
JavaScript Ecosystem and Node Package Management

Shobowale Tola Joshua

Master’s Thesis 2024

I hereby declare that:

• I understand that by submitting my Master´s thesis, I agree to the publication of my

work according to Law No. 111/1998, Coll., On Universities and on changes and

amendments to other acts (e.g. the Universities Act), as amended by subsequent legis-

lation, without regard to the results of the defence of the thesis.

• I understand that my Master´s Thesis will be stored electronically in the university in-

formation system and be made available for on-site inspection, and that a copy of the

Master´s Thesis will be stored in the Reference Library of the Faculty of Applied Infor-

matics, Tomas Bata University in Zlín, and that a copy shall be deposited with my Su-

pervisor.

• I am aware of the fact that my Master´s Thesis is fully covered by Act No. 121/2000

Coll. On Copyright, and Rights Related to Copyright, as amended by some other laws

(e.g. the Copyright Act), as amended by subsequent legislation; and especially, by §35,

Para. 3.

• I understand that, according to §60, Para. 1 of the Copyright Act, TBU in Zlín has the

right to conclude licensing agreements relating to the use of scholastic work within the

full extent of §12, Para. 4, of the Copyright Act.

• I understand that, according to §60, Para. 2, and Para. 3, of the Copyright Act, I may use

my work - Master´s Thesis, or grant a license for its use, only if permitted by the licens-

ing agreement concluded between myself and Tomas Bata University in Zlín with a

view to the fact that Tomas Bata University in Zlín must be compensated for any rea-

sonable contribution to covering such expenses/costs as invested by them in the creation

of the thesis (up until the full actual amount) shall also be a subject of this licensing

agreement.

• I understand that, should the elaboration of the Master´s Thesis include the use of soft-

ware provided by Tomas Bata University in Zlín or other such entities strictly for study

and research purposes (i.e. only for non-commercial use), the results of my Master´s

Thesis cannot be used for commercial purposes.

• I understand that, if the output of my Master´s Thesis is any software product(s),

this/these shall equally be considered as part of the thesis, as well as any source codes,

or files from which the project is composed. Not submitting any part of this/these com-

ponent(s) may be a reason for the non-defence of my thesis.

I herewith declare that:

• I have worked on my thesis alone and duly cited any literature I have used. In the case

of the publication of the results of my thesis, I shall be listed as co-author.

• That the submitted version of the thesis and its electronic version uploaded to IS/STAG

are both identical.

In Zlín;

dated:

 Student´s Signature

ABSTRAKT
Czech abstract

Tato práce se zabývá ekosystémem JavaScriptu a důsledky správy balíčků Node, přičemž

se zaměřuje na rozhodovací procesy při výběru rámců JavaScriptu a na omezení, která jsou

vlastní aplikacím založeným na JavaScriptu. Hlavním cílem bylo zodpovědět dvě klíčové

obchodní otázky:

1. Jaké faktory ovlivňují výběr frameworku/knihovny JavaScriptu softwarovými inženýry při

jejich obchodním rozhodování o vytvoření webové aplikace založené na JavaScriptu?

2. Jakým omezením dnes čelí aplikace vytvořené pomocí programovacího jazyka Ja-

vaScript?

Pro získání informací o těchto otázkách byl proveden průzkum v rámci komunity uživatelů

jazyka JavaScript, který přinesl výrazné preference frameworku React. Studie ukázala, že

rozsáhlá podpora komunity, bohatý ekosystém nástrojů a škálovatelnost jsou významnými

faktory, které podporují přijetí frameworku React mezi vývojáři.

Jako praktická aplikace výsledků výzkumu byla vyvinuta aplikace pro streamování filmů s

názvem "Wura". Aplikace byla vytvořena pomocí frameworku Next.js React, přičemž in-

terakce na straně serveru byly řešeny pomocí PrismaDB a MongoDB. Funkce ověřování,

včetně přihlašování a odhlašování, byly implementovány pomocí Google a GitHub OAuth.

Výzkum poukazuje na faktory, kterými se softwaroví inženýři řídí při výběru frameworků,

a zdůrazňuje význam podpory komunity, flexibility a integračních schopností. Zabývá se

také běžnými omezeními, jako jsou bezpečnostní rizika v open-source balíčcích a výkon-

nostní omezení, a poskytuje poznatky o osvědčených postupech pro vytváření robustních

aplikací JavaS-cript. Tato práce přispívá k hlubšímu pochopení ekosystému JavaScriptu a

nabízí cenné vodítko pro obchodní rozhodování při vývoji softwaru.

Klíčová slova: Balíčky s otevřeným zdrojovým kódem, NPM, Google Oauth, Github

Oauth, MongoDB, React Js

ABSTRACT
English abstract

This thesis explores the JavaScript ecosystem and the implications of Node package man-

agement, focusing on the decision-making processes behind selecting JavaScript frame-

works and the limitations inherent to JavaScript-based applications. The primary objective

was to address two key business questions:

1. What factors influence software engineers' choice of JavaScript framework/library when

making business decisions for building a JavaScript-based web application?

2. What limitations do applications built with the JavaScript programming language face

today?

To gain insights into these questions, a survey was conducted within the JavaScript commu-

nity, yielding a strong preference for the React framework. The study revealed that React's

extensive community support, rich ecosystem of tools, and scalability are significant factors

that drive its adoption among developers.

As a practical application of the research findings, a movie streaming application called

"Wura" was developed. The app was built using a Next.js React framework, with server-side

interactions handled via Prisma DB and MongoDB. Authentication features, including sign-

in and sign-out, were implemented using Google and GitHub OAuth.

The research highlights the factors that guide software engineers' framework choices, em-

phasizing the importance of community support, flexibility, and integration capabilities. It

also addresses common limitations, such as security risks in open-source packages and per-

formance constraints, providing insights into best practices for building robust JavaScript

applications. This thesis contributes to a deeper understanding of the JavaScript ecosystem,

offering valuable guidance for business decision-making in software development.

Keywords: Open Source Packages, NPM, Google Oauth, Github Oauth, MongoDB, React

ACKNOWLEDGEMENTS

I am highly grateful to Ing. Pavel Vařacha, Ph.D. for his invaluable contribution and immerse

support to the completion of my master’s Thesis. His Expertise have been very instrumental

to the outcome of my research and I am truly honoured for the opportunity to have worked

under his supervision.

I hereby declare that the print version of my Master's thesis and the electronic version of my

thesis deposited in the IS/STAG system are identical.

CONTENTS

INTRODUCTION ... 11

BACKGROUND .. 11

RESEARCH OBJECTIVES ... 12

THESIS STRUCTURE ... 12

I. THEORY ... 14

1 THE EMERGENCE OF JAVASCRIPT .. 15

1.1 STANDARDIZATION OF JAVASCRIPT PROGRAMMING

LANGUAGE (ECMASCRIPT) .. 15

1.1.1 ECMASCRIPT 1 (ES 1) – 1997 .. 16

1.1.2 ECMASCRIPT 2 (ES2) - 1998 .. 17

1.1.3 ECMASCRIPT 3 (ES3) – 1999... 17

1.1.4 ECMASCRIPT 4 (ES4) – DISCONTINUED ... 18

1.1.5 ECMASCRIPT 5 (ES5) - 2009 .. 18

1.1.6 ECMASCRIPT 6 (ES6) - 2015 .. 19

1.2 JAVASCRIPT A SCRIPTING LANGUAGE (HIGH LEVEL

PROGRAMMING LANGUAGE) .. 21

1.3 DISTINCT FEATURES OF THE LANGUAGE .. 22

1.3.1 JSON (JAVASCRIPT OBJECT NOTATION) ... 22

1.3.2 JAVASCRIPT EVENTS ... 23

1.3.3 "NON-BLOCKING" OPERATIONS (ASYNCHRONOUS PROGRAMMING) 23

1.3.4 JAVASCRIPT PROTOTYPE INHERITANCE .. 24

1.3.5 FUNCTIONAL PROGRAMMING .. 24

1.4 REGISTRY MANAGEMENT SYSTEM ... 25

1.4.1 REGISTRY AS A COMPONENT ... 25

1.4.2 COMPONENT ARCHITECTURE IN PUBLIC REPOSITORIES 26

1.5 ADVANCE REASONS TO CONSIDER REPOSITORY SYSTEM WHEN

BUILDING A SOFTWARE APPLICATION .. 27

2 RELATED LITERATURE REVIEW .. 29

2.1 METEOR ... 29

2.2 BOA LANGUAGE ARCHITECTURE .. 30

2.3 GITHUB ACTIVITY DATA .. 31

2.4 MODEL CORE J2EE PATTERNS ... 32

2.5 MODEL-VIEW-CONTROLLER (MVC) ... 33

3 PART A - CLIENT-SERVER ARCHITECTURE (JS ECOSYSTEM) 34

3.1 NODE PACKAGE MANAGER (NPM) ... 34

3.2 UNDERSTANDING THE JAVASCRIPT CLIENT – SERVER-SIDE

SYSTEM ... 37

3.2.1 NODEJS .. 37

3.2.2 REACT ... 39

3.2.3 ANGULAR FRAMEWORK ... 41

3.2.4 VUEJS ... 44

II. ANALYSIS .. 47

3.3 PART B - RESEARCH APPROACH (QUALITATIVE MODEL) 48

3.3.1 RESEARCH QUESTION .. 48

3.3.2 QUALITATIVE RESULT OF THE SURVEY ... 49

4 WURA APP ... 59

4.1.1 FUNCTIONAL REQUIREMENTS: (WHAT THE APP MUST DO) 59

4.2 IMPLEMENTATION PHASE .. 60

4.2.2 APPLICATION MAIN BUILD STRUCTURE .. 60

4.2.3 DATABASE SCHEMA MODEL (PRISMA) .. 74

4.2.4 DATABASE URL, GOOGLE AND GITHUB AUTH TOKEN (CONFIDENTIAL

INFORMATION) .. 75

4.2.5 RUNNING THE APPLICATION USING NPM (.ENV FILE) 76

4.2.6 MOVIECARD COMPONENT (MOVIECARD.TSX) ... 76

4.2.7 WATCH CURRENT PLAYED MOVIE ([MOVIEID-TSX]) 78

4.2.8 TAILWIND WORKFLOW ... 79

4.2.9 APPLICATION PACKAGE.JSON FILE ... 80

4.3 MY DEVELOPMENT WORKFLOW .. 81

5 DISCUSSION AND FINDINGS .. 82

5.1 DISCUSSION .. 82

5.1.1 GUIDELINE 1: UNDERSTAND THE PROGRAMMING LANGUAGE

JAVASCRIPT, ITS STRUCTURE, FRAMEWORKS AND PRODUCTION USAGE 82

5.1.2 GUIDELINE 2: TAKE AN INSIGHT INTO PREVIOUS RELATED WORKS 82

5.1.3 GUIDELINES 3: ANALYZE THE MANAGEMENT OF JAVASCRIPT CODES AND

DATA USING NODE PACKAGE MANAGER. .. 82

5.1.4 GUIDELINE 4: BUILD A MOVIE-APP APPLICATION USING NUMEROUS APIS

E.G., NETFLIX, REACTJS, NPM, GITHUB, MONGODB FOR THE

DATABASE. .. 83

5.2 FINDINGS ... 83

6 CONCLUSION .. 85

6.1 OVERALL PERFORMANCE ANALYSIS OF THE WURA

APPLICATION ... 85

6.1.1 USER AUTHENTICATION AND ACCOUNT MANAGEMENT 85

6.1.2 USER INTERFACE AND EXPERIENCE ... 85

6.1.3 RESPONSIVENESS AND CROSS-PLATFORM COMPATIBILITY 86

6.2 GUIDELINES FOR FUTURE RESEARCH .. 86

7 BIBLIOGRAPHY ... 87

ABBREVIATIONS .. 90

LIST OF FIGURES ... 91

APPENDIX ... 92

INTRODUCTION

This chapter provides the Background, Research Objectives and the Thesis Structure

BACKGROUND

JavaScript has become extremely dynamic, running client-side single-page applications,

powering server-side applications with technologies like Node.js, contributing to desktop

applications through Electron, and even being employed in single-board computers like

Raspberry Pi. It plays a role in training machine-learning models in browsers using frame-

works like TensorFlow.js. With its capability to run on every desktop, laptop, and phone

with an embedded browser, JavaScript is arguably the most widely deployed language glob-

ally.

In 2015, the introduction of ECMAScript 2015 (ES6) marked a significant milestone. ES6

brought a host of new features and syntactic changes, aiming to modernize JavaScript for

the web. The goal was to enhance the developer experience, incorporating constructs famil-

iar to developers from other languages. The establishment of a yearly release cadence for

future editions signaled a commitment to ongoing evolution and maturation of the language.

However, JavaScript's journey spans 24 years, evolving from a scripting language for web

page animation to a language used across various domains. Initially criticized for being

quirky and error-prone, its reputation prompted the attention of the TC39, the committee

responsible for JavaScript's evolution.

The analysis of extensive codebases, such as those found on GitHub, provides valuable in-

sights into how programmers utilize or misapply programming languages, the prevalent pro-

gramming patterns in different development ecosystems, and opportunities for language or

runtime enhancements. Researchers have been focusing on software repositories since the

mid-2000s, exploring aspects like code history in version control systems, build artifacts,

library dependencies, developer activity, and popularity indicators of files and projects.

JavaScript, the universal language of the web, plays a crucial role in shaping the digital land-

scape. It's a versatile scripting language primarily executed on the client-side of web brows-

ers. JavaScript enables developers to create dynamic and interactive web pages, offering a

wide range of functionalities such as DOM manipulation, event handling, asynchronous re-

quests, and data validation. These capabilities empower developers to build captivating and

responsive web applications, enhancing the user experience.

The Internet and World Wide Web are essential aspects of daily life, hosting billions of

websites and connecting countless devices. JavaScript plays a pivotal role in enabling dy-

namic and interactive web experiences, ranging from basic text to multimedia content.

JavaScript's ecosystem has expanded significantly, with its application in server-side devel-

opment through Node.js, native desktop applications using GitHub's Electron, and mobile

apps via technologies like Facebook's React Native or Apache Cordova. The prevalence of

NPM as the primary module repository underscores its importance, surpassing other repos-

itories like Maven Central, Rubygems, or Packagist by a considerable margin.

Research Objectives

Since the inception of the JavaScript language, the landscape of website content management

has undergone a transformative shift, revolutionizing the way modern websites are utilized.

Effectively managing website content is crucial for security and user-friendliness. However,

achieving an efficient content management system often entails extensive and time-consum-

ing development, leading to code rewriting and reuse in subsequent projects. As developers

invest countless hours in building from scratch, the need for expedited and streamlined de-

velopment methods becomes apparent.

Web frameworks have emerged as indispensable tools for crafting powerful web applica-

tions, not just for content management but for overall system effectiveness. The JavaScript

programming language boasts an extensive array of frameworks such as Angular, ReactJs,

VueJs, Svelte to name a few. Each offering unique approaches to development challenges.

These frameworks empower software engineers to create sophisticated web applications

swiftly, freeing them from the arduous task of constructing individual system cores from the

ground up.

This paper aims to dissect the extensive functionality of the JavaScript language and its pop-

ular frameworks, exploring their profound impact on modern web and desktop application

development. The analysis will delve into the distinctions among these frameworks, show-

casing diverse development approaches. Given the abundance of frameworks—numbering

over a hundred—this paper will focus on a representative sample, providing insights into

their advantages for specific application types based on the requirements of each application.

The aim of these thesis Research is to answer these following Questions;

• What Factors affects the choice of JavaScript framework/library according to Soft-

ware Engineers in Making Business Decision when Building a JS Web application?

• What Limitations does Application built with the JavaScript programming language

face today?

Thesis Structure

In the initial chapter, the paper introduces essential terminology needed for understanding

the procedures and technologies pivotal in the development of JavaScript-based web appli-

cations. The chapter also outlines the specified criteria chosen for assessing the quality of

the selected frameworks.

Chapter 2 delves into an in-depth exploration of prior works related to languages similar to

JavaScript and their respective architectures.

Chapter 3, the emphasis now lies in elucidating the criteria utilized in this thesis to assess

the JavaScript Stack System, encompassing JavaScript Codes, along with its frameworks,

libraries, compilers, and bundlers. We will delve into research regarding the preferred Ja-

vaScript framework among developers for Web Application development and elucidate the

reasons behind its popularity. The insights gleaned from this chapter will serve as the foun-

dation for our argument in Chapter 4, where we advocate for the utilization of the aforemen-

tioned framework in constructing the Movie App.

Chapter 4 is dedicated to the design of the Movie web application. It explains the software

and other resources utilized, providing insights into the chosen development process for

building the application.

As we progress to Chapter 5, 6 , the paper reviews the project results, reflecting on errors

made during the development process and suggesting alternative approaches. The findings

are then applied to address the questions posed in the research Objectives, offering a sea-

soned perspective on contemporary software development. Additionally, the chapter fur-

nishes recommendations for aspiring developers embarking on their future projects.

I. THEORY

1 THE EMERGENCE OF JAVASCRIPT

Initially called LiveScript, JavaScript underwent a name change by Netscape, possibly in-

fluenced by the buzz surrounding Java. JavaScript debuted in Netscape 2.0 in 1995 under

the name LiveScript. The language's versatile core has been integrated into Netscape, Inter-

net Explorer, and various other web browsers [1].

JavaScript's history traces back to the early days of the Internet. Even with the creation of

the first browser, Worldwide Web, in 1990 by Tim Berners-Lee, the Internet remained a

relatively unfamiliar concept to the mainstream audience. In 1993, the Internet witnessed

significant growth with the launch of the commercial Mosaic browser. Developed by Marc

Andreessen and Eric Bina during their tenure at the National Center for Supercomputing

Applications, the Mosaic browser made its debut in January 1993 for the UNIX system,

followed by releases for the Macintosh and Windows systems in September of the same

year. Distinguished by a graphical interface enabling inline image display with document

text, it also introduced the concept of the Document Object Model (DOM) structure within

the browser [2].

Figure 1. DOM Architecture

1.1 Standardization of JavaScript Programming language

(ECMASCRIPT)
During the inception of JavaScript, Netscape led its development while Microsoft

introduced their own version known as JScript. This led to a push for standardization.

Netscape, being cautious of Microsoft's influence, enlisted Brendan Eich in 1996 to create a

specification. Eich revamped the initial JavaScript engine, Mocha, into SpiderMonkey and

established the JavaScript 1.2 specification.

From the outset of the JavaScript project in 1995, it was evident that an open scripting stand-

ard for the web was necessary. Microsoft's involvement underscored this need. Netscape and

Sun Microsystems aimed to collaborate with Microsoft without succumbing to domination

by Microsoft's technologies like VBScript. While organizations like W3C and IETF were

considered for standardization, they weren't the right fit for JavaScript. Netscape eventually

connected with (Ecma) through a personal contact, which proved to be a suitable partnership

[1].

1.1.1 EcmaScript 1 (ES 1) – 1997

The inaugural gathering of the Technical Committee 39 (TC39) took place in September

1996, with a total of thirty attendees. David Stryker, representing Netscape, put forward a

proposal during the meeting. He suggested that the primary objective should be to develop

a specification that closely aligns with existing implementations at that time. Stryker empha-

sized that any additions or extensions to the language should be postponed for future con-

sideration. This approach aimed to accurately capture the current state of the language with-

out introducing significant deviations. At the outset, Thomas Reardon of Microsoft advised

the committee against redundant efforts by suggesting that the standardization of an HTML

object model should be delegated to the W3C. This recommendation stemmed from the ob-

servation that while the core features of both Netscape and Microsoft were similar, their

respective HTML APIs differed. These initial limitations significantly influenced TC39's

focus, directing efforts toward the development of platform-independent features, a principle

that continues to guide the group today. The intention was to establish a formal language

definition while allowing room for competitive innovation outside of it. This approach has

proven effective in practice, fostering healthy competition, particularly in areas such as in-

terpreter performance.

The early challenges surrounding the creation of the initial specification were characterized

by a narrative of political maneuvering and intrigue. Initially, Netscape, Borland, and Mi-

crosoft each presented their own specifications, necessitating the amalgamation of these dis-

parate documents into a single cohesive standard. The central issue revolved around deter-

mining which specification would serve as the foundation for further refinement. Given

Ecma's familiarity with Microsoft Word, they opted to commence work based on Microsoft's

version of the initial specification, rather than Netscape's.

The timeline for the specification work was established, aiming for an initial draft by January

1997 and a final version by April 1997. Features common to all three proposals were readily

accepted, while discrepancies required reconciliation. Unique features were earmarked for

consideration under Proposed Extensions at a later stage. Additionally, a key priority was to

minimize changes that would necessitate alterations to existing applications, establishing a

guiding principle for subsequent standard editions. One unique aspect of the JavaScript

standard was its use of a pseudocode-style definition language. This language helped people

understand how JavaScript functions without needing to learn a specific programming lan-

guage. It acted as a bridge between written language and programming, making it easier to

grasp the concepts.

To meet the April deadline for finalizing the standard, the TC39 group met regularly. They

created test cases for any unclear situations and tested them with different software systems

to see how JavaScript behaved. If there were differences in behavior among these systems,

the group had to agree on a consistent behavior and specify it. Some of these decisions still

influence how programmers write JavaScript code today.

Although the group missed the April deadline by a month, they finished their work on May

2, 1997. The resulting document became known as ECMA Standard 262, or ECMA-262 for

short. After some minor edits, it was submitted for the ISO fast-track process. The first ver-

sion of the standard, called ES1, was published on September 10, 1997 [3].

1.1.2 ECMAScript 2 (ES2) - 1998

ES2 represented a minor update aimed at refining existing features and providing clarity to

the language's specification. This version did not introduce any significant new features but

instead focused on enhancing the functionality and coherence of JavaScript.

1.1.3 ECMASCRIPT 3 (ES3) – 1999

ECMAScript 3 (ES3) was launched in late 1999 – early 2000, marking a significant mile-

stone in the evolution of JavaScript. This version brought forth several crucial features that

greatly enhanced the language's capabilities [4].

Firstly, ES3 introduced the try/catch/finally statement. This provided developers with a pow-

erful mechanism for handling errors and exceptions within their code, improving the robust-

ness and reliability of JavaScript applications.

ES3 incorporated support for Regular Expressions. Regular Expressions are powerful tools

for pattern matching and text manipulation, allowing developers to perform complex string

operations with ease.

Another notable addition in ES3 was the ability to define functions using both function dec-

laration and function expression syntax. This flexibility provided developers with more op-

tions for structuring their code and expressing logic, contributing to improved code organi-

zation and readability.

In ES3, objects are created using the constructor function pattern. This involves defining a

function that serves as a constructor for the object, and then using the new keyword to in-

stantiate new instances of the object. This method remains prevalent in modern JavaScript

development practices. ES3 retains significance within the JavaScript ecosystem. It contin-

ues to be utilized extensively in legacy codebases and older web applications. Moreover,

modern JavaScript engines maintain support for ES3 syntax, ensuring compatibility with

both past and present versions of the language [5].

Limitations

• It lacked support for contemporary programming concepts like classes and modules.

Additionally, it contains certain idiosyncrasies such as the with statement and im-

plicit global variables, which can complicate the writing of maintainable code.

Notable features

• New Object Methods

➔ Oject.Create

➔ Object.Keys

➔ Object.defineProperty

• Regular Expressions(Regex)

It introduced support for regular expressions, empowering developers with advanced ca-

pabilities for matching text patterns.

“This function, `escapeRegExp`, takes a string as input and returns a new string with

special characters escaped using backslashes. The regular expression

`[.*+?^${}()|[\]\\]` matches any of the characters `.`, `*`, `+`, `?`, `^`, `$`, `{`, `}`,

`(`, `)`, `[`, `]`, `\`, and `|`. Within the replacement string `"\\$&"`, the `$&` signi-

fies the entire matched substring. This ensures that any special characters within

the input string are properly escaped, preventing them from being interpreted as

metacharacters in a regular expression. [6]”

• Try/Catch

ES3 brought in structured error handling with the introduction of the try, catch, and fi-

nally statements.

EcmaScript 3 played a crucial role in advancing the JavaScript language, introducing key

features that continue to be foundational elements of modern JavaScript development.

1.1.4 ECMAScript 4 (ES4) – Discontinued

Initially planned for release, ES4 never saw the light of day due to disagreements and diffi-

culties encountered during its development. Instead, the focus shifted towards crafting

smaller, more manageable incremental updates.

1.1.5 ECMAScript 5 (ES5) - 2009

ES5 represented a significant advancement for JavaScript, introducing several pivotal fea-

tures:

• Strict Mode: ES5 introduced "strict mode," implementing stricter rules to identify

common coding errors and elevate code quality.

• JSON Support: ES5 elevated JSON (JavaScript Object Notation) to a primary sta-

tus, streamlining data interchange processes.

• Higher-Order Functions: ES5 bolstered support for higher-order functions, simpli-

fying the creation of expressive and succinct code

• Array Methods: ES5 enriched the language with potent array methods such as fo-

rEach, map, filter, and reduce, enhancing array manipulation capabilities.

• Function Bind: The introduction of the bind method allowed functions to be pre-

cisely bound to specific contexts, granting developers meticulous control over the

behavior of the this keyword.

Summary of the ES5 Features according to (w3schools.com) [7].

- "use strict"

- String[number] access

- Multiline strings

- String.trim()

- Array.isArray()

- Array forEach()

- Array map()

- Array filter()

- Array reduce()

- Array reduceRight()

- Array every()

- Array some()

- Array indexOf()

- Array lastIndexOf()

- JSON.parse()

- JSON.stringify()

- Date.now()

- Date toISOString()

- Date toJSON()

- Property getters and setters

- Reserved words as property names

- Object methods

- Object defineProperty()

- Function bind()

- Trailing commas

1.1.6 ECMAScript 6 (ES6) - 2015

ES6, also known as ES2015, revolutionized JavaScript by introducing a wealth of features

that modernized the language:

• Classes: ES6 introduced class syntax, providing a more structured way to create and

inherit object prototypes.

• Promises: Promises were introduced in ECMAScript 2015, offering a cleaner syntax

for handling asynchronous operations and improving readability in asynchronous

programming.

• Arrow Functions: Arrow functions offer a concise syntax for writing anonymous

function expressions, particularly useful for simplifying code and enhancing reada-

bility, especially in scenarios with straightforward functions.

• Modules: ES6 introduced modules, enabling developers to organize code into reus-

able and maintainable components. Modules facilitate the structuring of large code-

bases and encourage best practices such as separation of concerns and code reusabil-

ity.

• Template Literals: Template literals brought string interpolation to JavaScript,

streamlining dynamic string creation.

• Destructuring Assignment: ES6 introduced destructuring assignment, allowing val-

ues to be extracted from arrays and objects with ease.

1.1.6.1 Features of ES6 and Subsequent Version Updates to the language

JavaScript has continued to evolve beyond ES6, with ES7, ES8, and subsequent versions

introducing features such as:

• Object and Array Methods: Improved data manipulation with new methods like Ob-

ject.entries(), Object.Values(), and array methods like includes().

• Class Improvements: More robust class-based code organization with features like

class fields and private methods.

• Optional Chaining: Safe access to nested object properties using optional chaining.

• Nullish Coalescing: Simplified default value assignment for potentially undefined

variables with nullish coalescing.

• Proxies: Fine-grained control over object behavior enabled by proxies.

• BigInt: Representation of arbitrary-precision integers facilitated by BigInt.

• Async/Await: Revolutionized asynchronous programming in JavaScript, async and

await keywords simplify asynchronous code by resembling synchronous code. Built

on top of promises, async/await provides an elegant approach to working with asyn-

chronous operations, introduced as part of ECMAScript 2017 (ES8) [4].

At its essence, a webpage is constructed with three fundamental components: Hypertext

Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript. Regardless of

the intricacy and sophistication of the applied technologies and architectural design, every-

thing ultimately converges into HTML, CSS, and JavaScript blocks post the compilation

phase. HTML serves as the foundational blueprint, providing structure and content to the

webpage, while CSS is employed to craft the visual appearance of its components. Crucially,

JavaScript functions as a versatile tool for manipulating all the elements within the webpage.

JavaScript stands as a pioneer in front-end development, evolving into a robust and flexible

tool accessible to developers of various backgrounds. As of the present, the landscape allows

for the creation of diverse applications exclusively using JavaScript. This singular language

empowers developers to craft a server with a database and select the front-end for various

platforms, including web, mobile, and desktop applications. Remarkably, JavaScript even

facilitates the development of machine learning applications.

JavaScript is commonly described as a high-level, multi-paradigm, non-blocking, and asyn-

chronous programming language. These terms, along with others like garbage-collected, in-

terpreted, single-threaded, and concurrent, encapsulate the essential characteristics of JavaS-

cript. Nevertheless, these descriptors can be overly abstract, making it challenging for aver-

age readers or individuals new to programming to grasp the full scope of the language.

 “JavaScript is very powerful and can be used to create almost any kind of browser-based

app, it can be time-consuming and repetitive to code every app from scratch. That's where

libraries and frameworks come in—they encode some common patterns and best practices

for creating apps. By creating a platform to build apps on top of, JavaScript libraries and

frameworks save developers a lot of time” [2].

Given its considerable impact on technology, it is evident that JavaScript has played a pivotal

role in driving innovation within the field. Despite its modest origins a quarter-century ago

as a prototype scripting language, JavaScript has evolved into a powerhouse that fuels nu-

merous emerging technology domains on the Internet. Beyond its initial role, it has become

a versatile tool, extending its influence to various programming aspects outside its original

purpose.

1.2 JavaScript a Scripting Language (High Level Programming language)

JavaScript, as a scripting language, proves advantageous for web developers due to its less

complex and smaller scripts compared to other desktop languages like Java or C++. The use

of a scripting language results in a faster development process.

JavaScript operates as an interpreted language, eliminating the need for pre-compilation of

the source code before transmitting it to the browser. With an interpreter, the raw JavaScript

code can be directly executed. Moreover, JavaScript is dynamically typed, distinguishing it

from languages such as C and C++. In this context, variables declared using the 'var' keyword

can accommodate various data types, including integers, strings, Booleans, and more intri-

cate data types like objects and arrays [3].

All web browsers are designed to comprehend HTML and CSS and execute these languages

to display content on the computer screen. Additionally, browsers come equipped with a

built-in JavaScript interpreter, allowing the execution of JavaScript code.

To incorporate JavaScript into a webpage, it is necessary to inform the browser using the

`<script>` tag. The browser recognizes the end of JavaScript code when it encounters the

closing `</script>` tag, reverting to its normal behavior thereafter.

Figure 2. JS Script Tag in HTML Workflow Architecture

Programming languages at a high level, like JavaScript, are considered less intricate because

they leverage abstraction, incorporating features such as a garbage collector or dynamic typ-

ing to simplify the programming process for developers. In contrast, machine code languages

utilize binary expressions directly executable by the computer's central processing unit

(CPU). When constructing an application in a high-level language, programmers are relieved

of the responsibility to manually handle memory or processor details, eliminating concerns

about concepts like pointers [3].

Figure 3. Google V8 JS Engine Architecture

In the JavaScript engine, code is first parsed into an Abstract Syntax Tree (AST), a structured

representation. This step identifies syntax errors and serves as the basis for generating ma-

chine code. The next step involves compilation, where the AST is transformed into machine

code. Modern engines use just-in-time (JIT) compilation, executing the code in the Call

Stack. Clever optimization strategies involve creating an unoptimized version initially for

quick execution, with further optimizations applied as needed. Google's V8, optimize and

recompile code in the background during execution. This continuous process enhances

speed, with parsing, compilation, and optimization occurring in specialized threads inacces-

sible from user code [6].

1.3 Distinct Features of the Language

1.3.1 JSON (Javascript Object Notation)

JSON, known as JavaScript Object Notation, provides a straightforward, text-based method

for storing and transmitting structured data. With its simple syntax, users can store various

data types, including numbers, strings, arrays, and objects, using plain text strings. It also

supports nesting of arrays and objects, enabling the creation of complex data structures.

Figure 4.Json Format

https://medium.com/jspoint/how-javascript-works-in-browser-and-node-ab7d0d09ac2f

1.3.2 JavaScript Events

JavaScript strongly emphasizes event-driven programming. When users interact with ele-

ments like buttons or links, the browser generates events that JavaScript listens for and re-

sponds to with predefined actions. This capability enables extensive manipulation of a web

page's DOM, resulting in more interactive and dynamic web applications.

Event-driven programming operates on the premise that program flow is dictated by events

like user actions, sensor outputs, or messages from other programs (Enyinnaya, 2019). Ra-

ther than following a linear sequence, event-driven programs react to specific occurrences,

making them suitable for environments where external factors influence software behavior.

Figure 5.Event coding in VanillaJS.

1.3.3 "non-blocking" operations (Asynchronous Programming)

Handling asynchronous operations used to be challenging, often resulting in "callback hell"

- a situation where multiple nested callbacks lead to cumbersome code (Ecma International,

2015). This issue was addressed with the introduction of Promises in ECMAScript 6 in 2015.

Promises represent values that may not be immediately available but will resolve in the fu-

ture, offering a structured approach to dealing with asynchronous operations. Developers

can chain operations using the .then() method for successful resolutions and handle errors

with the .catch() method (Ayondip, 2023).

Figure 6.JavaScript Promise Code sample

ECMAScript 8 introduced the async and await syntax, building upon Promise principles.

Async functions always return a Promise, with the await keyword pausing execution until

resolution. This synchronous-like coding style improves code readability (Ecma Interna-

tional, 2017).

Figure 7. Async Await Typing

1.3.4 Javascript prototype Inheritance

In JavaScript, objects utilize prototype-based inheritance, inheriting directly from other ob-

jects, rather than through traditional classes. Each object has a linked prototype, from which

it inherits properties and methods. JavaScript searches an object's prototype chain to access

properties or methods, traversing linked prototypes until it finds the desired property or

reaches a null prototype.

Figure 8.Prototype inheritance

1.3.5 Functional Programming

Functional programming systems, characterized by less coupling and fewer side effects due

to the absence of shared state between components, utilize higher-order functions, which

accept functions as inputs. This stands in contrast to object-oriented programming (OOP),

where only data or objects can be passed through.

Functional programming, falling under the declarative paradigm, has gained traction along-

side JavaScript's widespread adoption, particularly with the rise of UI libraries like React

and Angular. It revolves around mathematical functions, known as pure functions, which

produce consistent output based solely on input.

Figure 9. A JavaScript function to get Data from local storage

1.4 Registry Management System
In today's software landscape, where open source, proprietary, and third-party components

are integral to development, repository management plays a crucial role. Organizations rely

on repository management systems to efficiently source, store, share, and deploy these com-

ponents. The sheer volume and pace at which these components are utilized in software

development create what can be termed as a 'software supply chain.' In this context, a repos-

itory manager serves as the official warehouse for these components.

Furthermore, repository managers offer invaluable insight into component quality, enabling

development teams to make informed decisions upfront. By doing so, teams can mitigate the

risk of accumulating technical debt and reduce the need for unplanned or unscheduled work

downstream.

It's worth noting that a significant portion—80-90%—of a typical application comprises var-

ious component formats and types. These include libraries, frameworks, modules, packages,

assemblies, and other parts. As development paradigms shift towards microservices and con-

tainers, the usage of components becomes even more pronounced.

1.4.1 Registry as a Component

A component is essentially a piece of software or resource that your application relies on.

These resources could be anything from a library or framework that helps your application

function to an image file that adds visual elements. Components are utilized at different

stages of your application's lifecycle, such as when the application is running, during testing,

or as part of the process of building and deploying the application. They can take various

forms, ranging from small code snippets to entire applications or even larger entities like an

entire operating system when used in certain environments like container-based systems

such as Docker. In essence, components are the building blocks that make up your software

application.

Components typically consist of a diverse array of files, ranging from Java bytecode in class

files to C object files, as well as binary files like images, PDFs, and audio files, among others.

These files are packaged into archives using various formats such as Java JAR, WAR, EAR,

plain ZIP, tar.gz, as well as other package formats like NuGet packages, RubyGems, npm

packages, Docker images, and more.

Moreover, components can themselves be composed of multiple nested components. For

instance, a Java web application packaged as a WAR component may contain numerous JAR

components and JavaScript libraries. While these nested components are standalone entities

in their own right, they are included as part of the larger WAR component. Essentially,

components can be thought of as self-contained units that encapsulate a collection of related

files and resources necessary for a specific functionality within a software application.

A diverse range of components is developed by both the open-source community and pro-

prietary vendors, forming a vast and rapidly expanding ecosystem. As an illustration, con-

sider the Central Repository of Maven/Java components, which boasts over 120,000 unique

components and more than 1 million total component versions. This indicates the extensive

scale of the ecosystem and its continuous growth over time. In essence, it highlights the

abundance of resources available to developers, catering to a wide array of needs and pref-

erences within the software development landscape [8].

Figure 10. Maven Registry Architecture

1.4.2 Component Architecture in Public repositories

In order to make components easily accessible to developers, the open-source community

organizes collections of these components into what are known as "public repositories."

These repositories are typically hosted on the Internet and are freely accessible. Different

platforms may use terms like "registry" to refer to the same concept. Some well-known re-

positories include The Central Repository, NuGet Gallery, RubyGems.org, npmjs.org, and

Docker Hub. Components stored in these repositories can be accessed by various tools, such

as package managers, build tools, IDEs (Integrated Development Environments), provision-

ing tools, and custom integrations using scripting languages.

Public repositories offer a more efficient solution compared to simple directory structures or

download websites. Instead of manually searching for components and their dependencies

and then storing them in their own infrastructure, users can simply declare the components

they need, and tools will take care of the rest, handling tasks such as locating the components

and managing their dependencies automatically.

Figure 11. Repository managers in a DevOps Setup

complexity has escalated as components are now ubiquitous across various development

stacks, leading to a blend of technologies within most applications. For instance, a server-

side application might employ Java technologies to implement a REST API, accessing com-

ponents through Maven. However, the web application utilizing these APIs to create a user

interface may opt for a purely JavaScript-based approach, sourcing its components via npm

[29].

1.5 Advance Reasons to consider Repository system when building a

software Application
We will take a quick look into various importance of the repository system and how efficient

it aids software development using the JavaScript programming language [9]

• Component intelligence

Certain professional editions of Repository Managers offer health checks, which offer im-

mediate insight into potential security, licensing, and quality risks associated with compo-

nents. This empowers development teams to swiftly and proactively address any issues that

arise.

• Authentication

Given that the Repository Manager houses project-related binaries, it's prudent to apply the

same permissions as those enforced for the projects themselves, including source code access

permissions, to safeguard the resulting binaries. In certain scenarios, access to the binaries

may be granted independently of access to the source code, and this can be managed at the

repository level.

• Efficient Use in Distributed system

When teams accessing repositories are geographically dispersed, it becomes crucial to en-

sure access to all components, whether internal or third-party. Given that a Repository Man-

ager essentially functions as a caching proxy, it's essential to have one deployed in each

physical location where there's a significant developer presence. Without this setup, devel-

opers may encounter slow and unreliable build times, as they fetch components from the

internet or across wide area networks (WANs).

• Efficient High availability

Relying on a Repository Manager to store all development dependencies makes it a vital

component of your infrastructure. Any downtime experienced by the repository disrupts de-

velopment activities, leading to potentially severe consequences. In a Continuous Integra-

tion/Continuous Deployment (CI/CD) environment, the unavailability of a Repository Man-

ager prevents builds from executing and deployments to production, posing significant risks

to the business or organization.

• Building High Level Projects

When constructing an application with Maven or similar build tools, it retrieves components

from a designated location, configured through Maven settings, and compiles them. This

process can yield an application or another binary or component. Jenkins facilitates this au-

tomation by enabling the integration of a Maven build step for both freestyle and multi-

configuration projects.

Our Movie app in chapter 4 will based solely on Client-Server System architecture (CSA).

The CSA will be solely explained in chapter 3.

Before delving deeper into the expansive JavaScript ecosystem and exploring the myriad

factors influencing the selection of an appropriate JavaScript tech stack for web application

development, our primary focus in this project, let's explore some of the relevant literature

that precedes this thesis topic.

2 RELATED LITERATURE REVIEW

Numerous studies and initiatives have delved into the realm of Big Code and code reposito-

ries, aiming to enhance development practices. Researchers and practitioners have explored

ways to leverage vast code repositories to improve the efficiency and effectiveness of devel-

opment tools. This work involves addressing the challenges posed by the sheer scale and

complexity of Big Code, seeking innovative solutions to extract meaningful insights, facili-

tate code reuse, and enhance overall development processes. These efforts underscore a col-

lective pursuit to harness the potential of extensive code repositories for advancing software

development methodologies.

A subset of information sourced from the GitHub and StackOverflow APIs is included in

publicly accessible datasets within Google BigQuery. The GitHub segment comprises re-

pository metadata, encompassing details such as programming languages and licenses,

alongside the actual contents of the repositories. These BigQuery datasets are open to any

user with a Google account, allowing them to execute SQL queries and run arbitrary JavaS-

cript code on the data. An illustrative instance of data analysis on these datasets can be found

in [18], where the authors parsed a billion files from 400,000 repositories across 14 program-

ming languages, focusing on the comparison of tabs and spaces for indentation. For JavaS-

cript, the results indicate that 18% of files use tabs, while the remaining majority use spaces.

Additional analyses of a similar nature are discussed in [10].

Decan et al. (2016) try to identify the differences in software package ecosystems (CRAN,

PyPI, NPM), though package dependency graphs. In light of their outcomes, it can be as-

serted that NPM stands out as an ecosystem that fosters an ethos of extreme reusability and

micropackaging culture. This is achieved through adherence to the single-responsibility prin-

ciple at the package level. In (Kikas et al., 2017) The authors demonstrated that the JavaS-

cript ecosystem is indeed experiencing the fastest growth and exhibits significant intercon-

nectivity among its packages. Finally, Bogart et al. (2016) Through interviews, it was ob-

served that developers, to ensure the stability of their packages and due to a lack of constant

awareness regarding the status of their dependencies, tend to minimize their reliance on

them. Instead, they opt for the adoption of packages that are considered "best-practice." [11].

UnuglifyJS, an implementation of a JavaScript deminifier, is introduced to extract properties

and features from code. This client serves as a valuable starting point for researchers and

developers interested in utilizing the Nice2Predict framework. The open-source implemen-

tation is accessible on GitHub at: https://github.com/eth-srl/UnuglifyJS.

The responsibilities of this client encompass three key aspects: i) defining known and un-

known properties, ii) specifying features, and iii) acquiring training data. It commences by

articulating known and unknown properties. Known properties encompass constants, object

properties, methods, and global variables—elements of a program that cannot be (soundly)

renamed, such as DOM APIs. Conversely, unknown properties involve all local variables.

2.1 Meteor

Meteor is a JavaScript-based platform designed for developing web applications entirely in

JavaScript. It offers a distinctive approach to web application development, enabling devel-

opers to write JavaScript functions that execute on the server, the client, or both. Geared

towards single-page web applications, Meteor integrates core features such as collaboration

and data synchronization. A standout feature of Meteor is its capability to provide database

access from anywhere. This means developers can execute the same database queries on

both the client and the server.

2.2 Boa Language Architecture

Boa emerges as a specialized language and infrastructure tailored for simplifying the extrac-

tion of insights from software repositories. Distinguished by its domain specificity, Boa's

infrastructure harnesses the power of distributed computing techniques to adeptly execute

queries across a vast landscape of software projects, ensuring remarkable efficiency. Posi-

tioned at the intersection of language design and infrastructure, Boa serves a pivotal role in

facilitating the testing of hypotheses related to mining software repositories (MSR).

Figure 12.Boa build Infrastructure

The impetus behind the creation of Boa arose as the authors endeavored to address a perva-

sive challenge on an extensive scale, delving into intricate details with complete historical

information. This comprehensive approach reflects Boa's ambition to provide a versatile so-

lution for mining software repositories, offering a fine-grained exploration of data and a

nuanced understanding of software project evolution [12].

Code Snippet of Boa Architecture:

Output of the result:

counts = JavaScript, 1473096.0

counts = Ruby, 889738.0

counts = Shell, 700831.0

counts = Python, 620213.0

counts = Java, 554864.0

counts = PHP, 489082.0

counts = C, 419044.0

counts = CSS, 354715.0

counts = C++, 333877.0

counts = Perl, 274174.0

result can be accessed here: https://boa.cs.iastate.edu/boa/?q=boa/job/107801

Figure 13. project counts obtained from Boa's September 2019 GitHub dataset

In the ever-evolving realm of software development and infrastructure, the choice of pro-

gramming languages plays a pivotal role in shaping the technological landscape. As of 2019,

data sourced from GitHub through the boa architecture reveals a clear leader among the top

10 most used languages — JavaScript. With a staggering count of 1,473,096 repositories,

JavaScript not only dominates the charts but also stands as a testament to its unparalleled

influence in the developer community.

2.3 GitHub Activity Data

GitHub Activity Data is a project that provides a public dataset on Google Big Query con-

taining a record of public GitHub events. It's a collaborative effort between GitHub and

Google, allowing developers and data enthusiasts to analyze and gain insights into the vast

amount of data generated on GitHub.

A straightforward query offers a glimpse into the dataset, providing insights. For instance, a

query counting the number of repositories committed so far currently yields a result of

265,419,190.

Code snippet for total repo commit 2023:

SELECT

 COUNT(*) AS total_commits FROM `bigquery-public-data.github_repos.commits`

LIMIT 1000

1473096

889738

700831
620213 554864 489082

419044 354715 333877 274174

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Javascript Ruby Shell Python Java PHP C CSS C++ Perl

Github Dataset 2019

2.4 Model Core J2EE patterns
The Java Sun team introduced a 5-tier architecture [13] to embody the Core J2EE Patterns

Architecture [14], as depicted in Table 8. Java further facilitates the implementation of the

Model-View-Controller architecture through the utilization of the Observer Interface and

Observable classes, collectively realizing the observer pattern. The Observable class serves

as a representation of an observable object, essentially the "data" within the model-view

paradigm. It can be extended to signify an object that the application intends to be observed.

An observable object has the capacity to enlist one or more observers. In this context, an

observer is any object that adheres to the Observer.

Figure 14. core J2EE Patterns structure

The proposed Java team 5-tier architecture to model the J2EE is explained below;

• Browser

This segment is frequently not indicative of the overall architecture, but it is plausible that it

includes application components commonly referred to as "First-Level Tests." First-level

tests primarily involve verifying the contents of input forms, ensuring the accurate input of

all mandatory fields, for example. However, it is imperative that these tests are categorized

within the presentation layer. This designation is crucial because end-users may opt to disa-

ble JavaScript functionality in their browsers. Additionally, this layer serves the purpose of

rendering dynamic pages, such as those in DHTML format.

• Presentation

This tier is responsible for managing navigation logic and frequently employs JSP/Servlets

technologies.

• Logical Subject

Implemented through Java Beans or EJB, this layer encompasses all the processes within an

application.

• Middleware

This segment of the architecture addresses interactions with other patterns at the same level

or composite patterns across different levels.

• Persistence

This segment of the architecture addresses interactions with other patterns at the same level

or composite patterns across different levels.

Expanding upon the principles of the Model Core J2EE patterns, we will take a look at the

Model-View-Controller (MVC) pattern also.

2.5 Model-View-Controller (MVC)

The MVC pattern, a widely adopted structure for web applications with substantial pro-

cessing demands. This choice enhances the coding and maintenance aspects, leveraging

MVC as a 3-tier architecture to delineate the core elements of web application architecture.

In this context, MVC serves to describe the fundamental components of web applications,

with its 3-tier structure commonly utilized by designers to manage multiple views of identi-

cal data. At the design level, the MVC pattern emphasizes a clear segregation of three types

of objects.

Expanding upon the principles of the Model-View-Controller (MVC) pattern [15]. This is

how the 3 core models affect the development of web applications;

• Model

A model component serves as a repository for both data and logic. For example, a Controller

object might fetch customer information from a database. Data interchange occurs among

controller components or various business logic elements. It handles data manipulation and

either returns it to the database or employs it for rendering the same information.

Moreover, it reacts to requests from views and receives directives from the controller, ena-

bling it to self-update. It stands as the lowest level of the pattern, tasked with overseeing data

maintenance.

• View

The View is responsible for depicting how data appears within the application. Views are

generated using data obtained from the model. When the user requests information from the

model, the output presentation is presented to them. In addition to visualizing data through

charts, diagrams, and tables, the view can also showcase data from various sources. All user

interface elements, including text boxes, drop-down menus, etc., are visible in any customer

view.

• Controller

Controllers are the elements within an application responsible for managing user interac-

tions. The controller interprets user input, leading to changes in both the model and view

based on the received information. Through interaction with a controller's associated view,

users have the ability to alter the view's presentation (such as scrolling through a document)

and update the state of the connected model (such as saving a document).

Figure 15. Illustration of the System Applying the MVC Architecture Pattern

3 PART A - CLIENT-SERVER ARCHITECTURE (JS ECOSYSTEM)

Figure 16.Client-Server Illustration for a JS Web Application

Client-server architecture is a model used in building web applications where client devices,

such as web browsers, interact with a server to access and manipulate data. In this architec-

ture, the client is responsible for displaying the user interface and handling user interactions,

while the server stores and manages data, processes requests from clients, and sends back

responses. JavaScript is commonly used on both the client and server sides to enhance inter-

activity and functionality as seen in the figure, there are 3 popular JavaScript frameworks

used in building a scalable web application. This architecture allows for scalable, distributed

systems where clients and servers communicate over a network, enabling dynamic and re-

sponsive web applications. We will explain further the various build tools used frequently

by professionals in building an industry standard application.

In this chapter, our goal is to explore popular build tools for creating scalable JavaScript

applications. Following that, we will conduct a survey to gather opinions from software de-

velopers on their choice of primary frameworks used for building web applications and why?

what factors do they consider? efficiency? speed? performance? maintenance? Or is it solely

due to Client Business Decision? Analyzing the survey data will guide our decision in se-

lecting the appropriate framework for developing our own web application in Chapter 4.

3.1 NODE PACKAGE MANAGER (NPM)
User-contributed Open Source Software (OSS) ecosystems have gained prominence in the

software engineering realm, attracting attention from both practitioners and researchers. No-

tably, ecosystems comprising 'collections of third-party software,' such as the node package

manager (npm) in the JavaScript package ecosystem [10], play a pivotal role in the develop-

ment of extensive server-side NodeJS and client-side JavaScript applications. As of 2016, a

study reported that the npm ecosystem for the NodeJS platform accommodates over 230

thousand packages [10], witnessing 'hundreds of millions of package installations every

week.'

Figure 17.a package.json file

According to Jansen et al. , ecosystems emerge when 'large computation tasks are split up

and shared by a collection of small, nearly independent, specialized units depending on each

other.' Building upon this concept, we posit that third-party software ecosystems like npm

foster the philosophy of specialized software within these self-organizing ecosystems.

A micro-package is the outcome when a package adopts a 'minimalist' approach in size and

focuses on a single task [11]. For example, the negative-zero1 package addresses the

straightforward task of determining whether an input number has a negative-zero value. Mi-

cro-packages operate as individual units, establishing 'transitive' dependencies between de-

pendent packages (i.e., dependency chains) across the ecosystem.

Figure 18. Stack overflow chart 2022 (NPM)

NPM (Node Package Manager) has evolved significantly since its initial release on January

13th, 2010. Initially included as part of the Node.js framework, it has become the leading

package manager for JavaScript, commanding over 65.17% of the userbase as of 2022 (Stack

overflow User Survey 2022). This dominance is largely attributed to its integration with

Node.js.

Presently, NPM is overseen by NPM Inc., a company established in 2014 dedicated to main-

taining the NPM software and package repository. They also offer paid services and support

tailored for enterprise usage (NPM Inc. 2019).

Configuring npm and creating a package.json [16]

The development of NPM remains highly active, with the latest stable version, 10.4.0, re-

leased on January 24th, 2024 (NPM GitHub 2024).

As of 2022, the NPM registry stands as the largest online package registry. It hosts packages

submitted by developers and boasts more a significant importance to its nearest competitor,

the Docker (Linux.com 2017).

Source -> https://www.npmjs.com/package/express

3.2 Understanding the JavaScript Client – Server-Side System
Developing a comprehensive JavaScript software product using a single technology is nearly

impractical, leading to the rise of frameworks and libraries. Typically, this entails utilizing

tech stacks, which are combinations of JavaScript programming language, it’s frameworks,

libraries, database system, templates, and other tools.

3.2.1 NodeJS

Node.js® stands as an open-source JavaScript runtime environment constructed upon

Chrome’s V8 engine. It operates in an event-driven manner with non-blocking I/O, rendering

it lightweight, efficient, and exceptionally rapid for crafting web applications.

Widely adopted across various industries such as IT and Finance sector, Node.js has emerged

as the preferred choice. Its inherent simplicity is difficult to overlook. Nevertheless, like

every technology, Node.js comes with its own set of pros and cons. Therefore, let us delve

into the advantages and disadvantages of Node.js, empowering you to align your require-

ments and make a well-informed decision.

Figure 19. An Example of Node.js Application

“To run this snippet, save it as a server.js file and run node server.js in your terminal.

This code first includes the Node.js http module.

ReactJS ,
22,040,391

AngualrJS,
2,683,838

VueJS, 3,496,954

Jquery, 7,546,056

ExpressJS,
21,961,276

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

REACTJS ANGUALRJS VUEJS JQUERY EXPRESSJS

Weekly Npm Download as at 15-02-
2024

https://www.npmjs.com/package/express
https://nodejs.org/api/http.html

Node.js has a fantastic standard library, including first-class support for networking.

The createServer() method of http creates a new HTTP server and returns it.

The server is set to listen on the specified port and host name. When the server is ready, the

callback function is called, in this case informing us that the server is running.

Whenever a new request is received, the request event is called, providing two objects: a

request (an http.IncomingMessage object) and a response (an http.ServerResponse object)”

[17].

Figure 20. NodeJS Server Architecture

Node.js utilizes non-blocking I/O and asynchronous request handling to manage operations

efficiently. This means that instead of waiting for a function to complete before moving on,

Node.js processes requests concurrently, allowing it to handle multiple tasks simultaneously.

This is made possible through the use of call-backs and promises, which manage asynchro-

nous operations by executing functions when certain tasks are completed. Node.js applica-

tion remains responsive and can handle incoming requests effectively.

3.2.1.1 Logical Reasons to use NodeJS

• Robust Technology

• Fast Processing for web tasks – asynchronous Thread (Non-Blocking I/O Model)

• Scalable technologies for microservice applications

• Seamless JSON support

3.2.1.2 Issues with Building an Application with NodeJS

• Call-back Hell issue

• The asynchronous programming model of Node.js poses challenges in code mainte-

nance.

• Performance is compromised when tasked with heavy computing operations.

• Node.js opens up a lot of code changes due to Unstable application programming

interface (API)

https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

3.2.2 REACT

ReactJS, commonly referred to as React, is a front-end JavaScript library pioneered by Fa-

cebook, specifically by (Jordan Walke) [18]. It is designed for constructing highly respon-

sive user interfaces and finds extensive application in the web applications.

Figure 21. installing React on an existing project using NPM

React operates on a declarative paradigm, employing components to structure user inter-

faces. It maintains a "virtual" representation of the UI in memory, which synchronizes with

the "real" DOM. Integrating React into an already-existing web page is feasible, allowing

developers the flexibility to incorporate as much or as little as desired. Putting JSX markup

close to related rendering logic makes React components easy to create, maintain, and delete

[19].

Writing user interface with React requires a bit of a shift in how you think about web appli-

cations.

// JSX to express UI components.

Let dropdown =

<dropdown>

A dropdown list

<Menu>

 <MenuItem> Do This </MenuItem>

<MenuItem> Do This </MenuItem>

<MenuItem> Do This </MenuItem>

</Menu>

</Dropdown>

 render(dropdown);

ReactDom

React DOM is the essential engine behind the efficiency of React-based user interfaces in

handling the multitude of screen changes demanded by modern web applications. It achieves

this feat by leveraging a Virtual DOM, which optimizes the process of updating the user

interface.

Figure 22. React DOM Structure

Between 2022 and 2024, the React library has seen significant popularity and usage, with

over 22 million downloads recorded via npm. This trend underscores React's continued rel-

evance and widespread adoption within the development community for building web ap-

plications [20]. The illustration below proves our point.

Figure 23. React Library download (NPM trend stat 2024)

3.2.2.1 Logical Reasons to use React framework

• React Components – Build once and use in multiple projects.

React facilitates rapid project development through reusable components, which are isolated

pieces of code utilized within an app or across various projects.

• One directional data flow

In React, data flows unidirectionally from parent to child components. The parent compo-

nent's data, known as state, dictates the screen content. The state portion passed to a child is

called a prop, which is read-only.

• React VirtualDOM - Reduces reloads in applications

Introduced for React-based apps, the virtual DOM enhances speed and interactivity.

• React Hook

React Hooks simplify complex logic which Improves code readability, testability, and logic

reusability, while also reducing app bundle size.

• A large community of React Devs – awesome community support

3.2.2.2 Issues with Building an Application with ReactJS

• Excessive use of additional technologies

While React itself is lightweight and user-friendly, incorporating numerous additional tech-

nologies is often necessary before starting work with it. A general guideline is to refrain from

adding new technologies on top of React unless absolutely necessary.

• Excessive liberty

React lacks a definitive roadmap for web app development, offering considerable freedom

but with associated drawbacks.

• Excessively wordy code

Due to the abundance of technologies and approaches, combined with the absence of strict

guidelines, the code can be challenging for newcomers to grasp. As a result, onboarding new

developers for large React projects may require additional time.

The most fascinating thing about React is its huge Ecosystem of developer communities

whom are always willing to help other developers answers questions and concerns encoun-

tered during the course of using the framework to build an application.

According to the survey;

Hashnode: 47,000+ followers

Reddit: 250,000+ React developers

X(formerly twitter): 477,000+ followers

Facebook: 106,000+ followers

Dev.to: 15,000+ posts published

Reactiflux: 100,000+ developers

React is part of the MERN stack, which encompasses four key technologies:

M - MongoDB: A NoSQL (non-relational) database

E - Express: A back-end middleware

R - React: A front-end framework

N - Node.js: A runtime environment

3.2.3 Angular Framework

Angular, backed by Google, is an open-source JavaScript-based platform for front-end user

interface development. Its origins can be traced back to 2009, when Google engineers Misko

Hevery and Adam Abrons developed the framework, initially known as AngularJS, and of-

ficially released it in 2010 [21]. Angular is an open-source JavaScript framework written in

TypeScript. Its main focus is on building single-page applications (SPAs).

In Angular applications, the architecture is based on foundational concepts. Angular com-

ponents serve as the fundamental building blocks [22]. These components define views,

which represent sets of screen elements that Angular can dynamically modify based on pro-

gram logic and data. Components utilize services for background functionalities like data

fetching, decoupling view-related tasks. Services, injected as dependencies into components,

enhance code modularity, reusability, and efficiency. Currently 93k stars on github.

Installation of Angular on local machine

npm install -g @angular/cli

Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy RemoteSigned

ng new my-app

cd my-app

ng serve –open

Angular Architecture

15,000, 1%
47,000, 5%

250,000, 25%

106,000, 11%
477,000, 48%

100,000, 10%

ReactJS Community Ecosystem

Dev.io HashNode Reddit Facebook Twitter(Now X) ReactiFlux

Figure 24.Angular Building Architecture

3.2.3.1 The Building Blocks of Angular

• Modules

In Angular, an app features a root module called AppModule. This module serves as the

bootstrap mechanism for launching the application.

• Angular Components

Each component defines a class containing application logic and data, typically representing

a portion of the user interface (UI).

• Services

When there's data or logic not tied to the view but needs to be shared across components, a

service class is created, always marked with the @Injectable decorator.

• Injection Dependency

Dependency Injection (DI) facilitates providing components with necessary services and

data. In Angular, DI is integrated into the framework, eliminating the need to fetch data from

the server, validate user input, or perform console logging. Services can be injected into

components seamlessly, as the injector manages a container of service instances. If an in-

stance is absent, the injector creates and adds it to the container for future use.

• Data Binding

It synchronizes and coordinates components and templates, establishing a communication

channel between template parts and component parts.

Angular Code sample for Data binding

<p>Topic: {{angular.Architecture}} </p>

<p>Place: {{Data.Flair}}</p>

• Angular Directives

A directive, marked by the @Directive decorator, guides Angular in transforming the DOM

as templates render dynamically. Angular components consist of both templates and direc-

tives. There are two types of directives: Structural, which adjust layout by modifying DOM

elements, and Attribute, which alter the behavior of existing elements.

- Ng – Model Directives

- Ng-Bind Directive

• MetaData

Metadata, often referred to as data about data, in Angular is represented by decorators. It

serves as a guiding principle for Angular in processing a class, configuring it according to

its intended behavior. Decorators, such as @Component, are attached to TypeScript code,

like AppComponent, indicating to Angular that it's a component.

A metadata code sample [42].

export class AppComponent {

 constructor(@Environment(‘test’ private appTitle:string) { }

}

“@Environment metadata is applied to the property appTitle with the value 'test'.”

Template

The template is essential for formatting and enhancing the application prior to display. It

merges Angular Markup with HTML, allowing for manipulation of elements pre-display. It

also facilitates program logic and links application data with the DOM using binding

markup. Two types of data binding are employed:

a. Event Binding: Responds to user input by updating application data.

b. Property Binding: Reflects computed values based on application data into the HTML.

Installing Angular CLI with NPM to start a new Project

3.2.3.2 Logical Reasons to Adopt Angular

• Browser Compatibility

• Highly Comprehensive Framework

Angular offers built-in solutions for server communication, application routing, and more,

making it a comprehensive framework.

• Testing

Tests are integral to Angular, designed for comprehensive testability. It's highly recom-

mended to test every part of your application.

• Angular CLI facilitates seamless updates.

The Angular command-line interface (CLI) is popular among engineers for several reasons.

It's easy to set up, newbie-friendly, includes testing tools out of the box, and offers simple

commands.

3.2.3.3 Issues with Building an Application with Angular

• Migrating from AngularJS to Angular takes time.

Lazy loading allows rendering parts of the AngularJS app within the Angular application.

Migrating from AngularJS to Angular is a significant task, unlike updating between Angular

versions. It can be challenging, especially with legacy systems.

• Can be difficult to learn

The learning curve is steep due to the array of topics like modules, dependency injection,

components, services, and more. Additionally, mastering RxJS for asynchronous program-

ming is essential but daunting. TypeScript, while beneficial for code maintainability, adds

another layer of complexity to the learning process.

• Complex Angular Component Structure

Managing components in Angular can be overly complex. Each component may require up

to five files, involving dependency injection and lifecycle interface declarations. Addition-

ally, Angular-specific third-party libraries and syntax add further complexity.

ANGULAR is a key component of the MEAN stack, encompassing four essential technol-

ogies for software product development:

M - MongoDB: A NoSQL (non-relational) database

E - Express: A back-end middleware

A - Angular: A front-end framework

N - Node.js: A runtime environment

3.2.4 VueJS

VueJS is a dynamic JavaScript framework tailored for crafting engaging web interfaces. It

prioritizes front-end development, offering seamless integration with various projects and

libraries. Installation is straightforward, making it accessible even to beginners who can

swiftly embark on creating their own user interfaces. Vue has over 3.5 million downloads

in December 2023 and over 180,000 stars on Github.

3.2.4.1 Vue installations

◼ Using NPM

npm install vue

◼ Using CDN(content delivery network)

The latest version of VueJS can be accessed via the link: https://unpkg.com/vue. Addition-

ally, VueJS is available on jsDelivr (https://cdn.jsdelivr.net/npm/vue/dist/vue.js) and cdnjs

(https://cdnjs.cloudflare.com/ajax/libs/vue/2.4.0/vue.js).

◼ CLI command Line Installation

npm install --global vue-cli

◼ HTML Script Tag

◼ <html>

◼ <head>

◼ <script type = "text/javascript" src = "vue.min.js"></script>

◼ </head>

◼ <body></body>

◼ </html>

3.2.4.2 Vuex

Vuex, described on its official site, serves as a state management pattern and library for

Vue.js applications. It establishes a central store accessible by any component, promoting

better state management and security. Developers can create rules and methods to control

state mutations, ensuring data changes adhere to a specified pattern to prevent conflicts and

unwanted behavior. As Vue.js applications expand, passing data between components via

props can become cumbersome and time-consuming. Vuex alleviates this complexity and

facilitates easier maintenance.

https://cdnjs.cloudflare.com/ajax/libs/vue/2.4.0/vue.js

Figure 25. Vue View Structure (vuejs.org 2024) [23]

ViewModel

The Vue.js ViewModel is the core instance of a Vue application that connects the data and

logic defined in the Vue component with the DOM. It manages the data and state of the

application, and acts as a bridge between the data model and the view, enabling reactive and

declarative rendering of the user interface. In essence, the ViewModel represents the appli-

cation's state and behavior, allowing for efficient data binding and manipulation [23].

var vm = new Vue({ /* options */ }) #-> code snippet from vuejs.org

View

Vue.js employs DOM-based templating, associating each Vue instance with a DOM ele-

ment. Upon creation, a Vue instance traverses its root element's child nodes, establishing

data bindings. Once compiled, the View becomes reactive to data alterations.

vm.$el -> snippet from vuejs.org 2024

Model

VueJS excels in reactivity, simplifying data binding between HTML and JavaScript. Its

seamless handling of two-way reactive data binding ensures that changes in data reflect in

the DOM effortlessly. This feature makes VueJS ideal for SPAs and any application neces-

sitating real-time updates.

vm.$data // -> snippet from vuejs.org

3.2.4.3 Logical Reasons to Adopt VueJS

• Easy to Learn

Experienced developers transitioning from other JavaScript frameworks find Vue easy to

pick up due to its simplicity and clarity. Vue's straightforward syntax combines HTML and

JavaScript seamlessly in its components, making the structure intuitive. This simplicity fa-

cilitates the development of large-scale templates while maintaining ease of error tracking.

• Virtual DOM rendering enhances performance.

Vue.js leverages a virtual DOM to efficiently track and update changes in data and UI, min-

imizing DOM operations and enhancing performance. Additionally, its reactivity system au-

tomatically detects dependencies between data and UI, updating the UI dynamically upon

data changes.

• Vue Components

Components and views are small, interactive app parts seamlessly integrated into existing

infrastructure without compromising the system.

• Browser Dev Tools

The Vue team has developed excellent browser devtools extensions for their framework.

These tools enable programmers to inspect Vuex state, components, and views, modify data,

and analyze events in depth.

3.2.4.4 Issues with Building an Application with VueJs

• Limited Plugins, Extensions and Libraries

• Not Enough support from Vuejs community of developers

• Too flexible leading to code errors and irregularities

VueJS is part of the MEVN stack, which encompasses four key technologies:

M - MongoDB: A NoSQL (non-relational) database

E - Express: A back-end middleware

V- Vue: A front-end framework

N - Node.js: A runtime environment

As we can see below, ReactJS seems to be the favorite amongst JavaScript developers. Our

qualitative assessment in the part B would give us a better understanding why the React

Framework is a popular choice amongst JavaScript and its community of developers.

Figure 26. popularity between the 3 major frameworks [npmtrends.com Jan 2024]

II. ANALYSIS

3.3 PART B - RESEARCH APPROACH (Qualitative Model)

As part of this research, a survey (consisting of 14 Questions) has been distributed to JavaS-

cript users through various channels such as FreeCodeCamp forums, CodeAcademy Forums,

workplace employees, Discord JavaScript Forums, and WhatsApp groups. The aim is to

collect valuable insights on JavaScript developers' attitudes and thoughts regarding the Ja-

vaScript Tech Stack.

The survey was created using Google Forms for its user-friendly interface and automatic

graphing of submitted results, facilitating efficient data analysis for this thesis.

I'm presently engaged in qualitative research on the JavaScript ecosystem within the Euro-

pean and African tech communities. The insights being gained and analyzed from this re-

search are driving my decision towards adopting the MERN STACK for building the web

application discussed in Chapter 4.

All Research documents used will be included in the final version of this Thesis.

3.3.1 RESEARCH QUESTION

→ Developer Bio (KYD- know your developer)

- Kindly state your name (Information to be kept anonymous due to data confidential-

ity)

- State your nationality

- Select your employment status

- What is your job role?

→ Main Research Questions

• What is your JavaScript programming experience level?

• Are you currently working in software development?

• What is your job Role?

• What industry do you work in and where is your company located?

• Why did you decide to adopt JavaScript as a programming language for develop-

ment?

• Do you currently use a JavaScript Framework for development?

• Which of the Listed Frameworks do you use mostly professionally?

➔ ReactJS

➔ Angular

➔ VueJS

• How often do you switch between JavaScript Frameworks when developing a soft-

ware and why?

• Which of the package Manager do you use in development?

• How Important has Package Managers been to your development lifecycle?

• What security concerns have you encountered using NPM and what do you think can

be improved?

• How would you rank the learning curve of your preferred Framework?

• How Important has the developer community of your framework of choice been to

your development workflow?

• What are the drawbacks you encounter in production when using your preferred

Framework?

• What do you personally think could be improved in the ever-growing JavaScript eco-

system?

• Do you have any Additional Thoughts that you think is not been covered in this sur-

vey questions?

3.3.2 Qualitative Result of the Survey

The survey didn't randomly select participants, and it only included people who were

willing to take it, which naturally limits how representative the results are of all de-

velopers. So, we can't use these results to say much about the broader developer com-

munity in the grand scheme of things. These results are solely of the basis of this

Thesis research.

3.3.2.1 Know Your Developer (KYD)

Survey Results:

26 developers stated Nationality as Nigeria/Nigerian

2 Chinese surveyed developers

1 czech/Czechia developer

1 German developer

1 Ghanaian developer

1 Iraqi developer

1 Irish developer

1 Italian developer

1 Romanian developer

1 Welsh developer

1 Trinidad and Tobaggo developer

1 Zimbabwean developer

1 Ethiopian developer

Survery Results:

 21 (53.8%) of the respondents were gainfully employed. 15.4% (6 developers) were self-

employed, 11 respondents (28.3%) were students/looking for work/part-time work/stu-

dent/coding for fun e.t.c, 1 respondent (2.6%) was unemployed.

Survey Results:

The survey results revealed that 2 respondents work as AI researchers, 2 respondents are

Backend Developers, 1 respondent is a Freelancer, 1 is a Human Resource/Business Data

Analyst, 1 is a CEO, 1 works as a Developer for McDonald's enterprise, 1 is a Cybersecurity

Auditor, 1 is a Full Stack Developer, 1 works as a Graphic/Web Designer, 1 is an IT Admin-

istrator, 1 is a Makeup Artist currently transitioning to tech, 3 did not specify a job role

(N/A), 1 works in operations, 1 is a Product Consultant, 1 works in QA (Quality Assurance),

1 is a Social Media Marketer, 6 are Software Engineers/Software Developers/Technical

Leads, 4 are Front-End Developers/Front-End Engineers, and 7 are students.

3.3.2.2 Q1- Q14 Experience with Javasript, FrameWorks and Node Package Man-

ager(npm)

The purpose of these questions was to assess the significance of the JavaScript ecosystem,

including its frameworks, to the surveyed developers, as well as to evaluate their perceived

ease of use.

The percentages indicate the distribution of respondents in each category.

Q1

Figure 27. Q1 survey result

Out of the total respondents:

21 (53.8%) are somewhat working in or have recently worked in software development.

17 (43.6%) are currently not working in software development but in other fields.

Q2

Figure 28. Q2 survey result

Among the respondents, 9 (23.1%) listed senior-level experience, while 19 (46.2%) have

intermediate experience in the JavaScript language, and 8 (20.5%) have a beginner-level

knowledge of the language.

Q3 – (“Why did you decide to adopt JavaScript as a programming language for develop-

ment”)?

The following responses was submitted from 22 respondents.

• For upgrade

• It was the most suitable for my job role

• Because of its asynchronous nature.

• It is easy to understand

• JavaScript’s flexibility and robust ecosystem make it an ideal choice for develop-

ing modern web applications that meet our project requirements.

• I adopted JavaScript because it is the language of the web. It works on all major

web browsers, making it the front-end development language. JavaScript is also

used on the server side (Node.js), for the development of mobile applications (Re-

act Native, Native Script) and desktop applications (Electron). It's versatility and

wide adoption make it an invaluable technology for developers.

• I enjoy using JavaScript because it has a diverse ecosystem of libraries, frame-

works, and tools that facilitate development across multiple domains. Whether I'm

creating a simple website, a complex web application, or a mobile application,

there is likely a JavaScript library or framework that I can use to develop these

additional processes and work.

• With the advent of frameworks like React Native and Electron, I can use JavaS-

cript to create cross-platform applications that run on a variety of devices and plat-

forms. This allows me to use JavaScript technology to create a variety of applica-

tions without having to learn another language.

• Easy to use

• The adoption of JS started off as a need to add interactivity to websites.

• Because of its versatility

• Easy to learn and was a widely used language

• Because fasting my work

• I was learning to become a frontend developer and it was the next logical step in

my path

• Convenience of deployment, availability of talent pool

• because of its functionality

• It was kind of what I had available to me at the time. The only Udemy course I

had access to back then was NodeJS so JavaScript was the way forward.

• because it is basically useful for frontend programming and user-friendly

• it is dynamic with static pages. Also, JavaScript is very useful in websites devel-

opment implementation 3Js, which develops websites in 3D.Our startup company

also uses CSS, html and JavaScript on its website. i am sending you the address

https://association-for-engineering-in-science.webflow.io

• For its versatility, as it's a widely supported language that can be used for both

front-end and back-end development. Its ecosystem and community support also

contribute to its popularity.

• Cause my interest was mainly on the frontend part of the website

• I wanted to have a skill

Q4

Figure 29. Q4 survey Result

Out of the respondents, 24 (61.5%) currently utilize JavaScript in some capacity for devel-

opment, whether professionally or for research purposes, while 15 (38.5%) are currently

employing other programming languages instead of JavaScript.

Q5

Figure 30. Q5 Survey Result

Among the respondents, 22 (56.4%) utilized ReactJS the most, 5 (12.8%) used Angular pro-

fessionally, 2 (5.1%) used VueJS, while the remainder utilized ExpressJS or jQuery.

Q6 – (“Why do you use the above selected frame work “)?

The following responses was submitted from 18 respondents

• that is what the company I work uses in building their applications

• Cos it offers two-way features like data binding and dependency injections for

building single page applications.

• ReactJS is user friendly, allowing developers like myself reuse codes at will.

• It has a virtual DOM and integration framework that helps improve performance

by reducing the number of DOM manipulations. React also provides tools like

React, memo and Pure Component to optimize actions and avoid unnecessary rep-

etition.

• I make use of React because it follows a unidirectional data flow, where data flows

in only one direction: from the parent component to the child component. This

makes data easier to manage and reduces the chance of bugs due to inconsistent

state.

• I prefer ReactJS because of its virtual DOM and integration framework which can

help improve performance by reducing the number of DOM manipulations. React

also provides tools like React, memo and Pure Component to optimize actions and

avoid unnecessary repetition.

• Because Vue.js has an easy learning curve, making it accessible to both beginners

and experienced developers. Simplicity allows developers to speed up content and

start building applications efficiently.

• It’s the one I’m best familiar with.

• Vue felt natural to pick up and was quite easy to pick up.

• Building user interfaces on React is quite interesting and innovative

• It's very good for frontend web development

• Easier to navigate

• It is the current industry standard and has more opportunities

• It’s the framework with very available jobs

• We use React because it’s a combination of JavaScript, HTML and CSS. This

allows us to create an integrated website

• For its component-based architecture, virtual DOM for efficient updates, and a

strong community. It simplifies building interactive user interfaces and enables

the creation of reusable UI components.

• Reusable component, great state management, declarative design

• it is a powerful library for building web and native user interfaces. Whether you’re

creating a simple web page or a complex application, ReactJS allows you to con-

struct user interfaces by combining individual pieces called components.

Q7 – (“How often do you switch between JavaScript Frameworks when developing a

software and Why”)?

The following responses was submitted from 13 respondents

• quite often due to the vast range of projects we work on

• Not really often, I stick to ReactJS

• Not so often, ReactJS serves me better.

• not so often, I prefer VueJS

• I've only used one framework till date; Vue.

• I don't develop much, but when I do ReactJS does it for me Same reasons as the

above

• Can't use reactJS for everything I'm doing

• Not often. Requirements are defined before project starts

• We don't switch because Express is sufficient for all our needs so far

• I seldom do so since I had experience with a vast majority of them so I can easily

plan which to use and why to use.

• I do not switch between JavaScript frameworks

• I hardly switch because ReactJS is enough for now

• Sometimes, the requirements of a project may evolve in such a way that the current

framework becomes less suitable or efficient. In such cases, we might switch to

another framework that better aligns with the new requirements.

Q8 – (“What package Manager do you use in development”)?

10 respondents listed npm, 3 listed Yarn, 1 listed Jenkins, and 1 listed webpack.

Q9 – (“How Important has Package Managers been to your development lifecycle”)?

The following responses was submitted from 11 respondents

• As my projects increased in size and complexity, manually managing dependen-

cies became increasingly difficult for me. Package managers are a great solution

for managing dependencies, making it easy to manage large code, refactor code,

and introduce new features without unnecessary hassle or expense.

• Package managers maintain control to ensure that I use the same set of dependen-

cies across different environments. This improves the consistency and reproduci-

bility of the development process, reducing the possibility of bugs or bad behavior

due to version conflicts.

• The package manager integrates with development automation tools like npm

scripts, webpack, or Gradle, allowing developers to perform tasks like installing

dependencies, bundling, minifying, and optimizing the coded. This automation

helps improve efficiency and consistency, especially for large projects.

• Package managers improve development performance by providing a central re-

pository of reusable components, libraries, and tools. Developers can quickly find

and install the packages they need, saving time and effort compared to download-

ing and managing dependencies.

• They provide essential software and easily install those packages for use

• They simplify dependency management, making it easier to install, update, and

share libraries or packages. Package managers streamline the development pro-

cess, enhance collaboration, and ensure consistency across different environments.

They contribute significantly to the efficiency and reliability of software develop-

ment.

• Made development easier

• It's impossible to do anything without them.

• Very helpful

• It has helped me reuse codes at my own free will, easy to use, easy for sharing of

codes, and easy to manage.

• makes development faster.

Q10 – (“What security concerns have you encountered in using NPM and what do you

think can be improved”)?

The following responses was submitted from 12 respondents

• Vulnerability Malicious package Lack of package verification

• NPM requires developers to authenticate when publishing packages or accessing

private domain names. However, credential leakage, such as breach of sensitive

information (such as an authentication token or API key) to an administrative au-

thority, may result in not being authorized to access your npm account or your

private packages.

• I've had an experience where an attacker published a package with the same name

as a package used by my company. If an organization's internal package, json file

does not specify the package, NPM may download the wrong package from the

public registry instead of the internal registry, leading to security violations. A

way I think the security of NPM can be improved is by carefully reviewing a reli-

able and reputable package before including it as a dependency.

• The NPM open-source registry allows anyone to publish packages, which can

sometimes lead to faulty or broken packages. These packets may contain malicious

code, such as backdoors, malware, or code designed to steal sensitive information.

• When i used older versions of packages that have known security vulnerabilities

due to compatibility issues or rejected updates. Constantly updating dependencies

made my project vulnerable to exploits because attackers started targeting these

vulnerabilities to compromise my application

• I've not faced any till now. They already allow me audit packages that I plan to

use.

• I haven't encountered any issues so far

• dependency vulnerability

• Outdated packages and packages with known security vulnerabilities. For im-

provement, auto updating of know vulnerabilities option should be provided

• Security concerns in npm include the risk of installing malicious packages and

vulnerabilities in dependencies. Improvements can be made through continuous

monitoring, tools like npm audit, code reviews, access controls, and maintaining

transparency in package information.

• Poor audit of npm packages

• Dependency Vulnerabilities,Package Hijacking and for Malicious Package.

Q11 – (How Important has the developer community of your framework of choice been

to your development workflow)?

The following responses was submitted from 14 respondents

• without the community i would not be a professional developer today

• They've been of great importance and support

• The developer community provides me with valuable feedback and peer reviews

to help developers like myself improve their code quality, design decisions, and

solutions. Peer review promotes accountability, transparency, and continuous im-

provement, resulting in better software products and practices.

• The developer community has provided a platform for sharing knowledge, expe-

riences, best practices, tips, and tricks. Forums, online communities, meetups, con-

ferences, and workshops allow developers to learn from each other, collaborate to

solve problems and stay up to date with the latest trends and new technologies

• The developer community provides support and training to me in all experience.

• The developer community champions important values such as diversity and in-

clusion, accessibility, appropriate software development, and environmental sus-

tainability. By raising awareness and encouraging positive change, developers can

use their voices to benefit me, people, and the tech industry as a whole.

• Very important! It's quite easy to find solutions to problem on the web.

• Well, for the community bit, it's a small group of friends and former colleagues

who just assist when certain issues are encountered

• Feedback and critique

• Very important, it's important to have access to resources when you need them

• Very important

• The developer communities have been essential components of the software de-

velopment ecosystem, fostering collaboration, innovation, and continuous im-

provement. Active engagement with the community can enhance the development

workflow, accelerate learning, and contribute to the success of projects built using

a particular framework or technology.

• Fresh ideas

• They've been of great importance and support.

Q12 – (“What are the drawbacks you encounter in production when using your preferred

Framework”) ?

The following responses was submitted from 5 respondents

• limited flexibility and bloated code

• Limited pool of experienced developer

• Incompatibility of packages with Node version when updates to the deployment

server have to be made

• Common issues include performance bottlenecks, framework updates affecting

compatibility, and potential security vulnerabilities. Additionally, a steep learning

curve or lack of certain features may pose challenges. It's crucial for developers to

stay informed, address these issues promptly, and adapt their strategies to ensure

smooth production experiences.

• Minification size of production Build

Q13 – (“What do you personally think could be improved in the ever-growing JavaScript

ecosystem”)?

The following responses was submitted from 10 respondents

• The language needs to be strongly typed like python

• JavaScript's standard library lacks many functions and data structures found in

other languages. Enhanced standard libraries with more comprehensive and con-

sistent APIs for operations such as string processing, data processing, and data

structures reduce reliance on third-party libraries and improve production.

• Dynamic typing in JavaScript can cause errors that are only discovered at runtime.

Adding options like typing, like those found in TypeScript or Flow, can help you

catch more errors during development and provide better support for code naviga-

tion and refactoring

• Since Javascript's ecosystem still relies heavily on CommonJS modules, which

have different syntax and behavior. Improved support for ES modules across all

environments and libraries will help unify the module ecosystem and improve in-

teroperability.

• JavaScript engines have seen significant improvements over the years, but there is

still room for improvement, particularly in areas such as garbage collection,

memory management, and just-in-time (JIT) compilation compatibility. . Addi-

tional JavaScript performance optimization can improve the responsiveness and

performance of your website.

• Standardization: Enhancing standardization across libraries and frameworks to

promote consistency and reduce fragmentation.

• Libraries with less steep learning curves would be a welcome development

• Performance Improvement

• Package Security: Strengthening package security to minimize the risk of in-

stalling malicious or compromised dependencies.

• Documentation: Enhancing and maintaining comprehensive, up-to-date documen-

tation for libraries and frameworks to facilitate easier adoption and troubleshoot-

ing.

Q14 – (Do you have any Additional Thoughts that you think is not been covered in this

survey questions)? If yes, kindly state them (optional)

The respondents largely ignored this last question and in some cases their responses were

inconsequential to our research statement, hence Q14 not going to be taking into consid-

eration.

4 WURA APP

In this chapter, we're diving into WURA APP, an online platform for movie lovers. It's a

real-life example of how we combine what we learn in the previous chapters about JavaS-

cript with actually building something useful.

WURA started with our understanding of JavaScript, the programming language behind it

all. We studied its basics like data types and how it handles events. With this knowledge, we

decided to create a platform that solves a real problem.

In the last chapter, we looked at what other experts have said about programming languages

like JavaScript. This helped us see the bigger picture and understand where WURA fits in.

Then, we got practical. We compared three popular JavaScript frameworks to figure out

which one would work best for WURA. We even surveyed professionals who use JavaScript

daily to make sure we were on the right track.

Now, it's time to get our hands dirty with WURA. We'll explore how it's built, what features

it has, and how users interact with it. This will show how frameworks not only make coding

easier but also improve the user experience.

As we wrap up this chapter, we want to think about why WURA matters. It's not just about

building cool stuff; it's about how frameworks shape the internet and empower developers

like us.

In the next chapter, we'll bring everything together. We'll share what we've learned from

building WURA and give some advice on using frameworks effectively. Our goal is to in-

spire others and keep pushing the boundaries of web development.

4.1.1 Functional Requirements: (What the app must do)

• Feature a SignUp Screen for a user to create account

• A login Screen for a user to login after creating the account

• A Sign up feature with Google Auth

• A Sign Up feature with Github Auth

• An Error Popup to indicate Incorrect Credentials

• Registered User information is automatically saved in MongoDB using PrismaClient

• A profile Screen that shows the registered User

• The HomeScreen of the application

• A play Button that Plays the movie selected by the User

• An Info Button that displays the selected Movie details

• A modal screen Linked to the (Info button)

• A SignOut Feature on the HomePage

• A UserInfo section displaying the name of the registered User

• A trending Movie section

• It is responsive on mobile Screen

Tools used in development

React, TypeScript, React-Icons, NextJS, Next-auth, MongoDB, Mongoose, PrismaDB, Ver-

cel, Npm, Tailwind CSS, NodeJS.

4.2 Implementation Phase

4.2.1.1.1 App Logo

This is the application logo.

4.2.2 Application Main Build Structure

4.2.2.1 SignUp section

Client Side:

This page is for handling authentication in the application. It includes functionality for both

signing in and registering new users. The user interface allows switching between the login

and registration forms. It supports signing in with Google and GitHub accounts as well. The

page layout is responsive, adjusting to different screen sizes. Overall, it provides a straight-

forward and visually appealing way for users to authenticate and access the application's

features.

Code Sample: Auth.tsx

ServerSide: Register.ts

Figure 31.Credentials authenticator.

Code for the Input feature:input.tsx (Input button component)

Figure 32. User on the SignUp Session

Figure 33. User on the Login Screen

Figure 34. Next-Auth Provider Response after successful SignIn.

4.2.2.2 Registered User Profile Screen

This code handles user authentication and redirects users to the login page if they are not

authenticated. Once authenticated, it displays a user profile page with the option to go back

to the home page. It also fetches the current user's data and displays their name.

Client Side:

Server Side: current.ts

The code defines an API route handler using Next.js. It only accepts GET requests; if any

other method is used, it returns a 405 status code. It then attempts to authenticate the user

using a server-side authentication function. If successful, it fetches the current user's data;

otherwise, it logs an error and returns a 400 status code.

 Figure 33. A logged In user Profile Screen

4.2.2.3 Navigation Bar Section

Client side : navbar.tsx (Navbar Component)

This code creates a navigation bar component for a web application. It includes features

like a mobile menu, account menu, and icons for search and notifications. The background

color changes when scrolling down the page. It also displays different navigation items based

on screen size.

Figure 35.Navbar Item

4.2.2.4 Account Menu Screen and SignOut Feature

A signedIn User on the application Main Screen

This code defines a component for the account menu in the application. It displays the user's

name and provides an option to sign out. The menu is only visible when the `visible` prop

is true.

Client Side: AccountMenu.Tsx (AccountMenu Component)

4.2.2.5 Billboard Section (Movies response from the API/DB on the HomeScreen)

Client Side: Billboard.tsx

This code defines a component for a billboard section in the application. It displays a video

background with dynamic content such as title, description, and buttons for playing the video

and accessing more information. The video is fetched dynamically using the `useBillboard`

hook, and the information modal is triggered using the `useInfoModal` hook.

Figure 36. rendering a BillBoard on the Homescreen

Billboard hook

This code defines a custom hook called ̀ useBillboard` using SWR (Stale-While-Revalidate),

a React hook for data fetching. It fetches data from the '/api/random' endpoint using the

`fetcher` function defined elsewhere. The hook returns the fetched data, any errors encoun-

tered during fetching, and a boolean indicating whether the data is still loading. It also con-

figures SWR to not automatically revalidate the data when it becomes stale, when the win-

dow regains focus, or when the connection is reestablished.

4.2.2.6 InfoModal Component (VideoPlayer) – InfoModal.tsx

Client Side :

This code defines a React component called `InfoModal` that represents a modal window

displaying detailed information about a movie. It takes two props: `visible`, a boolean indi-

cating whether the modal should be visible, and `onClose`, a function to close the modal.

Inside the component, it manages the visibility of the modal using local state (`isVisible`).

It uses custom hooks `useInfoModal` and `useMovie` to fetch and manage movie data and

modal state.

The modal contains a video player with the movie's poster and plays the movie's trailer. It

also displays the movie's title, duration, genre, and description. Users can play the movie,

add it to favorites, and close the modal. The modal is styled with a black background and

appears in the center of the screen.

UseMovie Hooks to manage the movie data when rendering the information in the modal.

4.2.2.7 PlayButton Feature – (PlayButton Component)

 This code defines a React component called `PlayButton`, which represents a button used

to play a movie. It takes a single prop `movieId`, which is a string representing the ID of the

movie to be played.

Inside the component, it utilizes the `useRouter` hook from Next.js to access the router

object. When the button is clicked, it triggers a navigation to the '/watch/[movieId]' route,

where `[movieId]` is replaced by the actual ID of the movie. This allows users to navigate

to the page dedicated to watching the specific movie.

The button is styled with a white background, rounded corners, and text indicating "Play".

It also includes a play icon from the TiMediaPlay component. When hovered over, the back-

ground color changes to a neutral shade to provide visual feedback.

4.2.3 Database Schema Model (Prisma)

generator client {

 provider = "prisma-client-js"

}

datasource db {

 provider = "mongodb"

 url = env("DATABASE_URL")

}

model User{

 id String @id @default(auto()) @map("_id") @db.ObjectId

 name String

 image String?

 email String? @unique

 emailVerified DateTime?

 hashedPassword String?

 createAt DateTime @default(now())

 updateAt DateTime @updatedAt

 favoriteIds String[] @db.ObjectId

 sessions Session[]

 accounts Account[]

}

model Account{

 id String @id @default(auto()) @map("_id") @db.ObjectId

 userId String @db.ObjectId

 type String

 provider String

 providerAccountId String

 refresh_token String? @db.String

 access_token String?@db.String

 expires_at Int?

 token_type String?

 scope String?

 id_token String? @db.String

 session_state String?

 user User @relation(fields: [userId], references: [id], onDelete: Cascade)

@@unique([provider, providerAccountId])

}

model Session{

 id String @id @default(auto()) @map("_id") @db.ObjectId

 sessionToken String @unique

 userId String @db.ObjectId

 expires DateTime

user User @relation(fields: [userId], references: [id], onDelete: Cascade)

}

model VerificationToken{

 id String @id @default(auto()) @map("_id") @db.ObjectId

 Identifier String

 token String @unique

 expires DateTime

 @@unique([Identifier, token])

}

model Movie{

 id String @id @default(auto()) @map("_id") @db.ObjectId

 title String

 description String

 videoUrl String

 thumbnailUrl String

 genre String

 duration String

}

4.2.4 DataBase Url, Google and Github Auth Token (Confidential Information)

DATABASE_URL= "mongodb+srv://Tolani:Informativewuraolami123@cluster0.58aqsfh.mongodb.net/test"

NEXTAUTH_JWT_SECRET="NEXT-JWT-SECRET"

NEXTAUTH_SECRET="NEXT-SECRET"

Google and Github Oauth sign on providers for the app

GITHUB_ID = e8d4b74a095687a71cfd

GITHUB_SECRET = 4d7776754d5328fe5f54274856382be22b4064e3

GOOGLE_CLIENT_ID = 1098359435879-llg04rqr2p4uks9at1iudkte4tglqft2.apps.googleusercontent.com

GOOGLE_CLIENT_SECRET = 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

4.2.5 Running the Application using Npm (.env file)

4.2.6 MovieCard Component (MovieCard.tsx)

This code defines a React component called `MovieCard`, representing a card displaying

information about a movie. It takes a prop `data`, which contains details of the movie.

Inside the component, it renders an image of the movie's thumbnail, and when hovered over,

it displays additional information such as a play button, a favorite button, and an icon to

open a modal with more details about the movie.

The play button allows users to navigate to the watch page of the movie, the favorite button

lets users add the movie to their favorites, and the icon triggers the modal displaying more

information about the movie.

Overall, it provides a visually appealing way to showcase movie details and interact with

them.

4.2.7 Watch Current Played Movie ([movieid-tsx])

The code defines a React component called `Watch`, representing a page for watching mov-

ies. It imports necessary modules such as React, `useRouter` from Next.js for routing, and

`useMovie` for fetching movie data.

Inside the component, it fetches the movie ID from the router query parameters and uses it

to fetch movie data. It then renders a fullscreen video player with controls, playing the movie

corresponding to the fetched data.

Additionally, it includes a navigation bar at the top of the screen with a back arrow icon that

navigates back to the homepage when clicked. The navigation bar also displays the title of

the movie currently being watched.

Overall, the component provides a simple and functional interface for watching movies with

basic playback controls.

4.2.8 Tailwind WorkFlow

@tailwind base;

@tailwind components;

@tailwind utilities;

body{

 @apply bg-zinc-900 h-full overflow-x-hidden;

}

#__next{

 @apply h-full;

}

html{

 @apply h-full;

}

Figure 37. Tailwind.config file

4.2.9 Application package.Json file

4.3 My Development Workflow

5 DISCUSSION AND FINDINGS

5.1 DISCUSSION

5.1.1 Guideline 1: Understand the programming language JavaScript, its structure,

frameworks and production usage

In the first chapter, we explored the history of LiveScript and its transformation into

ECMAScript, which eventually became JavaScript. We outlined key features that have

shaped the language, such as JSON, event handling, and prototyping. These elements have

had a significant impact on how JavaScript is used in modern software development.

5.1.2 Guideline 2: Take an insight into previous related works

In the second chapter, we focused on software development frameworks, particularly the

Model-View-Controller (MVC) architectural pattern. This chapter emphasized the im-

portance of MVC in building web applications and managing data flow. Since JavaScript

relies heavily on client-server communication, this architecture is especially relevant. The

second chapter provided foundational insights into structural patterns for creating software

applications. We also cited some works related to repository mining by looking at the BOA

architecture.

5.1.3 Guidelines 3: Analyze the Management of JavaScript Codes and data using

Node Package Manager.

The third chapter, divided into two parts. In part A, I examined the three most popular

JavaScript frameworks, highlighting their importance and unique features. We discussed

how these frameworks contribute to the broader JavaScript ecosystem, referencing authori-

tative sources like Stack Overflow, NPM Trends, GitHub, and various developer communi-

ties.

In Part B, To address the key questions of this research, we conducted a qualitative survey

to understand why software engineers choose certain JavaScript frameworks or libraries

when developing web applications. Additionally, we looked into the limitations that JavaS-

cript-based applications face in today's context. The survey provided valuable insights into

the factors influencing business decisions and the constraints developers encounter.

The comprehensive analysis in part B in Chapter 3 sheds more light on the factors driving

framework selection and the common limitations encountered in JavaScript development.

These findings play a crucial role in answering the research objectives and are discussed in

detail to provide a complete understanding of the modern JavaScript landscape..

The findings suggest that the choice of framework depended on the type of project. Devel-

opers tend to prefer frameworks that are reliable and can be maintained over a long period,

as many projects have extended lifespans. More established frameworks like Angular and

React are generally favored over newer ones like Vue, which may not yet have the same

level of maturity and support.

The reputation of a framework often shapes developers' choices, influenced by factors like

the company backing it. Frameworks supported by large companies such as Google or Fa-

cebook tend to be seen as more reliable, partly because these companies have the resources

to ensure continuous development and longevity. Additionally, frameworks that have been

around longer often feel more established, contributing to their perceived stability.

However, developers might choose different frameworks depending on specific project re-

quirements. While many tend to favor ReactJS as their default option, others might have a

personal preference for a lesser-known framework, like VueJS as one respondent mentioned

that it has been the only framework he has worked with which I find quite fascinating, based

on their past experiences. Ultimately, the choice of framework is largely driven by the unique

needs of each project.

Selecting a framework with a vibrant community was also a crucial factor as mentioned by

majority of the respondents as it contributes to the framework's vitality through user-gener-

ated contributions. A larger user base generally means more resources for solving problems,

as community members are more active on platforms like Discord, Google, Stack Overflow,

making it easier for developers to find answers to issues.

5.1.4 Guideline 4: Build a Movie-app application using numerous APIs e.g., Netflix,

ReactJs, NPM, GitHub, MongoDB for the database.

In Chapter 4, I embarked on the development of the Wura App, The project was a Re-

act/Next.js application, utilizing a variety of development tools and technologies. MongoDB

was used for the database, while Git/GitHub served as our version control system. Node.js

and NPM played a crucial role, especially given our reliance on numerous open-source React

dependencies. NPM was particularly useful for bundling our application, which helped to

optimize runtime memory usage.

For server-side operations, we employed Prisma, a powerful tool for interacting with data-

bases. User authentication was implemented with the help of Google and GitHub OAuth

services, providing a secure and convenient login experience for our users. The chapter de-

tailed the entire build process, outlining each step from setting up the development environ-

ment to deploying the final product.

5.2 FINDINGS

One challenge we encountered was related to package security. Due to the open-source na-

ture of many NPM packages which were old, not properly managed , there were potential

vulnerabilities that required careful attention. These Vulnerability issues was addressed by

updating NPM and Nodejs to a more stable version, constantly running “npm audit fix” to

auto fix a lot of vulnerabilities, ensuring the safety and stability of our application.

The creation of the application revealed several common areas for improvement in NPM and

JavaScript, as also noted by respondents in the survey. The primary concerns centered

around the quantity and duplication of downloaded packages which was further seen as lim-

itations, highlighting the need for better management of package dependencies. Addition-

ally, security emerged as a significant concern, indicating a desire for enhanced measures to

protect against vulnerabilities, hackers e.t.c.

Lastly, more emphasizes should be centered around the importance of standardizing open

source dependencies in JavaScript to ensure consistency and efficiency across entire Ja-

vaScript ecosystem.

6 CONCLUSION

Overall, I found the thesis process to be relatively smooth, encountering only minor obstacles along

the way. Despite having to balance my time between working as a Data Analyst and dedicating time

to the thesis, I successfully completed the project's most crucial aspects. Working concurrently

proved beneficial, as my professional experience with NPM and JavaScript programming informed

my decision to explore this topic further. However, sourcing literature on the subject was challenging,

leading me to rely heavily on online resources. While references to package managers were scarce

in traditional literature, the supportive developer community aided in troubleshooting during the ap-

plication's development. If I were to revisit this topic, I would prioritize expanding the survey's sam-

ple size. Acquiring respondents posed difficulties initially, highlighting an area for improvement in

future research endeavors.

Overall, the research and writing skills acquired during this thesis will undoubtedly serve me well in

my future career. These skills may prove particularly valuable should I pursue further my studies.

The data I collected revealed the significant importance of ReactJS and NPM in the realm of software

development. A vast majority of respondents reported using a package manager and having experi-

ence building applications with React. Among the popular JavaScript frameworks, ReactJS emerged

as the clear frontrunner in terms of usage and awareness. This trend is understandable given the

abundance of job opportunities for React developers, as indicated by statistics from job platforms

like Indeed and LinkedIn. Additionally, ReactJS benefits from the support of META (formerly Fa-

cebook), contributing to its widespread popularity within the developer community.

6.1 Overall Performance Analysis of the Wura Application

6.1.1 User Authentication and Account Management

The app provided essential user authentication with sign-up and login screens. New users

can create accounts by providing basic information like username, email, and password. Re-

turning users can log in securely and easily.

Besides traditional sign-up, the app supports social authentication through Google Auth and

GitHub Auth, allowing users to sign up with existing accounts. This streamlines the sign-up

process and improves user acquisition by reducing the need for new credentials.

6.1.2 User Interface and Experience

After logging in, users can access their profile, which displays personal information like

name and account details, offering a personalized touch. The HomeScreen is the main hub,

featuring a play button to start movies, an info button for detailed movie information, and a

modal screen for additional content. These interactive features make it easy to explore and

watch movies.

The HomeScreen also included a SignOut button for secure logout, crucial for account

safety, especially in shared spaces. The UserInfo section displayed the registered user's

name, reinforcing a sense of personalization. A trending movie section introduces popular

content, encouraging users to discover new movies and keeping the experience fresh.

6.1.3 Responsiveness and Cross-Platform Compatibility

The app is responsive, ensuring smooth functionality on mobile devices. This is crucial in

today's mobile-focused world, allowing users to access the app on various platforms without

compromising the user experience.

6.2 Guidelines for Future Research

The software industry is always changing, with new frameworks emerging within the JavaS-

cript ecosystem. This presents an opportunity to explore how these frameworks—like React,

Angular, or Vue—interact with each other. However, this thesis does not cover the perfor-

mance of each framework across different use cases as our application was built with only

ReactJs due to our Survey Result from JavaScript Developers. Examining these dynamics

could offer more informed valuable insights for developers and businesses seeking to lever-

age the latest advancements in software engineering, especially when using JavaScript as the

primary development language.

7 BIBLIOGRAPHY

[1] [Online]. Available: https://www.wirfs-brock.com/allen/jshopl.pdf. [Accessed 2 2

2024].

[2] "History-Computer.com," Mosaic Browser, 14 10 2020. [Online]. Available:

https://historycomputer.com/Internet/Conquering/Mosaic.html. [Accessed 22 12

2023].

[3] 1997. [Online]. Available: https://archives.ecma-international.org/1997/GA/97-063-

excerpt.pdf. [Accessed 8 2 2024].

[4] "evolution-javascript-journey-from-es1-latest-version," [Online]. Available:

https://www.linkedin.com/pulse/evolution-javascript-journey-from-es1-latest-ver-

sion-part-lebbos-za9fe/. [Accessed 3 2 2024].

[5] "the-ecmascript-journey/medium," [Online]. Available: https://medium.com/@vi-

torbritto/the-ecmascript-journey-5332c42396c0. [Accessed 15 2 2024].

[6] "mozilla," [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Regular_expressions. [Accessed 1 2 2024].

[7] "w3schools," [Online]. Available: - https://www.w3schools.com/js/js_es5.asp. [Ac-

cessed 4 2 2024].

[8] [Online]. Available: https://cdn2.hubspot.net/hubfs/1958393/Partner_Portal_-_Col-

lateral/Concepts_and_Benefits_of_Repo_Management.pdf?t=1482418124868.

[Accessed 12 2 2024].

[9] [Online]. Available: https://dzone.com/refcardz/binary-repository-manage-

ment#section-5. [Accessed 21 1 2024].

[10] P. S. a. S. R. E. Wittern, "A look at the dynamics of the javascript package ecosys-

tem," in In Proceedings of the 13th International Conference on Mining Software

Re-positories, MSR ’16,, New York, ACM, 2016, p. 351–361.

[11] T. Mens, " An ecosystemic and socio-technical view on software maintenance and

evolu-tion.," IEEE International Conference on Software Maintenance and Evolu-

tion (In-vited Paper), ICSME’16, , 2016.

[12] [Online]. Available: https://boa.cs.iastate.edu/papers/tosem15.pdf. [Accessed 11 1

2024].

[13] "Architecture multi-tiers.," [Online]. Available: http://java.devel-

oppez.com/archi_multi-tiers.pdf. [Accessed 15 1 2024].

[14] "Core J2EE Patterns," . [Online] available at [accessed 26-1-2024], [Online]. Avail-

able: http://java.sun.com/blueprints/corej2eepatterns/Patterns/index.html. [Accessed

26 1 2024].

[15] [Online]. Available: https://www.interviewbit.com/blog/mvc-architecture/. [Ac-

cessed 29 1 2024].

[16] "Github," [Online]. Available: https://github.com/creativedeveloper-net/npm-pack-

age-example. [Accessed 18 2 2024].

[17] "nodejs," [Online]. Available: https://nodejs.org/api/http.html#http_class_http_inco-

mingmessage. [Accessed 18 2 2024].

[18] altexsoft, "altexsoft," [Online]. Available: https://www.altexsoft.com/blog/react-

pros-and-cons/. [Accessed 15 2 2024].

[19] "react dev," [Online]. Available: https://react.dev/. [Accessed 18 02 2024].

[20] "npm trends," [Online]. Available: https://npmtrends.com/react. [Accessed 19 4

2024].

[21] "altexsoft 2," [Online]. Available: https://www.altexsoft.com/blog/the-good-and-

the-bad-of-angular-development/ . [Accessed 19 3 2024].

[22] [Online]. Available: https://angular.io/guide/architecture. [Accessed 26 4 2024].

[23] [Online]. Available: https://www.tutorialspoint.com/vuejs/vuejs_environ-

ment_setup.html. [Accessed 28 2 2024].

[24] T. B. Lee, "The world wide web: A very short personal history," 5 12 1998. [Online].

Available: http://www.w3.org/People/Berners-Lee/ShortHistory.html.

[25] "envatotuts+," 8 8 2022. [Online]. Available: - https://code.tutsplus.com/what-is-ja-

vascript--cms-26177t#toc-0cyt-what-is-javascript. [Accessed 5 12 2023].

[26] [Online]. Available: https://medium.com/jspoint/how-javascript-works-in-browser-

and-node-ab7d0d09ac2f. [Accessed 15 1 2024].

[27] "World Wide Web: Proposal for a HyperText Project," [Online]. Available:

http://www.w3.org/Proposal.html. [Accessed 16 12 2023].

[28] [Online]. Available: https://ihoneymaan.medium.com/javascript-engine-and-how-it-

works-e1fa2f7a657c. [Accessed 9 1 2024].

[29] P. Anderson, "All That Glisters Is Not Gold' -- Web 2.0 And The Librarian," Journal

of Librarianship and Information Science, vol. 39, no. 4, p. 195–198, 2007.

[30] O’Reilly, "Definition of Web 2.0," 20 12 2006. [Online]. Available: http://ra-

dar.oreilly.com/archives/2006/12/web-20-compactdefinition-tryi.html. [Accessed 4

12 2023].

[31] N. Ossi, "Semantic Web: Definition," 31 3 2003. [Online]. Available:

http://www.w3c.tut.fi/talks/2003/0331umediaon/slide6-0.html. [Accessed 25 2

2024].

[32] M. A. N. a. H. K. F. Sareh Aghaei, "Evolution of the World Wide Web: From Web

1.0 to Web 4.0”,," Computer Engineering Department, University of Isfahan, Isfa-

han, Iran, International Journal of Web & Semantic Technology (IJWesT), vol. 3,

no. 1, pp. 1-10, 2012.

[33] [Online]. Available: https://www.lxahub.com/stories/whats-the-difference-between-

web-1.0-web-2.0-and-web-3.0. [Accessed 25 1 2024].

[34] [Online]. Available: https://www.geeksforgeeks.org/advantages-and-disadvantages-

of-web-3-0/. [Accessed 20 1 2024].

[35] A. F. a. S. B. S. Jansen, "A sense of community: A research agenda for software

ecosystems," Presented at the 31st International Conference on Software Engineer-

ing - Companion Volume, 2009. ICSE-Companion 2009, IEEE, no. 31, p. 187–190,

2009.

[36] "Npm package manager for javascript," [Online]. Available: https://www.

npmjs.com/. [Accessed 11 2 2024].

[37] [Online]. Available: https://sharvishi9118.medium.com/how-to-compose-micro-

frontends-at-build-time-c5e484a40e10. [Accessed 17 2 2024].

[38] Chris.Minnick.Wiley. [Online]. Available: https://dl.ebooksworld.ir/books/Begin-

ning.ReactJS.Foundations.Chris.Min-

nick.Wiley.9781119685548.EBooksWorld.ir.pdf. [Accessed 5 3 2024].

[39] "npmjs," [Online]. Available: https://www.npmjs.com/package/react. [Accessed 15

2 2024].

[40] "simplilearn," [Online]. Available: https://www.simplilearn.com/tutorials/angular-

tutorial/what-is-angular#why_angular. [Accessed 21 3 2024].

[41] [Online]. Available: = https://data-flair.training/blogs/angular-architecture-compo-

nents/[accessed 22-2-2024]. [Accessed 25 3 2024].

[42] [Online]. Available: https://www.tutorialspoint.com/angular2/angu-

lar2_metadata.html. [Accessed 24 2 2024].

ABBREVIATIONS

DOM Document Object Model

ECMASCRIPT European Computer Manufacturers Association Script

MVC Model View Controller

HTML Hypertext Markup Language

NPM Node Package Manager

API Application Programming Interface

OSS Open Source Software

UI User Interface

DB Database

JSON JavaScript Object Notation

OOP Object-Oriented Programming

CSS Cascading Style Sheet

CI/CD Continuous integration/Continuous Deployment

LIST OF FIGURES

Figure 1. DOM Architecture ... 15
Figure 2. JS Script Tag in HTML Workflow Architecture ... 21
Figure 3. Google V8 JS Engine Architecture ... 22
Figure 4.Json Format .. 22
Figure 5.Event coding in VanillaJS. ... 23
Figure 6.JavaScript Promise Code sample ... 23
Figure 7. Async Await Typing ... 24
Figure 8.Prototype inheritance .. 24
Figure 9. A JavaScript function to get Data from local storage 25
Figure 10. Maven Registry Architecture .. 26
Figure 11. Repository managers in a DevOps Setup .. 27
Figure 12.Boa build Infrastructure .. 30
Figure 13. project counts obtained from Boa's September 2019 GitHub dataset 31
Figure 14. core J2EE Patterns structure .. 32
Figure 15. Illustration of the System Applying the MVC Architecture Pattern 33
Figure 16.Client-Server Illustration for a JS Web Application 34
Figure 17.a package.json file .. 35
Figure 18. Stack overflow chart 2022 (NPM) .. 36
Figure 19. An Example of Node.js Application ... 37
Figure 20. NodeJS Server Architecture .. 38
Figure 21. installing React on an existing project using NPM 39
Figure 22. React DOM Structure ... 39
Figure 23. React Library download (NPM trend stat 2024) 40
Figure 24.Angular Building Architecture ... 42
Figure 25. Vue View Structure (vuejs.org 2024) [23] .. 45
Figure 26. popularity between the 3 major frameworks [npmtrends.com Jan 2024] . 46
Figure 27. Q1 survey result... 51
Figure 28. Q2 survey result... 51
Figure 29. Q4 survey Result ... 53
Figure 30. Q5 Survey Result ... 53
Figure 31.Credentials authenticator. ... 62
Figure 32. User on the SignUp Session .. 63
Figure 33. User on the Login Screen .. 64
Figure 34. Next-Auth Provider Response after successful SignIn. 64
Figure 35.Navbar Item .. 68
Figure 36. rendering a BillBoard on the Homescreen .. 70
Figure 37. Tailwind.config file ... 80

APPENDIX

Appendix A ………………….. MT survey Form – Google Form

Appendix B ………………….. Wura App Source Code

Appendix B ………………….. WURA App Website Link

