
Security Enhanced Distribution
Generator for a Debezium Server

Generátor distribuce Debezium serveru s rozšı́řenými
možnostmi zabezpečenı́

Bc. Ondřej Babec

Master’s thesis
2024

THESIS AUTHOR STATEMENT

Prohlašuji, že

• beru na vědomí, že odevzdáním diplomové práce souhlasím se zveřejněním své
práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění
dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů,
bez ohledu na výsledek obhajoby;

• beru na vědomí, že diplomové práce bude uložena v elektronické podobě v uni-
verzitním informačním systému dostupná k prezenčnímu nahlédnutí, že jeden
výtisk diplomové práce bude uložen v příruční knihovně Fakulty aplikované infor-
matiky. Univerzity Tomáše Bati ve Zlíně a jeden výtisk bude uložen u vedoucího
práce;

• byl/a jsem seznámen/a s tím, že na moji diplomovou práci se plně vztahuje
zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem
autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších
právních předpisů, zejm. § 35 odst. 3;

• beru na vědomí, že podle § 60 odst. 1 autorského zákona má UTB ve Zlíně
právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4
autorského zákona;

• beru na vědomí, že podle § 60 odst. 2 a 3 autorského zákona mohu užít své
dílo – diplomovou práci nebo poskytnout licenci k jejímu využití jen připouští-li
tak licenční smlouva uzavřená mezi mnou a Univerzitou Tomáše Bati ve Zlíně
s tím, že vyrovnání případného přiměřeného příspěvku na úhradu nákladů, které
byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich
skutečné výše) bude rovněž předmětem této licenční smlouvy;

• beru na vědomí, že pokud bylo k vypracování diplomové práce využito soft-
waru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze
ke studijním a výzkumným účelům (tedy pouze k nekomerčnímu využití), nelze
výsledky diplomové práce využít ke komerčním účelům;

• beru na vědomí, že pokud je výstupem diplomové práce jakýkoliv softwarový
produkt, považují se za součást práce rovněž i zdrojové kódy, popř. soubory,
ze kterých se projekt skládá. Neodevzdání této součásti může být důvodem
k neobhájení práce.

Prohlašuji,

• že jsem na diplomové práci pracoval samostatně a použitou literaturu jsem citoval.
V případě publikace výsledků budu uveden jako spoluautor.

• že odevzdaná verze diplomové práce a verze elektronická nahraná do IS/STAG
jsou totožné.

Ve Zlíně Ondřej Babec, v. r.

ABSTRAKT

Žijeme ve světě, kde jsou všechna data na dosah ruky. Otázkou je, jak tato data
centralizovat a použít je tak, abychom dostali co největší přidanou hodnotu. Tato
práce se pokouší přivést velmi známou technologii ve světě CDC (Debezium) do světa
bezpečnosti. Tato práce obsahuje návrh a implementaci nového systému, který umožní
vytvářet distribuce Debezium Serveru na míru, přesně pro potřeby daného uživatele.
Nakonec práce nabídne několik možností budoucího nasazení takové distribuce pro
využití v bezpečnosti.

Klíčová slova: Debezium Databáze Redis AI ML Angular Java Spring

ABSTRACT

We live in a world where we have all the data at the hand’s reach. The question is how
to centralize the data and use them to generate additional value. This thesis aims to
bring the well-known change in data capture technology (Debezium) into the security
world. This work designs and implements a new system that will allow the building of
custom distribution of the Debezium Server, which will be tailored specifically for the
user. Ultimately, it proposes several use cases for the Debezium Server in the security
realm.

Keywords: Debezium Database Redis AI ML Angular Java Spring

Acknowledgements

I would like to thank my supervisors, Ing. Lukáš Králík, Ph.D. from UTB FAI, and Ing.
Jiří Pechanec from Red Hat Czech s.r.o for guidance and providing valuable feedback.
Also, I would like to thank my colleagues, Ing. Jakub Stejskal, and Bc. Miroslav Jaroš
for their time during the thesis corrections.

The optimist thinks this is the best of all possible worlds. The pessimist
fears it is true.

(J. Robert Oppenheimer)

TABLE OF CONTENTS

INTRODUCTION... 8

I THEORY ... 8

1 LIBRARY ... 11

1.1 Object Oriented Paradigm.. 12

1.2 Java .. 15

1.3 Maven .. 17

2 DEBEZIUM .. 22

2.1 Debezium Server ... 26

3 USER INTERFACE .. 31

3.1 Backend... 31

3.2 Frontend ... 35

4 CLOUD ENVIRONMENT .. 39

4.1 Docker .. 39

4.2 Kubernetes ... 41

II IMPLEMENTATION .. 46

5 DESIGN PROPOSAL ... 51

6 CODE OVERVIEW... 61

7 APPLICATION IN COMMERCIAL SECURITY SYSTEMS 73

CONCLUSION ... 76

REFERENCES .. 78

LIST OF ABBREVIATIONS ... 81

LIST OF FIGURES... 82

LIST OF LISTINGS .. 83

LIST OF APPENDICES ... 84

TBU in Zlín, Faculty of Applied Informatics 8

INTRODUCTION

The assignment of this thesis is to design and implement a distribution builder for the
Debezium Server and describe the possible applications of such distribution in security
systems. Debezium is the leading solution for change data capture (CDC) streaming,
which allows changes to be captured on the database and sent into Kafka. Debezium
Server is an alternative runtime for Debezium, which, among other features, provides
the ability to send events to different systems like Apache Pulsar or Redis.

The main issue of the Debezium Server is that it is distributed as a complete distribu-
tion that includes all source and sink possibilities, which makes the distribution quite
heavy with a relatively big memory footprint. This might be a problem for numerous
applications that require archives to fit specific size restraints. Besides any restraints,
it is simply an unnecessary burden for the runtime to contain everything.

This project aims to solve this problem. It should allow users to build a distribution
that fits all their needs with a minimal memory footprint. Users should be provided
with a Java library that allows them to create the distribution programmatically and
a user interface that serves as a graphical representation of the library.

To provide a solid foundation for the implementation, the thesis begins by examining
the fundamental technologies necessary to build such a complicated system. Specif-
ically, the thesis explains the fundamentals of the Object-Oriented Paradigm, Java,
Maven, User Interface technologies, and Cloud solutions. All of these together should
make a solid foundation for the practical part of the thesis.

Furthermore, the thesis has to consider possible applications of the Debezium Server in
security systems. These days, security experts have tons of data within the reach of a
finger. However, they don’t have the ability to use those data because they are located
all over the Internet within different databases in various formats. The thesis has to
analyze how to leverage the Debezium Server’s abilities to gather data from various
places and provide them with further computing that will add extra value for security
experts.

In conclusion, the thesis will review all the obstacles discovered during the design and
implementation process and provide a brief description of the possible future of this
project.

TBU in Zlín, Faculty of Applied Informatics 9

I. THEORY

TBU in Zlín, Faculty of Applied Informatics 10

The main purpose of this thesis is to create a system for building custom distributions
for Debezium Server. Debezium Server is a relatively new spin on the well-known
Change Data Capture (CDC) technology Debezium. It allows continuous seeking of
changes in the database and sending them to a remote messaging server.

The problem that comes with the Debezium Server is that it is currently distributed as
a single archive that contains all database adapters and sinks (target message storage)
adapters. This makes the distribution memory footprint extremely large, and it forces
users to modify the build system themselves. This is overwhelming because the De-
bezium Server uses Maven as its build system, which uses several descriptor files that
describe the distribution together. The result of this thesis should be a system that
offers users a simplified way to assemble distributions specific to their needs.

Before the thesis can jump to design and implementation, it must go through the
fundamental technologies. This Chapter chapter is divided into separate sections where
each covers a specific technology for the implementation: Library (1), Debezium (2),
User Interface (3), and Cloud environment (4).

TBU in Zlín, Faculty of Applied Informatics 11

1 Library

The library should allow users to create the Debezium Server distribution pragmati-
cally. The distribution is, in this case, a Java archive for the Debezium Server that
includes only a specific subset of the dependencies. To assemble such an archive, the
library has to prepare a particular Maven descriptor (1.3) that contains only the de-
sired dependencies (source, sink connectors, and core library (2.1) and their transitive
dependencies.

Because the whole Debezium ecosystem is being developed strictly in Java, it is the only
language that could be used to develop this library. Even if the situation were different,
Java (1.2) would be one of the top choices for the project because of the paradigm.
Besides the choice of the programming language, it is also important to decide how
best to proceed with the creation process. Object Oriented Paradigm introduces many
generally known creational design patterns :

Factory method introduces four participants – Product, ConcreteProduct, Creator,
ConcreteCreator. The Creator can be implemented either as an interface or a
class. The Creator declares the factory method that returns the Application
interface. Besides the declaration, the Creator can still offer default implemen-
tation of the method. As the name suggests, ConcreteCreator extends/imple-
ments Creator and offers specific factory method implementation that creates
ConcreteProduct [8].

Abstract factory is higher abstraction to previous factory method. Factory, designed
in the 1990s, offers an interface for initializing specific families of objects [8]. A
great example would be having a product like a table or chair. Given that abstract
factory FurnitureFactory contains methods createTable(), createChair(). Based
on that, there could be concrete factories SteelFurnitureFactory, WoodenFurni-
tureFactory. These abstract factories would then override methods and return
concrete furniture object SteelTable, SteelChair, WoodenTable, WoodenChair.

Builder is presumably the most popular among creational patterns. It offers a way to
unify and simplify the creation of very complex objects [8]. Builders usually work
on the principle that each method returns an object of the builder that already
contains a modified complex object stored inside.

Once all things are complete, a method always returns a desired entity. The
main advantage of the builder pattern is the possibility of nesting. If the desired
entity is complicated, it is possible to nest multiple builder layers. If approached

TBU in Zlín, Faculty of Applied Informatics 12

correctly, nested builders can simplify the code. On the other hand, if a pro-
grammer takes the wrong approach and uses a different naming method, code
can very easily become overwhelming.

Prototype design pattern uses copying to create new objects. The original object
serves as the Prototype. This pattern has advantages in certain languages where
creating a new object can be complex and time-consuming. In Java, it is not
used as commonly as in static languages such as C++ [8].

Singleton controls the number of class instances. Specifically, it ensures that there
will always be maximally one instance of the class. This can be very handy in
any management process. For example, creating and deleting many resources in
complicated test suites is necessary. So, there is an absolute need to have one
object carrying all the mandatory resource-handling information.

Based on the description above, it can now be decided what pattern will best fit the
library implementation. In this case, creating large, complicated objects is necessary
because the configuration of Debezium Server 2.1 is quite complicated. Those objects
will create a relatively big tree hierarchy.

Considering this fact, the Builder pattern is probably the best fit, as builders can be
nested. Although the pattern describes the nesting, it can be overwhelming in code.
Luckily, the technology growth didn’t miss this part in Java, and there are projects
like Sundrio 5 that help write such builders in a unified way.

1.1 Object Oriented Paradigm

As Java is the main programming language for this project, it is necessary to introduce
the Object Oriented Paradigm (OOP) briefly. This paradigm brings a different look to
the structures in code. It introduces new code entities called Objects. Objects group
procedures and data should be strictly related to the specific entity. This entity can
be a virtual representation of a real thing or something abstract. These objects carry
the most responsibility in the OOP [2].

OOP is built on top of message dispatch and passing. You can envision all the objects as
a very well-organized company. Each employee has their mailbox where he receives his
job assignments. Once an employee gets a new email, he decides if this task is achievable
by himself or needs somebody with higher privileges. If that is the case, he passes task
to his supervisor. Employees can also find that for one specific sub-task, they need input

TBU in Zlín, Faculty of Applied Informatics 13

from colleagues who work in other departments, so he dispatch email to that colleague
with the details. The example above briefly describes how object cooperation works,
but some other principles add primary importance and complexity to OOP. These
principles are Composition, Inheritance, Encapsulation, and Polymorphism. These
principles are crucial for code to make the most of object-oriented paradigms.

Composition is the primary concept of the paradigm. It allows objects to contain an-
other object as their instance variable. This concept is quite important to follow
the SOLID 1) principle. Specifically, the Single-Responsibility part of it which
declares that each object should have only a specific subset of functionalities that
all round up around a single area.

Inheritance allows programmers to create a new class (child class) based on an ex-
isting class (superclass). The child class inherits all methods and attributes from
the superclass. This forces programmers to think about code reusability and
creates hierarchical class relationships.

Inheritance is necessary for extendable software. Extension can be made just
out of specific child classes without modifying superclasses. Besides that, inher-
itance also pushes programmers to extract duplicated common behavior out to
the superclass [2]. Inheritance can be graphically represented using UML2).

Figure 1.1 showcases the simple inheritance of various specific bank accounts.
This UML representation may not be strictly correct based on spec because
standard UML that includes inheritance does not include all parent class entries
in the child class. Figure 1.1 displays inheritance with fictional classes to make
the diagram easier to understand. Real use cases for class diagrams can be found
in the design section 5.

Encapsulation is another key concept that is being used in object-oriented program-
ming. It offers a way to hide an object’s internal representation from the rest
of the objects. The general idea behind this concept is to have attributes and
certain methods visible only for specific objects (if any). These hidden attributes
can then be accessed or modified via specific methods. These methods are, in
most cases, getters and setters. Hiding internal state is often called information
hiding or data protection. An example of encapsulation is displayed in Listing 1.

1)SOLID is an acronym for Single-Responsibility, Open-closed, Liskov substitution, Interface segre-
gation, and Dependency inversion principle [21]

2)Unified Modeling Language (UML) is a specification that defines a unified graphical representation
for various usages. Such as programming, data modeling, and others. The spec of current UML can
be obtained from OMG org via https://www.omg.org/spec/UML/2.5.1/About-UML

https://www.omg.org/spec/UML/2.5.1/About-UML

TBU in Zlín, Faculty of Applied Informatics 14

Fig. 1.1 Inheritance example displayed using UML.

Polymorphism is the hardest but probably the most important concept of all. Fun-
damental idea behind Polymorphism is an object that can take many forms.
Specifically, it brings an ability that allows child classes to override the behavior
of superclasses or interfaces without breaking any relationship created by Inher-
itance 1.1. Polymorphism is key for writing reusable and adaptable code. There
are two types of polymorphism:

• Compile-time or, in another name, method overload. Method overload
means a class can have multiple methods with the same name but different
parameters. The method that will be executed is selected during compila-
tion. This type of polymorphism is not strictly bound to OOP.

1 public class Person {
2 private String name;
3
4 public String getName () {
5 return name;
6 }
7 public void setName(String newName) {
8 name = newName;
9 }

10 }

Listing 1 Example of embracing Encapsulation principle in Java.

TBU in Zlín, Faculty of Applied Informatics 15

• Run-time polymorphism brings the override ability. Methods have the
same signature, and execution is determined during run time. This concept
is usually different for each language, but the overriding method needs to
be annotated with specific keywords like @Override. In Listing 2, there is
a depiction of Run-time polymorphism in Java.

1 public interface Car {
2 String getManufacturer ();
3 }
4 public class Audi implements Car {
5 @Override
6 public String getManufacturer () {
7 return "Audi";
8 }
9 }

10 public class Ford implements Car {
11 @Override
12 public String getManufacturer () {
13 return "Ford";
14 }
15 }

Listing 2 Polymorphism in Java.

These principles are key to good software. There are many reasons, but the major
reasons are the software’s extensibility and maintenance. In the past, some projects
were written once, and nobody touched them for ten or fifteen years. This is no longer
possible, especially when discussing user-facing software.

1.2 Java

Java is a general-purpose, object-oriented programming language. The first release of
Java took place in 1995. The current last release is version 21. The difference between
the first and last versions is certainly not negligible. Although many new features
are introduced in Java 21, Java 17 is a better choice for the purpose of this thesis as
the whole Debezium ecosystem is currently based on this version. Java 21 and 17 are
versions with Long Term Support (LTS), which assures that it won’t be necessary to
upgrade soon.

For this project, the main advantage of using Java 17 instead of, for example, old
Java 11 is better Null-Pointer exception feedback. This exception can occur very often

TBU in Zlín, Faculty of Applied Informatics 16

during serialization and parsing. Debugging it, on the other hand, takes time, and
previous Java versions weren’t exactly helpful during this process. From version 17,
once an exception is thrown, the program will return the line on which the exception
occurred and the name of the method and object that was null [11].

One question that may arise is if there is any other reason why to use Java instead
of some other programming languages like C++ or Rust, rather than just sticking
with the organization standard. The main benefit is the fact that programs run in a
completely independent virtual machine – Java Virtual Machine (JVM).

Running in the VM brings many upsides and downsides. The most significant ad-
vantage is that code is, in theory, completely portable. It can run on any HW or
operating system that has Java Runtime Environment (JRE) installed. But as Oscar
Wilde said: “No good deed goes unpunished.“. JVM is no different, and the downsides
are not negligible.

There are two main disadvantages with JVM:

• Performance – JVM has low performance. This information is popularly used,
but is it true? It depends on what language we are comparing. If we compare
Java in default JVM with an application written in C++ and compiled for the
specific architecture with exact CPU optimization, Java would be slower in most
cases.

When comparing Java to generically compiled C++ binary, Java might some-
times be slower and strictly depends on the problems with which performance
is measured. That is because Java uses Just In Time (JIT) compiler, which can
optimize to the platform where the program is executed. Although these op-
timizations may not be as strong as specific CPU optimization instructions, it
happens on each platform that the program is started without the need for the
particular binaries for each distinct platform.

• Memory usage – the biggest downside of the JVM. JRE takes more than a
reasonable amount of memory. This led to many new initiatives like GraalVM 3)

that can reduce memory footprint by almost 50%.

An essential part of this library is essentially dependency manipulation, so it is neces-
sary to explain how dependencies in Java work. Dependencies are essentially external

3)GraalVM is a new type of JDK developed by Oracle. More information about GraalVM can be
obtained at https://www.graalvm.org/latest/docs/

https://www.graalvm.org/latest/docs/

TBU in Zlín, Faculty of Applied Informatics 17

libraries4). As mentioned, Java runs in JVM, meaning all necessary libraries must be
accessible on the classpath or added as arguments during the program start.

With bigger projects, the amount of dependencies can be outstanding because writing
things like logging, file manipulation, or any other common functionality from scratch
does not make sense. This quantity of dependencies cannot be managed manually since
it leads to mistakes. Gladly, some solutions make things much easier for programmers.
Currently, there are two main competitors:

Gradle is a newer alternative to Maven. It allows building and managing dependencies
for projects written in many languages, including C++, JavaScript, or Java.
Gradle uses Groovy programming language for project description, making it
more natural for some developers. The big advantage of Gradle is its performance.
It can be over 70% faster than Maven in certain scenarios [10].

Maven has been and still is the most used build automation and dependency man-
agement tool. Even if Gradle is newer, there are still some reasons why Maven
may still be a better choice. The first of them is simplicity. Maven uses XML
(Extensible Markdown Language) format, so the whole description of the project
is declarative by nature.

The second advantage of Maven is integration. As Maven has been in the com-
munity for over 20 years, almost every tool supports Maven as a build system.
The last benefit of this build system is the significant number of build-lifecycle
steps that allow for great versatility during the build.

Even if there are good reasons why to use Gradle, you will not find it in any projects
included in this thesis. The reason for that is simple Debezium Server uses Maven as a
build system, so the library will have to work with its XML declaration, so it doesn’t
make any sense from the community point of view to bring a new build system into
this environment.

1.3 Maven

As Maven is this assignment’s primary project management tool, it is necessary to go
through all Maven fundamentals and specific parts that must be manipulated to create
a functional custom distribution of the Debezium Server. We must understand Maven
project descriptor pom.xml, some of the lifecycles, and assembly descriptors.

4)Java code that serves a specific purpose and can be externally added to the current project

TBU in Zlín, Faculty of Applied Informatics 18

Without any objections, pom.xml file is the most important thing for any Maven
project. This file (later only POM (Parent Object Model) contains information about
the project and configuration for each life-cycle step. POM uses XML format, and it
has rigorous syntax. Each POM’s main part is the identification of the current pro-
ject/module. This occurs in the <project> closure and contains artifact id, group id,
and version. It may look like on the Listing 3. That description sets what the project’s
naming will look like once it is released. It would be released under io.debezium or-
ganization with distribution-builder name, under 0.0.1-SNAPSHOT version. The

1 <project >
2 <groupId >io.debezium </groupId >
3 <artifactId >distribution -builder </artifactId >
4 <version >0.0.1 - SNAPSHOT </version >
5 </project >

Listing 3 POM project description.

next section of the POM usually contains information about external dependencies or
project modules. The dependencies section starts with dependencies closure. That
closure contains a list of dependencies, where each dependency is described in a sep-
arate dependency closure. Such a list is showcased on the Listing 4. With such
definitions of dependencies, Maven will download and include an external dependency
on the Debezium Operator API.

The modules section allows programmers to divide projects into separate parts (mod-
ules). Each project module has its own POM with <parent> directive aiming to the
relative path of parent POM. The parent is effectively another Maven project that can
define things every day for all the modules, like dependencies, plugins, information
about developers, and others.

1 <dependency >
2 <groupId >io.debezium </groupId >
3 <artifactId >debezium -operator -api</artifactId >
4 <version >2.6.0 - SNAPSHOT </version >
5 </dependency >
6 </dependencies >

Listing 4 POM dependency description.

Dependencies in parent must contain full definition (artifactId, groupId, version),
but modules that can use just simplified one (artifactId and groupId) and inherit
version from the parent project. This way, consistency in dependencies is guaranteed.

TBU in Zlín, Faculty of Applied Informatics 19

Parent directive creates a DLL (Double Linked List) between POM files. Illustration
usage of this functionality is displayed on Listing 5. The last part of the POM file

1 <!--Parent POM -->
2 <project >
3 <groupId >io.debezium </groupId >
4 <artifactId >debezium -server -dist -builder -parent </artifactId >
5 <version >0.0.1 - SNAPSHOT </version >
6 <!-- Project modules -->
7 <modules >
8 <module >dist -builder -library </module >
9 <module >dist -builder -example </module >

10 </modules >
11 </project >
12 <!--Module POM -->
13 <project >
14 <artifactId >dist -builder -library </artifactId >
15 <!-- Versions can be different -->
16 <version >0.0.1 - SNAPSHOT </version >
17 <parent >
18 <artifactId >debezium -server -dist -builder -parent </artifactId >
19 <groupId >io.debezium </groupId >
20 <version >0.0.1 - SNAPSHOT </version >
21 <!-- Relative path to parent POM file -->
22 <relativePath >../pom.xml</relativePath >
23 </parent >
24 </project >

Listing 5 POM modules example.

usually contains the configuration of project life cycles. These life cycles often differ
based on the current or specifics the programmer wants to achieve. Profile definition
introduces POM in POM schematics. And it is the profile that affects the result of
Maven build the most. It starts with profile closure.

This closure contains profile ID, activation schema, dependency list, and build direc-
tives. The build directive is significant because it contains the configuration for the
project build process. In this thesis, the only important part of this closure is the plu-
gins section, specifically Maven-assembly-plugin. Listing 6 illustrates such a profile
section. The plugin allows developers to combine project output into a single archive
that can be distributed to any destination. The result of this plugin can be any archive
like .zip, .tar, tar.gz, and others. This archive is called Assembly. Assembly contains
all files that are necessary for project execution and are defined in the assembly de-
scriptor. The descriptor is composed of specific filters. It is important to remember
that the assembly plugin cannot add anything that has not been downloaded. There

TBU in Zlín, Faculty of Applied Informatics 20

1 <profiles >
2 <profile >
3 <id>assembly </id>
4 <activation >
5 <!-- If true profile will be started in each Maven package

phase , otherwise only with -Passembly argument -->
6 <activeByDefault >false</activeByDefault >
7 </activation >
8 <!-- Part of the profile is skipped -->
9 <build >

10 <plugins >
11 <plugin >
12 <groupId >org.apache.Maven.plugins </groupId >
13 <artifactId >Maven -assembly -plugin </artifactId >
14 <!-- This variable points to central properties

section -->
15 <version >${version.assembly.plugin}</version >
16 <executions >
17 <execution >
18 <id>default </id>
19 <phase >package </phase>
20 <goals >
21 <goal>single </goal>
22 </goals >
23 <configuration >
24 <descriptors >
25 <descriptor >descriptor.xml</descriptor >
26 </descriptors >
27 </configuration >
28 </execution >
29 <!-- Rest of the profile is skipped -->

Listing 6 POM assembly profile example.

are three groups of filters FileSets, DependencySets, ModuleSets [16]. Each of these
groups targets a specific subset of entities. In those filters, developers can either ex-
plicitly include or exclude the entities. An obvious question might arise: “Why do
not include all files, modules, and dependencies?“. Not all those files, dependencies
(including transitive dependencies), and modules are needed for specific assembly, and
all of those unnecessary entities make the resulting archive bigger.

Some of these filters are pretty easy to understand. Those are FileSets and Mod-
uleSets. These add or exclude files based on exact file/module names or based on
wildcards. The dependency set is the most problematic because it is easy to ex-
clude some dependency that is not the original intention. This often happens because
developers exclude top-level dependencies, but that filter also excludes all the chil-

TBU in Zlín, Faculty of Applied Informatics 21

dren of that dependency. With hierarchy from Listing 7 and dependency set filter
from Listing 8, Maven assembly will exclude not only org.external.dependency but
also org.external.transitive-dependency which will result in exception No Class

named XYZ found on classpath. This Section went through all the principles and

1 io.example.parent
2 +-io.example.first -child
3 | +--org.external.dependency
4 | | +---org.external.transitive -dependency
5 +-io.example.second -child
6 +--org.external.transitive -dependency

Listing 7 Example dependency hierarchy

1 <dependencySets >
2 <dependencySet >
3 <outputDirectory >${project.parent.artifactId }/lib</

outputDirectory >
4 <unpack >false</unpack >
5 <scope >runtime </scope>
6 <useProjectArtifact >false </useProjectArtifact >
7 <useTransitiveFiltering >true</useTransitiveFiltering >
8 <excludes >
9 <exclude >org.external.dependency :*</exclude >

10 </excludes >
11 </dependencySet >
12 </dependencySets >

Listing 8 Example dependencySet part of description

fundamentals of Creational design patterns, OOP, Java, and Maven. These create an
absolute foundation for the main library implementation for this thesis. The knowledge
gathered through this section will be used to develop a Distribution Builder and debug
and track issues that could occur in the Debezium Server or any other dependency
along the way.

TBU in Zlín, Faculty of Applied Informatics 22

2 Debezium

Debezium is the leading solution for Change Data Capture (CDC) streaming. CDC is
essentially a set of design patterns. These patterns declare how to determine and track
database entries that changed their deltas. Delta indicates that database entry changed
in any way (creation, deletion, update). These entries are gathered and delivered to
the next system. There are many ways how to track these deltas. Below, you can find
some examples:

• Additional timestamp on rows – this timestamp would change accordingly
after each change of the entry. In this way, it is very tricky to track deleted
events.

• Specific triggers on tables (if there is support for that in the database)
– trigger is usually an SQL statement that is executed once a specific event
happens on the target table. In this case, the trigger could, for example, append
flags to the status table after each specific change on the target table. This way,
developers can effectively create a very simplified and less accurate version of the
transaction log.

• Status flag on rows (custom specific column) – similar to additional times-
tamp. Each row gets one additional flag column, which can then be used to
identify what type of event (if any) happened on that row. Status flags are best
in combination with the timestamp approach.

Even if these simple solutions may sound promising, mostly they are not. With very
heavy traffic, these methods start to lose some of the changes, and things get messy. A
much better solution is living directly in the heart of the database – the Transaction log.
The transaction log stores all the transactions that happen in the database. Log entry
format can differ from database to database, but at least in all traditional databases,
log is there. This makes things really interesting because it seems like any system based
on these transaction logs cannot miss anything. Yes, that would be an ideal world, but
as you might already think, there is a catch.

The transaction log usually behaves like a circular tape, so at some point, it will start
rewriting the earliest changes. The size of this log is mainly defined by the user, so
any CDC solution has to play around with this problem and handle it. Gladly, some
solutions allow CDC applications to recover from this situation and mitigate the risks.

TBU in Zlín, Faculty of Applied Informatics 23

A possible mitigation for such a problem is a snapshot. The snapshot is a process during
which Debezium scans the whole database or the subset of it and sends this whole
state into Kafka. This process can mitigate the problem mentioned earlier very much.
Debezium snapshot process can be configured to mode when_needed that will trigger
a snapshot whenever the committed offset was not defined before in the transaction
log.

Besides, this snapshot can also be used in much more straightforward situations, such
as database migration. In this situation, Debezium snapshot mode is set to initial.
Once the connector starts, it scans the whole database and sends all the records to
Kafka. Then, another connector, like the JDBC sink connector, can take those events
and insert them back into another SQL database.

Some database manufacturers offer CDC solutions on their own. An example of this
approach would be Oracle, which provides this solution under a product named Golden
Gate. This solution is strictly for the Oracle database. It streams all the changes in
an Oracle-specific format to one of the supported storages. This solution might be
sufficient for some users, but the major downside is that it is expensive and may not
apply to smaller companies. The second downside of a proprietary CDC solution is that
it is always bound to only one database. This might be a problem for some companies
because more prominent companies usually use a more diversified technology stack.

Debezium is a trendy project not only because of the issues mentioned above. The
significant advantage of Debezium is the considerable support matrix. There are seven
database connectors (connector term will be described later in this section) directly
supported by Debezium maintainers and a couple of others in the incubating process1).
Some other database connectors are actively developed by the community or are led
by different companies like Google2).

So far, this Section has gone through the basics of the CDC. Now, it is time to look
deeply at Debezium. The CDC part of this project is based on the transaction log
approach. The problem is that this approach is different for each type of database
because each transaction log is entirely different, and more importantly, each database
works with this log differently. Because of this, Debezium is divided into separate
connectors, one per database. However, this is still only about the CDC. What about
streaming? Apache Kafka and Kafka Connect ensure the streaming part of Debezium.

1)Incubating process in Debezium indicates that connector contains main functionality but it is not
yet thoroughly tested and proofed by community.

2)Google is actively developing Spanner connector.

TBU in Zlín, Faculty of Applied Informatics 24

Apache Kafka is an open-source platform for event processing. Event in this context
can be any message in Kafka event format [20]. The very simplified architecture
of Kafka is displayed in Figure 2.1

Fig. 2.1 Simplified Kafka architecture

As Figure 2.1 shows, each Kafka broker is composed of event queues. Each of
these queues should contain messages about the same subject. These queues are
named Kafka topics. Both producers are connected to a specific topic. Consumers
can form groups. Kafka stores offset for each consumer group, so it assures (for
the single group) at least once delivery, which is very important for Debezium.
Besides that, Kafka offers many other exciting technology solutions like scaling,
partitioning, or fault-tolerance, which are unnecessary for this thesis.

Kafka Connect is a component of Apache Kafka that provides seamless integration
between third-party systems and Kafka brokers. Kafka Connect (KC) is a dis-
tributed process that can run across multiple machines and is comprised of a
series of connectors. The main process of KC handles all the communication
with the Kafka Broker. KC pulls the changes from its internal queue that is
being filled by all connectors. There are essentially two types of connectors:

• Source – Fills Kafka with data gathered from some source system

• Sink – Allows exporting data from Kafka to another system

Manipulation with the connectors inside the Connect process can be achieved via
REST API. This API allows all of the CRUD operations to be performed on the
connectors. Configuration of the connectors is stored in the JSON format. This
format is displayed in the Listing 9.

TBU in Zlín, Faculty of Applied Informatics 25

1 {
2 "connector.class": "io.debezium.connector.mysql.MySqlConnector",
3 "value.converter": "io.confluent.connect.json.JsonSchemaConverter"

,
4 }

Listing 9 Properties format example

Besides capturing changes from the database and delivering them to Kafka, Debez-
ium also offers several implementations of Kafka Connect transformation that were
demanded mainly by the community. These transformations are called Single Message
Transformations (SMT). As the name suggests, transformation is always applied to a
single message. The list below contains examples of some useful transformations:

• Content-Based Routing – transformation looks into the record, checks the
record’s content, and selects the best topic based on the content.

• Message Filtering – based on the content of the record transformation class,
select if the record suits the filter. If yes, the record is sent to Kafka.

• Timezone Converter – one of the most popular transformations offered by
Debezium. This SMT converts the value of the target field to the desired time
zone.

Besides the prefabricated transformations, Kafka Connect also supports creating cus-
tom transformations. Users implement a specific Interface that is provided. Build
custom transformation into jar and put this archive next to the Debezium connector
in Kafka Connect plugin dir.

As mentioned earlier, Debezium offers a bundle of Kafka Connect connectors to users.
These connectors are distributed as assembly 1.3 archives that contain all necessary
libraries and Java executables. Those archives are then added to the KC plugin path3).
In the case of Kubernetes deployment, users have to add those assemblies to the specific
path and then build Docker Image 4.1. This image is later pushed to the reachable
image registry, and its reference is then used to deploy the KC container into Kuber-
netes.

Although the Kafka and KC combination is a powerful technology stack, Kafka’s
technology specifics might not suit everyone. Debezium maintainers have often seen

3)Plugin path is a directory which contains all Kafka Connect plugins, stored as Java Archives.

TBU in Zlín, Faculty of Applied Informatics 26

questions about supporting different sink types like Apache Pulsar, Google PubSub,
etc. These questions have led Debezium developers to development of the Debezium
Server 2.1.

2.1 Debezium Server

Debezium Server is a standalone application that allows running Debezium source
(database) connectors and sink modules. This application is built on top of Quarkus4)

framework. As Section 2 noted, the main runtime for connectors is Kafka Connect.
As there were many requests from the community to allow Debezium to run on top
of a runtime different from Kafka Connect, Debezium developers came up with the
Debezium Engine.

Debezium Engine mimics the behavior of Kafka Connect. The engine uses the same
API as Kafka Connect and provides the same services to connectors as Kafka, including
offset storage. Offset storage stores the index of the last message received, so Debezium
can offer at least one delivery.

Until recently, the Debezium Server based on the old engine didn’t provide any im-
provements compared to what KC provides. But release 2.6.0.Alpha2 brought major
improvements that promoted the server to another level.

This release brings parallelization to the playground. So far, everything in Debezium
has worked as a single thread. Everything is in the same thread from the source
through processing into the sink, as Figure 2.2 showcases. The only parallelization

Fig. 2.2 Diagram of Debezium Server and Debezium Engine composition, including
thread schematics.

4)Quarkus is a Java framework tailored explicitly for Kubernetes. More information about Quarkus
can be obtained at https://quarkus.io

https://quarkus.io

TBU in Zlín, Faculty of Applied Informatics 27

offered by Kafka Connect is to run source connectors in multiple KC worker processes.
The Old Debezium Engine cannot provide even this and always runs only one task in
a single process. However, this feature is only enabled for specific connectors that can
ensure all functionality. These connectors are currently MongoDB and Microsoft SQL
Server. The problem is that the processing part is the most significant performance
bottleneck of the whole pipeline. This processing includes operations that cost the
most CPU time, like serialization and SMTs (Single Message Transformations). The
new version of the Debezium Engine gladly solves this issue. Figure 2.3 displays how
the new version changes the thread schema.

Fig. 2.3 Diagram of Debezium Server and the new version of Debezium Engine,
featuring multi-thread processing.

As Figure 2.3 shows, the engine now separates the pipeline into two main threads. The
first thread is strictly for source connectors. However, the possibility of running specific
connectors (noted above) in multiple threads is still maintained. The second thread
is reserved for managing threads running records processing and sink. The processing
threads are, in reality, called from the Thread 2. And this is precisely the part where
the new engine comes into play. This thread workflow is essentially separated into two
parts. The first part is all about already noted processing.

As soon as the source connector exceeds the threshold of internal queue processing,
the sink thread takes up all the messages and distributes them across the processing
threads. These threads do all the work in parallel. Once all the serialization and SMT
processing are done, everything is then handed over to the sink. There is also the
possibility to avoid waiting for all processing to be done, but if users allow this option,
ordering cannot be assured. Once messages are handed to the parent process, the sink
sends them to the selected destination system.

TBU in Zlín, Faculty of Applied Informatics 28

The user can provide the sink implementation or use some of the sinks that Debezium
maintainers provide. Sinks provided by Debezium cover the most used and community-
promoted systems. Some of the connectors are listed below.

Apache Pulsar is a hybrid system that combines traditional messaging brokers like
RabbitMQ and more modern systems that use publish-subscribe a model like
Kafka. Pulsar separates compute and storage parts to different compute tenants,
making it ideal for cloud environments like Kubernetes 4.2. One of the main
features of Apache Pulsar is a built-in schema registry, geo-replication, and IO
connectors.

RabbitMQ , open-source message broker that was originally based on AMQP proto-
col. Later, RabbitMQ was extended with MQTT, STOMP, and HTTP gateways
during the later development phases. It supports both failover and clustering
mechanisms.

Redis is arguably the most popular sink in the Debezium Server community. This sink
system is an in-memory key-value database. Key-value databases are prevalent
for feeding Machine Learning (ML) models. ML can be very useful even in
Security systems. Many modern security systems use machine learning for face
recognition, behavioral detection, and other use cases. Redis is such a popular
solution because it is effortless to use and can store a wide variety of data.

This thesis already mentioned all the new features that were included in the last release
of Debezium Server. But there is still one surprise in the box. Debezium Server now
offers easy deployment to Kubernetes (4.2) via Debezium Operator. Operator is a
designation for service applications that manage other application deployments. In
this case, managing the operator scales the application, handles configuration reload,
and other necessary operations to keep the application running.

The operator brings significant security advantages, as it allows deploying Debezium
Server to Kubernetes, where users can leverage all Kubernetes security features, like
secrets. These secrets behave like encrypted storage, where users can store certificates
and other sensitive information. These secrets can then pass credentials to the operator,
who can deploy the Server with already decrypted and correctly inserted sensitive
configuration fields.

So far, this part of the Section has gone through how the Debezium Server and De-
bezium Engine work, where these technologies can be leveraged, and why they are

TBU in Zlín, Faculty of Applied Informatics 29

popular. For more clarification, the list below summarizes the biggest advantages of
the Debezium Server over Debezium on KC.

• Kafka independent – Debezium Server is not bound to the Kafka messaging
system. This means the Debezium Server can produce change records for various
messaging systems like Redis, RabbitMQ, etc.

• Expandability – This twist on Debezium offers users an easy way how to
extend the Debezium Server by any custom Sink connector. These custom im-
plementations can implement Server API and then be injected into distribution
libraries.

• Performance – Debezium Server offers parallelization for the processing pipeline.
This brings big performance gains for the users as serialization still is and always
was the biggest performance bottleneck in almost every application.

We have worked our way through the leading technologies in CDC, Debezium, and
Debezium Server. These are two pivotal components in CDC and event-streaming.
Before ending this Section, it would be best to synthesize all the findings and underscore
the key takeaways.

Debezium is the leading solution for CDC Streaming. CDC (Change Data Cap-
ture) is a pattern that provides possible ways how to capture changes from the
database. Debezium leverages one of these patterns, specifically the one based
on the transaction log.

Running in Kafka Connect, Debezium can ensure that all changes will be captured
and streamed to Kafka with very low delays. The biggest advantage is that
Debezium supports many various databases so that it can be plugged into any
technology stack with little effort.

Debezium Server, new runtime for Debezium connectors. This runtime brings many
new possibilities because it supports various messaging systems as destinations.
Besides variability, the Debezium Server also significantly improves performance,
offering even lower delays than Debezium on KC, even if it is running specific
SMTs.

Machine Learning is not a strict Debezium or Debezium Server feature. With the
new streaming options of the Debezium Server, there come new possibilities for
using those Change Stream events. One of those possibilities is Machine Learning.

TBU in Zlín, Faculty of Applied Informatics 30

Some of the messaging and event solutions that Debezium Server supports are
ideal for feeding Machine Learning, which can be very useful in modern security
solutions, as will be later described in Section 7.

TBU in Zlín, Faculty of Applied Informatics 31

3 User Interface

So far, this thesis has been based on object-oriented programming, Java, and Debezium.
These are all very important information, but just the Java library might not be enough
for most of the community. Because of that, we have to look into web technologies.
This section covers both backend and frontend technologies that could possibly be used
for the implementation.

The first part of the Section goes through the backend technologies. Specifically, it
wraps up the bases of the Java frameworks –Micronaut and Spring Boot. The second
part covers information about JavaScript frameworks –React and Angular. In the end,
the Section summarizes all gathered information and forms the final selection of the
technologies used in the implementation.

3.1 Backend

Firstly, it is wise to define what a backend is. In software engineering, the web envi-
ronment is logically separated into independent pieces, and each of these pieces covers
different functionality. The backend is one of those pieces that should cover all data
manipulation. The backend should not be directly accessed by the users. It should be
accessible only through the front end. Backends are, in most cases, realized via REST
API [5], which essentially accepts data, processes them in some way, and then returns
the data to the front end.

Micronaut

It is one of the new Java frameworks that is currently rising. The whole framework is
based on modularity, lightness, and speed. Micronaut is more or less aiming to allow
developers to build microservices easily. Microservice architecture is an architectural
style that structures an application as a collection of small, independent services [14].
This architecture allows companies to delegate work to multiple teams, where each
team develops a specific service [18].

As microservices are the main aim of the Micronaut, it needs to work around the
performance because the microservices are known to be fast and lightweight. This
framework delivers this at a very high standard. The performance is assured with a
very specific approach – as soon as the application is compiled, it processes all metadata

TBU in Zlín, Faculty of Applied Informatics 32

and generates a set of classes that represent an already configured application (this
process is named Ahead of Time compilation (AoT)).

Besides the performance, Micronaut offers a wide variety of specific features [17]:

Cloud-native support is arguably the main reason why a lot of users decide to
give Micronaut a chance. Cloud-native means that the framework provides tools
that can be used to develop applications that run in the cloud environment.
These tools might be service discovery, distributed configuration, and distributed
tracing. All these are necessary to create modern cloud-native applications [3].

Reactive programming is definitely one of the main points of interest in web devel-
opment. Reactive programming allows the development of non-blocking servers
that can handle a large number of concurrent connections with a relatively small
amount of threads occupied. Micronaut provides support for both RXJava and
Project Reactor 1)

Data access with AoT significantly reduces runtime overhead during database ac-
cess. This is assured because Micronaut precomputes all queries for both JPA
and SQL modeled repositories2). Besides that, it also provides native support for
MongoDB.

Overall, Micronaut is a solid choice for the development of applications that are mainly
aimed to run in the cloud environment. It has many beneficial attributes, the most
valuable of which is performance. Besides just the performance benefits, Micronaut
also significantly reduces the memory footprint of applications, which is, as already
mentioned in previous Section 1.2, probably the most significant disadvantage of Java.

Spring

Spring is an alternative to the original enterprise Java (Java EE), nowadays more known
as Jakarta Enterprise Edition3). Spring build on top of the Model View Controller

1)These libraries bring types like Observable or CompletableFuture. More information about
those libraries can be obtained from https://github.com/ReactiveX/RxJava and https://
projectreactor.io/.

2)Java Persistent API (JPA) is an abstraction for a relational database that allows database man-
agement via code, more information available from https://www.oracle.com/java/technologies/
persistence-jsp.html.

3)Java Enterprise Edition (JEE) is an enterprise software platform that is mostly used to build web
systems. More information is available from: https://www.oracle.com/cz/java/technologies/
java-ee-glance.html

https://github.com/ReactiveX/RxJava
https://projectreactor.io/
https://projectreactor.io/
https://www.oracle.com/java/technologies/persistence-jsp.html
https://www.oracle.com/java/technologies/persistence-jsp.html
https://www.oracle.com/cz/java/technologies/java-ee-glance.html
https://www.oracle.com/cz/java/technologies/java-ee-glance.html

TBU in Zlín, Faculty of Applied Informatics 33

(MVC) architecture. MVC essentially divides the application into three logical units:

• Model – part of the MVC responsible for handling all the logic for the applica-
tion. Logic, in this case, handles all the computation, database queries, etc. The
model is completely separated from the users. It does not know anything about
the input source or what the response of the application looks like.

• View – only unit visible to the user. It is responsible for presenting data to the
users and allowing them to interact with the system. The view is usually but not
exclusively via programmable HTML templates.

• Controller – serves the role of the middle man between the Model and View.
The controller takes data served from View, parses them into the Objects, and
hands them over to the Model. Once the Model finishes all the processing, it
returns data to the Controller, which transforms them into the correct form and
passes them to the view.

Spring provides many features for developers that ease their lives during development.
Many of these features are common in frameworks like Spring, and some are distinctive
to this framework. Spring framework is separated into specific modules, where each
module serves a specific feature. This part of the section goes through the most exciting
modules [24].

Spring Data Access is an integral facet of the Spring Framework and bridges the gap
between applications and underlying data storage. It encompasses transaction
management, JDBC-based approaches, and more contemporary paradigms like
Reactive Relational Database Connectivity (R2DBC). Additionally, Spring sup-
ports Object-Relational Mapping (ORM), marshaling data formats, and seamless
integration with diverse technologies. ORM is a technique that allows developers
to manipulate databases using an Object-Oriented Paradigm. Its significance lies
in ensuring efficient and reliable data interaction for modern software systems.
Spring Data Access provides this functionality to the most used persistence –
JDBC, JPA, and MongoDB.

Spring Boot arguably the most important of the Spring extension. Spring Boot is
a practical solution to the challenges involved in setting up Spring applications.
It simplifies development by eliminating the need for complex configurations.
Instead, it follows a "convention over configuration" approach, automatically
managing dependencies, embedded servers, and application startup processes.
Spring Boot brings many advantages but also disadvantages:

TBU in Zlín, Faculty of Applied Informatics 34

• Productivity Boost – Spring Boot’s opinionated defaults and autocon-
figuration accelerate development, reducing cognitive load.

• Embedded Servers – The inclusion of embedded servers (e.g., Tomcat,
Jetty) simplifies deployment, eliminating external server setup

• Standalone Executables – Spring Boot generates standalone JAR files,
enabling straightforward execution without external dependencies.

• Health Monitoring – Built-in health indicators facilitate application moni-
toring and management.

Advantages

• Easy to use – Once the developer gets familiar with Spring Boot, it
provides a lot of techniques that can speed up the development process, like
specific annotations.

• Embedded servers – Unlike the core Spring, Spring Boot provides already
built-in servlet4) container (by default Tomcat). Spring core does not include
this and expects that all the configuration and preparation of the servlet
container will be done prior by the developer.

• Built-in health minitoring – Spring Boot by default includes some basic
JMX metrics5). These metrics often include metrics like the number of failed
and successful requests.

Disadvantages

• High abstraction – Spring Boot abstracts a lot of the functionality, and
that might be a problem for some developers because, at some point, it
might be hard to debug the issue if the developer does not have a clue
about internal implementation.

• Autoconfiguration trade-off – As the framework configures the appli-
cation based on the dependencies, it might clash with some specific require-
ments.

• Overwhelming learning curve – There are a lot of features and tech-
niques bundled directly in the Spring Boot alone. This might make things
hard for the developer during the first project based on Spring Boot.

4)Java application that runs within the web server like Tomcat, Netty, etc.
5)Java Management Extension (JMX), standard mechanism for monitoring Java applications.

More information is available from: https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/
reference/html/production-ready-jmx.html

https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/reference/html/production-ready-jmx.html
https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/reference/html/production-ready-jmx.html

TBU in Zlín, Faculty of Applied Informatics 35

Spring Security encompasses all layers of security within an application, making
it a comprehensive solution. Notably, it seamlessly integrates with various au-
thentication models, including database-based authentication, OpenID connect,
form-based authentication, X.509 certificate authentication, and Lightweight Di-
rectory Access Protocol (LDAP). Its adaptability ensures that security provisions
evolve alongside changing requirements, making it a preferred choice for securing
Spring-based applications. Spring Security is not included in Spring Boot, but it
is added for developers who want to embrace the security.

Both Spring and Micronaut are solid choices for building microservices or web applica-
tions. It is very hard to say which of these frameworks is a better choice. It very well
depends on the project’s requirements. If the developer seeks performance, Micronaut
is the better choice. On the other hand, Spring / Spring Boot offers a wide variety of
specific modules that could help the developer achieve specific functionality. In other
words, the decision between these two frameworks lies only on the developer because
they provide almost the same features. This project will be implemented using Spring
Boot because the author has experience with this framework from past projects.

3.2 Frontend

These days, what users see may be more important than how the application actually
works. This might be sad, but it is a cruel reality. That means the choice of front-end
technology is more important than ever. Users want a nice-looking, responsive User
Interface (UI). Because of this, JavaScript (JS) is definitely the right tool for the job.

JavaScript is a high-level, interpreted programming language that is primarily used
for building web-based applications. It is a multi-paradigm language that sup-
ports event-driven, functional, and imperative programming styles. It allows de-
velopers to implement complex features on web pages, such as interactive forms,
games, scrolling abilities, and page navigation. Based on the name, you might
think that there is some connection between Java and JavaScript based on the
name. There is no connection between those languages, and they can’t be more
different.

Although JavaScript offers way how to implement all the components that should be
necessary to build UI for the Distribution Builder, it would be wise to explore all

TBU in Zlín, Faculty of Applied Informatics 36

frameworks that could be of use. There are many frameworks that are available but
two of them definitely stand out –React and Angular.

React

React is an open-source library/framework primarily for building single-page web user
interfaces6). Both React and Angular are handling the View layer (described with
MVC 3.1). It allows design views for each specific state of the application and efficiently
updates affected components when data changes. All the React views are described in
a declarative way. This way, React provides a great way to debug those views once an
issue occurs.

React features component-based architecture. This architecture allows developers to
build encapsulated components that only have their own state and then compose all
of those components to complex user interfaces. Each component has its own lifecycle,
which the developer can monitor and manipulate during three lifecycle phases:

• Mounting – Steps during which element is put into virtual DOM 7).

• Updating – Changing or adding new data to the component, then rendering
changes.

• Unmounting – Removal element from DOM.

The inclusion of virtual DOM significantly improves performance compared to using
regular DOM. React includes an extension to JavaScript, named JSX (JavaScript Syn-
tax Extention). JSX is a combination of HTML and JavaScript that allows JavaScript
to be embedded directly into the HTML components, which makes code much sim-
pler and more readable. Although React is open-source, it is mainly maintained by
Facebook or, nowadays, Meta [23].

React is a very powerful framework, but it has some disadvantages. The framework’s
documentation is very poor. The second disadvantage is that React does not provide
any management component that would help keep the whole component tree in good
shape. This might be especially problematic for large-scale applications, but it can be
mitigated by additional tooling.

6)Single-page website dynamically displays all information on the single page. More information is
available at https://www.bloomreach.com/en/blog/2018/what-is-a-single-page-application

7)Virtual Document Object Model, is a virtual description of the HTML document.

https://www.bloomreach.com/en/blog/2018/what-is-a-single-page-application

TBU in Zlín, Faculty of Applied Informatics 37

Angular

Angular is an open-source web application framework mainly developed by Google.
Like React, it is mainly used to create modern single-page web applications. Angular
is not written in JavaScript but in TypeScript.

TypeScript is an open-source programming language. Initially developed by Mi-
crosoft. It is essentially a superset of JavaScript, which means that it contains all
the functions that JavaScript provides and adds some more functionality. The
first difference is that TypeScript introduces static typing. This was introduced
mainly to increase runtime performance and also mitigate risks of runtime ex-
ceptions. An even bigger change from JS is that TypeScript is Object-Oriented,
whereas JS is Prototype-based [27].

This framework does not include HTML in the code. Because of that, Angular provides
specific HTML templates that can, under specific circumstances, include TypeScript
code. This framework also supplies a wide variety of libraries for almost every purpose,
such as routing and forms. These libraries are especially useful, and that might be the
very reason why Angular is popular. Especially the Reactive Forms library is arguably
what makes Angular stand out from other frameworks.

This library allows developers to create forms dynamically in TypeScript code. De-
velopers define metadata objects for each form input. These metadata objects can
be either FormGroup, FormArray, or FormControl. Each of these objects serves a
different purpose:

• FormGroup – Folds form objects into one bigger. This metadata object essentially
represents <form> tag in HTML. Every entry in this group must have a unique
identification. Thanks to this directive, it is possible to nest the forms with one
output.

• FormArray – An alternative to the FormGroup. The main difference is that entries
in the array do not need a unique ID. It can be imagined as a simple object array.

• FormControl – This object represents actual input field. It is composed of name
and value.

These components shape a double-link tree. That way, Angular assures that a change of
any element results in a change of the whole form. Angular also allows developers to set

TBU in Zlín, Faculty of Applied Informatics 38

FormValidator for inputs. Validators contain specific rules that the input field must
comply with. However, the metadata object still must have a valid HTML template
that will exactly match the metadata [19].

Angular is an ideal choice for projects that aim to provide dynamic and responsive
UI. With the OOP, it can ensure much better code maintainability and readability.
Besides that, Angular has great documentation, which includes all possible examples
and provides excellent descriptions for all classes and functions.

This part of the text explored the technologies that are utilized in the creation of
contemporary and responsive web applications. The backend portion of the thesis
examined two frameworks, Micronaut and Spring. As stated in the backend conclusion,
these two frameworks provide nearly identical features; hence, the choice of framework
largely depends on the developer’s preference. This project will be implemented using
Spring Boot. The reason is that the author has already worked with it before, so the
learning curve will be much faster, if any.

In terms of UI, this section has evaluated two potential technologies – React and Angu-
lar. The contrast between these two is significantly larger than that between backend
frameworks. React is JavaScript-based, while Angular utilizes TypeScript. TypeScript
is a definite plus for Angular as it facilitates Object-Oriented Programming. Another
major benefit of Angular is its ability to construct reactive forms dynamically. This is
a substantial advantage, as the majority of the Distribution Builder UI revolves around
user configuration, which implies forms. This capability would enable the UI to oper-
ate independently from the backend. For these reasons, Angular will be the primary
technology used in the UI.

TBU in Zlín, Faculty of Applied Informatics 39

4 Cloud environment

In this Section, we will go through the fascinating world of the cloud environment.
Although the cloud includes many interesting technologies, this Section will cover only
some of them–Docker, Kubernetes, and GitOps. Docker provides the ability to build
and run applications loosely isolated from the infrastructure by using containerization.

Next, we will explore Kubernetes. Kubernetes bundles the functionality of the Docker
and creates a vast orchestration system for containerized applications. Kubernetes
allows developers to deploy, scale, and manage applications. Finally, this section will
cover GitOps. GitOps is effective automation that allows keeping applications in the
cloud up to date with the code stored in the Version Control System (VCS)1) By the
end of this Section, you will have a solid understanding of these technologies and why
it is beneficial to build your application with them.

4.1 Docker

Docker allows the running, building, and shipping of containerized applications. In
order to explain all the docker features, it is necessary to define what is container [15].

Container is essentially an alternative to Virtual Machines, although it works on a
completely different basis. The container packs up the code and dependencies
and creates an independent unit. Containers create abstraction at the application
layer and share the Operating System Kernel, whereas VMs are an abstraction
on the physical layer. The architectural difference between VMs and Containers
is showcased in the Figure below 4.1. Containers, like VMs, are started from
images. A container image is essentially an executable pack of software that
includes everything necessary to start the application. Images can be reused,
and developers can use the same image for multiple containers.

Docker builds the whole platform around the container architecture. It uses a client-
server architecture. The server part is the container daemon (containerd), and the
client is essentially the tooling that allows creating and managing containers running
on top of the daemon [26].

1)VCS is a software tool that allows versioning software sources. The most popular VCS tool is
GIT.

TBU in Zlín, Faculty of Applied Informatics 40

Fig. 4.1 Comparsion of Docker containers and Virtual Machine architecture.

So far, this text has only touched the container images. However, the images also take
place in Docker architecture because we need a place to store them. Docker provides
two ways how to store images. First is that developers can build the images and store
them locally. This way, the images are only accessible on the current machine. The
second method is to store images in external image registries. Image Registry is more
or less the VCS for Images. Developers can push images into those registries under
certain versions. This way, images can be accessible from every machine and can reach
the external registry.

The container images are built based on their description. The description is named
Dockerfile. This file is a text document that contains all the instructions that the
developer would run in the VM to download and install all necessary software de-
pendencies. Docker also allows for the extension of already existing images. Possible
Dockerfile is displayed on Listing below 10.

The Listing 10 describes Dockerfile for the Apache HTTP server. FROM instructs the
Docker to base this image on the existing ubuntu image. COPY, as the name suggests,
copies the directory from which the build was initiated to the image. The next in-
struction runs the apt command. This command is the default package maintainer for
Ubuntu. Firstly, it updates all the packages and gathers all the metadata from default
repositories. Then, it installs two packages apache2 and apache2-utils. The EXPOSE

instruction configures the image to open port 80 to external communication. This only

TBU in Zlín, Faculty of Applied Informatics 41

1 FROM ubuntu
2
3 COPY . .
4 RUN apt update
5 RUN apt install -y apache2 apache2-utils
6 EXPOSE 80
7
8 ENTRYPOINT["/bin/bash"]
9 CMD["apache2ctl", "-D", "FOREGROUND"]

Listing 10 Example Dockerfile for HTTP server.

configures the image if a developer wants to open communication with the container
based on that image; the port must still be configured in the daemon. The last two
instructions are ENTRYPOINT and CMD.

These two instructions are especially important because they configure the start-up
command. Some developers often misinterpret these commands. The ENTRYPOINT sets
the command that will be executed on container start-up. On the other hand, the CMD

instruction sets the arguments for the previous instruction.

This Section went through the core principles of the containers and Docker. Here,
you can find a short summary of this Section. Containers are a lightweight alternative
to virtual images, which allows developers a relatively fast and reliable way to move
code from development to production. Docker embraces the container architecture and
creates a whole platform around it. It includes container image storage, daemon, and
client. A combination of these creates an efficient and widely used container platform.

4.2 Kubernetes

An open-source container orchestration system. It is used to automate scaling, de-
ployment, and management of containerized applications. Kubernetes was initially
developed by Google, but in 2016, all development was moved under the CNFC (Cloud
Native Computing Foundation [13]. Kubernetes is working on a higher abstraction
level than Docker. It groups containers into logical units and distributes them across
Kubernetes cluster.

Kubernetes cluster is the base of Kubernetes deployment. These deployment groups
are hosts running Linux OS. These hosts can run either as master or worker
nodes. Master nodes form the cluster Control Plane. The control plane takes care

TBU in Zlín, Faculty of Applied Informatics 42

of all important decisions about the cluster, for example, scheduling of application
Pods or handling API requests from the users. On the other hand, worker nodes
take care of all the actual computation, so often, these clusters have more workers
than masters [22].

Fig. 4.2 Kubernetes cluster architecture.

On the architecture Figure 4.2, you can see a deeper dive into Kubernetes cluster
architecture. You can see that there are a couple of unknown terms, like etcd,
Kubelet, Scheduler, and others. Down below, you can find a brief overview of all
of them.

• etcd – Key-value storage that offers high availability. Kubernetes uses etcd
to store all cluster data. This storage is critical. If the synchronization
of the etcd between master nodes fails, the whole cluster might become
unavailable.

• Kubelet – Agent which runs in each Node. Kubelet ensures that all
containers in the Pod are running healthy.

• Scheduler – Component that watches the cluster and waits for newly cre-
ated Pods with no worker specified. For those Pods, the Scheduler selects an
available worker and assigns this to the Pod. The scheduler selects workers
based on multiple factors like HW, SW constraints, data locality, etc.

• Controller Manager – Spins up specific controllers for Kubernetes object,
like Node or Service Accounts2).

2)Kubernetes non-human account that provide distinct identification. Service Account can be as-
signed to other specific Kubernetes Objects.

TBU in Zlín, Faculty of Applied Informatics 43

• K-Proxy – Network proxy which maintains network communication from
and to the worker node.

• API – API server exposes Kubernetes API to users. The Kube API server
is designed to be horizontally scaled. This can be achieved by deploying
another instance of the server and then balancing the load between the
instances.

Kubernetes architecture allows effective scaling of the whole platform and all applica-
tions that run on top of it. Kubernetes deployment of the application is described in
multiple Kubernetes objects. Fundamentals Kube objects are – Pod, Service, Deploy-
ment, Replica Set, and Persistent Volume. These are fundamental objects that allow
deployment of any application to the Kubernetes.

Pod is a fundamental object of Kubernetes that is deployable. The pod is a group
of containers with shared storage and network. All the containers in one Pod
are always scheduled on the same worker. The most common use case of Pod
in Kubernetes is one container per Pod. Besides the application containers, Pod
can also contain the init container. Init container runs during Pod startup, and
they are usually responsible for doing some initial configuration or other pre-run
steps.

Service provides developers functionality to expose Pods and containers to the other
Pods running in the same cluster. Each Service object defines a new endpoint
that includes a specific network port. If the Service should be accessible from
the outside world, developers have to configure also a Load Balancer or Ingress
controller 3).

Persistent Volume (PV) is a piece of storage allocated from the cluster storage.
This storage can be either manually allocated by the administrator or dynamically
with Storage Class4). If developers want to create Persistent Volume dynamically,
they have to do it through the Persistent Volume Claim (PVC). PVC declares
that once an object that needs the specified storage exists, it dynamically creates
new PV through the Storage Class that is afterward mounted to the object.

3)Both Ingress and Load Balancer assure that Service is accessible via an external IP address. More
information can be obtained at https://kubernetes.io/docs/concepts/services-networking/

4)Storage Class describes a specific driver that allows automatic allocation of storage. A detailed
explanation of Storage Class is available from https://kubernetes.io/docs/concepts/storage/
storage-classes/

https://kubernetes.io/docs/concepts/services-networking/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

TBU in Zlín, Faculty of Applied Informatics 44

Replica Set (RS) defines Pod and amount of desired replicas of this Pod that should
be up and running. Replica Set does not care about what replicas are doing. It
ensures only that they are running. If any replica fails, it immediately creates a
new one.

Deployment provides higher abstraction to Replica Set and Pod. Deployments are
used to manage the Pods in higher abstractions than just Replica Sets. Deploy-
ments store the desired state of the application. If the Pod becomes unhealthy or
fails, the Deployment automatically replaces this Pod. Besides that, Deployment
allows the application to be automatically scaled. Developers can set thresholds
based on CPU utilization; for example, if some Pod exceeds 80% CPU utilization,
Deployment spin up a new replica. However, Deployment also supports a feature
called Rolling Update. This means that Deployment will maintain multiple ver-
sions of the applications. The deployment will then progressively update all the
Pods, maintaining applications available throughout the process.

Although Kubernetes is a very handful tool that offers a broad amount of tooling and
other features, it also has some obstacles that developers have to overcome. One of
those obstacles is delivering new applications to the production environment in an
automated way. This process is also known as Continuous Delivery (CD). Thankfully,
there are solutions that can help with this, and one of them is GitOps.

GitOps is a specialized type of continuous delivery that assures the application’s de-
ployment is always up to date with a specific Git repository. This workflow is
showcased in Figure below 4.3 [9]. Once any change happens in the Git reposi-
tory, the system will automatically detect this change and replace/update all the
application’s current cloud deployments. This approach is especially helpful when
the development team releases a new stable version of the application container
due to found vulnerability5). As the container images are immutable, redeploying
the application is the fastest way to mitigate the risks from CVE. Once the ver-
sion is updated, the system can update all necessary deployment descriptors and
immediately replace the new stable version. One of the cloud-native solutions for
GitOps is ArgoCD.

ArgoCD is an open-source GitOps tool for Kubernetes. It provides a declarative
configuration, which allows for seamless integration of almost every cloud-ready

5)CVE (Common Vulnerabilities and Exposures) is an entry in the common vulnerabilities and
exposures database

TBU in Zlín, Faculty of Applied Informatics 45

Fig. 4.3 GitOps workflow displayed using ArgoCD.

application [1]. Besides that, ArgoCD is also running as a Kubernetes deployment
and can manage applications on multiple clusters. This way, it simplifies the
transition from staging clusters into production ones.

Kubernetes is a powerful platform in modern software development. It allows develop-
ers to quickly move products from the development stage to production with containers.
This Section covered all the fundamentals of Kubernetes. The most important outcome
of it is the knowledge of the Kubernetes deployment objects such Pod, Deployment,
Service, etc. Understanding these objects is necessary to move any application from a
simple container into the cloud where it can really perform. Besides the deployment
objects, the Section also covered Kubernetes architecture, which can help develop-
ers during the initial design process of the application that aims for maximal cloud
potential.

Conclusions

This chapter aimed to review all the technologies necessary for implementing Distri-
bution Builder. Gradually, it covered the most low-level technologies and principles,
such as Design Patterns, Java, and Maven. These sections described the fundamentals
and most significant bits of each subject.

During the overview of design patterns, the thesis dived into creational patterns. After
considering all patterns, the Builder pattern emerged as the best solution for imple-
menting the library because it allows nesting, which is necessary for building big objects
with complicated structures. Then, the thesis moved to the Java and Object-Oriented
Paradigm.

TBU in Zlín, Faculty of Applied Informatics 46

Knowledge of the OOP is absolutely necessary for the correct implementation of the
Builder pattern. Because of that, the Section went through the core principles – Com-
position, Inheritance, Encapsulation, and Polymorphism. After a detailed explanation
of these, the text evaluated Java and Maven. During the Java dive, the thesis covered
mostly how JVM works and its advantages and disadvantages. After that, the thesis
worked its way through the Maven, and pom.xml descriptor with special attention on
the Maven assembly plugin will be necessary for the implementation.

After the fundamentals were covered, the thesis moved to more high-level technologies
like Debezium, UI technologies, and the cloud. During the Debezium overview, the the-
sis covered all the primary techniques and principles on which Debezium stands. This
Chapter also went through the Debezium Server, where we discovered what possibilities
this technology unlocks. Lastly, it covered possible technologies for UI implementation
and cloud deployment. Specifically, the thesis delved into Spring, Micronaut, ReactJS,
Angular, and Kubernetes.

TBU in Zlín, Faculty of Applied Informatics 47

II. IMPLEMENTATION

TBU in Zlín, Faculty of Applied Informatics 48

This Chapter goes through the implementation of the Distribution Builder. However,
before describing the implementation design, it is necessary to identify all possible use
cases for both the standalone library and the UI.

Identifying library use cases is quite problematic because, in addition to users, the
library will also be used in the UI. Figure below 4.4 showcases possible use cases for
the library.

Fig. 4.4 Usecase diagram for library.

As you can see in Figure 4.4, there are six identified use cases for the library:

• Configure custom Debezium Server – The User is allowed to configure
the Debezium Server based on the preferences. The library should map all the
configurations to make it as easy as possible for the users.

• Create Maven distribution – As Debezium Server is based on the Maven
build system, the library has to modify the descriptors to create the distribution
as compact as possible.

• Archive distribution – Distribution is just a folder, which is not an ideal
format for the users, as in most cases, the distribution has to be moved to a

TBU in Zlín, Faculty of Applied Informatics 49

specific path in the file system. Because of that, the library should provide the
functionality that allows users to receive archives.

• Add custom dependency – In some situations, users might want to add, for
example, custom transformations. In order to allow such behavior, the library
has to allow custom Maven dependencies to be added to the distribution.

• Generate configuration – The First point mentions the configuration for the
custom Server instance. The configuration of the server does not just involve
mapping attributes to Java classes. The library has to allow serializing these
classes to specific properties format, using key= value syntax.

• Generate operator CR – The Debezium Section 2 already mentioned the De-
bezium Operator project. As the operator is a great extension for the Debezium
Server itself, it might be very useful to generate not only standard configuration
files but also Debezium Server Custom Resource (CR). CR is essentially a custom
Kubernetes object for the Debezium Server provided by the Debezium Operator.
This file contains all the configurations for the Debezium Server instance.

The list above brings more clarity on what the library should offer. This set includes
only the necessary features to provide the library with the best possible usability.
Although the library and UI are pretty much tied together, the number of use cases
for the UI is smaller. That is because the UI should be as simple as possible for this
case. Use cases for the UI are displayed in the Figure below 4.5.

The figure identifies four use cases. Some of the use cases are exactly the same as the
library, but for the UI, there is obviously an entirely different way to achieve these.
Beneath, you can find an extended description for each use case of the UI:

• Configurate custom Debezium Server – Parallel to the library use case.
The UI must provide proficient interface objects that are easy for the user to
manipulate. For this case, the object should be something that provides the
ability to pass user input – forms.

• Generate custom archive distribution – Once the server is fully configured
and all inputs are passed, the UI should take the whole input, pass it to the
library, and then return the archive as a downloadable file to the user.

• Add custom dependency – The UI should map the library functions for
adding new dependencies to sufficient user interface structures.

TBU in Zlín, Faculty of Applied Informatics 50

• Add custom truststore and keystore – In order to allow security for the
Debezium Server, it is necessary to bundle the keystore and truststore to the
distribution. UI has to provide the user with a way to include those files in the
generated distribution request.

Fig. 4.5 Usecase diagram for UI.

Identifying use cases is the initial step in the development process. Based on these use
cases, the thesis can start with the design process. Designing such a complex system
like this might be tricky. Because of this, the Chapter will introduce a couple of new
diagrams. Specifically, we are talking about the class and sequence diagrams:

• Class diagram – Diagram describes the structure of the system by showcasing
the class hierarchy. It models all relations between classes, but for this project,
we will use only association (simple line without arrows), extension (simple line
with the arrow), and implementation (dashed/dotted line with the arrow).

• Sequence diagram – Maps interactions between all parts of the system. For
the thesis case, we will mostly talk about the interaction between the user, library,
frontend, and backend. Based on the designed interactions, it is much easier to
develop a proficient public interface for each system.

TBU in Zlín, Faculty of Applied Informatics 51

5 Design proposal

The design process has to start from a central object. In this case the main object of
the whole design process is the Debezium Server. The server object should contain all
necessary attributes. Based on the Debezium Server configuration [4] it can be iden-
tified that the server must contain source connector, sink connector, internal schema
history storage, and offset storage. Besides that, the design of the library still has
to allow proper mapping of the attributes into the Maven dependencies or assembly
plugin filters.

The first class diagram 5.1 shows the design of the Debezium Server object. Because of
space limitations, the diagram is not fully complete, and it is missing specific interface
implementations, attributes, and other important design methods. This trend will be
used across the whole design Section. The complete class diagram of the library can
be found in Appendix 1

Fig. 5.1 Custom Debezium Server object class diagram.

The diagram contains a couple of interfaces that are very important for the whole
implementation. The first and probably most crucial interface is ModuleNode. This in-

TBU in Zlín, Faculty of Applied Informatics 52

terface effectively points to the object that should included in assembly filters or added
to the subset of dependencies. You can see that the interface declares that all child
classes must define the buildNode method. This method should be used to manipulate
the Maven descriptors or to prepare the necessary structures for the descriptors. From
the documentation, we can identify that for the functional Server distribution. The
library must include a dependency for each already identified CustomDebeziumServer

object attribute. From the Figure, we can see that all these attributes are bound to
this interface.

The following important entities in the diagram are SourceNode and SinkNode inter-
faces. Each of these interfaces associates specific connector objects. The SourceNode

groups all the database connectors, and a deeper description can be seen in Figure 5.2.
On the other hand, SinkNode associates all sink connectors, showcased in Figure 5.3.
Besides that, both interfaces extend the ModuleNode, which means that the implemen-
tation of the sink/source connector interface will add/filter appropriate dependency for
the specific connectors.

The last important interface from Figure 5.4 is SchemaHistoryStorage. This interface
groups all the storages that can store schema history for Debezium connectors. There
are many storages that can serve both schema history and offsets. Because of that,
the StorageConfig interface extends that SchemaHistoryStorage. A more specific
description of the class hierarchy for storage can be seen in Figure 5.4. Implementa-
tions of these interfaces are then used in concrete classes included in the Debezium
Server class as attributes. This design should allow the CustomDebeziumServer class
to contain all the necessary information for the distribution build.

Based on the design for the CustomDebeziumServer class, we know that one of the
attributes is sourceNode. This interface is the parent for all implementation of the
Debezium database connectors. Although this might sound simple, it is not entirely
true. Source connectors contain many different configuration fields, some of which are
the same for all the connectors, some shared between general SQL connectors, and
some specific to the exact connector. Mapping this relation is displayed in the Figure
below 5.2.

The Figure above displays all the important relations with an example of two con-
crete implementations. The first noticeable change is that the design includes three
new interfaces – Config, YamlConfig, and PropertiesConfig. These interfaces are
essentially what force implementations to provide serialized configuration. The Config
is essentially grouping the other configuration interfaces. More important interfaces are

TBU in Zlín, Faculty of Applied Informatics 53

Fig. 5.2 Source node object class diagram.

the specific ones. YamlConfig instructs the implementations to implement toYaml()

method which should contain serialization process which will return Map<String,

Object> type.

The HashMap<String, Object> type is a collection of key-value pairs where the String
declares that every key will be of String type and Object, on the other hand, states
that each key will be the implementation of an Object class. The main reason for using
Map is that the default serialization of this data type is exactly the same as Yaml.

You might ask why the Yaml when we have already talked about the configuration
being in properties style. The Yaml is necessary to deploy the Debezium Server via
Debezium Operator into the Kubernetes cluster. An example deployment file for the
operator is displayed on the Listing 11 beneath.

Besides the configuration mapping, the Figure also showcases the configuration in-
heritance where the configuration is split into SQL-specific connector configurations,
and the default configuration is shared across all the connectors. In Figure 5.2, you
can identify two concrete implementations for database connectors – Mongo and Mysql.
Mysql is a connector for SQL-based database, so it will contain configuration field from
both ConnectorConfig and SqlBasedConnectorConfig classes.

TBU in Zlín, Faculty of Applied Informatics 54

1 apiVersion: "debezium.io/v1alpha1"
2 kind: "DebeziumServer"
3 metadata:
4 name: "custom -debezium -server"
5 spec:
6 image: "IMAGE_PLACEHOLDER"
7 source:
8 class: "io.debezium.connector.mysql.MySqlConnector"
9 config:

10 debezium.source.tasks.max: 1
11 debezium.source.database.port: 3306
12 debezium.source.database.hostname: "test -dtb"

Listing 11 Example of yaml descriptor for the Debezium Operator with only source
configuration.

On the other hand, Mongo connector is for NoSQL database, so it will inherit the con-
figuration fields only from the common ConnectorConfig class. And, of course, the
last piece of the puzzle, each implementation of the SourceNode interface will be tran-
sitively linked to ModuleNode, so it will have to implement the buildNode() method.
The design for the sink side of the Debezium Server is essentially the same as for the
source side. All the specific implementations for sinks implement all necessary inter-
faces – YamlConfig, PropertiesConfig, and SinkNode. Relations are showcased in
Figure 5.3.

Fig. 5.3 Sink node object class diagram.

Both sink and source connector designs were relatively straightforward. The more
problematic part of the Server is the storage. Debezium Server must include a con-

TBU in Zlín, Faculty of Applied Informatics 55

figuration and storage adapter for both schema history and committed offset storage.
The main obstacle that has to be addressed is that some storage implementations, like
Redis, can be used for both offset storage and schema history storage.

Fig. 5.4 Storage object class diagram.

Class design for the storage is displayed in Figure 5.4. From the diagram, you can see
that the storage uses precisely the same top-level interfaces as the main parts of the
Debezium Server. From the figure, we can identify two new interfaces – SchemaHistory

Storage and StorageConfig. These two interfaces can then be implemented by spe-
cific storage adapters. There are two example implementations of those adapters. The
first one is the FileStorage. This adapter can only be used to store offsets. The sec-
ond implementation is RedisStorageConfig. This storage is the opposite case than
FileStorage. It can serve as both offset and schema history storage.

These class diagrams are the core of the library design. Based on those diagrams, the
implementation process can start. But there are still a few parts missing. You might
be concerned about why any of those diagrams do not show signs of Builder pattern 1.
There is a simple answer to this. Today, there are many technologies that are making
lives of the developers easier, and there is one that can help with turning the Builder
pattern into reality – Sundrio [25].

TBU in Zlín, Faculty of Applied Informatics 56

Sundrio is a Java library that allows developers to completely strip the code from the
Builder implementation and generate the builders during the build process. On
top of that, the Sundrio leverages the functionality on Fluent API. Fluent APIs
are used to make code more readable and easier to read. The main characteris-
tic of Fluent APIs is that they chain the method calls [7]. The main difference
between fluent and non-fluent implementation of the builders is that fluent im-
plementation is immutable [6]. Immutable, in this case, means that the builder
will create a new object instance every time, not just change the internal state
and return the same reference as the classic builder implementation.

Sundrio allows builders and specific classes to use Fluent API. During the compile
process, Sundrio generates 3 additional Java classes – FluentImpl, Editable,

and Builder. FluentImpl transforms the class into Java Fluent API implemen-
tation. Editable allows editing the fluent objects. It contains only one method
edit, which returns Builder for the current class. Builder class contains builder
for the fluent implementation.

You might ask how the Sundrio recognizes for which class it should generate
the builder. The library works around Java annotations. Specifically, Sundrio
provides developers the @Buildable annotation. This annotation instructs the
library to generate all necessary classes for the specific annotated class. Overall,
the Sundrio is a very user-friendly library that provides very powerful features
that significantly help the developer. Sundrio is very popular in the Kubernetes
world, where you always have to compose complicated objects (both Debezium
Operator and also Strimzi1) project uses Sundrio).

Once the initial design of the library code structure is done, it is time to design how
the user should interact with each part of the Distribution Builder and other systems.
From the beginning of this chapter, it is apparent that sequence diagrams are needed.

In order to define the complex interactions between the user, UI, backend, and library,
it is necessary to define interactions between the user and the library. The Figure 5.5
displays these interactions. From the diagram, we can see that the first step is that
the user will build the CustomDebeziumServer object, which should include the whole
configuration which should be included.

This building process is realized with the Sundrio described above. Once the build is
complete, the user will obtain an immutable CustomDebeziumServer object. Then, the
user can hand this object to the library and instruct it to build a custom distribution.

1)Open-source Apache Kafka operator.

TBU in Zlín, Faculty of Applied Informatics 57

We are now at the point where the library has everything it needs to build the distri-
bution, and it has to complete several steps in order to create the distribution (some
of the steps are stripped from the diagram in order to keep the diagram relatively
straightforward).

The first step that the library must take is to obtain the Debezium Server sources;
this might be done either by cloning the upstream git repository or by supplying it to
the user. Then, the most critical part is modifying the Maven descriptors in order to
minimize the number of dependencies in the final distribution. This could be achieved
by modifying the POM or assembly descriptor, which will be described later.

Fig. 5.5 Sequence diagram of java library.

Based on the use-case diagram, we can identify the rest of the necessary steps. First,
the library needs to prepare the Dockerfile for the distribution and then append it to
the specific place in the distribution sources.

The next operation is certificate cloning. If the user supplies the certificates that
should be added to the distribution, the library has to take those files and clone them
into specific places in the distribution sources so they are later reachable during the

TBU in Zlín, Faculty of Applied Informatics 58

container image build. The last step which can do is to archive the sources, including
new Dockerfile, certificates, and other supplementary files. The archive should be
created at the specific path supplied by the user.

Once we have defined the sequence diagram for the standalone library, we can move to
the higher lever. We can determine how the user will communicate with the UI and
how the UI will then cooperate with the library. The Figure 5.6 specified four actors
in the sequence:

• User – A person who uses the library.

• Frontend – Part of the UI is visible to the user. It provides necessary com-
ponents that allow users to pass all information to the backend in the correct
format.

• Backend – User interface logic. It exposes all endpoints that are accessible from
the frontend.

• Library – The standalone library.

These four actors were chosen because the implementation based on the technologies
specified in Theory chapter I leads to code separation that will look exactly like that.
The workflow of the UI can be separated into three essential steps. The first step is

startup. During the startup, the Backend has to load the configuration metadata from
the library. This metadata should contain all the configuration properties available for
the Debezium Server. The UI needs to have all the information about the configuration
before the UI renders. This step happens only between the backend and the library.
The UI is not yet loaded because the user has not yet loaded the page. At the beginning
of the second step, the user loads the page. Once the user tries to load the UI, it makes
a request to the backend to obtain all metadata. Backend returns already obtained
and metadata model and returns it to the UI. UI then renders all the components and
returns the generated frontend stack to the user.

The user now has a complete UI, which he can interact with and fill in all the fields he
wants. Once he has filled in all the fields and uploaded the files, he can instruct the UI
to generate a custom distribution. The UI now has to serialize all the data obtained
from the user. Once this process is complete, the UI passes all the information to
the backend. The backend then parses the data and prepares everything, like storing
the files in proper locations. After the preparations are completed, the backend calls
the library to prepare the distribution. Everything that the library has to do for this

TBU in Zlín, Faculty of Applied Informatics 59

Fig. 5.6 Sequence diagram of Distribution Builder UI.

step to be completed is showcased in the previous sequence diagram 5.5. Once the
archive is prepared, the backend transforms it to the byte sequence handed over to the
front end and then to the user. The user’s browser sees this byte sequence as the file,
so it will immediately download it. At this point, the whole design of the library is
complete. We know what the implementation of the standalone library should look
like. We discovered that for library class design, the implementation has to take care
of several main key obstacles:

• Maven descriptors – All the important library objects have to contain the
necessary information to modify the Maven descriptors. And it depends on the
implementation of how this information will be used.

• Configuration mapping – The library has to contain all the configuration
mapping for the Debezium Server. This might sound like an easy task, but it
is not. Implementation has to strip the configuration into the smallest possible
formations.

• Configuration serialization – All the configuration objects translate into prop-
erties or YAML format in different ways, so every object has to implement its
own serialization.

TBU in Zlín, Faculty of Applied Informatics 60

Besides that, the main obstacle to the implementation to overcome would be to generate
the metadata model for the UI. Parse it in the frontend and dynamically generate the
UI components based on this model. This step might be especially tricky because you
basically don’t have any information about the model prior to the render except the
structure of it.

TBU in Zlín, Faculty of Applied Informatics 61

6 Code overview

The code is divided into three separate projects. This might just be a temporary
solution, as the right place for this project is still being discussed. Essentially, the
whole Distribution Builder, including UI, could be in one repository. This Section goes
through each part of the project and describes the most essential pieces of code found
there. Besides that, it also mentions the biggest obstacles that were found during the
implementation and how the implementation overcame those.

Library

Based on the design diagrams created in the previous Section 5, it is clear what are
the steps that should be covered by the library. This section will go through the most
exciting bits of the implementation. The first obstacle found during the implementation
was that the library had to append only defined attributes to the properties or YAML
configuration.

1 package io.debezium.server.dist.builder.modules.config;
2
3 public interface ConfigBuilder <T extends Config > {
4 void put(String key , Object value);
5 <E extends Enum <E>> void putEnumWithLowerCase(String key , E e);
6 <E extends Enum <E>> void putEnum(String key , E e);
7 void putList(String key , List <String > list);
8 void putBoolean(String key , Boolean value);
9 void putAll(T p);

10 void putAllWithPrefix(String prefix , T p);
11 void putAllWithPrefix(String prefix , Map <String , Object > map);
12 }

Listing 12 Library listing – configuration builder interface

In order to achieve such a thing, the library introduces ConfigBuilder interface. This
interface is built around generics. On the Listing 12, you can see that the implemen-
tation of this interface needs to pass a type argument. This argument would be either
PropertiesConfig or YamlConfig.

These two interfaces were introduced in the design proposal Section. This eventually
means there will be two implementations of the ConfigBuilder, first for the properties
and second for YAML. The methods declared in the interface allow adding all the
possible objects to the properties with various modifications like prefixes and others.

TBU in Zlín, Faculty of Applied Informatics 62

One more bit that could catch your eye is <E extends Enum<E». This defines that E

can be any Java enumeration implementation.

One of the next steps introduced during the design process is for the library to compress
the distribution into a compact archive. That alone would not be anything interesting,
but Java does not provide tooling for compressing the whole directory. Because of that,
the library has to introduce a process that will go through the files and add them one
by one to the archive. The iteration over all the files in the directory is achieved by
implementing java.nio.file.Files.walkFileTree.

1 ...
2 try (ZipOutputStream zos = new ZipOutputStream(os)) {
3 Files.walkFileTree(source , new SimpleFileVisitor <>() {
4 @Override
5 public FileVisitResult visitFile(Path file ,
6 BasicFileAttributes

attributes) {
7 try (FileInputStream fis = new FileInputStream(file.

toFile ())) {
8 Path targetFile = source.relativize(file);
9 zos.putNextEntry(new ZipEntry(targetFile.toString

()));
10 byte[] buffer = new byte [1024];
11 int len;
12 while ((len = fis.read(buffer)) > 0) {
13 zos.write(buffer , 0, len);
14 }
15 zos.closeEntry ();
16 ...

Listing 13 Library listing – directory compressor

That method goes over all the files, and on each file, it executes the visitFile callback.
The implementation of this callback is the critical bit. At the beginning, a new zip
entry is added to the archive.

This essentially moves the ZipOutputStream pointer to the beginning of the new file.
After that, the file is continuously read in chunks until it is complete. These chunks
are also continuously written into the ZipOutputStream. Once this process is done,
the entry is closed, and the callback is complete.

This implementation is essentially universal and should work on all possible file sizes.
There is a possible modification that would make a method simpler. We could re-
place the whole read and write loop with java.nio.file.Files.readAllBytes(file)

TBU in Zlín, Faculty of Applied Informatics 63

but that is a little dangerous because this method might fail for larger files with
OutOfMemoryException. Even if the occurrence of a file such as big is very minimal,
the author decided to use a more generic approach showcased on the Listing 13.

From the previous section, we also know that all the communication between separate
system parts is handled via JSON format. Commonly, the JSON arrays are interpreted
in a specific format. This format is showcased on the Listing 14.

1 [
2 "item␣1",
3 "item␣N"
4]

Listing 14 JSON array

However, forcing the users in the UI to construct such an array with multiple separate
inputs would be overwhelming for such a widely scoped configuration. Most appli-
cations, including Debezium, use just the comma-separated items to interpret arrays.
Implementation of the library uses the FasterXML/jackson 1) library for all the serial-
ization and parsing work. In order to allow parsing the comma-separated array format,
Jackson’s default behavior must be overridden.

The Listing 15 displays the implementation of custom DeserializationProblem-

Handler. This handler is called whenever Jackson’s parser encounters a problem with
the input syntax. In this case, the custom deserializer overrides this callback and
checks if the input value is String, and the expected type should be collection-like. If
the conditional is true, the input sequence will be parsed as a comma-separated list.
Otherwise, it will just call the default DeserializationProblemHandler to proceed
as usual, which, in this case, means raising an exception.

During the implementation of the library, a couple of obstacles occurred. Most of them
were, thanks to good design, very minor and could be fixed reasonably simply. However,
there is one issue that has still not been figured out. How will the implementation
construct custom Maven distribution?

The Theory Chapter I presented that there are two possible ways how to achieve the
desired state, via modified pom.xml or assembly.xml. Choosing between these two is
very hard, and choosing the right one without further investigation is impossible.

1)Information about the Jackson library can be obtained from: https://github.com/FasterXML/
jackson

https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson

TBU in Zlín, Faculty of Applied Informatics 64

1 public class CommaSeparatedListProblemHandler extends
DeserializationProblemHandler {

2 @Override
3 public Object handleUnexpectedToken(DeserializationContext ctxt ,

JavaType targetType , JsonToken t, JsonParser p, String
failureMsg) throws IOException {

4 if (t == JsonToken.VALUE_STRING && targetType.
isCollectionLikeType ()) {

5 return deserializeCommaSeparatedList(targetType , p);
6 }
7 return super.handleUnexpectedToken(ctxt , targetType , t, p,

failureMsg);
8 }
9

10 private Object deserializeSimpleCommaSeparatedList(JsonParser
parser) throws IOException {

11 String [] vals = parser.getText ().split(",");
12 return new ArrayList <>(Arrays.asList(vals));
13 }
14 ...
15 }

Listing 15 Library listing – custom deserializer for comma-separated array

At first look, the assembly.xml modification seems like a better approach, as this
descriptor is specifically for the distribution generation. Let’s take a deeper look at
what would be necessary to go this path. As already mentioned earlier in the thesis,
this descriptor is composed of filters. These can be either include or exclude type.
Obviously, the first thought is that it is pretty simple: exclude everything and include
only dependencies for source, sink, etc. That would definitely be a very clean approach.

However, it is impossible to do it. If this descriptor excludes everything at the start,
it will exclude all the transitive dependencies. So, the library would need to obtain
a dependency tree for each requirement and then add all those libraries as explicitly
allowed in the descriptor. That might be all right if we spoke about 2-3 dependencies.
In the case of the Debezium Server, we are talking about a much higher number. So,
this approach is not an option.

However, there is still the opposite way to handle the dependencies in that descriptor.
If the library uses the exclude filter and explicitly excludes all other dependencies than
the required ones, everything should be in place. Well, that sounds a little too easy,
and of course, there is a catch! The Maven assembly plugin does not have totally
deterministic behavior regarding transitive filtering. So, it might happen that if the
library excludes some dependency, it would exclude this dependency and possibly all

TBU in Zlín, Faculty of Applied Informatics 65

its transitive dependencies. And that could possibly exclude some child dependency on
distribution requirements. During the implementation, the author even found the issue
directly in the Debezium Server that completely corrupted the current distribution 2).
This issue highlights how dangerous this path is and how easily it can go sideways.

So, using the assembly.xml to construct a custom distribution does not sound like a
good idea. So it is evident that the only way this can be implemented is via modify-
ing the distribution pom.xml. The default assembly.xml will include all dependencies
specified in the pom.xml, so eventually, the only thing needed is to add only the nec-
essary dependencies.

As the pom.xml descriptor is the XML document, which means it can be manipulated
via DOM (Document Object Manipulation API. The DOM allows developers to manip-
ulate the XML document programmatically. Firstly, the library has to prepare a base
template that should contain all information that is shared across all the distributions.
This base is included in thesis Appendix 2.

It can be parsed into the DOM document. Before the implementation can append all
necessary dependencies, it is necessary to find the correct parent tag for where these
should take place. This can be achieved just by searching for the dependencies tag.
The base contains just one of those, so if implementation finds more of them, it can
assume the base is corrupted. Once the implementation identifies the dependencies

closure, it can build the dependency closure for each dependency.

Construction of that closure must be implemented for each object representing the
dependency as described in the design Section. Debezium dependencies do not require
setting the version because they will inherit it from the parent. Building a DOM node
for the dependency is showcased in the Listing 16. This section went through the most
essential bits of the library implementation. Specifically, it covered building config-
uration sets, archiving the distribution folder, and parsing specific comma-separated
arrays. Lastly, the Section described the most crucial bit, which is building a custom
distribution. It goes through all the possible implementation possibilities. With all the
gathered information, the thesis can now proceed to the Backend implementation.

2)Pull request with the fix can be found at: https://github.com/debezium/debezium-server/
pull/73

https://github.com/debezium/debezium-server/pull/73
https://github.com/debezium/debezium-server/pull/73

TBU in Zlín, Faculty of Applied Informatics 66

1 private static Node buildBase(Document document , String artifactId) {
2 Node dependency = document.createElement("dependency");
3
4 Node groupIdNode = document.createElement("groupId");
5 groupIdNode.setTextContent(groupId);
6 dependency.appendChild(groupIdNode);
7
8 Node artifactNode = document.createElement("artifactId");
9 artifactNode.setTextContent(artifactId);

10 dependency.appendChild(artifactNode);
11
12 return dependency;
13 }

Listing 16 Library listing – Maven dependency node builder

Backend

The implementation of the Backend is realized with the Spring Boot framework. Thanks
to that, the implementation can be really simple, without any necessary overhead. If
we look into this through the MVC model, the backend is the controller for the Dis-
tribution Builder system. This controller must manage two desired endpoints. One is
for distribution generation, and the second will allow the UI to obtain metadata.

This endpoint basically takes the generated JSON metadata file and returns it as
a stream of bytes. The generation of metadata must take place right after the initial
startup of the backend. This can be achieved with @PostConstruct annotation. Which
instructs the Spring Boot to run a specific method. This method is displayed in the
Listing 17. You can see that this process precisely follows what was specified in the

1 @PostConstruct
2 public void generateMetadata () throws IOException ,

ClassNotFoundException {
3 logger.info("Generating␣metadata");
4 metadataFile = MetadataUtils.getMetadataFilePath ();
5
6 MetadataGenerator metadataGenerator = new MetadataGenerator ();
7
8 metadataGenerator.generateMetadata(
9 new FileOutputStream(metadataFile.toAbsolutePath ().toString ()));

10 cloneServer ();
11 }

Listing 17 Backend listing – metadata generation

TBU in Zlín, Faculty of Applied Informatics 67

sequence diagram 5.6. The second endpoint is used for the distribution generation.
What is interesting about the endpoint is that it expects the request to contain two
files (keystore and truststore). That alone would not be anything interesting. But
these files are not transmitted as a whole. They are separated into multiple chunks.
Thankfully, Java offers a solution to accept such files – MultipartFile. The controller
waits for the whole file to arrive and then completes it into this object, which then can
be manipulated just as a regular Java File object.

Overall, the implementation of the Backend is the simplest of all the system parts.
Spring helps the developer and takes care of all the problematic parts like the Multi-

partFile and handling the HTTP protocol. The more problematic part of the imple-
mentation takes place on the frontend side.

Frontend

The frontend of the application is implemented using the Angular framework. The im-
plementation is separated into two main components. The first component (main-page)
is just a simple component that returns a page that contains information about the
application. It is basically an alternative to About Us page that you can find on al-
most every page. The second component (distribution-builder) is used to configure
custom server distribution.

This component is much more complicated. First, metadata has to be retrieved from
the backend. This is handled by metadata-http service. This server wraps up the
Angular HTTP client implementation into prefabricated methods. HTTP implemen-
tation that is provided by Angular works asynchronously, which brings complications.
The component needs the metadata before it starts the rendering. Thankfully, there
is a solution that can help overcome this obstacle.

The Listing 18 displays the initialization of the distribution-builder. You can
see that during the initialization, the method calls for the HTTP service to retrieve
metadata. But this call is async, so the method will only call that and then immediately
move away from it. At this point, all templates have a conditional that disables the
render process if the ready variable is false. Once the async call completes, it executes
the callback.

At first, the callback parses the metadata using the metadata-parser service. Then, it
sets all the attributes needed for render, sets ready to true, and calls the cdRef object

TBU in Zlín, Faculty of Applied Informatics 68

1 ngOnInit (): void {
2 this.serverConfig = new DebeziumServerFormBase <any >();
3 this._form = new FormGroup <any >({});
4
5 this.httpService.getMetadataFromBackend ().then(value => {
6 this._form = this.parserService.parseMetadata(this.

serverConfig , value);
7 this.dependencyList = this.serverConfig.children [4];
8 this.ready = true;
9 this.cdRef.detectChanges ();

10 }).catch (() => {
11 //error processing - shortened for listing
12 console.log("Error!");
13 });
14 }

Listing 18 UI listing – initialization of the component with async client.

to detect changes. This object can trigger the rendering of the page if something
changes in its internal structure. At this point, it detects that the internal attributes
of the component changed their value, so it triggers the render. Once this happens,
the templates again check if the ready attribute is true. If yes, all components are
rendered, and the user receives the prepared UI.

You might ask why there is a separate service for parsing the metadata when it is just
a simple JSON file. Well, this is not just regular parsing because besides just parsing
the JSON, it must also prepare the whole FormGroup structure (described in Angular
Section 3.2) because templates need complete information about the form structure
before they render.

So, at first, the parser parses the JSON into the MetadataObjectModel object. Once
that is done, the service goes through that object and all its children, and for each,
it creates a specific form entry. This entry can be either FormGroup, FormArray, or
FormControl, depending on the item type. Besides that, it also prepares an additional
object DebeziumServerFormBase for each item. These objects then essentially form a
double-linked list that contains additional information about the form entries.

The most intricate part of the UI is forming and rendering the HTML entries that
are correctly linked to all callbacks in Angular. What makes this process extremely
complicated is that the UI does not have any information about the configuration it
will display before it receives the metadata. So, the implementation must be flexible
and work with a dynamic number of components.

TBU in Zlín, Faculty of Applied Informatics 69

You might think that this should not be so complicated. You properly implement
recursion and create specific components for each type of entry, and everything should
be all right.

Well, that is not possible because once one component is complete and returned to
the main one, Angular will trigger a form validation process that will fail immediately
because the form structure will not be complete. That essentially means that the
generation of all HTML components must take place in a single component template.
In order to satisfy this requirement, the implementation must find a way to iterate
over metadata and generate the components without triggering the validation process.
Thankfully, there is a solution that allows such behavior – ng-template.

This element allows the implementation to wrap up a piece of code that will be sep-
arated from the rest of the template. It will create a virtual environment, including
variables available only for its scope. But most importantly, the ng-template allows
the implementation to call itself recursively. That is a massive thing because going
through the metadata object in iteration would make code much more complicated. ’

1 <ng-template #treeForm let -data let -group="specificGroup">
2 ...
3 <div class="container">
4 <!-- Handle interface implementations -->
5 <ng-container *ngFor="let␣option␣of␣data.options">
6 <ng-container [ngTemplateOutlet]="treeForm" [

ngTemplateOutletContext]="{␣$implicit:␣option ,␣
specificGroup:␣this.getFormGroup(option.label ,␣group)␣}">

7 <!-- Recursion template -->
8 </ng-container >
9 </ng-container >

10 </div>
11 ...
12 </ng-template >

Listing 19 UI listing – recursion in HTML templates.

On the Listing 19, you can see code snippet from the distribution-builder compo-
nent template. You can see that this specific piece of code goes over all the options
included as an implementation for the interface. For example, you can imagine the
interface as SourceNode and options as MySQL, PostgreSQL. The template iterates
over those options, and for each option, it calls the same ng-template, but this time,
it passes only the options object and current form group so that the recursive call will
work only of this tree subset.

TBU in Zlín, Faculty of Applied Informatics 70

Once the recursive iteration through the whole metadata model is completed, validation
is triggered, and the HTML is passed to the user. The user can then specify all desired
configuration bits, upload all the files, and instruct the UI to generate the distribution.
An implementation serializes the configuration, appends the files, and sends it to the
backend endpoint. Once everything is processed on the backend side, the distribution
archive is returned as a Byte stream. This stream is then handed to the user as a
downloadable file. This process is handled by file-saver library3).

The implementation of this system was very interesting, and it discovered many prob-
lems that one might not think existed. Implementation of each system part is ex-
ceptionally different; the library is strictly object-oriented, where almost everything is
mapped to a specific class. The UI, on the other hand, could be described in one single
world – recursion. But implementation is not everything. It is necessary to do some
testing before going to some publicly reachable environment. Because of that, the next
section will go over the test implementation for this system.

3)More information about the library can be obtained at: https://github.com/eligrey/
FileSaver.js

https://github.com/eligrey/FileSaver.js
https://github.com/eligrey/FileSaver.js

TBU in Zlín, Faculty of Applied Informatics 71

Testing

Testing of Distribution Builder is quite tricky as it is separated into three different
projects. In order to achieve the best possible test coverage of all the functions, the
system uses two layers of testing – unit and integration.

Unit tests are mainly located in the library repository4). The library is a great target
for unit testing because it offers many small features that can be tested individ-
ually, which is essentially the main focus of the unit testing. These tests are
written using JUnit framework. This framework is, without doubt, the most
used testing framework for Java applications [12]. It handles all test execution
so developers can just write tests. The Listing 20 displays one of the tests imple-
mented for the library. You can see that there is @Test annotation, which marks
the put() method as JUnit test. In the method’s body, you can see some object
operations, and after that, assertThat method. This method effectively creates
the test output. If those two arguments match, the test passes. Otherwise, it
fails.

1 @Test
2 void put() {
3 HashMap <String , Object > props = new HashMap <>();
4 props.put("test -key", "value");
5 YamlBuilder pb = new YamlBuilder ();
6 pb.put("test -key", "value");
7 pb.put("test -null", null);
8 assertThat(pb.getYaml (), is(equalTo(props)));
9 }

10 }

Listing 20 Example implementation of the unit test in Java.

Integration tests are used to verify the functionality of the whole system working
together. Because of that, it is necessary to build the integration tests around
the UI, which integrates all the parts of the ecosystem. Testing the system
through UI can be complicated because it requires the test system to act as a user.
Thankfully, there are many testing frameworks that allow such behavior. One of
them is Playwright. Playwright is a testing framework that allows developers to
locate specific components of the web page and trigger specific events like mouse
clicks or keyboard events.

4)Repository can be found at: https://github.com/obabec/debezium-server-dist-builder

https://github.com/obabec/debezium-server-dist-builder

TBU in Zlín, Faculty of Applied Informatics 72

The integration tests are in the UI repository 5). Those tests progressively fill out
different configuration fields and then request the distribution archive. Once the
archive is generated, the tests take it and compute the md5 checksum on the file.
Then, the tests compare this checksum to the expected one. If the checksum is
the same, the test passes.

The Listing 21 displays one of the integration tests developed for the Distribution
Builder. You can see that the tests open up the page on a default network port.
Once the page is open, it will navigate to Builder subpage. Then, it generates the
empty distribution. If the empty distribution is generated without an exception
and it is empty, the test passes.

1 import { test , expect } from ’@playwright/test’;
2
3
4 test(’test -empty -distribution ’, async ({ page }) => {
5 await page.goto(’http :// localhost :4200/ ’);
6 await page.goto(’http :// localhost :4200/ intro’);
7 await page.getByRole(’link’, { name: ’Builder ’, exact: true }).click

();
8 const downloadPromise = page.waitForEvent(’download ’);
9 await page.getByRole(’button ’, { name: ’Create␣distribution ’ }).

click();
10 const emptySum = ’6a8c833ef6d8b0c943c1295016e2d6ed ’;
11 const md5File = require(’md5 -file’);
12 md5File(await (await downloadPromise).path()).then((hash) => {
13 expect(hash).toEqual(emptySum);
14 })
15 });

Listing 21 Example implementation integration test using the Playwright.

Besides the tests the repositories also contain preparation for ArgoCD automation.
This means that each part of the project contains Kubernetes deployment files (PVC,
Service, Deployment)6).

5)Repository is located at: https://github.com/obabec/dist-builder-Angular-ui
6)Each repository (API and UI) contains the folder deployment with all Kubernetes deployment

files

https://github.com/obabec/dist-builder-Angular-ui

TBU in Zlín, Faculty of Applied Informatics 73

7 Application in commercial security systems

In order to identify use cases in security systems, we have to look from a higher per-
spective. As mentioned, Debezium Server can serve as a very effective feed for machine
learning or artificial intelligence (AI) in general. This is precisely where it could help
security systems. There are two possible use cases where Distribution Builder and
Debezium Server could help.

The first use case is in modern security systems, which are based on Internet of Things
(IoT) devices. These devices operate on the edge, where there is very limited com-
putation power, so using AI is almost impossible. System providers can, at this mo-
ment, generate the specific distribution of Debezium Server that will have a signif-
icantly smaller memory footprint than a normal distribution. This distribution can
then stream changes from all the sensors into an external data center where all the
AI computation takes place. Let’s visualize this scenario on the example displayed in
Figure 7.1.

Fig. 7.1 Application of Debezium Server distribution in IoT security systems.

Figure 7.1 showcases possible use cases in simple home security systems. You can see
that the security is composed of several inputs –window detector, PIR detector, and
RFID reader. These inputs store all the changes in some time series database. This
could be, for example, TimescaleDB 1). The database is connected to the microcon-
troller. Together, these two components create the brain of the whole security system.
Besides that, the system also contains custom Debezium Server distribution. This can

1)TimescaleDB is an extension to the casual PostgreSQL database.

TBU in Zlín, Faculty of Applied Informatics 74

run on the microcontroller or some other chip. Debezium Server now streams all the
data from the database to the external data center.

The data center can contain some data feed systems (for example, Redis) and machine
learning computations connected to this feed. Machine learning will progressively learn
the user’s routines and reactions to specific events. Once the machine learning identifies
the bare minimum of the relations tree, it can give specific feedback to the microcon-
troller. This feedback varies depending on what sensors are used and where they are
located. An example might be the detection of false positive intruder detection.

For example, if the homeowner arrives home with the children. He opens the garage,
but before he can unarm the security system, children will run to the garden and
trigger PIR detector. At this point, the security system triggers the alarm. The ML
will detect this series of events and notify the controller to deactivate the alarm because,
from previous situations, the ML knows that this happens quite often and that there
is no risk in doing so. This significantly improves the user experience of such a system.
This situation was one of many that could be mitigated using the custom distribution
of the Debezium Server and machine learning together.

Of course, this is just a simple deployment. If the object is bigger and has multiple
different technologies on board, the provider can always plug more specific distribution
of the server for each and stream the events independently on each other to the data
feed. Everything at this point is in the hands of the provider as the Distribution
Builder allows building the distribution for a wide variety of Debezium Server sinks
and sources.

The second use case that was considered essential during the implementation of this
project was to make the quantitative risk analysis more commonly used. These days,
security experts have a lot of statistical data that can be used for much more accurate
risk analysis, like unemployment statistics or maps of criminal activities. All of these
sources are valuable assets for the risk analysis. However, these data sets have to be
processed. The system has to create something like a weighted sum to combine them
into meaningful results. Doing this manually for each analysis is complicated, and that
is why most experts don’t take this path.

At this point, custom Debezium Server distribution entries are in the field. Debezium
Server can collect data from all the sources and push these into the Machine Learning
data feed. The machine learning can then process all the data and identify the risk for
the specific location. Let’s display this situation using simple schematics.

TBU in Zlín, Faculty of Applied Informatics 75

Fig. 7.2 Application of Debezium Server distribution for quantitative risk analysis.

Figure 7.2 displays possible deployment for such a use case. You can see that there are
statistical datasets. Depending on how these datasets are stored, it may be necessary
to transform them into different storage. Most commonly, these sets are stored in SQL
databases so they can be effectively queried. Then, there is a data center that hosts
all computation processes, including custom Debezium Server distribution. During the
start-up, the Debezium Server creates a snapshot of the data sources, which essentially
migrates all the data to the machine learning feed. Once the snapshot is done, the
Debezium Server starts to stream all the changes on the datasets so the feed is always
up to date.

Machine learning takes all the data from the feed and processes it according to its
model. Once the machine learning establishes the base relationships, users can request
the ML create an analysis for a specific geographic location. Based on the prepared
model, it processes the location and returns a risk evaluation.

This Section went through the possible use cases for custom distributions of Debezium
Server in security systems. All these use cases are just theories, and they would need a
lot of work to turn them into reality. This thesis does not aim to explain or deep dive
into the machine learning principles of artificial intelligence in general, so it uses just
a generic description. Not all terms are exactly precise from the AI point of view, but
they are not necessary for this thesis. These use cases might not be the only ones, but
they are probably the most important.

TBU in Zlín, Faculty of Applied Informatics 76

CONCLUSION

The main aim of this thesis was to design and implement a system that would allow
the building of custom distributions for the Debezium Server. In order to achieve
that, the thesis went through all the necessary technologies that could be used for the
implementation. First Chapter I goes through all these technologies, including Java,
Maven, Debezium, UI, and Cloud. The main aim of that Chapter was to build a solid
knowledge base that would allow efficient implementation.

The next part of the thesis covers the design and implementation. During the design
process 5, several use cases were identified that provide a solid understanding of how the
public interface should look. In addition to the use cases, the design part also identified
sequential diagrams that provide a more profound understanding of how each part of
the system interacts with the others.

With the design figured out, the thesis reviewed the obstacles found during the im-
plementation. The most problematic was identifying the correct way to modify the
Maven descriptors to achieve the desired distribution. Full implementation is avail-
able on GitHub as an Open-Source project under MIT license2) and in the appendices.
The last part of the implementation covered test suites prepared for the Distribution
Builder. This Section went through the unit and integration tests, how they are im-
plemented, and where they are located.

The last part of the thesis discusses arguably the most important topic, the application
of the Distribution Builder in security systems 7. This thesis describes two of many pos-
sible use cases. The first use case determined in this thesis is an application in modern
IoT-based security systems. This application describes how a custom Debezium Server
could fit the hardware-limited deployment in the IoT microcontrollers and stream the
events from all the sensors to an external data center where machine learning and its
feed run. Debezium Server streams all the changes into the feed, and machine learning
picks them and learns the routines and everyday issues like false positive alarms. Once
the base relationships are established, the machine learning gives feedback back to the
microcontroller, which can, based on them, modify its own behavior and responses.

The second and maybe even more critical application is that the custom distribution of
the Debezium Server should allow the gathering of crucial data from many statistical

2)Library repository available at https://github.com/obabec/debezium-server-dist-builder.
Backend project available at https://github.com/obabec/debezium-dist-builder-api. UI avail-
able at https://github.com/obabec/dist-builder-Angular-ui

https://github.com/obabec/debezium-server-dist-builder
https://github.com/obabec/debezium-dist-builder-api
https://github.com/obabec/dist-builder-Angular-ui

TBU in Zlín, Faculty of Applied Informatics 77

data sources and feed those into AI. AI would then (with the proper model) help secu-
rity experts during risk analysis and make it more precise by moving from qualitative
to quantitative analysis.

This thesis results in the fully functional implementation of the Distribution Builder
for the Debezium Server. However, the work is not fully complete. This thesis should
serve as a baseline for future academic or field projects that would progressively turn
the possible use cases into reality.

TBU in Zlín, Faculty of Applied Informatics 78

REFERENCES

[1] ArgoCD documentation [online]. 2023. [visited 2024-03-24]. Available at: https:

//argo-cd.readthedocs.io/en/stable/.

[2] Budd, T. An Introduction to Object-Oriented Programming. 2nd ed. Addison-
Wesley, 1996. ISBN 978-0201824193.

[3] What is Cloud-native [online]. 2024. [visited 2024-03-24]. Available at: https:

//cloud.google.com/learn/what-is-cloud-native.

[4] Debezium Server [online]. 2023. [visited 2024-02-25]. Available at: https:

//debezium.io/documentation/reference/stable/operations/debezium-server.

html.

[5] Fielding, R. T. Architectural Styles and the Design of Network-based Soft-
ware Architectures. Irvine, 2000. PhD thesis. University of California.
Available at https://ics.uci.edu/~fielding/pubs/dissertation/fielding_
dissertation.pdf.

[6] Trandafir, E. Difference Between Fluent Interface and Builder Pattern in Java
[online]. 2024. [visited 2024-03-24]. Available at: https://www.baeldung.com/

java-fluent-interface-vs-builder-pattern.

[7] Fowler, M. Domain Specific Languages. 1st ed. Addison-Wesley Professional,
2010. ISBN 978-0-321-71294-3.

[8] Gamma, E. Design patterns : elements of reusable object-oriented software. 1st
ed. Boston: Addison-Wesley, 1995. Addison-Wesley professional computing series.
ISBN 0-201-63361-2.

[9] What is GitOps [online]. 2023. [visited 2024-03-24]. Available at: https://www.

redhat.com/en/topics/devops/what-is-gitops.

[10] Gradle vs Maven: Performance Comparison [online]. 2024. [visited 2024-02-25].
Available at: https://gradle.org/gradle-vs-maven-performance.

[11] The Java® Language Specification [online]. 2021. [visited 2024-02-25]. Available
at: https://docs.oracle.com/javase/specs/jls/se17/jls17.pdf.

[12] JUnit vs TestNG: Which Testing Framework Should You Choose? [online].
2024. [visited 2024-03-24]. Available at: https://https://www.harness.io/blog/

junit-vs-testng.

https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://cloud.google.com/learn/what-is-cloud-native
https://cloud.google.com/learn/what-is-cloud-native
https://debezium.io/documentation/reference/stable/operations/debezium-server.html
https://debezium.io/documentation/reference/stable/operations/debezium-server.html
https://debezium.io/documentation/reference/stable/operations/debezium-server.html
https://ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.baeldung.com/java-fluent-interface-vs-builder-pattern
https://www.baeldung.com/java-fluent-interface-vs-builder-pattern
https://www.redhat.com/en/topics/devops/what-is-gitops
https://www.redhat.com/en/topics/devops/what-is-gitops
https://gradle.org/gradle-vs-maven-performance
https://docs.oracle.com/javase/specs/jls/se17/jls17.pdf
https://https://www.harness.io/blog/junit-vs-testng
https://https://www.harness.io/blog/junit-vs-testng

TBU in Zlín, Faculty of Applied Informatics 79

[13] Kubernetes | CNCF [online]. 2024. [visited 2024-03-24]. Available at: https:

//www.cncf.io/projects/kubernetes/.

[14] Larrucea, X., Santamaria, I., Colomo Palacios, R. and Ebert, C.
Microservices. IEEE Software. 2018, vol. 35, no. 3, p. 96–100. DOI:
10.1109/MS.2018.2141030.

[15] M, A., Dinkar, A., Mouli, S. C., B, S. and Deshpande, A. A. Comparison of
Containerization and Virtualization in Cloud Architectures. In: 2021 IEEE Inter-
national Conference on Electronics, Computing and Communication Technologies
(CONECCT). 2021, p. 1–5. DOI: 10.1109/CONECCT52877.2021.9622668.

[16] Apache Maven Assembly Plugin [online]. 2023. [visited 2024-02-25]. Available at:
https://maven.apache.org/plugins/maven-assembly-plugin/.

[17] Micronaut [online]. 2024. [visited 2024-03-24]. Available at: https://docs.

micronaut.io/index.html.

[18] Rouse, M. Micronaut framework [online]. Techtarget, 2021. [visited 2024-03-24].
Available at: https://www.techtarget.com/searchapparchitecture/definition/

Micronaut-framework.

[19] Murray, N., Coury, F., Lerner, A., and Taborda, C. Ng-book. 1st ed.
Fullstack.io, 2020. ISBN 978-1985170285.

[20] Narkhede, N., Shapira, G. and Palino, T. Kafka: The Definitive Guide:
Real-Time Data and Stream Processing at Scale. 1st ed. O’Reilly Media, 2017.
ISBN 978-1491936160.

[21] Noback, M. Principles of Package Design: Creating Reusable Software Compo-
nents. 1st ed. Apress, 2018. ISBN 978-1484241189.

[22] Poulton, N. and Joglekar, P. The Kubernetes Book. 1st ed. Nigel Poulton
and Pushkar Joglekar, 2023. ISBN 978-1916585003.

[23] ReactJS [online]. 2024. [visited 2024-03-24]. Available at: https://legacy.reactjs.

org/.

[24] Spring [online]. 2024. [visited 2024-03-24]. Available at: https://spring.io/.

[25] Sundrio: Code generation toolkit for Java [online]. 2023. [visited 2024-03-24]. Avail-
able at: https://github.com/sundrio/sundrio/blob/main/readme.md.

[26] Turnbull, J. The Docker Book. 1st ed. James Turnbull, 2018. ISBN 978-
0988820234.

https://www.cncf.io/projects/kubernetes/
https://www.cncf.io/projects/kubernetes/
https://maven.apache.org/plugins/maven-assembly-plugin/
https://docs.micronaut.io/index.html
https://docs.micronaut.io/index.html
https://www.techtarget.com/searchapparchitecture/definition/Micronaut-framework
https://www.techtarget.com/searchapparchitecture/definition/Micronaut-framework
https://legacy.reactjs.org/
https://legacy.reactjs.org/
https://spring.io/
https://github.com/sundrio/sundrio/blob/main/readme.md

TBU in Zlín, Faculty of Applied Informatics 80

[27] TypeScript Documentation [online]. 2024. [visited 2024-03-24]. Available at: https:

//www.typescriptlang.org/docs/.

https://www.typescriptlang.org/docs/
https://www.typescriptlang.org/docs/

TBU in Zlín, Faculty of Applied Informatics 81

LIST OF ABBREVIATIONS

CDC Change Data Capture
OOP Object Oriented Paradigm
JVM Java Virtual Machine
JIT Just In Time
JRE Java Runtime Edition
JDK Java Development Kit
JS Java Script
TS Type Script
KC Kafka Connect
SMT Single Message Transformation
AoT Ahead of Time
IoT Internet of Things
JPA Java Persistent API
EE Enterprise Edition
MVC Model View Controller
ORM Object-Relational Mapping
JAR Java Archive
JMX Java Management Extensions
UI User Interface
DOM Document Object Model
VCS Version Control System
CNFC Cloud Native Foundation
CD Continuous Delivery
MVN Maven
DBZ Debezium
ML Machine learning
AI Artificial Intelligence

TBU in Zlín, Faculty of Applied Informatics 82

LIST OF FIGURES

1.1 Inheritance example displayed using UML. 14
2.1 Simplified Kafka architecture . 24
2.2 Diagram of Debezium Server and Debezium Engine composition, in-

cluding thread schematics. 26
2.3 Diagram of Debezium Server and the new version of Debezium En-

gine, featuring multi-thread processing. 27
4.1 Comparsion of Docker containers and Virtual Machine architecture. 40
4.2 Kubernetes cluster architecture. 42
4.3 GitOps workflow displayed using ArgoCD. 45
4.4 Usecase diagram for library. 48
4.5 Usecase diagram for UI. 50
5.1 Custom Debezium Server object class diagram. 51
5.2 Source node object class diagram. 53
5.3 Sink node object class diagram. 54
5.4 Storage object class diagram. 55
5.5 Sequence diagram of java library. 57
5.6 Sequence diagram of Distribution Builder UI. 59
7.1 Application of Debezium Server distribution in IoT security systems. 73
7.2 Application of Debezium Server distribution for quantitative risk anal-

ysis. 75

LIST OF LISTINGS

1 Example of embracing Encapsulation principle in Java. 14
2 Polymorphism in Java. 15
3 POM project description. 18
4 POM dependency description. 18
5 POM modules example. 19
6 POM assembly profile example. 20
7 Example dependency hierarchy . 21
8 Example dependencySet part of description 21
9 Properties format example . 25
10 Example Dockerfile for HTTP server. 41
11 Example of yaml descriptor for the Debezium Operator with only source

configuration. 54
12 Library listing – configuration builder interface 61
13 Library listing – directory compressor 62
14 JSON array . 63
15 Library listing – custom deserializer for comma-separated array 64
16 Library listing – Maven dependency node builder 66
17 Backend listing – metadata generation 66
18 UI listing – initialization of the component with async client. 68
19 UI listing – recursion in HTML templates. 69
20 Example implementation of the unit test in Java. 71
21 Example implementation integration test using the Playwright. 72

TBU in Zlín, Faculty of Applied Informatics 84

LIST OF APPENDICES

P I. Class diagram for the library implementation
P II. Base maven descriptor for the library
P III. Contents of CD

APPENDIX P I. CLASS DIAGRAM FOR THE LIBRARY IMPLEMEN-
TATION

APPENDIX P II. BASE MAVEN DESCRIPTOR FOR THE LIBRARY

1
2 <?xml version="1.0"?>
3 <project xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance" xmlns="

http :// maven.apache.org/POM /4.0.0"
4 xsi:schemaLocation="http :// maven.apache.org/POM /4.0.0 http ://

maven.apache.org/xsd/maven -4.0.0. xsd">
5 <parent >
6 <groupId >io.debezium </groupId >
7 <artifactId >debezium -server </artifactId >
8 </parent >
9

10 <modelVersion >4.0.0</modelVersion >
11 <artifactId >debezium -server -custom -dist</artifactId >
12 <name>Custom Debezium Server Distribution </name>
13 <packaging >jar</packaging >
14
15 <properties >
16 <assembly.descriptor >server -distribution </assembly.descriptor >
17 <quarkus.package.type>legacy -jar</quarkus.package.type>
18 <version.debezium >${project.parent.version}</version.debezium >
19 <version.quarkus >3.2.9. Final </version.quarkus >
20 </properties >
21
22 <build >
23 <plugins >
24 <plugin >
25 <groupId >io.quarkus </groupId >
26 <artifactId >quarkus -maven -plugin </artifactId >
27 <version >${quarkus.version.runtime}</version >
28 <configuration >
29 <systemProperties >
30 <quarkus.kubernetes -config.secrets.enabled >

true</quarkus.kubernetes -config.secrets.
enabled >

31 <!-- Required in order to support SRV protocol
in MongoDB connector (due to java drive)

-->
32 <quarkus.naming.enable -jndi>true</quarkus.

naming.enable -jndi>
33 </systemProperties >
34 </configuration >
35 <executions >
36 <execution >
37 <goals >
38 <goal>build</goal>
39 </goals >
40 </execution >
41 </executions >
42 </plugin >
43 </plugins >

44 </build >
45
46 <profiles >
47 <profile >
48 <id>assembly </id>
49 <activation >
50 <activeByDefault >false</activeByDefault >
51 </activation >
52 <dependencies >
53 <dependency >
54 <groupId >io.debezium </groupId >
55 <artifactId >debezium -scripting </artifactId >
56 <version >${version.debezium}</version >
57 </dependency >
58 <dependency >
59 <groupId >io.debezium </groupId >
60 <artifactId >debezium -scripting -languages </

artifactId >
61 <version >${version.debezium}</version >
62 <type>pom</type>
63 </dependency >
64 <dependency >
65 <groupId >io.debezium </groupId >
66 <artifactId >debezium -server -core</artifactId >
67 <version >${version.debezium}</version >
68 </dependency >
69 <dependency >
70 <groupId >io.debezium </groupId >
71 <artifactId >debezium -core</artifactId >
72 <version >${version.debezium}</version >
73 </dependency >
74 <dependency >
75 <groupId >io.quarkus </groupId >
76 <artifactId >quarkus -logging -json</artifactId >
77 <version >${version.quarkus}</version >
78 </dependency >
79 </dependencies >
80 <build >
81 <plugins >
82 <plugin >
83 <groupId >org.apache.maven.plugins </groupId >
84 <artifactId >maven -assembly -plugin </artifactId >
85 <version >${version.assembly.plugin}</version >
86 <executions >
87 <execution >
88 <id>default </id>
89 <phase >package </phase>
90 <goals >
91 <goal>single </goal>
92 </goals >
93 <configuration >
94 <appendAssemblyId >false </

appendAssemblyId >
95 <attach >true</attach > <!-- we

want attach & deploy these to
Maven -->

96 <descriptors >
97 <descriptor >src/main/resources

/assemblies/${assembly.
descriptor }.xml

98 </descriptor >
99 </descriptors >

100 <tarLongFileMode >posix</
tarLongFileMode >

101 </configuration >
102 </execution >
103 </executions >
104 </plugin >
105 </plugins >
106 </build >
107 </profile >
108 </profiles >
109 </project >

APPENDIX P III. CONTENTS OF CD

1 +-distribution -builder -sources
2 | +--library
3 | +--api
4 | \--ui
5 +-thesis -sources
6 +-demo.mp4

	Introduction
	I Theory
	Library
	Object Oriented Paradigm
	Java
	Maven

	Debezium
	Debezium Server

	User Interface
	Backend
	Frontend

	Cloud environment
	Docker
	Kubernetes

	II Implementation
	Design proposal
	Code overview
	Application in commercial security systems
	Conclusion
	References
	List of Abbreviations
	List of Figures
	List of Listings
	LIST OF APPENDICES

