challenge of faster targeting and 
stabilizing of the chaotic systems. This CF is suitable only in the task of finding 
the optimum settings for p-1 orbit. Unlike the pre-mentioned CF Basic, it does 
not contain any penalization or other extra constraints. Therefore all the 
following optimizations were easy to implement and without any conspicuous 
computational-time demands. For the results in case of LQ please refer to in 
Table 6.19 - Table 6.20 and Figure 6.28 - Figure 6.29. And in case of the Henon 
map please see Table 6.21 - Table 6.22 and Figure 6.30 - Figure 6.31. 

6.4.1 One-Dimensional Example 

Based on obtained results, it may be stated that the control parameters 
estimated in the optimizations ensured fast reaching of a desired state, on 
average, about 98 iterations are required. 

 

Table 6.19 Best individual solutions, LQ, p-1 orbit, CF Simple, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.5786 0.1030 0.0180 0.3745 0.3763 101 99 
2 -0.5781 0.1050 0.0188 0.3760 0.3831 101 98 
3 -0.5749 0.1053 0.0192 0.3758 0.3808 98 98 
4 -0.5620 0.1044 0.0128 0.3748 0.3791 101 98 

Table 6.20 Best individual solutions, LQ, p-1 orbit, CF Simple, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.5722 0.1033 0.0155 0.3745 0.3760 98 99 
6 -0.5795 0.1032 0.0184 0.3748 0.3772 101 98 
7 -0.5618 0.1043 0.0119 0.3747 0.3762 101 99 
8 -0.5603 0.1029 0.0103 0.3738 0.3755 101 99 
9 -0.5752 0.1032 0.0165 0.3744 0.3772 97 98 

10 -0.5583 0.1043 0.0104 0.3744 0.3759 92 98 
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Figure 6.28 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Simple, p-1 orbit, SOMA ATO 

 

Figure 6.29 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Simple, p-1 orbit, DELocalToBest 

 

6.4.2 Two-Dimensional Example 

From the obtained results it follows that as in case of one dimensional 
example (LQ), this CF design also ensured fast reaching of a desired state, on 
average, for successful stabilization of chaotic system around 68 iterations were 
required. 

 

Table 6.21 Best individual solutions, HENON, p-1 orbit, CF Simple, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.7004 0.3024 0.1679 0.2303 0.2310 74 68 
2 -0.7002 0.2502 0.1680 0.2304 0.2332 76 63 
3 -0.7000 0.3397 0.1683 0.2305 0.2321 72 65 
4 -0.7005 0.3459 0.1679 0.2304 0.2316 73 65 
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Table 6.22 Best individual solutions, HENON, p-1 orbit, CF Simple, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.7004 0.4232 0.1681 0.2305 0.2314 70 70 
6 -0.7002 0.4410 0.1680 0.2304 0.2320 74 69 
7 -0.7010 0.2389 0.1672 0.2306 0.2316 72 70 
8 -0.7003 0.3544 0.1680 0.2304 0.2312 74 71 
9 -0.7005 0.4416 0.1680 0.2305 0.2320 72 70 

10 -0.7003 0.2365 0.1680 0.2304 0.2313 73 70 

 

 

Figure 6.30 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Simple, p-1 orbit, SOMA ATO 

 

Figure 6.31 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Simple, p-1 orbit, DEBest1JIter 
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6.4.3 Conclusion of Results – Case Study 2 

This partial conclusion and the subsequent ones do not contain any 
comparison with OGY method, but it is focused on brief description of main 
differences and problems which arise in the task of optimization of chaos 
control within this case study and also it is focused on the comparison of main 
results between all previous case studies. 

Based on obtained results it may be stated that this CF design did not give 
any bigger improvement in the task of faster stabilization. These previous two 
CFs mostly concentrate on quality of stabilization than its quickness. Thus, the 
following case studies deals with the development of effective targeting CF. 
The results obtained in this case can be summarized in the following points: 

 

• In case of Henon there is better average IStab value in comparison 
with previous case study – CF Basic. 

• In case of LQ the results are similar. 

• Next case study is focused on better proposal of targeting CF, which 
is suitable also for higher periodic orbits. Here tested CF Simple can 
not be used due to devaluation of possible best solution by phase 
shifting or including the initial chaotic stage into whole CF value. 

• For the comparison of average number of iterations required for 
successful stabilization see Table 6.23 and Table 6.24. 

 

Table 6.23 Comparison of Average IStab values – LQ – Case studies 1-2 

UPO p-1 p-2 p-3 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 97 97 123 123 197 218 

CF Simple 98 99 - - - - 
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Table 6.24 Comparison of Average IStab values – HENON – Case studies 1-2 

UPO p-1 p-2 p-3 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 77 75 124 125 122 122 

CF Simple 65 70 - - - - 
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6.5 Simulation Results – Case study 3: Targeting CF NA 
This case study presents the new CF with extra constraints, which is an 

advancement of the first described and tested CF Basic. The optimizations were 
performed for p-1 and p-2 orbit. This CF can be considered as the second and at 
the same time significant step towards to time-optimal solutions.  

6.5.1 One-Dimensional Example 

1p 

As can be seen from the best individual solutions for SOMA and DE given 
in Table 6.25 and Table 6.26, and the simulation results, which are depicted in 
Figure 6.32 and Figure 6.33, the significant improvement from the point of 
view of average IStab Value was reached in comparison with previous two  
CF Basic and CF simple. On average, only 31 iterations are required in the 
elimination of chaos and stabilization. The best individual solutions were given 
by SOMA ATO and DEBest1JIter. The SC value was set to 1.10-16 in this case.  

 

Table 6.25 Best individual solutions, LQ, p-1 orbit, CF NA, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.9335 0.3195 0.4977 2.80.10-15 3.15.10-15 28 31 
2 -0.9254 0.3431 0.4886 3.00.10-15 3.48.10-15 30 35 
3 -0.9335 0.3195 0.4977 2.80.10-15 3.33.10-15 28 33 
4 -0.9318 0.3162 0.4964 2.90.10-15 2.89.10-15 29 32 

Table 6.26 Best individual solutions, LQ, p-1 orbit, CF NA, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.9344 0.3171 0.4999 2.80.10-15 3.08.10-15 28 31 
6 -0.8984 0.3766 0.4727 2.90.10-15 3.13.10-15 29 31 
7 -0.9344 0.3171 0.4999 2.80.10-15 3.07.10-15 28 31 
8 -0.9344 0.3171 0.4999 2.80.10-15 2.99.10-15 28 30 
9 -0.8984 0.3766 0.4727 2.90.10-15 3.13.10-15 29 31 

10 -0.9319 0.3168 0.4982 2.70.10-15 3.05.10-15 27 30 
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Figure 6.32 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF NA, p-1 orbit, SOMA ATO 

 

Figure 6.33 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF NA, p-1 orbit, DEBest1JIter 

 

2p 

A considerable decrease of IStab value occurs, but only for average value 
computed from all 50 repeated simulations of EA version, particularly in the 
case of SOMA. The IStab value for the best individual solution was only 
slightly reduced. This phenomenon is also discussed in details in the conclusion 
of this case study.  

On average, about 73 (SOMA) or 109 (DE) iterations are required. The best 
individual solutions were given by SOMA ATR and DEBest1JIter. The SC 
value was set to 1.10-8 in this case. For the simulation results please refer to 
Table 6.27 - Table 6.28, and Figure 6.34 - Figure 6.35. 
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Table 6.27 Best individual solutions, LQ, p-2 orbit, CF NA, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 0.4469 0.3425 0.2653 3.95.10-4 2.0664 124 73 
2 0.5435 0.2107 0.4780 1.14.10-6 2.3981 114 69 
3 0.4389 0.2133 0.2611 1.60.10-4 2.5536 117 76 
4 0.4611 0.2055 0.3063 5.31.10-6 1.7462 130 74 

Table 6.28 Best individual solutions, LQ, p-2 orbit, CF NA, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 0.5413 0.0882 0.4693 1.29.10-6 0.4573 129 104 
6 0.5451 0.0948 0.4758 1.29.10-6 0.4300 129 99 
7 0.5560 0.0296 0.4883 1.26.10-6 0.4270 126 106 
8 0.5499 0.0666 0.4923 1.22.10-6 0.3217 122 107 
9 0.5641 0.1467 0.4441 1.66.10-6 0.7630 131 106 

10 0.5417 0.0355 0.4756 1.20.10-6 0.5368 120 89 

 

 
Figure 6.34 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) LQ, CF NA, p-2 orbit, SOMA ATR 

 
Figure 6.35 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) LQ, CF NA, p-2 orbit, DEBest1JIter 
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6.5.2 Two-Dimensional Example 

1p 

From the presented results in Table 6.29 - Table 6.30, and the simulation 
results depicted in Figure 6.36 and Figure 6.37, it follows that all versions of 
SOMA and DE have found similar results as the best solution and primarily 
from comparison of these results with previous two case studies, it can be 
clearly seen that significant decrease of IStab value occurs as in the case of one 
dimensional example (LQ). 

On average, for stabilization of this UPO only 48 iterations are required. The 
best individual solutions were given by SOMA ATO and DEBest1JIter. The SC 
value was set to 1.10-16 in this case. 

 

Table 6.29 Best individual solutions, HENON, p-1 orbit, CF NA, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.8954 0.2997 0.2612 4.20.10-15 9.58.10-15 42 49 
2 -0.8800 0.1602 0.2330 4.10.10-15 7.04.10-15 41 51 
3 -0.8800 0.1602 0.2330 4.10.10-15 6.21.10-15 41 49 
4 -0.8566 0.2148 0.2031 4.00.10-15 6.57.10-15 40 46 

 

Table 6.30 Best individual solutions, HENON, p-1 orbit, CF NA, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.8454 0.2282 0.2044 4.00.10-15 4.65.10-15 40 47 
6 -0.8713 0.2571 0.2328 4.20.10-15 4.74.10-15 42 47 
7 -0.8650 0.4728 0.2137 4.10.10-15 4.80.10-15 41 48 
8 -0.8634 0.1699 0.2150 3.90.10-15 4.58.10-15 39 46 
9 -0.8634 0.1699 0.2150 3.90.10-15 4.83.10-15 39 48 

10 -0.8650 0.4728 0.2137 4.10.10-15 5.34.10-15 41 48 
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Figure 6.36 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF NA, p-1 orbit, SOMA ATAA 

 

Figure 6.37 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF NA, p-1 orbit, DELocalToBest 

 

2p 

As can be see from presented results in Table 6.31 - Table 6.32, and Figure 
6.38 - Figure 6.39, all versions of SOMA and DE have found relatively similar 
results for the best solution, however from comparison with CF basic, it seems 
that this optimization gives worse results from the point of view of final CF 
value. This fact is caused by penalizing of CF with parameters NI and SC. But 
from the comparison of average needed IStab can be clearly seen also 
significant improvement as in the case of p-1 orbit. On the other hand, this CF 
repeatedly give results with very low value of minimum IStab, however with 
very high CF value and either temporary stabilization or none at all. This is 
probably caused by highly nonlinear and erratic CF surface and the higher 
difficulty of stabilization of p-2 orbit for Henon map. Also here occurred the 
phenomenon of considerable decrease of IStab value only for average value 
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computed from all 50 repeated simulations of EA version, particularly in case 
of SOMA. The IStab value for the best individual solution was also only 
slightly reduced. 

The parameter settings obtained by means of CF NA required on average 
about 84 (SOMA) or 110 (DE) iterations for stabilization of this UPO. The best 
individual solutions were given by SOMA ATA and DERand1DIter. The SC 
value was set to 1.10-8 in this case (identically as for LQ). 

 

Table 6.31 Best individual solutions, HENON, p-2 orbit, CF NA, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 0.3756 0.1412 0.2269 2.51.10-5 4.2739 128 95 
2 0.3984 0.1334 0.2400 2.12.10-5 7.3187 124 78 
3 0.4656 0.1960 0.4226 1.31.10-6 7.1471 131 77 
4 0.5191 0.1443 0.4041 7.55.10-5 5.3401 130 86 

Table 6.32 Best individual solutions, HENON, p-2 orbit, CF NA, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 0.4131 0.1823 0.3167 2.97.10-5 0.9755 130 111 
6 0.3961 0.1762 0.2743 5.52.10-6 2.1411 131 109 
7 0.4705 0.1903 0.3387 6.15.10-6 2.0737 131 106 
8 0.4250 0.1961 0.3081 8.71.10-6 1.8350 129 113 
9 0.5274 0.0833 0.4380 1.35.10-6 1.6335 129 108 

10 0.4330 0.1598 0.3080 1.34.10-5 1.3303 131 116 

 

 

Figure 6.38 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF NA, p-2 orbit, SOMA ATA 
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Figure 6.39 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF NA, p-2 orbit, DERand1DIter 

 

6.5.3 Conclusion of Results – Case Study 3 

The presented data lends weight to the argument that this CF design gives 
significant improvement in the task of faster stabilization. On the other hand, 
this CF gives a lot of inconsistent results with temporary or poor stabilization 
on desired UPO although with low IStab value. Also the SC value was 
determined on the basis of average results leads to successful stabilization in 
case of CF Basic. The following two case studies was proposed to solve the 
problem with determination of SC value in advance. Due to the difficulty with 
correct setting the SC val. for p-4 orbit, this UPO was not included in this case 
study. The results obtained in this case can be summarized in the following 
points: 

 

• significant improvement from the point of view of IStab value for 
both systems, particularly in case of p-1 orbit. 

• In case of p-2 orbit there was also improvement, but EA repeatedly 
give results with very low value of minimum IStab, however with 
very high CF value and either temporary stabilization or none at all. 
This can be caused by highly erratic CF surface and included 
deviation in multi-value optimization by average value SC. 

• For the comparison of average number of iterations required for 
successful stabilization see Table 6.33 and Table 6.34. The value in 
braces represents corrected one, which shows the average IStab value 
only for solutions, which leads to successful stabilization.  
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Table 6.33 Comparison of Average IStab values – LQ – Case studies 1-3 

UPO p-1 p-2 p-3 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 97 97 123 123 197 218 

CF Simple 98 99 - - - - 

CF NA 33 31 73 (109) 102 (116) - - 

 

Table 6.34 Comparison of Average IStab values – HENON – Case studies 1-3 

UPO p-1 p-2 p-3 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 77 75 124 125 122 122 

CF Simple 65 70 - - - - 

CF NA 49 47 84 (114) 110 (118) - - 
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6.6 Simulation Results – Case study 4: CF Targ1 
This case study is focused on testing of upgraded pre-mentioned CF NA. 

This improved CF Targ1 is able to firstly, resolve the problem with 
determination of optimization constant SC in advance on the basis of previous 
results and secondly, allow to use any arbitrary UPO. 

6.6.1 One-Dimensional Example 

1p 

The best individual solutions for SOMA and DE are given in Table 6.35 and 
Table 6.36, and the simulation results are depicted in Figure 6.40 and Figure 
6.41. Also, here it can be seen another slight improvement from the point of 
view of IStab value for the best individual solutions in comparison with three 
previous case studies. This CF gives very similar results as previous CF NA, 
because the automatically computed SC value always reach 1.10-16, i.e. the 
same as manually set in case of CF NA. The only difference lies in different CF 
surface, which allowed finding of faster stabilizing solutions, whereas the 
average IStab value is the same (on average, around 31 iterations). The best 
individual solutions were given by SOMA ATO and DELocalToBest. 

 

Table 6.35 Best individual solutions, LQ, p-1 orbit, CF Targ1, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.9326 0.1674 0.4975 2.70.10-15 3.10.10-15 27 31 
2 -0.9270 0.3203 0.4910 2.90.10-15 3.53.10-15 29 35 
3 -0.9265 0.3182 0.4942 2.80.10-15 3.39.10-15 28 34 
4 -0.9265 0.3182 0.4942 2.80.10-15 3.26.10-15 28 33 

 

Table 6.36 Best individual solutions, LQ, p-1 orbit, CF Targ1, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.9252 0.3228 0.4908 2.90.10-15 3.12.10-15 29 31 
6 -0.9252 0.3228 0.4908 2.90.10-15 3.12.10-15 29 31 
7 -0.9296 0.3193 0.4959 2.80.10-15 3.09.10-15 28 31 
8 -0.9296 0.3193 0.4959 2.80.10-15 3.02.10-15 28 30 
9 -0.9296 0.3193 0.4959 2.80.10-15 3.16.10-15 28 32 

10 -0.9296 0.3193 0.4959 2.80.10-15 3.07.10-15 28 31 
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Figure 6.40 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ1, p-1 orbit, SOMA ATO 

 

Figure 6.41 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ1, p-1 orbit, DELocalToBest 

 

2p 

The simulation results (see Table 6.37 - Table 6.38, and Figure 6.42 - Figure 
6.43) also show slight improvement in comparison with CF NA. The small 
change in CF design allowed to reach significantly lower CF values of the best 
individual solutions. Thus, it is allowed to reach higher-quality stabilization, 
because the final CF value was not influenced by the dominant part of sum, 
which is represented by the multiplication of SC and NI, whereas it was 
influenced by the basic part of CF (quality of stabilization), which could by 
suppressed in case of wrong determination of SC value. But also in this case 
occurs the phenomenon of solutions with very low value of minimum IStab, 
however with very high CF value and either temporary stabilization or none at 
all. 
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Table 6.37 Best individual solutions, LQ, p-2 orbit, CF Targ1, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 0.4867 0.2103 0.3595 8.69.10-9 1.9670 130 83 
2 0.5351 0.0378 0.4648 5.37.10-13 2.3665 126 73 
3 0.5995 0.1823 0.4929 6.63.10-9 2.3827 122 78 
4 0.5449 0.0834 0.4815 8.30.10-13 2.0749 127 77 

Table 6.38 Best individual solutions, LQ, p-2 orbit, CF Targ1, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 0.5358 0.0374 0.4688 8.85.10-13 0.8076 120 100 
6 0.5460 0.0776 0.4842 1.74.10-12 0.8092 129 102 
7 0.5127 0.0965 0.4150 2.15.10-6 0.6010 128 102 
8 0.5413 0.1752 0.4768 2.12.10-12 0.3811 121 116 
9 0.4917 0.0429 0.3424 3.31.10-6 0.7363 128 97 

10 0.5491 0.0316 0.4833 9.50.10-13 0.3899 126 108 

 

 
Figure 6.42 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) LQ, CF Targ1, p-2 orbit, SOMA ATR 

 
Figure 6.43 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) LQ, CF Targ1, p-2 orbit, DERand1Bin 
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4p 

From the optimization results given in Table 6.39 and Table 6.40, it follows 
that control method reached better performance from the point of view of faster 
stabilization in comparison with CF Basic. As can be seen in Figure 6.44 and 
Figure 6.45, even this CF does not give results, which lead to stabilization on 
desired UPO for simulation with uniformly distributed initial conditions. Also it 
is not possible to overlook bigger difference in performance of both EAs, in 
case of proportion of IStab value to Average IStab value. The elimination of 
chaos required on average around 205 iterations for this problematic UPO. 

 

Table 6.39 Best individual solutions, LQ, p-4 orbit, CF Targ1, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.5408 0.2796 0.6268 0.0068 5.1813 177 72 
2 -0.5135 0.2083 0.5835 0.0062 4.5088 181 74 
3 -0.5215 0.2948 0.6115 0.0061 4.5811 181 84 
4 -0.5218 0.3351 0.6130 0.0070 4.5158 209 78 

Table 6.40 Best individual solutions, LQ, p-4 orbit, CF Targ1, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.5238 0.1550 0.6176 0.0059 3.1370 175 110 
6 -0.5241 0.6479 0.6165 0.0066 2.3044 181 124 
7 -0.5233 0.3899 0.6170 0.0067 2.3346 185 129 
8 -0.5481 0.9461 0.6283 0.0067 2.8611 181 117 
9 -0.5467 0.3033 0.6256 0.0071 2.2020 189 136 

10 -0.5785 0.1602 0.6665 0.0075 2.5950 204 110 

 

 

Figure 6.44 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ1, p-4 orbit, SOMA ATR 
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Figure 6.45 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ1, p-4 orbit, DERand1Bin 

 

6.6.2 Two-Dimensional Example 

 

1p 

The overview of simulation data given in Table 6.41 and Table 6.42, and the 
simulation results depicted in Figure 6.46 and Figure 6.47, shows that the 
system was rapidly targeted and stabilized in p-1 orbit. The performance of this 
CF design is very similar to previous CF NA. As described above, in the case of 
LQ and p-1 orbit the automatically computed SC value always reach 1.10-16, i.e. 
the same as manually set in case of CF NA. The small difference between CF 
basic and both targeting CF NA and CF Targ1 lies in the unpleasant fact that 
these CF allowed the finding of faster stabilizing solutions, nevertheless these 
solutions are not suitable for complex simulation with uniformly distributed 
initial conditions. For successful stabilization, on average, around 48 iterations 
are required. The best individual solutions were given by SOMA ATA and 
DELocalToBest.  

 

Table 6.41 Best individual solutions, HENON, p-1 orbit, CF Targ1, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.8508 0.2127 0.2072 4.00.10-15 9.71.10-15 40 50 
2 -0.8508 0.2127 0.2072 4.00.10-15 7.59.10-15 40 52 
3 -0.8508 0.2127 0.2072 4.00.10-15 7.03.10-15 40 48 
4 -0.8804 0.1967 0.2344 4.10.10-15 6.75.10-15 41 47 
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Table 6.42 Best individual solutions, HENON, p-1 orbit, CF Targ1, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.8525 0.2927 0.2165 4.10.10-15 4.67.10-15 41 47 
6 -0.8525 0.2927 0.2165 4.10.10-15 4.72.10-15 41 47 
7 -0.8767 0.2826 0.2418 4.00.10-15 4.74.10-15 40 47 
8 -0.8686 0.2891 0.2349 3.90.10-15 4.61.10-15 39 46 
9 -0.8767 0.2826 0.2418 4.00.10-15 4.76.10-15 40 48 

10 -0.8525 0.2927 0.2165 4.10.10-15 5.22.10-15 41 48 

 

 

Figure 6.46 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ1, p-1 orbit, SOMA ATA 

 

Figure 6.47 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ1, p-1 orbit, DELocalToBest 

 

2p 

In comparison with p-1orbit, the control method is not able to reach “exact” 
stabilization of p-2 orbit. Thus the non-penalized and multiplied basic CF value 
is always greater than zero. From Table 6.43 and Table 6.44, it follows that all 
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versions of SOMA and DE have found relatively different results for the best 
solution, from the point of view of CF value. The simulation results are 
depicted in Figure 6.48 and Figure 6.49. For successful stabilization of p-2 orbit, 
on average, around 72 (SOMA) or 109 (DE) iterations are required. 

 

Table 6.43 Best individual solutions, HENON, p-2 orbit, CF Targ1, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 0.3528 0.1445 0.1786 1.39.10-4 8.0902 124 62 
2 0.4074 0.1559 0.2663 3.46.10-5 6.5677 122 83 
3 0.4188 0.1599 0.2590 1.01.10-4 6.5002 129 78 
4 0.4018 0.1452 0.2449 6.72.10-5 8.7303 126 66 

 

Table 6.44 Best individual solutions, HENON, p-2 orbit, CF Targ1, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 0.4302 0.2067 0.3221 2.73.10-7 2.4583 130 109 
6 0.5357 0.1754 0.4956 4.53.10-8 1.2752 128 112 
7 0.3710 0.1562 0.2245 1.12.10-5 1.5961 124 106 
8 0.4907 0.1914 0.3590 2.00.10-5 1.0713 125 113 
9 0.4392 0.1415 0.3149 2.31.10-6 1.6591 128 104 

10 0.3564 0.2087 0.1775 1.10.10-4  1.0696 123 112 

 

 
Figure 6.48 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) HENON, CF Targ1, p-2 orbit, SOMA ATR 
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Figure 6.49 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ1, p-2 orbit, DERand2Bin 

 

4p 

When comparing the results given by CF Basic and the new results presented 
in Table 6.45 - Table 6.46, and Figure 6.50 - Figure 6.51, it is obvious, that they 
are similar without any significant improvement (if corrected results are taken 
into consideration). For further illustration about exact numbers see the 
following partial conclusion of this case study. 

 

Table 6.45 Best individual solutions, HENON, p-4 orbit, CF Targ1, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.3784 0.2452 0.4188 2.15.10-6 0.2838 129 108 
2 -0.3808 0.2254 0.4338 7.46.10-7 0.6435 129 109 
3 -0.3938 0.1270 0.4572 2.09.10-6 0.4052 129 109 
4 -0.4153 0.2786 0.4532 9.46.10-6 0.3324 125 114 

 

Table 6.46 Best individual solutions, HENON, p-4 orbit, CF Targ1, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.3850 0.1066 0.4348 2.25.10-6 0.0281 125 122 
6 -0.4131 0.2809 0.4606 4.82.10-6 0.1393 129 122 
7 -0.3947 0.1044 0.4541 3.83.10-6 0.0789 125 120 
8 -0.3784 0.2539 0.4329 5.89.10-7 0.0902 129 121 
9 -0.3830 0.1386 0.4416 1.64.10-6 0.1400 129 119 

10 -0.3781 0.3154 0.4261 1.50.10-6 0.0680 125 124 
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Figure 6.50 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ1, p-4 orbit, SOMA ATR 

 

Figure 6.51 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ1, p-4 orbit, DELocalToBest 

 

6.6.3 Conclusion of Results – Case Study 4 

From the presented results it follows that this CF design gives only slight 
improvement in the task of faster stabilization in comparison with previous case 
study (CF NA). It is necessary to mention, that this CF design mostly allowed 
to reach significantly lower CF values of the best individual solutions and 
higher-quality stabilization due to the fact that the final CF value was not 
influenced by dominant multiplication of SC and NI, in case of wrong 
determination of SC value. This CF allowed to solve the problem with difficulty 
of correct setting the SC value for p-4 orbit in advance, because it could be very 
difficult task to determine the correct value, which does not influence searching 
in such nonlinear and erratic CF surface in case of p-4 orbit (see Appendix), 
especially for logistic equation. Also here occurs the phenomenon of difference 
in performance of both EAs, in case of proportion of IStab value to Average 
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IStab value, thus the proportion of solutions with either perfect stabilization or 
temporary or possibly none at all. The next presented case study shows 
illustratively how slight change in CF design could impact on performance of 
control technique. The results obtained in this case can be summarized in 
following main points: 

 

• Slight improvement in comparison with CF NA. 

• Problem with determination of SC value in advance has been solved. 

• Slightly better performance of EA in case of LQ from the point of 
view of percentage successfulness of giving the solutions leading to 
stabilization. In case of Henon map, the hard task seems to be p-2 
orbit. 

• When comparing SOMA and DE, the first one mostly found the 
lowest CF value, but lots of solutions gives the very fast reaching of 
desired UPO, but only temporary or un-successful stabilization. 
Meanwhile DE gives more “stabilization securing” solutions. 

• For the comparison of average number of iterations required for 
successful stabilization see Table 6.47 and Table 6.48. The value in 
braces represents corrected one, which shows the average IStab value 
only for solutions, which leads to successful stabilization. 

 

Table 6.47 Comparison of Average IStab values – LQ – Case studies 1-4 

UPO p-1 p-2 p-3 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 97 97 123 123 197 218 

CF Simple 98 99 - - - - 

CF NA 33 31 73 (109) 102 (116) - - 

CF Targ1 33 31 78 (112) 104 (115) 77 (195) 121 (215) 
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Table 6.48 Comparison of Average IStab values – HENON – Case studies 1-4 

UPO p-1 p-2 p-3 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 77 75 124 125 122 122 

CF Simple 65 70 - - - - 

CF NA 49 47 84 (114) 110 (118) - - 

CF Targ1 49 47 72 (113) 109 (118) 110 (121) 121 (123) 
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6.7 Simulation Results – Case study 5: CF Targ2 
The CF presented in this section shows how can only a slight change in CF 

design and different approach in the upgrading of previous introduced CF NA 
(case study 3) positively influenced the obtained results, which are presented in 
Table 6.49 - Table 6.60, and Figure 6.52 - Figure 6.63. From these results, a 
general conclusion can be made about the effectiveness in encountering the 
previous shortcoming of the all pre-mentioned CFs. This new CF is able to 
firstly, successfully resolve the issue of fast stabilization and secondly, adds 
more robustness to the execution of the heuristic. 

6.7.1 One-Dimensional Example 

1p 

From the presented results, it can be seen that another slight improvement 
occurs in the task of faster stabilization. For the stabilization of LQ at the fixed 
point, on average, around 30 iterations are required. The best individual 
solutions were given by SOMA ATO and DERand1DIter. For the simulation 
data please see Table 6.49 - Table 6.50, and Figure 6.52 - Figure 6.53. 

 

Table 6.49 Best individual solutions, LQ, p-1 orbit, CF Targ2, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.9205 0.2485 0.4879 2.80.10-15 2.99.10-15 28 30 
2 -0.9301 0.3207 0.4931 2.90.10-15 3.29.10-15 29 33 
3 -0.9205 0.2485 0.4879 2.80.10-15 3.16.10-15 28 31 
4 -0.9205 0.2485 0.4879 2.80.10-15 3.14.10-15 28 31 

 

Table 6.50 Best individual solutions, LQ, p-1 orbit, CF Targ2, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.9321 0.1759 0.4981 2.80.10-15 3.01.10-15 28 30 
6 -0.9346 0.2521 0.4981 2.90.10-15 3.07.10-15 29 31 
7 -0.9321 0.1759 0.4981 2.80.10-15 3.03.10-15 28 30 
8 -0.9321 0.1759 0.4981 2.80.10-15 2.96.10-15 28 30 
9 -0.9353 0.2528 0.4992 2.70.10-15 3.04.10-15 27 30 

10 -0.9321 0.1759 0.4981 2.80.10-15 3.01.10-15 28 30 
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Figure 6.52 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ2, p-1 orbit, SOMA ATO 

 

Figure 6.53 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ2, p-1 orbit, DERand1DIter 

 

2p 

The obtained results in 2p also lead to slight faster stabilization with 
comparison with CF Targ1 and other previous case studies. Moreover, it is 
possible to say that in this case occurs intensifying of the unpleasant fact that 
this CF Targ2 allowed finding of faster stabilizing solutions, nevertheless this 
solutions are not suitable for complex simulation with uniformly distributed 
initial conditions. On average about 95 (SOMA) or 113 (DE) iterations are 
required. The best individual solutions were given by SOMA ATAA and 
DERand1DIter. The best individual solutions for SOMA and DE are given in 
Table 6.51 - Table 6.52, and the simulation results are depicted in Figure 6.54 -
Figure 6.55. 

 

 



-99- 

Table 6.51 Best individual solutions, LQ, p-2 orbit, CF Targ2, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 0.5395 0.1377 0.4701 1.60.10-14 0.0567 127 105 
2 0.5810 0.0655 0.4614 2.06.10-10 0.1383 131 78 
3 0.5493 0.0355 0.4804 1.29.10-13 0.0980 118 93 
4 0.4439 0.2643 0.2730 1.34.10-6 0.0582 120 103 

Table 6.52 Best individual solutions, LQ, p-2 orbit, CF Targ2, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 0.5489 0.0870 0.4807 1.37.10-13 0.0109 127 120 
6 0.5631 0.0894 0.4937 1.40.10-13 0.0240 131 105 
7 0.4548 0.2532 0.2988 1.54.10-7 0.0139 125 110 
8 0.5641 0.2122 0.4951 1.35.10-13 0.0060 124 118 
9 0.5401 0.0394 0.4634 1.77.10-14 0.0143 120 108 

10 0.5403 0.1807 0.4776 2.01.10-14 0.0095 120 115 

 

 
Figure 6.54 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) LQ, CF Targ2, p-2 orbit, SOMA ATO 

 
Figure 6.55 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) LQ, CF Targ2, p-2 orbit, DERand1DIter 
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4p 

The presented results in Table 6.53 - Table 6.54, and Figure 6.56 - Figure 
6.57 show capability of faster reaching of desired UPO for the same initial 
conditions as in the optimization process. Unfortunately, also in case of 
complex simulation with uniformly distributed initial conditions any 
improvement did not came about and the system was not stabilized on p-4 orbit. 
On average, around 151 (SOMA) or 182 (DE) iterations are required for the 
stabilization of this particular orbit. 

 

Table 6.53 Best individual solutions, LQ, p-4 orbit, CF Targ2, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.5221 0.1974 0.6096 0.0002 0.2561 149 169 
2 -0.5332 0.2122 0.6119 0.0002 0.3596 177 136 
3 -0.5190 0.1738 0.5977 0.0002 0.2570 187 167 
4 -0.5233 0.5151 0.6140 0.0002 0.3041 149 131 

Table 6.54 Best individual solutions, LQ, p-4 orbit, CF Targ2, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.5451 0.2777 0.6329 0.0002 0.1897 185 174 
6 -0.5270 0.1993 0.6175 0.0002 0.2176 177 158 
7 -0.5218 0.1755 0.6101 0.0002 0.1704 159 183 
8 -0.5480 0.2771 0.6313 0.0002 0.0315 173 212 
9 -0.5303 0.0883 0.6087 0.0002 0.1275 169 199 

10 -0.5794 0.3067 0.6703 0.0002 0.1752 197 167 

 

 
Figure 6.56 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) LQ, CF Targ2, p-4 orbit, SOMA ATO 
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Figure 6.57 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ2, p-4 orbit, DEBest2Bin 

 

6.7.2 Two-Dimensional Example 

1p 

From the comparison with previous case study 4 (CF Targ1) follows, that the 
average IStab value is smaller. But on the other hand this CF give the two best 
solutions (SOMA ATO and ATAA), where the final CF value is not divisible 
by the NI value (or IStab) without remainder Thus it seems, that every 
subsequent simulation affirms the fact, that this design of CF secures very fast 
reaching of desired state but with slightly lower quality of stabilization (basic 
part of CF > 0). For stabilization of Henon map fixed point, on average, around 
38 iterations are required. The best individual solutions were given by SOMA 
ATAA and DELocalToBest. For optimization results please refer to Table 6.55 
- Table 6.56, and Figure 6.58 - Figure 6.59. 

 

Table 6.55 Best individual solutions, HENON, p-1 orbit, CF Targ2, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.6912 0.1805 0.0911 4.00.10-15 4.49.10-15 30 39 
2 -0.8857 0.1593 0.2339 4.00.10-15 4.66.10-15 40 40 
3 -0.8856 0.2249 0.2429 4.10.10-15 4.54.10-15 41 38 
4 -0.8649 0.1953 0.2149 3.90.10-15 4.40.10-15 39 38 
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Table 6.56 Best individual solutions, HENON, p-1 orbit, CF Targ2, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.8764 0.2805 0.2413 4.00.10-15 4.35.10-15 40 37 
6 -0.8730 0.2516 0.2345 4.20.10-15 4.50.10-15 42 38 
7 -0.8359 0.2716 0.2286 3.92.10-15 4.39.10-15 37 38 
8 -0.8386 0.3089 0.2024 3.90.10-15 4.33.10-15 39 38 
9 -0.8386 0.3089 0.2024 3.90.10-15 4.49.10-15 39 38 

10 -0.7511 0.2076 0.1286 3.97.10-15 4.43.10-15 33 37 

 

 

Figure 6.58 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ2, p-1 orbit, SOMA ATAA 

 

Figure 6.59 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ2, p-1 orbit, DELocalToBest 

2p 

The best individual solutions for SOMA and DE are given in Table 6.57 and 
Table 6.58, and the simulation results are depicted in Figure 6.60 and Figure 
6.61. In spite of the promising results in case of p-1 orbit, smaller final CF 
values for the best solutions and less nonlinear CF surface (see Appendix), it 
appears at the first instance that this optimization by means of CF Targ2 
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produces worse results than previous optimization (case study 4 - CF Targ1) 
from the point of view of average IStab value. But the results presented in the 
following two tables are not corrected and as it was mentioned above in case of 
the logistic equation, this CF proves better performance in the task of 
percentage successfulness of stabilization for all 50 repeated simulations of 
each EA version. The corrected results can be found in the conclusion at the end 
of this case study For successful stabilization of p-2 orbit in this case, on 
average, about 91 (SOMA) or 113 (DE) iterations are required. 

 

Table 6.57 Best individual solutions, HENON, p-2 orbit, CF Targ2, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 0.4368 0.2081 0.3534 2.23.10-9 0.4029 128 93 
2 0.3428 0.1464 0.1372 1.38.10-5 0.3775 126 85 
3 0.5095 0.1954 0.4075 1.43.10-8 0.2856 121 93 
4 0.3734 0.1456 0.2230 2.13.10-7 0.3179 130 91 

Table 6.58 Best individual solutions, HENON, p-2 orbit, CF Targ2, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 0.4524 0.1298 0.3398 1.62.10-6 0.0804 131 112 
6 0.5122 0.1466 0.3838 1.40.10-6 0.0820 128 114 
7 0.4496 0.2092 0.3202 1.97.10-7 0.0520 126 110 
8 0.3661 0.2012 0.2078 1.34.10-6 0.0338 117 117 
9 0.4871 0.2006 0.4871 1.73.10-13 0.0827 121 108 

10 0.4988 0.1610 0.4924 2.12.10-14 0.0332 128 115 

 

 
Figure 6.60 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) HENON, CF Targ2, p-2 orbit, SOMA ATO 
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Figure 6.61 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ2, p-2 orbit, DEBest1JIter 

 

4p 

The behavior of the control the method is very similar as to the previous two 
UPOs and show all above mentioned and in detail described features. For 
successful stabilization of p-4 orbit, on average, about 115 (SOMA) or 123 (DE) 
iterations are required. For further illustration and the overview of optimization 
data please see Table 6.59 - Table 6.60, and Figure 6.62 - Figure 6.63. 

 

Table 6.59 Best individual solutions, HENON, p-4 orbit, CF Targ2, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.3741 0.1136 0.4159 1.37.10-7 0.0131 125 112 
2 -0.3831 0.1107 0.4265 1.88.10-8 0.0157 129 115 
3 -0.3879 0.2420 0.4437 2.18.10-8 0.0076 129 112 
4 -0.3702 0.2349 0.4117 1.41.10-7 0.0034 129 122 

 

Table 6.60 Best individual solutions, HENON, p-4 orbit, CF Targ2, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.3717 0.2086 0.4125 1.40.10-7 0.0013 129 122 
6 -0.4176 0.1220 0.4754 1.69.10-7 0.0017 129 121 
7 -0.3704 0.2031 0.4147 1.79.10-8 0.0021 129 120 
8 -0.4016 0.2696 0.4642 1.53.10-7 0.0002 129 124 
9 -0.3768 0.1162 0.4156 1.45.10-7 0.0015 129 124 

10 -0.3837 0.1136 0.4404 1.78.10-8 0.0008 129 126 
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Figure 6.62 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ2, p-4 orbit, SOMA ATR 

 

Figure 6.63 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ2, p-4 orbit, DEBest1JIter 

 

6.7.3 Conclusion of Results – Case Study 5 

From the presented results it follows that this CF design produces only slight 
improvement in the task of faster stabilization in comparison with previous case 
studies (CF Targ1 and CF NA). Also, this CF solved the problem with 
difficulty of correct setting of the SC value for p-4 orbit in advance and the 
problem with possible influence of evolutionary searching and final CF value 
by wrong determination of SC in advance. The very important fact is that the 
phenomenon of difference in performance of both EAs, in case of proportion of 
IStab value to Average IStab value, thus the proportion of solutions with either 
perfect stabilization or temporary or possibly none at all was partially 
suppressed. On the other hand, here occurs the intensifying of the unpleasant 
fact that this CF Targ2 allowed finding of faster stabilizing solutions, 
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nevertheless this solutions are not suitable for complex simulation with 
uniformly distributed initial conditions. 

When comparing both proposed CF Targ1 and CF Targ2, it appears that the 
first one gives slightly slowly stabilizing solutions than the second one (the 
difference lies only in a few iterations). But these solutions are more suitable 
for wide range of initial conditions. This fact is valid for both chaotic systems 
and all desired UPOs. Thus the next two presented case studies deals with the 
change in CF design of both CF Targ1 and CF Targ2, which leads to finding of 
solutions suitable for simulations with wide range of initial conditions. The 
results obtained in this case can be summarized in following main points: 

 

• Again slight improvement in comparison with CF NA and CF Targ1 

• Problem with the determination of SC value in advance has been 
solved also in this CF design. 

• Significant improvement in performance of EA from the point of 
view of percentage successfulness of giving the solutions leading to 
stabilization for both systems and all desired UPOs. 

• When comparing SOMA and DE also in this case study, DE gives 
more “stabilization securing” solutions. 

• As in the case of CF Targ1, the problem with extreme sensitivity of 
LQ p-4 orbit and Henon p-1 orbit to proper settings of control 
algorithm in the task of testing the best solution in simulation with 
uniformly distributed initial conditions remains.  

• For the comparison of average number of iterations required for 
successful stabilization see Table 6.61 and Table 6.62. The value in 
braces represents corrected one, which shows the average IStab value 
only for solutions, which leads to successful stabilization. 
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Table 6.61 Comparison of Average IStab values – LQ – Case studies 1-5 

UPO p-1 p-2 p-4 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 97 97 123 123 197 218 

CF Simple 98 99 - - - - 

CF NA 33 31 73 (109) 102 (116) - - 

CF Targ1 33 31 78 (112) 104 (115) 77 (195) 121 (215) 

CF Targ2 31 30 95 (112) 113 (113) 151 (184) 182 (196) 

 

Table 6.62 Comparison of Average IStab values – HENON – Case studies 1-5 

UPO p-1 p-2 p-4 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 77 75 124 125 122 122 

CF Simple 65 70 - - - - 

CF NA 49 47 84 (114) 110 (118) - - 

CF Targ1 49 47 72 (113) 109 (118) 110 (121) 121 (123) 

CF Targ2 39 38 91 (108) 113 (117) 115 (118) 123 (123) 
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6.8 Simulation Results – Case study 6: CF Targ1 - Advanced 
The new advanced design of CF Targ1 is presented in this section. This CF 

was developed to improve the performance of estimated optimal solutions in 
the task of complex simulations for wide range of initial conditions. 

6.8.1 One-Dimensional Example 

1p 

The best individual solutions for SOMA and DE are given in. The 
optimization gives in this case similar results (see Table 6.63 - Table 6.64, and 
Figure 6.64 - Figure 6.65) as for CF Targ1 from the point of view of IStab value 
for the best individual solutions. But when comparing the average IStab value 
the slight worsening came about. This may be the consequence of the endeavor 
to find “universal solution” for wide range of initial conditions, which seems to 
be a harder task for EA. Finally it is good to notice that the increase of order of 
final CF value did not arise because of lower quality of stabilization, but due to 
addition of several repeated simulations with different initial conditions into CF 
value. On average, around 35 iterations are required. The best individual 
solutions were given by SOMA ATO and DELocalToBest. 

 

Table 6.63 Best individual solutions, LQ, p-1 orbit, CF Targ1 Advanced, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.9351 0.4888 0.4990 2.57.10-14 2.97.10-14 31 34 
2 -0.9172 0.3302 0.4857 2.74.10-14 3.56.10-14 30 40 
3 -0.9343 0.1910 0.4962 2.72.10-14 3.13.10-14 32 36 
4 -0.9325 0.4935 0.4985 2.59.10-14 3.08.10-14 31 36 

 

Table 6.64 Best individual solutions, LQ, p-1 orbit, CF Targ1 Advanced, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.9187 0.4952 0.4866 2.67.10-14 2.94.10-14 33 34 
6 -0.9089 0.1912 0.4792 2.79.10-14 3.06.10-14 35 35 
7 -0.9385 0.4989 0.4983 2.66.10-14 2.94.10-14 32 34 
8 -0.9323 0.4842 0.4985 2.56.10-14 2.87.10-14 31 33 
9 -0.9385 0.4989 0.4983 2.66.10-14 2.98.10-14 32 34 

10 -0.9326 0.4626 0.4948 2.68.10-14 2.9.10-14 30 34 
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Figure 6.64 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ1 Advanced, p-1 orbit, SOMA ATO 

 

Figure 6.65 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ1 Advanced, p-1 orbit, DELocalToBest 

2p 

From the results presented in Table 6.65 and Table 6.66, and the behavior of 
system depicted in Figure 6.66 and Figure 6.67, it follows that the desired UPO 
was achieved rapidly, nevertheless, this CF design gives very poor performance 
of proportion of solutions with very low value of minimum IStab, however with 
very high CF value and either temporary stabilization or none at all. This can be 
clearly seen from comparison of final CF value presented here and for CF 
Targ1. Ideally it should be 10 times greater, due to the fact, that 10 repeated 
simulations for different initial conditions are added into final CF Value. Also a 
slight period doubling or oscillating in the close neighborhood of desired UPO 
arose. More about this two mentioned problems is written in the conclusion of 
this case study. Finally, for the robust stabilization with wide range of initial 
conditions, on average, around 64 iterations are required. The best individual 
solutions were given by SOMA ATA and DERand2Bin. 
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Table 6.65 Best individual solutions, LQ, p-2 orbit, CF Targ1 Advanced, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 0.4125 0.0471 0.2134 44.5190 139.5495 69 11 
2 0.4017 0.0510 0.1768 29.9465 133.3694 30 13 
3 0.4236 0.2086 0.2421 15.0221 140.0992 56 13 
4 0.4219 0.2826 0.2327 31.8591 135.0361 45 12 

Table 6.66 Best individual solutions, LQ, p-2 orbit, CF Targ1 Advanced, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 0.4181 0.2645 0.2234 32.9867 124.5893 64 14 
6 0.4047 0.4271 0.1819 19.7431 111.3962 35 20 
7 0.4105 0.2037 0.2081 30.7959 125.4360 30 12 
8 0.4190 0.2029 0.2242 25.5306 120.4480 44 20 
9 0.3882 0.2023 0.1576 28.6152 129.9372 68 14 

10 0.4105 0.2024 0.2049 22.2266 121.5131 89 14 

 

 
Figure 6.66 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) LQ, CF Targ1 Advanced, p-2 orbit, SOMA ATA 

 
Figure 6.67 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) LQ, CF Targ1 Advanced, p-2 orbit, DERand2Bin 
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4p 

From the optimization results given in Table 6.67 - Table 6.68, and depicted 
in Figure 6.68 - Figure 6.69, it follows that the control method reached worse 
performance from the point of view of quickness of the stabilization in 
comparison with CF Targ1 and other previous Cost Functions. On the other 
hand, finally this CF gives results, which lead to successful stabilization on p-4 
orbit for simulation with uniformly distributed initial conditions. It is necessary 
to mention, that in this case the length of optimization interval τi had to be 
increased to 500 iterations. The influence of this decision is discussed in 
conclusion of this case study. Also here occurred the problem with very poor 
performance of both EAs, in case of proportion of IStab value to Average IStab 
value. Lastly, on average about 418 (SOMA) or 375 (DE) iterations are 
required (corrected results). The best individual solutions were given by SOMA 
ATA and DERand2Bin. 

 

Table 6.67 Best individual solutions, LQ, p-4 orbit, CF Targ1 Advanced, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.6979 0.1269 0.7678 82.5207 161.8815 379 12 
2 -0.6394 0.1107 0.7255 0.1229 192.0886 450 31 
3 1.8281 0.1884 0.6581 141.3368 174.0108 4 4 
4 1.5465 0.1883 0.7033 134.2319 179.2204 4 4 

 

Table 6.68 Best individual solutions, LQ, p-4 orbit, CF Targ1 Advanced, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 1.5747 0.1903 0.7615 138.7033 168.5615 4 4 
6 -0.6595 0.0974 0.7236 33.2028 161.4346 274 17 
7 -0.6176 0.0906 0.7049 0.6302 146.7834 463 21 
8 1.5776 0.0772 0.7046 128.5954 162.6294 4 11 
9 -0.7257 0.1319 0.8157 103.5151 158.2030 446 13 

10 -0.6001 0.0345 0.8582 79.3885 156.4887 319 10 
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Figure 6.68 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ1 Advanced, p-4 orbit, SOMA ATR 

 

Figure 6.69 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ1 Advanced, p-4 orbit, DEBest2Bin 

 

6.8.2 Two-Dimensional Example 

1p 

As can be seen from presented optimization results, slightly worse 
performance from the point of view of quickness of stabilization in comparison 
with CF Targ1 and CF Targ2 was reached. On the other hand, this CF achieves 
results, which lead to successful stabilization on p-1 orbit for simulation with 
uniformly distributed initial conditions, whereas the fast targeting securing CF 
Targ 1 and CF Targ2 did not produce satisfactory results. On average, around 
58 iterations are required for stabilization of the fixed point. The best individual 
solutions were given by SOMA ATAA and DERand1DIter. For detailed 
overview of results in this case please refer to Table 6.69 - Table 6.70, and 
Figure 6.70 - Figure 6.71. 
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Table 6.69 Best individual solutions, HENON, p-1 orbit, CF Targ1 Advanced, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -1.0148 0.3849 0.4067 5.2.10-14 1.13.10-13 53 55 
2 -1.0355 0.4313 0.4218 5.25.10-14 1.38.10-13 55 56 
3 -0.9977 0.4382 0.3837 5.01.10-14 8.97.10-14 53 56 
4 -0.9977 0.4382 0.3837 5.01.10-14 9.13.10-14 53 56 

Table 6.70 Best individual solutions, HENON, p-1 orbit, CF Targ1 Advanced, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.9769 0.4539 0.3603 4.97.10-14 6.4.10-14 53 59 
6 -0.9966 0.3960 0.3849 5.1.10-14 6.63.10-14 53 59 
7 -0.9716 0.4358 0.3582 4.99.10-14 5.67.10-14 55 59 
8 -1.0028 0.4512 0.3863 5.01.10-14 5.48.10-14 53 57 
9 -0.9242 0.4133 0.3060 4.73.10-14 5.83.10-14 51 59 

10 -0.9832 0.4987 0.3753 5.03.10-14 5.65.10-14 55 58 

 

 
Figure 6.70 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) HENON, CF Targ1 Advanced, p-1 orbit, SOMA ATAA 

 
Figure 6.71 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) HENON, CF Targ1 Advanced, p-1 orbit, DERand1DIter 
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2p 

The optimization results given in Table 6.71 - Table 6.72, and depicted in 
Figure 6.72 - Figure 6.73, shows very similar attributes as in the case of LQ p-2 
orbit i.e. rapid achievement of desired UPO (on average, around 51 (SOMA) or 
57 (DE) iterations are required), together with very poor performance of 
proportion of IStab val. and average IStab val. Also, relatively considerable 
period doubling or oscillating in the close neighborhood of desired UPO arose. 
The best individual solutions were given by SOMA ATA and DERand1Bin. 

 

Table 6.71 Best individual solutions, HENON, p-2 orbit, CF Targ1 Advanced, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -1.4752 0.4631 0.4936 278.2358 403.2056 9 8 
2 -1.4448 0.4083 0.4714 335.9420 422.7275 9 8 
3 0.3264 0.1150 0.1342 216.7945 410.7999 51 8 
4 -1.4741 0.4355 0.4914 322.6202 414.1843 9 7 

Table 6.72 Best individual solutions, HENON, p-2 orbit, CF Targ1 Advanced, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 0.3156 0.1476 0.1034 175.1048 394.1554 44 8 
6 -1.4714 0.4448 0.4993 316.6541 403.7943 9 9 
7 0.3008 0.1402 0.0703 237.1202 393.1724 39 10 
8 0.2987 0.1736 0.0396 275.8986 392.8366 80 9 
9 0.3122 0.1536 0.0934 209.5476 393.8310 51 10 

10 0.3145 0.1404 0.1113 196.3163 391.5271 39 8 

 

 
Figure 6.72 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ1 Advanced, p-2 orbit, SOMA ATA 
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Figure 6.73 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ1 Advanced, p-2 orbit, DERand1Bin 

 

4p 

Also in this case occurs the phenomenon, that faster targeting of desired 
UPO (84 (SOMA) or 82 (DE) iterations) for wide range of initial conditions by 
means of this CF Targ1 advanced is at the cost of poor performance of EA and 
period doubling. See the best individual solutions for SOMA and DE in Table 
6.73 and Table 6.74, and the simulation results depicted in Figure 6.74 and 
Figure 6.75. Lastly, the best individual solutions were given by SOMA ATO 
and DELocalToBest.  

 

Table 6.73 Best individual solutions, HENON, p-4 orbit, CF Targ1 Advanced, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.2873 0.1558 0.1791 211.5812 407.8080 73 24 
2 -0.4187 0.4319 0.3426 278.2204 434.3837 73 28 
3 -0.4828 0.1904 0.4390 241.1852 416.2615 17 32 
4 -0.3436 0.4037 0.4119 234.9283 389.5470 111 29 

Table 6.74 Best individual solutions, HENON, p-4 orbit, CF Targ1 Advanced, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.3078 0.1438 0.2432 118.9887 353.5068 125 41 
6 -0.6051 0.3869 0.4989 276.3707 380.2217 13 14 
7 -0.5454 0.2019 0.4853 94.5564 369.7979 97 29 
8 -0.5788 0.4874 0.4890 192.8344 345.0628 101 31 
9 -0.5724 0.2739 0.4982 139.5352 362.2666 121 30 

10 -0.5481 0.4340 0.4950 132.6462 366.0304 119 32 
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Figure 6.74 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ1 Advanced, p-4 orbit, SOMA ATO 

 

Figure 6.75 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ1 Advanced, p-4 orbit, DELocalToBest 

 

6.8.3 Conclusion of Results – Case Study 6 

From presented results in this case study it follows that this CF design gives 
for the first view significant improvement in the task of faster stabilization in 
comparison with previous case studies dealing with targeting CFs (CF Targ1 
and CF Targ2), on the other hand at the cost of following problems.  

The phenomenon of difference in performance of both EAs rapidly increased, 
in case of higher periodic orbits and proportion of IStab value to Average IStab 
value, thus the proportion of solutions with either perfect stabilization or 
temporary or possibly none at all. In some optimizations the performance of EA 
was very poor, for example Henon p-2 orbit: from all 200 simulations of four 
SOMA versions only one solution was found. This is probably caused by 
influence to final CF value by different numbers of iteration required for 
stabilization in several repeated simulations for different initial conditions 
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during one CF evaluation process. Consequently different durations of initial 
chaotic stage is included into final CF value. Thereafter these chaotic initial 
stages are markedly amplified by multiplication of NI. The core of this problem 
can be clearly seen in all Figures, where the simulations for uniformly 
distributed initial conditions is depicted. It is evident that the extremely 
sensitive chaotic system shows different behavior for initial conditions used in 
both optimization and simulation and for wider range of initial conditions. Thus 
it is very difficult to find suitable CF design, which should secure finding of 
“universal solution” in case of chaos control.  

The next problem which arose as a consequence of this CF design and 
sensitivity of chaotic system to proper settings is the period doubling or in other 
words the oscillating around desired higher periodic orbit. This is probably 
caused by the fact, that different length of stabilization and initial chaotic 
behavior increases the CF value and at the same time the quality of stabilization 
(difference between target state and actual state) does not have such a influence 
to CF value.  

Finally, it should be mentioned, that in the case of problematic LQ p-4 orbit 
the simulation interval had to be increased to 500 iterations. The earlier 
increased and used value of 300 iterations was not enough to secure finding of 
good solution. In spite of this fact, it is not possible to compare the performance 
of this CF with previous results (CF Targ1, CF Targ2 and CF Basic), but the 
weighty result is that this UPO was finally stabilized at all.  

The next and the last presented case study shows again how slight change in 
CF design could impact on performance of control technique, especially 
considering the fact, that CF Targ2 gives better and more reasonable results 
than CF Targ1. The results obtained in this case can be summarized in 
following main points: 

 

• Marked improvement in comparison with previous case studies from 
the point of view corrected average IStab value for higher periodic 
orbits for both systems (except LQ p-4). In case of fixed point, the 
results are slightly worse. 

• On the other hand, very considerable worsening in performance of 
EA from the point of view of percentage successfulness of giving the 
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solutions leading to stabilization for both systems and all higher 
periodic UPOs 

• Problem with fast targeting not only for initial conditions used in 
optimization process but for the uniformly distributed initial 
conditions has been solved but at the cost of slight period doubling in 
the close neighborhood of desired higher periodic UPO. 

• When comparing EAs DE again gives slightly more “stabilization 
securing” solutions. 

• The problem with extreme sensitivity of LQ p-4 orbit and Henon p-1 
orbit to proper settings of control algorithm in the task of testing the 
best solution in simulation with uniformly distributed initial 
conditions has been solved. 

• The final CF value is affected by different numbers of iteration 
required for stabilization in several runs during one CF evaluation 
consequently different durations of initial chaotic stage is included 
into final CF value. Thus the simulation results shows above 
mentioned very fast but low quality stabilization or tiny period 
doubling in case of p-2 and p-4 orbit.  

• For the comparison of average number of iterations required for 
successful stabilization see Table 6.75 and Table 6.76. The value in 
braces represents corrected one, which shows the average IStab value 
only for solutions, which leads to successful stabilization. 
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Table 6.75 Comparison of Average IStab values – LQ – Case studies 1-6 

UPO p-1 p-2 p-4 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 97 97 123 123 197 218 

CF Simple 98 99 - - - - 

CF NA 33 31 73 (109) 102 (116) - - 

CF Targ1 33 31 78 (112) 104 (115) 77 (195) 121 (215) 

CF Targ2 31 30 95 (112) 113 (113) 151 (184) 182 (196) 

CF Targ1 Adv. 37 34 12 (60) 16 (55) 13 (418) 13 (375) 

 

Table 6.76 Comparison of Average IStab values – HENON – Case studies 1-6 

UPO p-1 p-2 p-4 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 77 75 124 125 122 122 

CF Simple 65 70 - - - - 

CF NA 49 47 84 (114) 110 (118) - - 

CF Targ1 49 47 72 (113) 109 (118) 110 (121) 121 (123) 

CF Targ2 39 38 91 (108) 113 (117) 115 (118) 123 (123) 

CF Targ1 Adv. 56 59 8 (51) 9 (57) 28 (84) 30 (82) 
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6.9 Simulation Results – Case study 7: CF Targ2 - Advanced 
The last section presents the advanced targeting CF developed on the basis 

of successful CF Targ2 design. The presented data lends weight to the argument, 
that this CF design is a serious consideration in the robust stabilization of 
chaotic systems for wide range of initial conditions. 

6.9.1 One-Dimensional Example 

1p 

From the presented results can be seen another slight improvement in 
comparison with “CF Targ1 advanced” from the point of view of average IStab 
values, thus the close return to the existing best values given by CF Targ1 and 
CF Targ2. The best individual solutions for SOMA and DE are given in Table 
6.77 and Table 6.78, and the simulation results are depicted in Figure 6.76 and 
Figure 6.77. On average, about 30 iterations are required. The best individual 
solutions were given by SOMA ATO and DEBest2Bin. 

 

Table 6.77 Best individual solutions, LQ, p-1 orbit, CF Targ2 Advanced, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.9336 0.4957 0.4994 2.54.10-14 2.75.10-14 31 32 
2 -0.9121 0.4933 0.4816 2.67.10-14 3.24.10-14 30 36 
3 -0.9317 0.4971 0.4967 2.61.10-14 2.93.10-14 31 33 
4 -0.9283 0.4855 0.4955 2.54.10-14 3.02.10-14 30 35 

 

Table 6.78 Best individual solutions, LQ, p-1 orbit, CF Targ2 Advanced, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.9369 0.4767 0.4973 2.66.10-14 2.83.10-14 32 33 
6 -0.9279 0.4960 0.4940 2.67.10-14 2.89.10-14 31 33 
7 -0.9307 0.4995 0.4973 2.56.10-14 2.77.10-14 29 32 
8 -0.9223 0.4936 0.4911 2.61.10-14 2.73.10-14 30 32 
9 -0.9317 0.1950 0.4980 2.64.10-14 2.86.10-14 31 33 

10 -0.9229 0.4908 0.4898 2.62.10-14 2.73.10-14 30 32 
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Figure 6.76 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ2 Advanced, p-1 orbit, SOMA ATO 

 

Figure 6.77 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ2 Advanced, p-1 orbit, DEBest2Bin 

 

2p 

As in the case of “CF Targ1 advanced”, the obtained results lead to faster 
stabilization with comparison with case studies 1 - 5. Moreover the two main 
problems discussed in the previous case study 6, i.e. poor performance of EA 
and period doubling were markedly suppressed here. For robust elimination of 
chaotic behavior of the system, on average about 66 (SOMA) or 63 (DE) 
iterations are required. The best individual solutions were given by SOMA 
ATO and DERand1DIter. See the optimization results in Table 6.79 - Table 
6.80, and Figure 6.78 - Figure 6.79. 
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Table 6.79 Best individual solutions, LQ, p-2 orbit, CF Targ2 Advanced, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 0.4093 0.2842 0.1949 0.6392 11.3885 31 31 
2 0.4062 0.2060 0.1904 1.7594 9.9314 40 42 
3 0.4299 0.2089 0.2572 1.0202 10.6515 53 39 
4 0.3998 0.1892 0.1744 1.4932 11.7007 47 30 

Table 6.80 Best individual solutions, LQ, p-2 orbit, CF Targ2 Advanced, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 0.3984 0.1911 0.1696 1.5467 6.9414 75 36 
6 0.4139 0.1872 0.2111 1.2938 7.2405 74 42 
7 0.4026 0.2009 0.1937 1.0224 5.7534 86 43 
8 0.4376 0.2026 0.1798 0.6683 4.7281 114 35 
9 0.4092 0.2794 0.1847 0.2353 7.1450 105 38 

10 0.4106 0.2020 0.1992 0.8455 6.5165 54 33 

 

 
Figure 6.78 Best individual solution (left); Simulation with distributed initial conditions  

0 < xinitial < 1, 100 samples (right) LQ, CF Targ2 Advanced, p-2 orbit, SOMA ATO 

 
Figure 6.79 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ2 Advanced, p-2 orbit, DERand1DIter 
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4p 

For the positive results of optimization in this case, please refer to Table 6.81 
- Table 6.82, and Figure 6.80 - Figure 6.81. As in the case of p-1 orbit the 
presented results show the close return to the existing best values given by  
CF Targ1 and CF Targ2, but unlike these two CF designs, the problematic p-4 
UPO was fast reached also in the case of complex simulation with uniformly 
distributed initial conditions. Also the performance of EAs became better. The 
stabilization of problematic p-4 orbit required, on average, around 194 (SOMA) 
or 199 (DE) iterations. 

 

Table 6.81 Best individual solutions, LQ, p-4 orbit, CF Targ2 Advanced, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.6307 0.0931 0.6851 2.3172 33.1160 335 60 
2 -0.6684 0.0922 0.7272 3.2511 34.9924 126 34 
3 -0.5362 0.0966 0.6706 6.0179 34.9690 98 36 
4 -0.5132 0.1249 0.5960 2.1906 32.7929 73 44 

Table 6.82 Best individual solutions, LQ, p-4 orbit, CF Targ2 Advanced, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.5355 0.1267 0.6508 0.0031 29.9159 248 78 
6 -0.6428 0.1059 0.7040 2.6696 30.1628 404 46 
7 -0.7593 0.2580 0.8193 6.2542 29.1275 193 50 
8 -0.5144 0.0938 0.5932 0.0033 29.9832 413 59 
9 -0.6571 0.1091 0.7072 2.9633 31.7237 400 54 

10 -0.7768 0.0344 0.8596 3.4763 29.5741 328 58 

 

 

Figure 6.80 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ2 Advanced, p-4 orbit, SOMA ATAA 
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Figure 6.81 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) LQ, CF Targ2 Advanced, p-4 orbit, DERand1Bin 

 

6.9.2 Two-Dimensional Example 

 

1p 

From Table 6.83 and Table 6.84, and the simulation results depicted in 
Figure 6.82 and Figure 6.83 it follows that this CF gives similar performance 
from the point of view of quickness of stabilization in comparison with  
CF Targ1 and CF Targ2. As described in the case of LQ, this CF secures the 
approach to the existing best results given by three targeting CFs (CF NA,  
CF Targ1 and CF Targ2), and secures the successful stabilization on p-1 orbit 
for simulation with uniformly distributed initial conditions as well, whereas the 
above mentioned three fast targeting CFs did not give satisfactory results in this 
task. For fast and robust stabilization, on average, about 40 iterations are 
required. The best individual solutions were given by SOMA ATAA and 
DELocalToBest. 

 

Table 6.83 Best individual solutions, HENON, p-1 orbit, CF Targ2 Advanced, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.7513 0.4154 0.1280 3.93.10-14 4.29.10-14 33 40 
2 -0.8880 0.4551 0.2454 4.12.10-14 4.45.10-14 45 42 
3 -0.7548 0.4543 0.1316 4.10-14 4.38.10-14 34 40 
4 -0.8575 0.4688 0.2148 3.86.10-14 4.3.10-14 41 41 
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Table 6.84 Best individual solutions, HENON, p-1 orbit, CF Targ2 Advanced, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.8456 0.4526 0.2017 3.92.10-14 4.23.10-14 47 41 
6 -0.8591 0.4419 0.2167 3.94.10-14 4.3.10-14 41 40 
7 -0.7545 0.4982 0.1317 3.9.10-14 4.23.10-14 34 39 
8 -0.8500 0.4076 0.2022 3.9.10-14 4.18.10-14 41 39 
9 -0.7152 0.4549 0.1038 4.07.10-14 4.38.10-14 36 40 

10 -0.8663 0.4884 0.2143 3.91.10-14 4.29.10-14 42 40 

 

 

Figure 6.82 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ2 Advanced, p-1 orbit, SOMA ATAA 

 

Figure 6.83 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ2 Advanced, p-1 orbit, DELocalToBest 
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2p 

The results given by optimization in this case shows satisfactory results. The 
two main problems with period doubling (i.e. low-quality stabilization) and 
very poor performance of EAs in finding the stabilizing securing solutions were 
noticeably suppressed. See the optimization results given in Table 6.85 and 
Table 6.86, and the graphical output depicted in Figure 6.84 and Figure 6.85 as 
well. For successful stabilization of p-2 orbit in this case, on average, about 133 
(SOMA) or 130 (DE) iterations are required. 

 

Table 6.85 Best individual solutions, HENON, p-2 orbit, CF Targ2 Advanced, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 0.4097 0.1185 0.2830 3.97.10-6 27.7130 125 71 
2 0.4834 0.1695 0.4733 1.97.10-8 20.0447 150 94 
3 0.4208 0.1767 0.3451 5.81.10-9 18.9881 145 87 
4 0.4960 0.1689 0.4546 3.94.10-8 30.5318 150 61 

Table 6.86 Best individual solutions, HENON, p-2 orbit, CF Targ2 Advanced, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 0.4360 0.1768 0.3117 5.87.10-7 20.6972 147 84 
6 0.3882 0.1380 0.2324 2.5.10-5 21.3478 150 76 
7 0.4013 0.1151 0.2627 2.9.10-5 17.3035 151 87 
8 0.4244 0.1773 0.3565 2.45.10-8 14.4064 151 103 
9 0.4177 0.1774 0.2727 4.35.10-5 18.6511 147 92 

10 0.4264 0.1769 0.3536 3.93.10-9 19.7192 151 83 

 

 
Figure 6.84 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ2 Advanced, p-2 orbit, SOMA ATA 
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Figure 6.85 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ2 Advanced, p-2 orbit, DERand1JIter 

4p 

For the results in the last optimization please refer to Table 6.87 - Table 6.88, 
and Figure 6.86 - Figure 6.87. The presented results show positive features as in 
case of p-2 orbit. For successful stabilization of p-4 orbit, on average, around 
143 (SOMA) or 147 (DE) iterations are required. 

 

Table 6.87 Best individual solutions, HENON, p-4 orbit, CF Targ2 Advanced, SOMA 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
1 -0.4154 0.2808 0.4969 2.85.10-6 0.0060 149 145 
2 -0.4160 0.2289 0.4810 2.23.10-5 0.3374 149 139 
3 -0.4167 0.2272 0.4844 4.1.10-6 0.1369 149 145 
4 -0.4144 0.2906 0.4998 5.15.10-6 0.0976 149 143 

 

Table 6.88 Best individual solutions, HENON, p-4 orbit, CF Targ2 Advanced, DE 

EA K Fmax R CFVal AvgCFVal IStab AvgIStab 
5 -0.4022 0.2150 0.4875 2.07.10-6 0.0035 149 147 
6 -0.4114 0.3764 0.4986 3.01.10-6 0.0090 149 144 
7 -0.4122 0.2137 0.4748 2.5.10-6 0.0094 137 146 
8 -0.4128 0.2170 0.4834 2.45.10-6 0.0022 149 147 
9 -0.4201 0.2147 0.4933 1.52.10-6 0.0050 149 147 

10 -0.3934 0.3491 0.4763 8.25.10-7 0.0009 149 148 
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Figure 6.86 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ2 Advanced, p-4 orbit, SOMA ATO 

 

Figure 6.87 Best individual solution (left); Simulation with distributed initial conditions  
0 < xinitial < 1, 100 samples (right) HENON, CF Targ2 Advanced, p-4 orbit, DERand1JIter 

 

6.9.3 Conclusion of Results – Case Study 7 

The presented results in this case study lend weight to the argument that this 
CF design produces significant improvement in the task of solving the problems 
which occurred in previous case studies dealing with targeting CF Targ1 
advanced. 

The momentous problem with poor performance of both EAs, in case of 
higher periodic orbits and proportion of IStab value to Average IStab value, 
was mostly suppressed (more successfully for Henon map, the LQ seems to be 
harder task, although it is “only” one dimensional system). 

The next problem which arose as a consequence of this CF Targ1 design and 
sensitivity of chaotic system to proper settings is the period doubling or in other 
words the oscillating around desired higher periodic orbit. This problem was 
mostly suppressed as well. This improvement is a consequence of slight change 
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in CF design. Only the different numbers of iteration required for stabilization 
in several repeated simulations of different initial conditions during one CF 
evaluation process are amplified by multiplication of NI, whereas in previous 
case study different length of stabilization and initial chaotic behavior increases 
the basic CF value (difference between target state and actual state) and 
thereafter this increased basic CF value is markedly amplified by multiplication 
of NI. Thus this CF is more focused on quality and fast stabilization and is not 
influenced by several repeated simulations for wide range of initial conditions 
and comprise the most universal CF design, which should secure finding of 
“universal solution” in case of chaos control. 

It should also be mentioned, that in the case of the problematic LQ p-4 orbit, 
the simulation interval had to be increased to 500 iterations as well. In spite of 
this fact, it is not possible to compare the performance of this CF with previous 
results (CF Targ1, CF Targ2 and CF Basic), but the most important fact is that 
this UPO was finally stabilized at all. 

Finally, it is possible to say, that CF Targ2 advanced gives better and more 
reasonable results than CF Targ1 advanced and these results proves the return 
to the best existing given by CF Targ2. The results obtained in this case can be 
summarized in following main points: 

 

• When comparing with previous case study 6, the average IStab 
values (both corrected and not-corrected) are higher but on the other 
hand here occurs the considerable improvement in performance of 
EA from the point of view of percentage successfulness of giving the 
solutions leading to stabilization for both systems and all desired 
UPOs 

• Marked improvement in comparison with previous CF Basic, CF NA, 
CF Targ1 and 2 from the point of view corrected average IStab 
value for LQ p-2 orbit. 

• Problem with fast targeting not only for initial conditions used in 
optimization process but for the uniformly distributed initial 
conditions has been solved also here for both systems and for all 
desired UPOs. 
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• When comparing EAs, DE again gives slightly more “stabilization 
securing” solutions. 

• The two main problems with affected final CF value by different 
numbers of iteration required for stabilization in several runs during 
one CF evaluation and the tiny period doubling in case of p-2 and p-4 
orbit was mostly suppressed. 

• This CF design in general gives the best results of all when 
considering all described and solved problems and compare the 
results with previous CF designs. 

For the comparison of average number of iterations required for successful 
stabilization see final conclusion of all case studies (Table 6.89 and Table 6.90). 
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6.10 Conclusion of All Results 
This dissertation covers seven case studies with different used CF as 

presented. An apt statistical comparison of all case studies is depicted in the 
following tables and figures. All previous partial conclusions of all case studies 
gives the following piece of knowledge. (For detailed description of each case 
study please see the corresponding partial conclusion.) 

• The first proposed CF Basic gives satisfactory results and can be used 
wherever the good quality of stabilization is expected and the speed of 
stabilization and “universality of this solution” for wider range of initial 
conditions are not decisive. This CF does not require any special 
experiences and knowledge about the system. 

• The second CF simple represents the simplest example of targeting CF 
suitable only for stabilization of fixed point. In comparison with CF Basic it 
gives similar results in the case of LQ and slightly better results in the case 
of Henon map. 

• The next proposal of CF NA represents the progressive targeting CF 
suitable for p-1 and p-2 orbit, which gives very good results in the task of 
shortening of the initial chaotic stage. The results for p-1 orbit are 
significantly better than in the previous two CFs, on the other hand the 
slightly better results for p-2 orbit were achieved at the cost of arising of 
problem with worse performance of EAs and obtaining of solutions with 
only temporary stabilization or none at all. Moreover this CF requires some 
knowledge about results achieved in the case of CF Basic due to proper 
setting of SC value. 

• The fourth CF Targ1 brings the advantage of automatically computed SC 
value, thus it is suitable for any desired UPO. The obtained results were 
similar as in case of CF NA. 

• In the next proposal of CF Targ2 there were only slight changes in CF 
design, but from the presented results it can be seen, how can such a small 
change influence the performance of a controlled system, especially when it 
is an extremely sensitive chaotic system. Here, another improvement from 
the point of view of quickness of stabilization was achieved and 
furthermore the performance of EAs was increased, thus the proportion of 
non-stabilizing and stabilizing securing solutions. This seems to be the best 
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choice, when very good solution from the close neighborhood of initial 
conditions is expected. 

• Penultimate CF Targ1 advanced is the example of an upgraded CF Targ1 
design for the purpose of improving the behavior of controlled chaotic 
system for wide range of initial conditions. The results were for the first 
view satisfactory, even the stabilization of very problematic p-4 orbit for 
Logistic equation was achieved, but two very momentous problems arose – 
period doubling and very poor performance of EAs. These problems 
uncovered hiden non-optimal structure of CF Targ1. 

• Last proposal of CF Targ2 advanced gives excellent results for simulations 
with wide range of initial conditions and seem to be the choice for the task 
of finding of “universal and robust solution”. The problems with poor EA 
performance and period doubling were mostly suppressed here. The only 
disadvantage of this proposal is relatively big computational-time demands. 

For the comparison of average number of iterations required for successful 
stabilization, see Table 6.89 and Table 6.90. The value in braces represents 
corrected one, which shows the average IStab value only for solutions, which 
leads to successful stabilization.  

For the comparison of SOMA and DE from the point of view of CF Value of 
best individual solutions see Table 6.91 and Table 6.92.  

Lastly, the comparison of performance of both EAs in the case of higher 
periodic orbits and proportion of IStab value to Average IStab value, thus the 
proportion of solutions with either perfect stabilization or temporary or possibly 
none at all is depicted in Table 6.93 and Table 6.94.  

From these three pair of tables it  shows that it is complex to answer as to 
which algorithm is better or worse. In case of LQ, a SOMA seems to be the 
better choice, and in the case of Henon, DE seems to be the “winner” when the 
final CF value of best individual solution is taken into account. But from the 
point of view of the behavior of each EA during optimizations, it is a difficult 
question. The SOMA rapidly heads towards global optimal solution, whereas 
DE slowly searches in the erratic CF surface. And this is the reason for the 
phenomenon, where DE gives slightly more “stabilization securing” solutions, 
whereas SOMA got stuck in one of huge amount of local minimums. 
Eventually both EAs gives satisfactory results. 
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Table 6.89 Comparison of Average IStab values – LQ – Case studies 1-7 

UPO p-1 p-2 p-4 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 97 97 123 123 197 218 

CF Simple 98 99 - - - - 

CF NA 33 31 73 (109) 102 (116) - - 

CF Targ1 33 31 78 (112) 104 (115) 77 (195) 121 (215) 

CF Targ2 31 30 95 (112) 113 (113) 151 (184) 182 (196) 

CF Targ1 Adv. 37 34 12 (60) 16 (55) 13 (418) 13 (375) 

CF Targ2 Adv. 34 33 36 (66) 38 (63) 44 (194) 58 (199) 

Table 6.90 Comparison of Average IStab values – HENON – Case studies 1-7 

UPO p-1 p-2 p-4 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 77 75 124 125 122 122 

CF Simple 65 70 - - - - 

CF NA 49 47 84 (114) 110 (118) - - 

CF Targ1 49 47 72 (113) 109 (118) 110 (121) 121 (123) 

CF Targ2 39 38 91 (108) 113 (117) 115 (118) 123 (123) 

CF Targ1 Adv. 56 59 8 (51) 9 (57) 28 (84) 30 (82) 

CF Targ2 Adv. 41 40 78 (133) 88 (130) 143 (143) 146 (147) 
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Table 6.91 Comparison of CF values – LQ – Case studies 1-7 

UPO p-1 p-2 p-4 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 0 0 5.33.10-15 7.11.10-15 3.04.10-05 3.07.10-05 

CF Simple 0.3745 0.3738 - - - - 

CF NA 2.80.10-15 2.70.10-15 1.14.10-6 1.20.10-6 - - 

CF Targ1 2.70.10-15 2.80.10-15 5.37.10-13 8.85.10-13 0.0061 0.0059 

CF Targ2 2.80.10-15 2.70.10-15 1.60.10-14 1.77.10-14 0.0002 0.0002 

CF Targ1 Adv. 2.57.10-14 2.56.10-14 15.0221 19.7431 0.1229 0.6302 

CF Targ2 Adv. 2.54.10-14 2.56.10-14 0.6392 0.2353 2.1906 0.0031 

Table 6.92 Comparison of CF values – HENON – Case studies 1-7 

UPO p-1 p-2 p-4 

EA Version SOMA DE SOMA DE SOMA DE 

CF Basic 2.22.10-16 0 1.60.10-14 1.95.10-14 9.43.10-9 9.16.10-9 

CF Simple 0.2303 0.2304 - - - - 

CF NA 4.00.10-15 3.90.10-15 1.31.10-6 1.35.10-6 - - 

CF Targ1 4.00.10-15 3.90.10-15 3.46.10-5 4.53.10-8 7.46.10-7 5.89.10-7 

CF Targ2 3.90.10-15 3.90.10-15 2.23.10-9 2.12.10-14 1.88.10-8 1.78.10-8 

CF Targ1 Adv. 5.01.10-14 4.73.10-14 216.7945 175.1048 211.5812 192.8344 

CF Targ2 Adv. 3.86.10-14 3.90.10-14 5.81.10-9 3.93.10-9 2.85.10-6 8.25.10-7 
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Table 6.93 Comparison of EA performance - LQ 

UPO p-2 p-4 

EA Version SOMA DE SOMA DE 

CF NA 63% 85% - - 

CF Targ1 65% 89% 38% 55% 

CF Targ2 81% 92% 79% 92% 

CF Targ1 Adv. 6% 10% 2% 2% 

CF Targ2 Adv. 32% 34% 18% 26% 

 

Table 6.94 Comparison of EA performance - HENON 

UPO p-2 p-4 

EA Version SOMA DE SOMA DE 

CF NA 70% 92% - - 

CF Targ1 59% 91% 89% 98% 

CF Targ2 80% 95% 97% 99% 

CF Targ1 Adv. 1% 3% 23% 23% 

CF Targ2 Adv. 53% 63% 100% 100% 

 

For the comparison of performance of best solution in the task of simulation 
for uniformly distributed initial conditions see Figure 6.88 - Figure 6.93. Here it 
can be clearly seen all described differences in performance of each CF design 
for both chaotic systems and all desired UPOs. 



-136- 

 
Figure 6.88 Comparison of results for LQ – 1p, simulations with distributed initial conditions  

0 < xinitial < 1, 100 samples; 1-SOMA ATA, 2-DELocalToBest, 3-DEBest1JIter, 
4-DERand1Bin, 5-DERand1DIter, 6-DELocalToBest, 7-SOMA ATO 
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Figure 6.89 Comparison of results for LQ – 2p, simulations with distributed initial conditions  
0 < xinitial < 1, 100 samples; 1-SOMA ATR, 3- DERand1Bin, 4-SOMA ATAA, 

5-DERand2Bin, 6-SOMA ATA, 7- DELocalToBest 
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Figure 6.90 Comparison of results for LQ – 4p, simulations  with distributed initial conditions  
0 < xinitial < 1, 100 samples; 1-SOMA ATA, 4-DEBest2Bin, 5- DELocalToBest, 

6- DEBest1JIter, 7- DELocalToBest 
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Figure 6.91 Comparison of results for HENON – 1p, simulations with distributed initial 
conditions 0 < xinitial < 1, 100 samples; 1-DERand2Bin, 2-DERand1Bin, 3-DEBest2Bin, 

4-DELocalToBest, 5-DELocalToBest, 6-DERand1DIter, 7-SOMA ATAA 
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Figure 6.92 Comparison of results for HENON – 2p, simulations with distributed initial 
conditions 0 < xinitial < 1, 100 samples; 1-DEBest2Bin, 3-SOMA ATO, 4-SOMA ATO, 

5-SOMA ATR, 6-DERand1Bin, 7-DERand1DIter 
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Figure 6.93 Comparison of results for HENON – 4p, simulations with distributed initial 
conditions 0 < xinitial < 1, 100 samples; 1-SOMA ATAA, 4-DEBest1JIter, 5-DELocalToBest, 

6-DELocalToBest, 7-SOMA ATO 
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6.11 Suggestion of technique for optimization of time-
continuous systems 

This last and the smallest chapter deals with the proposal of method and Cost 
Functions in the task of optimization of control of time-continuous systems (i.e. 
Lorenz, Rössler). 

In this case, it is very hard task, because the EAs have to estimate not only 
three adjustable parameters K, Fmax, R, but the length of time delay (τ in 
equations 5, 6) and as a consequence of this length of step during numerical 
solving of set of differential equations and of course the simulation interval as 
well. 

Of course, there is also problem with Cost Function design because it is not 
possible to use the basic idea of minimizing the difference between target state 
and actual output from system, due to enormous computational demands for 
analyzing of system and exact numerical determination of UPO. The cost 
function have to be able to recognize the behavior of system and returns the 
optimal solutions not for exact target state but for selected behavior of system. 
For example in the case of discrete-time system and p-2 orbit, the difference 
between n and n+2 iteration has to be minimal. 

Some research in this field has been already done, but the simulations are 
very time-demanding, thus it is still not possible to obtain sufficient amount of 
results. Nevertheless, the future research will be mainly focused to this field. 
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7 CONCLUSIONS AND DISCUSSIONS 
The optimization of chaos control described here is relatively simple and 

easy to implement. Based on obtained results, it may be claimed that all 
simulations give satisfactory results and thus EAs are capable of solving this 
class of difficult problems and the quality of results does not depend only on the 
problem being solved but also on the proper definition of the CF.  

From the comparison with classical control technique – OGY follows that 
TDAS or ETDAS based control method can be simply considered as targeting 
and stabilizing algorithm and their performance is much better than OGY. 

As can be seen from the optimization results presented here, they are 
extremely sensitive to the construction of used CF, for example the problem 
with fast stabilization not only for initial conditions used in optimization 
process, but for the whole range of the initial conditions or other continuously 
described problems in all case studies. From the presented results follows, that 
any small change in the design of CF can cause radical improvement of system 
behavior (as in case of CF Targ2), but of course on the other hand can cause 
worsening of observed parameters and behavior of chaotic as well. This 
negative change can be seen from the comparison between CF Targ1 advanced 
and CF Targ2 advanced. 

This work consists of seven case studies. Each one deals with different 
proposal of cost function used in optimizations. The results obtained in each 
case study are discussed and compared with previous cases continuously and at 
the end of each case study as well. 

From all partial conclusions follows, that it is hard task to propose a CF, 
which gives excellent results, especially “universal results” suitable for 
simulation with wide range of initial conditions. As repeatedly mentioned the 
chaotic systems are extremely sensitive to proper settings of control algorithm 
and of course they are very sensitive to even very tiny change in any parameter. 
This extreme sensitivity is transferred into complexity of CF surface thus it is 
also hard task for EAs to find good solution. It is also difficult to determine the 
conditions for optimizations and subsequent simulations. For example the 
specification of correct length of optimization interval τi is very difficult and it 
can be stated that it is alike to balancing at the edge of knife when considering 
this fact, that the difference in final CF value of size 1.10-4 and subsequent very 
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tiny change in combination of estimated parameters can cause improvement or 
worsening of system behavior. And this small difference can be caused by 
change in CF design or just only by adding another 50 iterations (if the system 
is not absolutely stabilized, the difference between ideal target state and actual 
output of system can be relatively appreciable). 

As a consequence of these facts it is possible to say that all presented CFs 
gives good results and each one is more or less suitable depending on concrete 
demands for quickness or quality of stabilization, computational-time demands, 
order of UPO, whether it should be the solution only for limited circle of initial 
conditions or for wider range etc. 

Lastly, as a conclusion it seems that CF Targ2 (case study 5) is the best 
choice for optimizations and simulations with limited circle of initial conditions, 
while its upgraded version CF Targ2 advanced (case study 7) gives excellent 
results for wide range of initial solutions, thus gives the “universal” solutions, 
which contradict with words chaos or chaotic system. 

Of course, there can be the question, why all results are depicted and 
described in this work, when to show these best two case studies could be 
enough, but as mentioned above, each case study brings results suitable for 
concrete demands and the most important fact is that from all case studies can 
be seen progressive development of CF design and or parameters of 
optimizations and mainly the demandingness of this interesting task, which the 
optimization of chaos control is.  

There is no problem for the future research in defining much more complex 
CF comprising as subcriteria control of stability, costs, time-optimality, 
controllability, or any of their arbitrary combinations. Furthermore parameter 
settings for EA were based on heuristic approach; therefore there is also 
possibility for the future research. According to all results showed here it is 
planned that the main activities will be focused on testing of evolutionary 
deterministic chaos control in continuous-time and high-order systems and 
finally testing of evolutionary real-time chaos control. 

All simulation and statistical results together with complete overview of CF 
surfaces for both chaotic systems and all desired UPOs are depicted in the 
Appendix. 
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The total amount of optimizations was 36 000. The optimization took from 
one minute in the case of p-1 orbit, CF Basic and TDAS control method to one 
hour in case of CF Targ2, Logistic equation and p-4 orbit. All simulations were 
performed in Wolfram Mathematica environment. 

The total number of cost function evaluations (CFE) for all presented results 
in this dissertation thesis was 200 millions. 

All five main goals of this thesis are stated at the very beginning and the 
fulfillment of them could be discussed in the following points. 

 

1. To prove that EAs are able to find optimal solution in case of chaos 
control. 
The experimental part of this thesis show in several case studies that 
EAs are capable and can be in reality used for optimization of chaos 
control with excellent results. This point can be considered as the main 
goal of this work. 
 

2. To test several examples of chaotic systems (one and higher 
dimensional). 
In this thesis, two discrete-time systems were used for all optimizations 
and subsequent simulations. The one dimensional Logistic equation and 
two-dimensional Henon map. 
 

3. To test a stabilization for various states (stable state – a fixed point) 
or higher dimensional periodic orbits.  
Three desired UPOs were used in presented case studies  - only with two 
exceptions: case study 2 (p-2 and p-4 orbit are missing) and case study 3 
(p-4 orbit was not used). These periodic orbits were selected as the basic 
test benchmark for optimizations from these following reasons. The 
Fixed point (p-1 orbit) is relatively easy to reach and stabilizes the 
system without any major problems. This UPO gives great chance to test 
each designed CF and compare both EAs without possibility of 
influence on final results and statistic by problems with stabilization and 
extremely sensitivity of chaotic systems to tiny changes in CF design, 
initial conditions or control method set up. The next p-2 orbit was 
chosen as the representative example of higher periodic orbit to compare 
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how the EAs in each case study can deal with this task. The last p-4 
orbit was selected due to the fact, that with growing dimension of UPO, 
the sensitivity of system and control algorithm to proper settings 
increases, thus also rapidly increase demands for EA to find satisfactory 
solution. Consequently this point was also fulfilled. 
 

4. To compare the results between different EAs  
This goal has also been reached in this work. All optimizations were 
performed at the same time with identical settings for following two 
evolutionary algorithms: SOMA (Self Organizing Migrating Algorithm) 
and DE (Differential Evolution). 
 

5. To try a various designs of cost functions and compare their 
performance (faster stabilization – targeting to close neighborhood 
of desired UPO, solving the small problems described in the 
individual case study). 
The whole practical part describes this point in detail. It consists of 
seven case studies. Each one is focused on testing of a new cost function 
design for both systems and all desired UPOs. The results, which fulfill 
this goal can be clearly seen in Tables within Chapter 6 and particularly 
in the Appendix, where the comparison of all case studies from the point 
of view simulation results and CF surfaces is depicted. 
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8 APPENDIX 
This chapter is divided into two parts. The first one deals with the complete 

overview of CF surfaces for all case studies and all desired periodic orbits in 
both controlled systems. All figures are depicted in this way so that it is 
possible to compare the difference between all 7 designed Cost Functions for 
selected system and desired UPO. This part consists of six sections 8.1 – 8.6. 
All CF surfaces are created for the best solution given by SOMA or DE in each 
concrete case.  

The second part (sections 8.7 – 8.20) is focused on simulation of the best 
individual solutions and detailed statistics of optimization results for all case 
studies as in previous part. All figures are depicted in following way.  

Firstly, the best individual solutions given by SOMA are depicted followed 
by simulations of these best solutions for distributed initial conditions from the 
range 0 – 1. Then the simulations of six best solutions given by DE for the 
initial conditions used in optimizations and for the distributed initial conditions 
ensues as in case of SOMA. All these four comparisons are made for three 
desired UPOs. 

After that the statistical comparison of SOMA and DE follows. This 
comprises histograms of CF Value and comparison from the point of view of 
estimated parameters K, Fmax , R (in case of ETDAS method)  This is depicted 
in diagrams, which show the variance from min to max of observed parameter 
and the small rectangular mark represents average value.  

 



-151- 

8.1 Comparison of CFs, LQ, p-1 orbit 
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8.2 Comparison of CFs, LQ, p-2 orbit 
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8.3 Comparison of CFs, LQ, p-4 orbit 
 

 
 

 
 

 



-157- 

 
 

 
 



-158- 

8.4 Comparison of CFs, HENON, p-1 orbit 
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8.5 Comparison of CFs, HENON, p-2 orbit 
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8.6 Comparison of CFs, HENON, p-4 orbit 
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8.7 Summary of results, Case study 1, CF Basic, LQ 
 

 
 

 
 



-166- 

 
 



-167- 

 
 



-168- 

 
 

 
 



-169- 

 
 



-170- 

 
 



-171- 

 
 

 
 



-172- 

 
 



-173- 

 
 



-174- 

LQ SOMA & DE 1p CF Basic 
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LQ SOMA & DE 2p CF Basic 
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LQ SOMA & DE 4p CF Basic 
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8.8 Summary of results, Case study 1, CF Basic, HENON 
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HENON SOMA & DE 1p CF Basic 
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HENON SOMA & DE 2p CF Basic 
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HENON SOMA & DE 4p CF Basic 
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8.9 Summary of results, Case study 2, CF Simple, LQ 
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LQ SOMA & DE 1p CF Simple 
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8.10 Summary of results, Case study 2, CF Simple, 
HENON 
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HENON SOMA & DE 1p CF Simple 
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8.11 Summary of results, Case study 3, CF NA, LQ 
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LQ SOMA & DE 1p CF NA 
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LQ SOMA & DE 2p CF NA 
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8.12 Summary of results, Case study 3, CF NA, HENON 
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HENON SOMA & DE 1p CF NA 

 
 

 

 



-212- 

HENON SOMA & DE 2p CF NA 
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8.13 Summary of results, Case study 4, CF Targ1, LQ 
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LQ SOMA & DE 1p CF Targ1 
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LQ SOMA & DE 2p CF Targ1 

 
 

 

 



-224- 

LQ SOMA & DE 4p CF Targ1 
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8.14 Summary of results, Case study 4, CF Targ1, 
HENON 
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HENON SOMA & DE 1p CF Targ1 
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HENON SOMA & DE 2p CF Targ1 

 
 

 

 



-236- 

HENON SOMA & DE 4p CF Targ1 
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