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ABSTRACT

This Doctoral Thesis investigates the significant role of data handling in the
practical application of deep learning techniques for object detection in high-
resolution images. The study examines the impact of attention mechanisms
and introduces novel data processing methodologies, namely Artificial Size
Slicing Aided Fine Tuning (ASSAFT) and Artificial Size Slicing Aided Hyper
Inference (ASSAHI). Despite the potential of attention mechanisms observed in
medical imaging, the practical application of similar principles in the custom-
made Tomato360 dataset does not prove to be beneficial. On the other hand,
a substantial improvement in object detection performance in the Tomato360
dataset was achieved through the newly proposed ASSAFT and ASSAHI tech-
niques. The research underlines the challenges of deploying deep learning tech-
niques in real-world scenarios; concretely, the final proposed solution is utilized
and evaluated for estimating crop yields in tomato greenhouses.

ABSTRAKT

Tato disertační práce zkoumá významnou roli zpracování dat při praktickém
použití technik hlubokého učení pro detekci objektů v obrazech s vysokým
rozlišením. Práce zkoumá dopad mechanismů pozornosti a představuje nové
metody zpracování dat, konkrétně Artificial Size Slicing Aided Fine Tuning
(ASSAFT) a Artificial Size Slicing Aided Hyper Inference (ASSAHI). Přes
úspěšné použití mechanismů pozornosti při zpracování medicínských dat, prak-
tické uplatnění podobných principů v nově vytvořeném datasetu Tomato360
se neukázalo prospěšné. Na druhou stranu, významné zlepšení kvality detekce
objektů v datasetu Tomato360 bylo dosaženo prostřednictvím nově navržených
technik ASSAFT a ASSAHI. Práce dokumentuje výzvy spojené s nasazením
technik hlubokého učení v reálných aplikacích; konkrétně je finální navržené
řešení využito pro odhad sklizně rajčat ve skleníku.
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1 INTRODUCTION

This dissertation explores the field of computer vision, focusing on the chal-
lenge of small object detection in high-resolution images, specifically in the
context of agriculture. Given the vast amount of image/video data gener-
ated daily, manual analysis becomes impracticable, reinforcing the need for
automatic processing systems. Computer vision, through artificial intelligence
algorithms, mimics human visual capabilities to analyze and understand this
data.

Despite many advancements achieved in the computer vision field, small ob-
ject detection remains a significant challenge due to its low contrast, common
occlusion, and complex arrangements. This thesis aims to address this issue by
developing novel approaches that improve precision and efficiency by including
attention mechanisms into deep convolutional neural networks and devising a
unique processing pipeline for high-resolution images and small object detec-
tion. Aside from that, the innovations were tested on a newly created custom
Tomato360 dataset from an agriculture context.

The text of this doctoral thesis summary is divided into key sections, begin-
ning with an exploration of the current "State of the Art" in computer vision
and its application to agriculture. It then outlines the specific "Aims of the
Dissertation," followed by the "Methodology," detailing innovative techniques
developed. The "Results" section presents the findings, including the attention
mechanism analysis and estimation of tomato crop yields. The text concludes
with discussions on the fulfillment of the research aims, its impact on science
and practice, and the overall conclusions drawn from the study.

2 STATE OF THE ART

This section provides an introduction to the computer vision problems faced in
this work. Some of the most relevant research papers are cited as an illustra-
tion of the state-of-the-art, but for a more detailed description of the current
research state, please refer to the Literature Review in the Doctoral Thesis.
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2.1 Basic Computer Vision Tasks

Computer vision aims to mimic human image interpretation through increas-
ingly complex tasks: classification, object detection, semantic segmentation,
instance segmentation, and panoptic segmentation, as illustrated in Fig. 2.1
with an image of dogs in a park.

Classification is the simplest task. An image of dogs in a park from our ex-
ample would be labeled entirely as ’dogs’ or ’park’. In 2012, the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) served as a catalyst for
progress, and an introduction of deep convolutional neural networks (CNN)
[11] has contributed to significant progress in the computer vision area. Cur-
rent image classification models achieve even higher consistency than various
human operators [1].

In object detection, objects within an image are identified, located, and la-
beled with bounding boxes. In the dogs in a park image, each dog would be
located and encased in a rectangle. This task saw a revolution in accuracy
with the introduction of the R-CNN framework [9], combining region proposal
algorithms with CNNs.

Semantic segmentation utilizes a different approach for understanding the im-
age by classifying each pixel. In our example, each pixel could be classified as
’dogs’, ’grass’, or ’tree’. This approach was revolutionized by the introduction
of fully convolutional networks (FCNs) [15].

Instance segmentation merges object detection and semantic segmentation,
distinguishing different instances of the same class. In our example, it could
differentiate and segment each pixel of each individual ’dog’.

Lastly, panoptic segmentation [13] combines semantic and instance segmenta-
tion, providing a holistic understanding of the image information. All pixels
are labeled according to their semantic class, and individual instances are iden-
tified, resulting in a detailed image representation.
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Original Recognition/Classification

Object Detection Semantic Segmentation

Instance Segmentation Panoptic Segmentation

Fig. 2.1 Illustration of the fundamental computer vision tasks from a computer
science point of view.
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2.2 Applying Computer Vision to Agriculture

Precision agriculture optimizes crop management by accurately monitoring
plant health to guide fertilization and pest control strategies. Essential to this
is gathering detailed information about plants or field sections regularly [8].
Despite the wealth of data gathered through various sensors monitoring the
plants, augmenting this information with new sources can always improve the
accuracy of decision-making processes.

This thesis introduces a novel deep learning-based methodology for detecting
and counting tomato fruits using computer vision. This approach aids in
precise harvest prediction. Accurate harvest prediction is critical for tomato
cultivation as deviations between predicted and actual harvest can lead to
significant commercial losses and logistical problems. The goal of this work is
to manage large-scale fruit counting in commercial tomato greenhouses.

Fruit detection has seen extensive research, with significant advancements
highlighted by [24, 10]. While traditional image processing techniques have
limitations, the rise of AI has allowed machine learning to excel in agricultural
computer vision tasks. Various methods have been explored for fruit detec-
tion. YOLOv3-tiny architecture [23] has been adapted for real-time tomato
detection with notable results, achieving 91.92% F1-score. The YOLO-tomato
model [14], which applies circular bounding boxes for detection, improves the
F1-score to an impressive 93.91%.

However, most research focuses on direct tomato detection in isolated images
of tomato trusses and fails to account for the challenges of capturing the whole
tomato plant. The authors of [17] work with images of the whole tomato plant
from a greenhouse, similar to this work. Although the authors provide the
yield mapping of the whole image row by stitching the images together, the
detection results were evaluated only on single images achieving an F1-score
of 83.67% but failing to provide the final number of fruits in the tomato row.

Large-scale fruit counting has also been attempted in [19], but the uniform
background and non-clustered nature of pears simplify the process compared to
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the tomato greenhouse environment. A more comparable study used deep CNN
networks for detection, counting, and maturity assessment of cherry tomatoes
in multi-spectral images [4]. Similar to the paper [19], authors of [4] apply the
DeepSORT algorithm to track the tomatoes in a video. The value F1-score
is not stated; the IDF1-score achieved by the best solution is 51.4%. Proving
that the process of tomato counting in a tomato greenhouse environment is
very challenging.

In response, the author of this thesis simplifies the process by using high-
resolution images of entire tomato rows, which are then sliced and analyzed by
an object detector. This approach was presented first in [A1] and effectively
avoids object tracking difficulties and thus improves final counting accuracy.

The state-of-the-art section about Applications of Deep Learning in Agricul-
ture in the dissertation includes a thorough review of the latest applications of
deep learning in agriculture, providing the necessary context for understanding
the innovations introduced.

2.3 Small Object Detection in High-Resolution Images

Small object detection in high-resolution images poses a significant challenge
in computer vision. This issue is relevant in satellite imagery analysis and
surveillance systems but also in medical imaging or agriculture. Fig. 2.2
illustrates examples of small object detection problems, including a greenhouse
tomato row from a dataset created in this thesis.

The scale difference between the entire image and target objects presents diffi-
culties for conventional CNNs due to factors like reduced feature representation
of small objects, overwhelming background features, and increased computa-
tional demands.

To mitigate these issues, one solution could be integrating attention mecha-
nisms into model architecture [18, 26]. Another typical approach, common
especially in satellite data processing, utilizes the cropping of high-resolution
images into sequential subregions or chips for detection [2]. This work aims
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(a) (b)

(c) (d) (e)

(f)

Fig. 2.2 Example images representing the challenging small object detection,
(a) satellite image: DOTA dataset [6], (b) surveillance: Visdrone dataset [25],
(c-e) - medical images: KiTS dataset [16], LiTS dataset [3], pancreas segmen-
tation [22], (f) Tomato row in a greenhouse: dataset created and analyzed in
this thesis.

to improve the accuracy and efficiency of small object detection within high-
resolution images by exploring both those methods. Relevant research is de-
tailed in the sections "Attention Mechanism in CNN" and "Processing High-
Resolution Images" of the dissertation thesis.
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3 AIMS OF DOCTORAL THESIS

The following items are proposed as aims of the dissertation:

1. Appraise the current state of the research area: Specifically, deep
learning methods applied in computer vision with a particular focus on
small object detection and segmentation in high-resolution images.

2. Develop and curate a custom dataset in a tomato greenhouse:
The creation of a custom, real-world dataset aims to demonstrate the
transfer of AI technologies from theory to practical implementation. This
involves acquiring, collecting, and labeling high-resolution images that
capture the challenges specific to this domain.

3. Investigate and compare the effectiveness of attention mecha-
nisms: Explore possibilities of incorporating attention mechanisms into
different convolutional neural network (CNN) architectures. Compare
their performance in terms of accuracy and computational efficiency.

4. Develop an enhanced deep learning pipeline: Design and develop a
novel processing pipeline tailored to handle the challenging task of small
object detection in high-resolution images.

5. Evaluate the proposed pipeline on the custom dataset: Apply
and test the developed processing pipeline on the custom dataset from
the tomato greenhouse. Measure its performance against existing stan-
dard techniques used for small object detection. Assess and compare the
proposed pipeline’s accuracy, robustness, and efficiency.

6. Analyze the impact and practicality of the proposed methods:
Conduct a comprehensive analysis to understand the impact of incorpo-
rating attention mechanisms and the newly developed processing pipeline
on small object detection in high-resolution images. Evaluate their prac-
ticality in real-world scenarios, considering factors such as computational
requirements, scalability, and generalizability.
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4 METHODOLOGY

In order to develop a successful deep convolutional neural network model, an
extensive and complex workflow is necessary. The quality of the established
pipeline frequently has a significant impact on the final model results [12]. The
Methodology part of the dissertation thesis, therefore, summarizes the essen-
tial building blocks of a robust workflow, discussing the actual trends in the
application area of computer vision. On top of that, a novel method for small
object detection in high-resolution images is proposed. The proposed method-
ology combines two novel techniques: Artificial Size Slicing Aided Fine Tuning
(ASSAFT) and Artificial Size Slicing Aided Hyper Inference (ASSAHI). Those
innovative techniques are shortly described in the following subsections.

4.1 Slicing Aided Fine-tuning and Hyper Inference

In various fields, including satellite imagery analysis, surveillance systems,
medical imaging, and agriculture, there can be situations where processed
images may be too large for a CNN model to process in one go. This prob-
lem, relating to small object detection in high-resolution images, is detailed in
section 2.3. A common approach to address this issue is to either downsample
the images or process the image in patches, which are sub-images extracted
from the larger image. These sub-images can overlap, and their size can vary
depending on the model and its application.

While downsampling or using larger patches allows the model to capture more
contextual information, this comes at the cost of reduced detail. On the other
hand, processing smaller patches provides high-resolution details but at the
expense of losing broader contextual information. This necessitates finding a
balance between the two extremes. Patch cropping, for instance, is commonly
employed in medical image segmentation, which usually deals with extensive
and often multimodal data. Models in this area are typically trained on specific
patch sizes that are tailored to the data and the application at hand.
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The term ’Slicing Aided Fine-tuning’ was introduced in paper [2] to describe
a data processing pipeline that augments training images with overlapping
cropped image patches. This process enriches the training data to include
both original resolution images and image patches or crops in preparation for
’Slicing Aided Hyper Inference’, where the input image is predicted whole,
and also the image is cut into several image patches, which are predicted too.
The final prediction then gathers all the predictions together. The problem of
multiple prediction merging is described in the following section 4.1.3.

The best prediction performance might be achieved by applying different crop-
ping sizes, though this method significantly increases computational require-
ments for both training and inference, as it enlarges the training dataset size
and requires the model prediction multiple times: once for the original image
and then for each image patch.

4.1.1 Artificial Size Slicing Aided Fine-tuning

Certain situations necessitate using image patches for both training and pre-
diction as the input image data is too large for one-time model processing, and
simple downsampling can degrade the image to the extent that object detec-
tion becomes impossible. This is the case with the custom-made Tomato360
dataset addressed in this work. In a recent study [A1], the author of this thesis
explores the impact of varying image patch sizes on prediction accuracy.

To generalize the patch-cropping process, a proposal is made to crop artificial-
sized image patches centered around object groups, effectively utilizing the
fact that tomatoes are growing in trusses. This strategy of augmenting the
training data with these patches enhances the model’s ability to discern and
localize overlapping tomatoes.

During the training phase, generating these artificial-sized image patches is
relatively straightforward. Fig. 4.1 provides a schematic of a slightly more
complicated Artificial Size Slicing Aided Hyper Inference process discussed in
the following section 4.1.2, but visualize the idea of mask creation and patches
cropping utilized in ASSAFT, too.
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In the case of training data, where instance segmentation masks are available
(or the area of boxes in scenarios lacking instance segmentation annotation), a
foreground segmentation map was created from all object’s instance masks. A
binary dilation operation was employed to cluster objects into larger groups,
and image patches were cropped in accordance with the position of each con-
nected group. This method not only provides the model with detailed infor-
mation about small objects in the image but also effectively avoids cutting
objects during the patch cropping process.

However, implementing this solution poses a couple of challenges. Firstly, the
dilation operation can be computationally demanding in scenarios involving
numerous small objects in high-resolution images, especially with larger dila-
tion operator sizes. To improve efficiency, the input image is downscaled first,
the dilation operation is applied, and the output is subsequently upscaled back
to the original resolution. This streamlined the process without causing sig-
nificant damage to the final output. Secondly, the risk of cropping too small
image patches around isolated objects in the image is mitigated by imposing a
minimum crop size, ensuring such small objects were cropped with a broader
context around them.

4.1.2 Artificial Size Slicing Aided Hyper Inference

In accordance with ASSAFT proposed in section 4.1.1, a similar extension
utilizing artificial size image patches for Slicing Aided Hyper Inference (SAHI)
is provided and named Artificial Size Slicing Aided Hyper Inference (ASSAHI).

To specify the placement of these artificially-sized patches, a mask that iden-
tifies object group positions within the original image is required. For this
purpose, a semantic segmentation deep convolutional neural network might be
trained. This network doesn’t require ultra-precise segmentation annotations
but should reliably detect clusters of smaller objects utilizing a greater con-
text of the image. Hence, it should be trained on complete input images or
relatively large image patches if slicing is necessary.
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Once the input image mask is generated, slicing follows the same rules estab-
lished in the ASSAFT. The mask undergoes dilation, and image patches are
situated around each detected object/group within the masked image. Those
patches are predicted by the model and combined in the final prediction. The
entire ASSAHI procedure is graphically represented in Fig. 4.1.

ASSAHI presents two key benefits. Firstly, it feeds the model with detailed
information about smaller objects within the image, enabling more precise
detection, which is especially beneficial in scenarios where objects lay close to
each other or even overlap. Concurrently, it effectively prevents objects from
being cropped/segmented into parts during patch slicing. Furthermore, in a
dataset where object groups sparsely populate the input data, ASSAHI can
save a substantial amount of computation resources, which would otherwise be
spent by processing many (empty) small image patches sliced by the standard
SAHI method, all while maintaining necessary detail for precise small object
detection.

On the other hand, ASSAHI may encounter difficulties in datasets where ob-
jects don’t group or, conversely, form excessively large groups. In the for-
mer situation, a singular small object could potentially be overlooked by the
primary segmentation model, thus being excluded from subsequent higher-
resolution processing and missed entirely in the final prediction. In the latter
case of extensive object groups, such a large group may be accommodated into
a single patch whose resolution might exceed the model’s handling capabilities.
Consequently, the patch would be downscaled during the data loading process,
risking the loss of details necessary for distinguishing smaller objects.

A balanced combination of ASSAHI and SAHI techniques appears to be the
best solution. Then ASSAHI assists with detailed small object detection while
SAHI ensures comprehensive coverage of the entire input image with relatively
large patches. Crop sizes in SAHI and ASSAHI parameter setups must always
be adjusted to suit the specific dataset at hand. The exploration of these
techniques applied to the Tomato360 dataset is presented in the results part
of this work, under section 5.3.
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Fig. 4.1 Visualization of ASSAHI - Artificial Size Slicing Aided Hyper Inference
procedure proposed in this thesis.
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4.1.3 Image stitching

While merging patches’ prediction is a relatively straightforward process in
semantic segmentation, it is quite complex for object detection tasks. Objects
on the border may be detected multiple times or even fragmented into two or
more parts if they are positioned on a crop border. There are several potential
strategies for merging or suppressing repeated predictions in object detection.
Generally speaking, the process has two main parameters: the match metrics
and the post-processing algorithm.

Match metrics identify potential detections for merging or suppression. The
threshold value of match metrics is crucial; a higher value allows only highly
similar predictions to be merged. The post-processing algorithm, on the other
hand, dictates the sequence in which potential detections are processed and
how the final detection instance is formulated.

There are two common match metrics. Intersection over union (IOU) is a term
used to describe the extent of overlap of two bounding boxes. The greater the
region of overlap, the greater the IOU. The metric is defined as:

IOU = Area of intersection
Area of union (4.1)

Intersection over a smaller area (IOS) is very similar to the IOU metric; only
the area of the intersection is divided by the area of the smaller of the two
boxes.

The thesis also details three variants of the post-processing algorithms that
were utilized in the experiments: Greedy non-maximum suppression (NMS),
Non-maximum merging (NMM), and Greedy non-maximum merging (GREE-
DYNMM). In a recent study [A1], the author of this thesis explores the in-
fluence of the parameters mentioned above on the final prediction precision in
Tomato360 dataset.
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5 RESULTS

Mainly the results relevant to the created Tomato360 dataset as a main link-
ing component of the thesis are presented in the following text. For the full
overview of all realized case studies, please refer to the full text of the disser-
tation.

5.1 Dataset Tomato360

The creation of the Tomato360 dataset represents a fundamental contribution
of this dissertation. Developed as part of a collaborative project supported
by the Technology Agency of the Czech Republic, the dataset provides high-
resolution images of tomato rows in a greenhouse. It facilitates precise count-
ing of tomato fruits for accurate yield predictions, essential for supply chain
logistics and delivery contracts in commercial agriculture.

The dataset serves two purposes. First, it showcases the translation of AI tech-
nologies from theoretical constructs to practice, shedding light on challenges
and solutions encountered. Second, it offers a benchmark for evaluating the
performance of deep learning models, particularly outside the domain of stan-
dard public datasets, thereby examining their robustness and generalizability.

5.1.1 Data Collection and Annotation

The source videos for the Tomato360 dataset were collected using a 360-degree
camera (Ricoh Theta Z1) in a hydroponic greenhouse Bezdinek over 2020-
2022. The dataset’s name stems from this camera choice, as it provided the
wide field of view necessary to capture the vertical range of tomato plants (up
to 5 meters in height, but with narrow alleys), which traditional techniques
struggled with. Importantly, this approach separates data acquisition from
processing, allowing easier automation of data collection.

18



(a) (b) (c)

(d) (e) (f)

(g)

(h)

Fig. 5.1 Example images documenting difficulties of Tomato360 dataset: (a)
dark, (b) bright, (c) back row tomatoes, (d) fruit overlapping each other, (e)
leaf occluding tomatoes, (f) indeterminacy of ripeness, (g-f) overview of whole
wide images.
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The preprocessing stage involved the conversion of the dual-view video stream
into a unified panorama using equirectangular projection. After decompos-
ing the video into frames, a vertical section from each frame was extracted,
stitched together to produce an image of the entire row, and adjusted to correct
any distortion from the 180-degree view. This method created a comprehen-
sive, high-resolution image where each fruit appeared once, enabling accurate
counting.

The annotation tool Labelme was chosen for data annotation. Upon com-
pletion, the annotations were exported to COCO format. The final dataset
comprised 58 images, each containing tomatoes annotated according to their
ripeness stage. In total, 13815 tomatoes were annotated.

5.1.2 Dataset challenges

The Tomato360 dataset introduces several unique challenges. The first is
the high-resolution images, reaching up to 20,000 pixels in width but compris-
ing small objects to be detected. Moreover, the images contain low-frequency
noise due to frame sampling from the video source. Greenhouse-specific en-
vironmental factors also add complexity, such as variable brightness levels
caused by the high vertical range in the images. This variation can influence
the accuracy of the detection model.

The nature of tomato growth further complicates object detection. Tomatoes
grow in trusses, often overlapping each other. It can be frequently obscured
by leaves, leading to further detection difficulties. Unripe green tomatoes
can blend with leaves, especially in dark or bright image parts. Additionally,
tomatoes from the back row sometimes appear in images but should not be
included in the count. The mistaken inclusion of back-row tomatoes caused
frequent discrepancies among human annotators, too. Lastly, subjective judg-
ments about tomato ripeness add another layer of complexity, as perceptions
about a tomato’s ripeness can vary significantly among individuals and with
the context. Figure 5.1 showcases the difficulties present in the Tomato360
dataset.
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5.2 Attention Mechanism Analysis

This section of the dissertation studies the role of attention mechanisms incor-
porated into deep convolutional neural networks (CNN), particularly focusing
on small object detection. The use of attention mechanisms is showcased in two
different application segments, but in both cases, the problem includes small,
sparsely distributed targets embedded within larger contextual information.

The first part explores the domain of abdominal organs and tumor segmenta-
tion, where the tumors represent small and sparsely scattered objects within
a larger 3D context. Here, the conventional U-net architectures are bolstered
with attention gates to discern the minuscule yet significant tumors situated
in specific organs. This enhancement successfully enriches the precision of seg-
mentation, utilizing the surrounding organ context as vital information. For
further information about his research, refer to the original paper [A2] pub-
lished by the author of this thesis or to the corresponding results section in
the dissertation.

The following results section in the dissertation investigates the inclusion of
spatial attention mechanisms in object detection applied in the context of the
Tomato360 dataset. In this case, the small objects of interest are tomatoes
within a high-resolution image, which, similar to tumors, are relatively small
and variably distributed. Also here, the spatial context, including the plant
structure and neighboring tomatoes, plays a crucial role in the detection pro-
cess, so the attention mechanism presumably might help.

An ablation study has been executed to evaluate the effects of different spa-
tial attention mechanisms [26] on different models’ performance. Surprisingly,
these architectural choices did not significantly improve the final object de-
tection. Therefore, taking into account the added computational complexities
brought by attention module addition, the usage of the attention modules was
evaluated as unprofitable in this use-case. For more detail, please refer to the
adequate section in the results of the full thesis text.
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5.3 Artificial Size Slicing Aided Fine-tuning and Hyper
Inference

This section evaluates the newly proposed methodologies - Artificial Size Slic-
ing Aided Fine-tuning (ASSAFT) and Artificial Size Slicing Hyper Inference
(ASSAHI) - on the Tomato360 dataset. These methods extend on previous
work, Slicing Aided Fine Tuning (SAFT) and Slicing Aided Hyper Inference
(SAHI) introduced originally in [2] and further studied in author’s publication
[A1]. Evaluation takes place on the custom Tomato360 dataset, well-suited due
to its high-resolution images and the distinct growth pattern of the tomatoes.

The methodologies were implemented in Python using PyTorch, and MMDe-
tection [5]. The original images were split into training, validation, and test
parts and processed using either fixed-size patches or artificial-size slicing.

Two object detection models: Faster R-CNN [20] and Tood [7], were compared,
with training utilizing Stochastic Gradient Descent and adjustable learning
rates. A mask identifying object group placements in test images during the
ASSAHI technique were generated using a basic FCN-Unet [21] architecture.
For comprehensive details on the methodologies, data preprocessing, model
architecture, training, and inference, refer to the full dissertation text.

The semantic segmentation model, FCN-Unet, which is critical for ASSAHI,
was able to segment and identify foreground objects from the background
with a mean accuracy (mACC) of 79.69% and a mean Intersection over Union
(mIOU) of 77.28%.

Comparing the results of models trained using SAFT and ASSAFT with test
results produced by SAHI and ASSAHI, it was found that ASSAFT and AS-
SAHI substantially increased all evaluated metrics compared to the SAFT and
SAHI methodologies. However, using ASSAHI alone with a model fine-tuned
by SAFT did not yield better performance; see Tab. 5.1.

On top of that, the ASSAHI methodology is combined either with FCN-Unet
segmentation mask prediction or with masks obtained from ground true an-
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Tab. 5.1 Evaluation of proposed ASSAFT and ASSAHI methodologies on a
Tomato360 dataset from Faster-RCNN DCN and Tood DCN models. Each
row presents results from two different fine-tuning methods, SAFT and AS-
SAFT, combined with different inference techniques, SAHI and ASSAHI. For
ASSAHI, the segmentation input is from either an FCN-Unet or a ground truth
mask (gtmask) is presented.
model & method mAP mAP50 Precision Recall F1-score
faster-rcnn DCN

SAFT SAHI 0.398 0.674 0.67 0.75 0.71
ASSAHI FCN-Unet 0.397 0.669 0.67 0.75 0.71

ASSAFT ASSAHI FCN-Unet 0.431 0.713 0.71 0.80 0.75
ASSAHI gtmask 0.455 0.753 0.78 0.85 0.82

Tood DCN

SAFT SAHI 0.367 0.645 0.65 0.72 0.68
ASSAHI FCN-Unet 0.365 0.640 0.64 0.72 0.68

ASSAFT ASSAHI FCN-Unet 0.432 0.703 0.70 0.77 0.74
ASSAHI gtmask 0.461 0.747 0.75 0.82 0.78

SAFT - Slicing Aided Fine Tuning
ASAFT - Artificial Size Slicing Aided Fine Tuning
SAHI - Slicing Aided Hyper Inference
ASSAHI - Artificial Size Slicing Aided Hyper Inference

notation (gtmask) to showcase the full potential of ASSAHI, i.e., how much
we can improve the results by utilizing a better semantic segmentation model.
We can see that the difference between ASSAHI with FCN-Unet and gtmasks
is noticeable and provide room for improvement.

Despite the improvements in object detection precision, the usage of ASSAFT
and ASSAHI significantly increased the demand for computational resources,
particularly during the training phase. This resulted in approximately five
times more training data samples and an extended training process. However,
the additional computational needs of ASSAHI compared to SAHI during the
inference phase were relatively minimal. Since the inference time and the
object detection accuracy are the most important in practical usage, we can
conclude that the enhancements in object detection precision make the addi-
tional computational requirements worthwhile.
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Tab. 5.2 Comparison of crop estimates made by an agronomist and by the
proposed model.

harvest current day in 7 days
row number 27 29 27 29
actual crop yield [kg] 30.40 38.20 92.20 99.60
agronomist’s estimate [kg] 50.00 50.00 110.00 110.00
agronomist’s error [%] -64.50 -30.89 19.35 10.44
model’s estimate [kg] 29.07 30.45 90.19 98.20
model’s error [%] 4.38 20.29 2.18 1.41

5.4 Practical Applications in Tomato Greenhouse

This section moves beyond theoretical concepts to focus on tangible, real-
world applications within a tomato farming environment. The first application
addresses the detection of whiteflies on yellow sticky tags, which are commonly
employed for pest monitoring in greenhouses. The proposed system utilizes
SAFT and SAHI techniques and replaces repetitive human work. The study
shows that the model’s precision is competitive with human work, achieving
a similar F1-score as human operators versus professional phytopathologists.

The next application focuses on tomato fruit detection in a greenhouse. A fi-
nal proposed solution utilizes the Tood model enhanced with novel processing
methods ASSAFT and ASSAHI, as described in the previous section 5.3. To
evaluate the system’s performance on the entire dataset, the data were divided
into five folds, and the final results were aggregated from all folds test predic-
tions. The resulting scores were solid, with a precision of 0.85, a recall of
0.93, and an F1-score of 0.89.

To practically assess the methodology, two rows of Belioso tomatoes were cap-
tured at Bezdinek Greenhouse, with an agronomist estimating crop yield from
each row this day and the following week. These estimates were compared
with the model’s predictions, which were calculated using an average tomato
weight of 38.5g. The model consistently provided more accurate predictions.
Such precision indicates reliable, practical usability in a tomato greenhouse
scenario, where currently available crop estimates can vary substantially, and
±20% is a tolerable error from a commercial point of view.
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6 FULFILLMENT OF THE DOCTORAL THE-
SIS AIMS

This section summarizes the efforts undertaken to achieve the objectives of
this dissertation, which were initially defined as follows:

1. Appraise the current state of the research area: The area of deep
learning applied in computer vision is a rapidly evolving research field
marked by frequent incremental advancements rather than groundbreak-
ing discoveries. Despite this, diligent efforts were made to stay abreast of
the latest studies published in reputable journals and conferences, with
only the most relevant ones to the dissertation topic being selected. A
thorough overview of these select studies can be found in the Literature
Review of the doctoral thesis.

2. Develop and curate a custom dataset in a Tomato greenhouse:
In partnership with NWT, a tech-oriented company, and Bezdinek, a
tomato farming enterprise, the Tomato360 dataset was created. The
dataset is introduced in the author’s paper [A1]. The process of data
acquisition, image production, and labeling is detailed in the results sec-
tion 5.1 and further in the dissertation. This section also includes basic
statistics and identifies major challenges presented by the dataset.

3. Investigate and compare the effectiveness of attention mech-
anisms: Section 5.2 presents two case studies of attention mechanism
integration into deep CNNs. The first study, published in the impacted
journal [A2], documents a successful implementation of attention gates
in medical image segmentation. In the second case, an ablation study
of spatial attention incorporation into different object detection models
was conducted and tested on the Tomato360 dataset.

4. Develop an enhanced deep learning pipeline: The effectiveness
of deep learning methodologies depends significantly on a robust deep
learning pipeline. All the fundamental components of such a pipeline
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are outlined in the Methodology part of the doctoral thesis. The prac-
tical knowledge needed to establish such a comprehensive methodology
overview was gathered over the whole doctoral studies of the author,
and its correctness is confirmed in a successful computer vision applica-
tion in different application fields published by the author of this thesis:
[A1, A2, A4, A5, A6, A7, A8, A9]. Moreover, the novel techniques, Artifi-
cial Size Slicing Aided Fine Tuning (ASSAFT) and Artificial Size Slicing
Aided Hyper Inference (ASSAHI) are introduced in sections 4.1.1 and
4.1.2, respectively. Those techniques are specifically tailored to handle
high-resolution images with small objects within to be detected.

5. Evaluate the proposed pipeline on the custom dataset: The
newly proposed methods of Artificial Size Slicing Aided Fine Tuning (AS-
SAFT) and Artificial Size Slicing Aided Hyper Inference (ASSAHI) are
successfully applied to a custom-made Tomato360 dataset. The method-
ologies were tested using two different object detection model architec-
tures. The effects of each methodology component were analyzed in the
results, in section 5.3, along with the demands on time and computa-
tional resources.

6. Analyze the impact and practicality of the proposed methods:
This dissertation thoroughly examines the implications and feasibility of
incorporating attention mechanisms and the newly developed process-
ing pipeline for small object detection in high-resolution images. De-
spite promising outcomes from the application of attention mechanisms
in medical image data [A2], a similar mechanism did not yield signifi-
cant improvements for the Tomato360 dataset as discussed in section 5.2.
In contrast, the novel image slicing techniques - ASSAFT and ASSAHI,
showcased substantial improvements in the final tomato detection per-
formance. This reinforces the importance of a methodically constructed
deep learning pipeline as a critical determinant of successful real-world
applications of deep learning models. Moreover, the final proposed solu-
tion proved to be a reliable basis for predicting tomato crop yields in a
real-world setting, as is documented in section 5.4.
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7 IMPACT OF WORK ON SCIENCE AND
PRACTICE

Deep learning techniques, and especially deep convolutional neural networks,
occupy the field of computer vision nowadays, outperforming other techniques
substantially. Despite the success of deep CNN techniques, there are difficul-
ties inherent to their applicability. First, large datasets are needed for the
successful training of deep CNN models, which requires a considerable amount
of resources. Aside from problems due to the cost of acquisition, labeling,
and data anonymization techniques, the methodology of processing and deal-
ing with the data strongly influence the final method’s success rate. This
work seeks to establish an overview of the current standard techniques and
best practices to set up the logical, consistent pipeline applicable to different
computer vision tasks.

The practical knowledge needed to establish such a comprehensive methodol-
ogy overview was gathered over the whole doctoral studies, and its correct-
ness is confirmed in successful computer vision applications in different fields
published by the author of this thesis: [A1, A2, A4, A5, A6, A7, A8, A9].
This thesis, moreover, documents the application of deep convolutional neu-
ral networks in a practical, real-world application from a commercial farming
environment. From the first problem definition to a final solution.

The assignment of tomato fruit counting appears repeatedly throughout this
work and creates the connection between theoretical research and practical
application. In this practical example, this work documents the complex and
non-linear process of creating a real-world dataset, shedding light on the unique
challenges that arise in specific application contexts and proposing solutions
to address them. Those challenges are not included in common large-scale
datasets utilized by the computer vision community and therefore needed a
slightly different approach. By providing a detailed account of how these chal-
lenges were identified and addressed, this dissertation underscores the need
for flexibility and innovation in the application of deep learning techniques
to real-world problems. Furthermore, it highlights the potential value that
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custom datasets can bring in furthering our understanding of how deep learn-
ing techniques behave in varying contexts and how they can be adapted and
optimized for it.

A substantial effort is made to document the decision process of development
and employ extensive analysis to empower the decision with comprehensive
information. While the importance of architecture changes and extensions
proved not to be very significant in the problem of tomato fruit detection, the
significance of a well-structured deep learning pipeline was reinforced through
the execution of the newly proposed methodologies: Artificial Size Slicing
Aided Fine Tuning (ASSAFT) and Artificial Size Slicing Aided Hyper Inference
(ASSAHI). These methods provide an innovative approach to data processing,
specifically aimed at small object detection groups in high-resolution images.
The results from the application of ASSAFT and ASSAHI on the Tomato360
dataset yielded notable enhancements in the success rates of object detection.
These outcomes further underline the crucial role that data management plays
in effectively implementing deep learning techniques into practice.

Finally, this doctoral thesis significantly contributes to both the scientific com-
munity and practical applications by highlighting the importance of a robust
deep learning pipeline, introducing innovative methodologies for enhancing ob-
ject detection in high-resolution images, and demonstrating the process and
value of creating and using custom, real-world datasets. It is a stepping stone
that bridges the gap between theory and practice in the field of deep learning,
shedding light on the path for future research and applications.
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8 CONCLUSION

This dissertation presents a thorough exploration of small object detection
within high-resolution images, focusing on applications across various domains.
An in-depth study on attention mechanisms was conducted, where the suc-
cessful implementation of a U-Net model with attention gates led to improved
detection of abdominal organs and tumors in CT images. This achievement
shed new light on the importance of attention in complex medical imaging.
However, the research also discovered that similar attention mechanisms did
not prove to be beneficial in the specific case of tomato detection, providing
practical insights into the domain-specific nature of these techniques.

In the agricultural context, the work introduced a comprehensive framework for
tomato fruit detection, demonstrating a multi-faceted approach that synergizes
various cutting-edge techniques. Leveraging the Tood object detection model,
novel methods: Artificial Size Slicing Fine Tuning (ASSFT), and Artificial Size
Slicing Hyper Inference (ASSAHI), were developed, resulting in a solid F1-score
of 0.89. These innovative techniques allowed for accurate yield predictions in a
real-world setting, outperforming common agronomist estimates and providing
an economically advantageous solution.

In conclusion, the research detailed in this dissertation contributes substan-
tially to both the field of computer vision and practical applications within
the medical and agricultural sectors. By advancing the understanding of at-
tention mechanisms, innovating in small object detection, and demonstrating
real-world applicability in applications from Tomato greenhouse, this work es-
tablishes a robust and reliable approach to high-resolution image analysis. The
insights and methodologies developed throughout this research provide a ro-
bust foundation for future exploration, setting the stage for further refinement
and expansion into diverse applications and challenges within object detection
and beyond.
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SAHI Slicing Hyper Aided Inference
T Tera, trillions, 1012

YST Yellow Sticky Tag
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