
Password Compromise Monitoring
Tool

Adam Mirre

Master’s thesis
2023

I hereby declare that:

• I understand that by submitting my Master’s thesis, I agree to the publication
of my work according to Law No. 111/1998, Coll., On Universities and on
changes and amendments to other acts (e.g. the Universities Act), as amended by
subsequent legislation, without regard to the results of the defence of the thesis.

• I understand that my Master’s Thesis will be stored electronically in the univer-
sity information system and be made available for on-site inspection, and that a
copy of the Master’s Thesis will be stored in the Reference Library of the Faculty
of Applied Informatics, Tomas Bata University in Zlín.

• I am aware of the fact that my Master’s Thesis is fully covered by Act No.
121/2000 Coll. On Copyright, and Rights Related to Copyright, as amended by
some other laws (e.g. the Copyright Act), as amended by subsequent legislation;
and especially, by §35, Para. 3.

• I understand that, according to §60, Para. 1 of the Copyright Act, Tomas Bata
University in Zlín has the right to conclude licensing agreements relating to the
use of scholastic work within the full extent of §12, Para. 4, of the Copyright
Act.

• I understand that, according to §60, Para. 2, and Para. 3, of the Copyright
Act, I may use my work – Master’s Thesis, or grant a license for its use, only if
permitted by the licensing agreement concluded between myself and Tomas Bata
University in Zlín with a view to the fact that Tomas Bata University in Zlín must
be compensated for any reasonable contribution to covering such expenses/costs
as invested by them in the creation of the thesis (up until the full actual amount)
shall also be a subject of this licensing agreement.

• I understand that, should the elaboration of the Master’s Thesis include the use
of software provided by Tomas Bata University in Zlín or other such entities
strictly for study and research purposes (i.e. only for non-commercial use), the
results of my Master’s Thesis cannot be used for commercial purposes.

• I understand that, if the output of my Master’s Thesis is any software product(s),
this/these shall equally be considered as part of the thesis, as well as any source
codes, or files from which the project is composed. Not submitting any part of
this/these component(s) may be a reason for the non-defence of my thesis.

I herewith declare that:

• I have worked on my thesis alone and duly cited any literature I have used. In the
case of the publication of the results of my thesis, I shall be listed as co-author.

• The submitted version of the thesis and its electronic version uploaded to IS/STAG
are both identical.

In Zlín; dated: …………………………

Student’s Signature

ABSTRAKT

Cieľom diplomovej práce bolo vytvoriť a popísať nástroj na monitoring kompromitácie
hesiel, ktorý umožní používateľovi overiť kompromitáciu. Teoretická časť pojednáva o
kryptografických základoch a aplikácii hashov, venuje sa dejinám, použitiu a zmys-
luplnosti hesiel a skúma bezpečnostné mechanizmy, ktoré bežne využívajú webové
prehliadače, ako napríklad Content Security Policy, a tiež spôsoby využitia týchto
mechanizmov vo webových aplikáciách. Ďalej sa pojednáva o výbere vhodných zdrojov
dát pre overenie kompromitácie, a časť končí rozborom scenárov nasadenia. Prak-
tická časť vysvetľuje architektúru aplikácie vytvorenej k diplomovej práci, vybrané
implementačné detaily, pridružené nástroje a metódy použité na overenie správnosti
správania programu.

Klíčová slova: Hesla, Monitoring kompromitace, Únik hesla, Bezpečnost webů

ABSTRACT

The aim of the thesis has been to program and describe a tool that enables the user
to verify the potentiality of a credential breach. The theoretical part analyses the
cryptographic foundations of hashing and their application, the history, usage as well
as rationale of passwords. It explores security mechanisms commonly employed by web
browsers, such as Content Security Policy, and also how web applications can make use
of them. Potential data sources are then evaluated, and the part concludes by pon-
dering deployment scenarios. The practical part explains the application architecture,
chosen implementation details, associated tooling, and methods used to validate the
correctness of program’s behaviour.

Keywords: Passwords, Compromise monitoring, Password breach, Web security

With respect and thanks to my supervisor Dr. Malaník for all advice, and to M. for
all the time and support, and to my family and friends for all their thoughts and
encouragement.

It’s all about perspective...
– Jones in Andy Andrews’ The Noticer

TABLE OF CONTENTS

INTRODUCTION .. 10

I THEORETICAL PART... 11

1 CRYPTOGRAPHY PRIMER ... 13

1.1 Hash functions ... 13
1.1.1 Types and use cases ... 13
1.1.2 Why are hashes interesting ... 14

1.2 TLS .. 15

2 PASSWORDS ... 16

2.1 Program-imposed constraints ... 16
2.1.1 Short arbitrary length .. 17
2.1.2 Restricting special characters .. 17
2.1.3 Character composition requirements .. 18
2.1.4 Other common issues ... 19

3 WEB SECURITY ... 20

3.1 Site Isolation.. 20

3.2 Cross-site scripting ... 20

3.3 Content Security Policy .. 21

4 CONFIGURATION .. 23

4.1 Safety considerations ... 23

4.2 Possible alternatives... 24

5 COMPROMISE MONITORING ... 25

5.1 Data Sources .. 26
5.1.1 Local Dataset Plugin ... 27
5.1.2 Have I Been Pwned? Integration ... 29

6 DEPLOYMENT RECOMMENDATIONS ... 30

6.1 Transport security .. 30

6.2 Containerisation .. 30

7 SUMMARY .. 32

II PRACTICAL PART.. 32

8 INTRODUCTION... 34

8.1 Kudos... 34

9 DEVELOPMENT ... 35

9.1 Commit signing.. 35

9.2 Continuous Integration .. 36

9.3 Source code repositories .. 38

9.4 Toolchain.. 38

10 APPLICATION ARCHITECTURE... 40

10.1 Package structure... 41
10.1.1 Internal package .. 41

10.2 Logging ... 41

10.3 Authentication ... 42

10.4 SQLi prevention ... 42

10.5 Configurability .. 42

10.6 Embedded assets ... 44

10.7 Composability ... 44

10.8 Server-side rendering .. 45

10.9 Frontend ... 45
10.9.1 Frontend experiments... 46

10.10 User isolation... 46

10.11 Zero trust principle and confidentiality 48

11 IMPLEMENTATION .. 49

11.1 Dhall Configuration Schema .. 49

11.2 Data integrity and authenticity .. 52

11.3 Database schema... 53

12 DEPLOYMENT .. 55

12.1 Rootless Podman.. 55
12.1.1 Sanity checks .. 57
12.1.2 Database isolation from the host ... 58
12.1.3 Health checks .. 58

12.2 Reverse proxy configuration ... 59

13 VALIDATION ... 60

13.1 Unit tests ... 60

13.2 Integration tests ... 61
13.2.1 func TestUserExists(t *testing.T) .. 61

13.3 Test environment ... 63
13.3.1 Deployment validation ... 63

14 APPLICATION SCREENSHOTS ... 66

CONCLUSION ... 72

REFERENCES .. 73

LIST OF ABBREVIATIONS .. 78

LIST OF FIGURES .. 79

LIST OF TABLES .. 80

LIST OF LISTINGS.. 81

LIST OF APPENDICES ... 82

1.1 Git signing keys.. 83

1.2 ZSTD-compressed tarball of the PCMT source code repos-
itory .. 83

1.3 ZSTD-compressed tarball of the PCMT configuration schema
repository ... 83

1.4 ZSTD-compressed tarball of the LATEX sources of this thesis 83

1.5 BLAKE3 checksums ... 83

1.6 SHA3-256 checksums.. 84

2.1 Why Go ... 85

2.2 Why Nix/devenv ... 85

3.1 Linux.. 86

3.2 GNU/Linux .. 86

3.3 The program ... 86

TBU in Zlín, Faculty of Applied Informatics 10

INTRODUCTION

Passwords. Everybody reading this text most assuredly recalls at least some of their
own. The security-minded person perhaps even dozens. They are complex and at least
twelve characters long. They are only ever used in the one place they were created for.
And they are definitely getting rotated at least once a year. Or are they?

A token so ubiquitous that it becomes tiring for a human being to keep track of all the
places where it is required in one form or another. At some point, it almost feels easier
to stop caring and use the password intended for the other site for this one, too. What
harm could that possibly do. The answer might well be “unimaginable”, depending on
the service in question, its relevance to the person being discussed, and also on how
many other services happen to share this password. Does a service require registration?
No problem, the password will be the name of the cat (or dog, or the youngest child)
plus current year, so as to make it more secure. It is the password rotation day again
this month, a handful of logins will be disabled if their passwords are not changed in
the next couple of hours. No worries, it is already covered by a combination of the
current month and the name of the specific service for each of them. A neat system.
But just in case it got forgotten and lost in the fragments of this hectic lifestyle, the
passwords need to be written down on a sticker note. Not to worry, nobody knows, it
is hidden under the keyboard, it is practically invisible.

These are all examples of poor password practices on user’s side; some might have
been circumstantially helped to, such as the too frequent forced password rotation,
others could be ascribed to users not being sufficiently well-versed in the intricacies of
password hygiene.

Inevitably, these passwords are going to get appropriately treated, be in the form of
misuse from a nosy colleague that finds the sticker note, or if the user account is ever
a target of an attack, the password’s only role, to gate the access, will likely not stand
much of a chance.

This thesis tangentially covers user-relating issues like the ones described above, but
rather than attempting to remedy them with prevention, it mainly focuses on dealing
with the acute consequence of such behaviour: a password breach.

The thesis consists of two parts: a theoretical one, which provides theoretical back-
ground to concepts and processes that are used in the so called practical part, where
it is further described what exactly has been done and how.

TBU in Zlín, Faculty of Applied Informatics 11

In the theoretical part, password hash functions and hash cracking are mentioned,
and within the browser context a special spotlight is given to Content Security Policy
and Cross-site scripting. Program’s configuration schema is conceived, the choices of
local and online data sources are explained, and recommended deployment set-up is
described.

The practical part discusses application architecture decisions, development process,
implementation details and validation methods utilised when building the subject web
application. The program does not have too many dependencies and is relatively
lightweight, which means that anybody with even little experience should be able to
potentially run their own private instance, if they so choose.

The purpose of the program is to allow users to learn if they were breached, and the
application developed as an integral part of this thesis should enable them to quickly
and privately check potential compromise status against configured local and online
data sources. Of course, the quality of the compromise monitoring depends on access
to quality data, which is partially in the purview of the application operator.

Breach data is not exactly a publicly traded commodity and can be relatively hard
to make sense of, given that we are talking about literal terrabytes of data available,
if there is even a slightest interest to find it online. Breaches do happen, and can, of
course, inform the decision to stay or leave the service, but there is not always a choice
element involved, or only a limited amount. Either way, knowledge is light and as such
precedes informed decision-making. Abstracting away the ugly parts and offering users
an understandable interface might likely result in their improved security posture, if
anything.

As per the security posture of the users, in order not to weaken it, the in-application
administrative-level users should only be able to configure online and local data sources
and initially set up user accounts but should not have access to users’ search queries
or credential entries. Sensitive user data should be encrypted at rest and not even
administrative-level users should be able to read them.

Terminology is located in Appendix 3, feel free to give it a read.

The author has been striving to utilise modern tooling and development practices in
an effort to build a maintainable and long-lasting piece of software that serves its users
well. When deployed, it could provide a real value.

TBU in Zlín, Faculty of Applied Informatics 12

I. THEORETICAL PART

TBU in Zlín, Faculty of Applied Informatics 13

1 CRYPTOGRAPHY PRIMER

1.1 Hash functions

Hash functions are algorithms used to help with a number of things: integrity verifica-
tion, password protection, digital signature, public-key encryption and others. Hashes
are used in forensic analysis to prove authenticity of digital artifacts, to uniquely
identify a change-set within revision-based source code management systems such as
Git or Mercurial, to detect known-malicious software by anti-virus programs or by
advanced filesystems in order to verify block integrity and enable repairs, and also in
many other applications that each person using a modern computing device has come
across, such as when connecting to a website protected by the famed HTTPS.

The popularity of hash functions stems from a common use case: the need to simplify
reliably identifying a chunk of data. Of course, two chunks of data, two files, frames or
packets could always be compared bit by bit, but that can get prohibitive from both
cost and energy point of view relatively quickly, with transport channels being often
insecure and unreliable. That is when the hash functions come in, since they are able
to take a long input and produce a short output, named a digest or a hash value. The
function also only works one way. A file, or any original input data for that matter,
cannot be reconstructed from the hash digest alone by somehow reversing the hashing
operation, since at the heart of any hash function there is essentially a compression
function.

Most alluringly, hashes are frequently used with the intent of protecting passwords
by making those unreadable, while still being able to verify that the user knows the
password, therefore should be authorised. As the hashing operation is irreversible,
once the one-way function produces a short a digest, there is no way to reconstruct the
original message from it. That is, unless the input of the hash function is also known,
in which case all it takes is hashing the supposed input and comparing the digest with
existing digests that are known to be digests of passwords.

1.1.1 Types and use cases

Hash functions can be loosely categorised based on their intended cryptographic ap-
plication to password protection, integrity verification, message authentication hashes.
Each of them possesses unique characteristics and using the wrong type of hash function
for the wrong job can potentially result in a security breach.

TBU in Zlín, Faculty of Applied Informatics 14

As a contrived example, suppose MD5, a popular hash function internally using the same
data structure - Merkle-Damgård (MD) construction - as BLAKE3. The former produces
128 bit digests, compared to the default 256 bits of output and no upper (< 264 bytes)
limit (Merkle tree extensibility) for the latter. Aside from MD5 considered to be broken
in regard to collision resistance [1] [2] (and have theoretically weakened resistance to
preimages [3] [4]), a list of differences could be mentioned; however, they both have one
thing in common: they are designed to be fast. The latter cryptographic hash function,
is conjectured to be random oracle indifferentiable, secure against length extension, and
was built with pre-image and collision resistance in mind. That said, it is also in fact
faster than all of MD5, SHA3-256, SHA-1 and even Blake2 family of functions [5].

m ::= x

m' ::= y

MD5(m) === MD5(m')

Listing 1.1 Broken collision resistance of MD5

However, the default use case of both MD5 and BLAKE3 (unkeyed) is to (quickly) verify
integrity of a given chunk of data, not to secure a password by hashing it first, which
poses a big issue when used to...secure passwords by hashing them first.

Password hashing functions such as argon2 or bcrypt are good choices for securely
storing passwords representations, namely because they place CPU and memory burden
on the machine that is computing the digest. In case of the mentioned functions,
hardness is even configurable to satisfy the greatest possible array of scenarios. These
functions also forcefully limit potential parallelism, thereby restricting the scale at
which exhaustive searches performed using tools like Hashcat or John the Ripper could
be at all feasible, Additionally, both functions can automatically add random salts to
passwords, automatically ensuring that no copies of the same password provided by
different users end up hashing to the same digest value, which for practical purposes
obviates large-scale old-school hash cracking [6], [7].

1.1.2 Why are hashes interesting

As already hinted, hashes are often used to store a logical proof of the password, rather
than the password itself. Especially services storing hashed user passwords happen to
non-voluntarily leak them. Using a wrong type of hash for password hashing, weak
hash function parameters, reusing salt or the inadvertently misusing the hash function
in some other way, is a sure way to spark a lot of interest [8], [9], [10].

Historically, plain-text passwords have also leaked enough times (or weak hashes have

TBU in Zlín, Faculty of Applied Informatics 15

been cracked) that anyone with enough interest had more than sufficient amount of
time to additionally put together neat lists of hashes of the most commonly used
passwords [11], [12], [13], [14].

So while a service might not be storing passwords in plain text, which is a good
practice, using a hashing function not designed to protect passwords does not offer
much additional protection in case of weak passwords, which happen to be the ones
that are the most commonly used.

It would seem only logical that a service that is not using cryptographic primitives
like hash functions correctly is more likely to get hacked and have its users’ passwords
or password hashes leaked. Those are often exposed publicly with no restrictions on
access, and the internet turns out to be serving as a storage/medium.

That incidentally also means that anyone interested in their own compromise mon-
itoring has at least some chances of successfully learning about their compromise,
potentially a long time before it can be used to cause greater harm.

1.2 TLS

The Transport Layer Security protocol (or TLS) serves as as an encryption and authen-
tication protocol to secure internet communications. An important part of the protocol
is the handshake, during which the two communicating parties exchange messages
that acknowledge each other’s presence, verify each other, choose what cryptographic
algorithms will be used and decide session keys. As there are multiple versions of the
protocol in active duty even at the moment, the server together with the client need
to agree upon the version they are going to use (it is recommended to use either v1.2
or v1.3 these days), pick cipher suites (if applicable), the client verifies the server’s
public key (and the signature of the certificate authority that issued it) and they both
generate session keys for use after handshake completion.

TLSv1.3 dramatically reduced the number of available suites to only include the ones
deemed secure enough, which is why it is no longer needed to manually specify what
cipher suite should be used (or rely on the client/server to choose wisely). While
possibly facing compatibility issues with legacy devices, the simplicity brought by
enabling TLSv1.3 might be considered a worthy trade-off [15].

TBU in Zlín, Faculty of Applied Informatics 16

2 PASSWORDS

Passwords have been in use since the ancient times, apparently already the Roman
sentries used passwords or watchwords to discern who was allowed to enter an area. The
Roman army had a special system of distributing passwords among the encampment
members on a wooden tablet. Fast forward a couple of thousand years, during the days
of the Prohibition Era in the United States, it was the secret “speakeasies” that were
protecting their illegitimate alcohol-serving business using passwords [16], [17]. During
the World War II. the US paratroopers’ use of passwords has evolved to even include
a counter-password.

According to McMillan, the first computer passwords date back to mid-1960s Mas-
sachusetts Institute of Technology (MIT), when researchers at the university built a
massive time-sharing computer called CTSS. Apparently, even then the passwords did
not protect the users as well as they were expected to [18].

Traditionally, passwords were expected to be memorised, but the large number of
password-protected services these days can make this impractical. To list a few common
examples, access to a bank account, electronic mailbox, personal computer encrypted
disk are all protected by some form of a password.

A password still often consists of a string of characters typed into a prompt but its
function is still the same: as per NIST it enables the verifier to infer the claimant’s
identity via a secret the claimant holds.

There are always some arbitrary requirements applied to what the password can be,
only some turn out to smarter than others.

Despite the impression given by the word “password”, it does not need to be an actual
word, while a non-word (in the dictionary sense) may indeed be harder to guess, which
is a desirable property of passwords. A memorized secret consisting of a sequence of
words or other text separated by spaces is sometimes called a passphrase. A passphrase
is similar to a password in usage, but the former is generally longer for added security.

2.1 Program-imposed constraints

Some of the following examples might be a bit anecdotal and more of an exception
than a rule; nevertheless, when presented by a large-enough program creator/service

TBU in Zlín, Faculty of Applied Informatics 17

provider, their decisions reach a sufficient amount of population, enough that the author
will call them influential. They form how users think when creating password and affect
what users expect from other services they happen to visit and use from that point on,
as well.

2.1.1 Short arbitrary length

It has been observed that a requirement for a “strong” password generally represents
that a password is:

• longer than 7 characters,

• shorter than 11 characters,

• begins with a letter and ends with a number OR

• begins with a number and ends with a letter.

Figure 2.1 Short arbitrary password length limit

The error message in above the password input field depicted in Figure 2.1 is wrong for
multiple reasons, and it is a classic example of short arbitrary length requirement [19].
It essentially prevents users from using passphrases, makes using a password manager
impractical and all of that has apparently been done “because of security” [20]. More-
over, this might be an indicative of the fact that instead of storing passwords hashed
(as it should be), they might be storing them in plain text. Otherwise, what reason
could exist for the limit to be 10 characters? The recommendation of the US’s National
Institute for Standards and Technology (NIST) in this regard is a minimum of 64 and
a maximum of 256 characters, which, as they put it, should be sufficient for most users’
needs.

2.1.2 Restricting special characters

Service providers have too often been found forbidding the use of so called special
characters in passwords for as long as passwords have been used to protect privileged

TBU in Zlín, Faculty of Applied Informatics 18

access. Ways of achieving the same may vary but the intent stays the same: preventing
users from inputting characters into the system, which the system cannot comfortably
handle, for “reasons”, which are usually something dubious along the lines of “an
apostrophe may be used in SQL injection attacks” or “angle brackets may be used in
XSS attacks”. Instead, the real message it often unwittingly announces is pointing right
to the serious shortcomings of password handling of the site in question, as passwords
should never be re-displayed in a context that is prone to Cross Site Scripting (XSS),
and the passwords should always be hashed before being sent to the database anyway,
leaving us with only alphanumeric characters, rendering the SQLi fears baseless.

Figure 2.2 Forbidden special characters in passwords

Note that “Passw0rd!” would have been a perfectly acceptable password for the
validator displayed in Figure 2.2 [21]. NIST’s recommendations on this matter are that
all printing ASCII characters as well as the space character SHOULD be acceptable in
memorized secrets, and Unicode characters SHOULD be accepted as well [22], [23].

2.1.3 Character composition requirements

There is a tendency to come up with bad passwords when there are character composi-
tion requirements in place, too. The reality is that instead of creating strong passwords
directly, most users first try a basic version and then keep tweaking characters until
the password ends up fulfilling the minimum requirement.

The problem is that that people use similar patterns, i.e. starting with capital letters,
putting a symbol last and a number in the last two positions. This is also known
to people cracking the password hashes and they run their dictionary attacks using
the common substitutions, such as “$” for “s”, “E” for “3”, “1” for “l”, “@” for “a”
etc. [6], [7], [8]. It is safe to expect that the password created in this manner will almost
certainly be bad, and the only achievement was to frustrate the user in order to still
arrive at a bad password.

TBU in Zlín, Faculty of Applied Informatics 19

2.1.4 Other common issues

Some services don’t allow users to paste into passwords fields (disabling them using
JavaScript), thereby essentially breaking the password manager functionality, which
is an issue because it encourages bad password practices such as weak passwords and
likewise, password reuse.

Forced frequent password rotation is another common issue. Apparently, making
frequent password rotations mandatory contributes to users developing a password
creation patterns. Moreover, according to the British NCSC, the subject practice
“carries no real benefits as stolen passwords are generally exploited immediately”, and
the organisation calls it a modern-day security anti-pattern [24].

TBU in Zlín, Faculty of Applied Informatics 20

3 WEB SECURITY

The internet is a vast space full of intertwined concepts and ideas. It is a superset of
the Web, even though the two terms often get conflated. However, not everything that
is available on the internet can be accessed using web protocols and resources. This
section delves into the concepts of web security.

3.1 Site Isolation

While website operators can perform steps to secure their sites, it is often the browsers
holding the last line when these web servers are misconfigured, allowing the attacker
to start exploiting a vulnerability in various ways.

Most users consume web content using web browsers. Modern browsers such as Firefox
or Chromium are being built with a security focus in mind. Their developers are acutely
aware of the dangers that parsing of untrusted code from the internet poses, which is
precisely what the websites, the stylesheets and the accompanying scripts are.

This necessarily gets reflected in the way these programs are architected. Instead of the
main, privileged browser process running everything directly, it spawns de-privileged
child processes for each website. This extra line of defence should make it harder
for untrustworthy websites to access or steal information from user accounts or other
websites. Even if the misbehaving website does manage to “break some rules” within
its own process, it should find it more difficult to steal data from other sites [25].

Firefox calls their version of Site Isolation-like functionality Project Fission, but the
two are very similar, both in internal architecture and what they try to achieve [26].
Elements of the web page are scanned to decide whether they are allowed according to
same-site restrictions and allocated shared or isolated memory based on the result.

Some Chromium users have been complaining on its high memory usage in the past,
which might have been partially caused by Site Isolation user-protection features,
unbeknownst to them.

3.2 Cross-site scripting

As per OWASP Top Ten list, injection is the third most observed issue across millions
of websites. Cross-site scripting is a type of attack in which malicious code, such as

TBU in Zlín, Faculty of Applied Informatics 21

infected scripts, is injected into a website that would otherwise be trusted. Since the
misconfiguration or a flaw of the application allowed this, the browser of the victim
that trusts the website simply executes the code provided by the attacker. This code
thus gains access to session tokens and any cookies associated with the website’s origin,
apart from being able to rewrite the HTML content. The results of XSS can range
from account compromise to identity theft [27].

Solutions deployed against XSS vary. On the client side, it mainly comes down to
good browser patching hygiene and, of course, avoiding sketchy websites is always a
recommended practice. The security of the user is also to a degree reliant on browser
features such as Site Isolation (see Section 3.1), and essentially browsers correctly
parsing website directives such as the X-Frame-Options, X-Content-Type-Options,
X-Xss-Protection and Cross-Origin-Opener-Policy HTTP headers. However, the
latter falls flat if the website operators do not correctly configure their websites.

On the server side though, these options (indicating to the browsers how the site should
be parsed) can directly be manipulated and configured. They should be fine-tuned to
fit the needs of each specific website, as there is no one-size-fits-all in this case.

Furthermore, a new, powerful and comprehensive framework for controlling the ad-
missibility of content has been devised more than 10 years ago now: Content Security
Policy. Its capabilities superseded those of the previously mentioned options, and it is
discussed more in-depth in the following section.

3.3 Content Security Policy

Content Security Policy (CSP) has been an important addition to the arsenal of website
operators, even though not everybody has necessarily been utilising it properly or even
taken notice. Once configured on the web server, it provides guarantees and employs
protections against most common attack vectors on websites exactly where the websites
are being parsed and displayed - in the (compliant) browser.

As per Weichselbaum et al. CSP is a mechanism designed to mitigate XSS [28], a long-
lived king of the vulnerability lists [29]. It is a declarative policy mechanism that allows
the website operator to decide what client-side resources can load on their website and
what origins are among the permitted sources of content.

For example, dynamic content such as scripts can be restricted to only load from a
list of trusted domains, and inline scripts can be blocked entirely, which is a huge win

TBU in Zlín, Faculty of Applied Informatics 22

against popular XSS techniques.

Not only that, scripts and stylesheets can also be allowed based on a cryptographic
(SHA256, SHA384 or SHA512) hash of their content, which should be a known in-
formation to legitimate website operators prior to or at the time scripts are served,
making sure no unauthorised script or stylesheet will ever be run on user’s computer
(running a compliant browser).

A policy of CSPv3, which is the current iteration of the concept, can be served either
as a header or inside website’s <meta> tag. Configuration is either site-wide or specific
to each page.

Directive names are generally derived from the sources they are covering, and are thus
often suffixed ‘-src’, as in script-src, img-src or style-src, although some directives
do not follow this pattern, form-action, upgrade-insecure-requests and sandbox

representing this other group nicely.

Different directives are delimited using semicolon character at the end, and each direc-
tive can only appear once in the entire policy.

Special values exist for the origin website itself - 'self' - and for disallowing any source
- 'none'.

A good policy is targeted and not overly broad. To give an example, a website that
loads no JavaScript at all does not need to allow a popular CDN (Content Delivery
Network) origin in its script-src, instead it should be set to 'none'. CSP can also
aid with clickjacking protection using its frame-ancestors directive, which can limit
origins that have the permission to embed the website. This prevents the attacker
from embedding the website at random places, for example malicious websites that
masquerade as being legitimate, e.g. utilising ‘Log in using service Xyz’ frame, that in
actuality just pharms the credentials.

Getting CSP right can be tricky depending on the nature of the site, but once grokked,
it is relatively straight-forward and can increase the security of the site greatly. The
recommended way to test CSP is to enable it in the report-only mode before turning
it on in production.

CSP contains many more directives than could be mentioned in this section. Anybody
interested is encouraged to have a read at https://web.dev/csp/.

https://web.dev/csp/

TBU in Zlín, Faculty of Applied Informatics 23

4 CONFIGURATION

Every non-trivial program usually offers at least some way to tweak/manage its be-
haviour, and these changes are usually persisted somewhere on the filesystem of the
host: in a local SQLite3 database, a LocalStorage key-value store in the browser, a
binary or plain text configuration file. These configuration files need to be read and
checked at least on program start-up and either stored into operating memory for
the duration of the runtime of the program, or loaded and parsed, and the memory
subsequently freed (initial configuration).

There is an abundance of configuration languages (or file formats used to craft config-
uration files, whether they were intended for it or not) available, TOML, INI, JSON,
YAML, to name some of the popular ones (as of today).

Dhall stood out as a language that was designed with both security and the needs of
dynamic configuration scenarios in mind, borrowing a concept or two from Nix (which
in turn sources more than a few of its concepts from Haskell), and in its apparent core
being very similar to JSON, which adds to a familiar feel [30], [31]. In fact, in Dhall’s
authors’ own words it is: “a programmable configuration language that you can think
of as: JSON + functions + types + imports” [32].

Among all the listed features, the especially intriguing one to the author was the
promise of types. There are multiple examples directly on the project’s documentation
webpage demonstrating for instance the declaration and usage of custom types (that
are, of course, merely combinations of the primitive types that the language provides,
such as Bool, Natural or List, to name just a few), so it was not exceedingly hard to start
designing a custom configuration schema for the program. Dhall, not being a Turing-
complete language, also guarantees that evaluation always terminates eventually, which
is a good attribute to possess for a configuration language.

4.1 Safety considerations

Having a programmable configuration language that understands functions and allows
importing not only arbitrary text from random internet URLs, but also importing
and evaluating (i.e. running) potentially untrusted code, it is important that there are
some safety mechanisms employed, which can be relied on by the user. Dhall offers
this in multiple features: enforcing a same-origin policy and (optionally) pinning a
cryptographic hash of the value of the expression being imported.

TBU in Zlín, Faculty of Applied Informatics 24

4.2 Possible alternatives

While developing the program, the author has also come across certain shortcomings
of Dhall, namely the long start-up on cold cache. It can generally be observed when
running the program in an environment that does not allow persistently writing the
cache files (a read-only filesystem), or does not keep the written cache files, such as a
container that is not configured to mount persistent volumes to pertinent locations.

To describe the way Dhall works when performing an evaluation, it resolves every
expression down to a combination of its most basic types (eliminating all abstraction
and indirection) in the process called normalisation and then saves this result in
the host’s cache [33]. The dhall-haskell binary attempts to resolve the variable
${XDG_CACHE_HOME} (have a look at XDG Base Directory Spec for details) to decide
where the results of the normalisation will be written for repeated use [34]. Do note
that this behaviour has been observed on a GNU/Linux host and the author has not
verified this behaviour on another platforms, such as FreeBSD.

If normalisation is performed inside an ephemeral container (as opposed to, for instance,
an interactive desktop session), the results effectively get lost on each container restart.
That is both wasteful and not great for user experience, since the normalisation of just
a handful of imports (which internally branches widely) can take an upwards of two
minutes, during which the user is left waiting for the hanging application with no
reporting on the progress or current status.

Workarounds for the above-mentioned problem can be devised relatively easily, but it
would certainly feel better if there was no need to work around the configuration system
of choice. For instance, bind mounting persistent volumes to pertinent locations in-
side the container (${XDG_CACHE_HOME}/{dhall,dhall-haskell}) would preserve cache
between restarts. Alternatively, the cache could be pre-computed on container build
(as the program is only expected to run with a compatible schema version, and that
version is known at container build time for the supplied configuration).

Alternatives such as CUE (https://cuelang.org/) offer themselves nicely as an almost
drop-in replacement for Dhall feature-wise, while also resolving the costly cold cache
normalisation operations, which is in author’s view Dhall’s titular flaw. In a slightly
contrasting approach, another emerging project called TySON (https://github.com/j
etpack-io/tyson), which uses a subset of TypeScript to also create a programmable,
strictly typed configuration language, opted to take a well-known language instead of
reinventing the wheel, while still being able to retain feature parity with Dhall.

https://cuelang.org/
https://github.com/jetpack-io/tyson
https://github.com/jetpack-io/tyson

TBU in Zlín, Faculty of Applied Informatics 25

5 COMPROMISE MONITORING

There are, of course, several ways one could approach monitoring of compromised
credentials, some more manual in nature than others. When using a service that
is suspected/expected to be breached in the future, one can always create a unique
username/password combination specifically for the subject service and never use that
combination anywhere else. That way, if the credentials ever do happen to appear in
a data dump online in the future, it is going to be a safe assumption as to where they
came from.

Unfortunately, the task of actually monitoring the credentials can prove to be a little
more arduous than one could expect at first. There are a couple of points that can
prove to pose a challenge in case the search is performed by hand, namely:

• finding the breached data to look through

• verifying the trustworthiness of the data

• varying quality of the data

• sifting through (possibly) unstructured data by hand

Of course, as this is a popular topic for a number of people, the above-mentioned work
has already been packaged into neat and practical online offerings. In case one decides
in favour of using those, an additional range of issues (the previous one still applicable)
arises:

• the need to trust the provider of the service with input credentials

• relying on the goodwill of the provider to be able to access the data

• hoping that the terms of service are kept as promised

• dependence on the quality and extent of their data sources

Besides that, there is a plethora of breaches floating around the Internet available
simply as zip files, which makes the job of password compromise monitoring even
harder.

TBU in Zlín, Faculty of Applied Informatics 26

The overarching goal of this thesis is devising and implementing a system in which the
user can monitor whether their credentials have been compromised (at least as far as
the data can tell), and allowing them to do so without needing to entrust their sensitive
data to a provider.

5.1 Data Sources

A data source in this place is considered anything that provides the application with
data that it understands.

Of course, the results of credential compromise verification/monitoring is only going to
be as good as the data underpinning it, which is why it is imperative that high quality
data sources be used, if at all possible. While great care does have to be taken to only
choose the highest quality data sources, the application must offer a means to be able
to utilise these.

The sources from which breached data can be loaded into an application can be split
into two basic categories: online or local, and it is possible to further discern between
them by whether the data they provide is structured or not.

An online source is generally a service that ideally exposes a programmatic API, which
an application can query and from which it can request the necessary subsets of data.
These types of services often additionally front the data by a user-friendly web interface
for one-off searches, which is, however, not of use here.

Among some examples of online services could be named:

• Have I Been Pwned? - https://haveibeenpawned.com

• DeHashed - https://dehashed.com

Large lumps of unstructured data available on forums or shady web servers would
technically also count here, given that they provide data and are available online.
However, even though data is frequently found online precisely in this form, it is also
not of direct use for the application without manual preprocessing, as it is attended to
in Section 5.1.1.

Another source is then simply any locally supplied data, which, of course, could have
been obtained from a breach available online beforehand.

https://haveibeenpawned.com
https://dehashed.com

TBU in Zlín, Faculty of Applied Informatics 27

Locally supplied data is specific in that it needs to be formatted in such a way that it
is understood by the application. That is, the data supplied for importing cannot be
in its original raw form anymore, instead it has to have been morphed into the precise
shape the application needs for further processing. Once imported, the application can
query the data at will, as it knows exactly the shape of it.

This supposes the existence of a format for importing, the schema of which is devised
in Section 5.1.1.

5.1.1 Local Dataset Plugin

Unstructured breach data from locally available datasets can be imported into the
application by first making sure it adheres to the specified schema (have a look at the
breach ImportSchema in Listing 5.1). If it does not (which is very likely with random
breach data, as already mentioned in Section 5.1), it needs to be converted to a form
that does before importing it to the application, e.g. using a Python script or a similar
method.

Attempting to import data that does not follow the outlined schema should result in
an error. Equally so, importing a dataset which is over a reasonable size limit should
by default be rejected by the program as a precaution. Unmarshaling, for instance, a 1
TiB document would most likely result in an out-of-memory (OOM) situation on the
host running the application, assuming contemporary consumer hardware conditions
(not HPC).

/// ImportSchema is the model for importing locally available breach data.

type ImportSchema struct {

Name string
Description string
Date time.Time
IsVerified bool
ContainsPasswords bool
ContainsHashes bool
HashType string
HashSalted bool
HashPepperred bool
ContainsUsernames bool
ContainsEmails bool
Data *Data

}

Listing 5.1 Breach ImportSchema Go struct (imports from the standard library
assumed)

The Go struct shown in Listing 5.1 will in actuality translate to a YAML document
written and supplied by an administrative user of the program. And while the author

TBU in Zlín, Faculty of Applied Informatics 28

is personally not the greatest supporter of YAML; however, the format was still chosen
for several reasons:

• relative ease of use (plain text, readability) for machines and people alike

• capability to store multiple documents inside of a single file

• most of the inputs being implicitly typed as strings

• support for inclusion of comments

• machine readability thanks to being a superset of JSON

The last point specifically should allow for documents similar to what can be seen in
Listing 5.2 to be ingested by the program, read and written by humans and programs
alike.

name: Horrible breach

date: 2022-04-23T00:00:00Z+02:00

description: impacted X in 2022, it contains 10 000 unique emails.....

isVerified: false

containsPasswds: false

containsHashes: true

containsEmails: true

hashType: md5

hashSalted: false

hashPeppered: false

data:

hashes:

- hash1

- hash2

- hash3

emails:

- email1

- ""

- email3

document #2, describing another breach.

name: Horrible breach 2

.....

Listing 5.2 A YAML file containing breach data formatted according to the
ImportSchema, optionally containing multiple documents

Notice how the emails list (.data/emails) in Listing 5.2 is missing one record, perhaps
because it was mistakenly omitted due to either machine error or unfamiliarity with
the format. This is a valid scenario (mistakes do happen) and the application needs
to be account for it. Alternatively, the program could start dropping empty/partial
records, but that behaviour could quickly lead to unhappy users. The golden rule for
the program is to always do the expected thing (and also not being overly smart about
it, i.e. the simpler program flow is often better).

TBU in Zlín, Faculty of Applied Informatics 29

5.1.2 Have I Been Pwned? Integration

Troy Hunt’s Have I Been Pwned? online service (https://haveibeenpwned.com/)
has been chosen as the online source of compromised data. The service offers public
APIs, which were originally (and it was the intention of their author that they stay that
way) provided free of charge and with little-to-no rate-limiting. A major overhaul in
this regard has been revealed in November of 2022, where in addition to a new rate-limit
system, different-levels-of-symbolic fees were introduced to obtain the API keys. These
Apparently, the top consumers of the API seemed to utilise it orders of magnitude more
than the average person, which led Hunt to devising a new, tiered API access system in
which the little guys would not be subsidising the big guys. Additionally, the symbolic
fee of $3.50 a month for the entry-level 10 requests-per-minute API key was meant to
serve as a small barrier for (mis)users with nefarious purposes, but pose practically no
obstacle for legitimate users, which is entirely reasonable [35].

The application’s hibp module and database representation (schema.HIBPSchema) at-
tempts to model the values returned by this API and declare actions to be performed
upon the data, which is what facilitates the breach search functionality in the program.

The architecture is relatively simple. Breach data, including title, date, description and
tags are cached by the application on start-up, as this API is not authenticated. In
order for the authenticated API to be called, the application administrator first needs
to configure an API key for the HIBP service via the management interface. The user
can then enter the desired query parameters and the application then constructs the
API call that is sent to the authenticated API, and awaits the response. As the API
is rate-limited (individually, based on the API key supplied), sending requests directly
after receiving them from the users would likely pose an issue at high utilisation times,
and would result in the application ending up unnecessarily throttled. Request sending
thus needs to be handled in the backend by a requests scheduler, as well as appropriately
in the UI.

After a response from the API server arrives, the application attempts to bind the
returned data to the pre-programmed model for validation, before finally parsing it. If
the data can be successfully validated, it is saved into the database as a cache and the
search query is performed on the saved data. The result is then displayed to the user
for browsing.

https://haveibeenpwned.com/

TBU in Zlín, Faculty of Applied Informatics 30

6 DEPLOYMENT RECOMMENDATIONS

It is, of course, recommended that the application runs in a secure environment
although definitions of that almost certainly differ depending on who you ask. General
recommendations would be either to effectively reserve a machine for a single use case
- running this program - so as to dramatically decrease the potential attack surface of
the host, or run the program isolated in a container or a virtual machine. Furthermore,
if the host does not need management access (it is a deployed-to-only machine that
is configured out-of-band, such as with a golden image/container or declaratively with
Nix), then an SSH daemon should not be running in it, since it is not needed. In
an ideal scenario, the host machine would have as little software installed as possible
besides what the application absolutely requires.

System-wide cryptographic policies should target the highest feasible security level, if
at all available (as is the case by default on e.g. Fedora), covering SSH, DNSSec and
TLS protocols. Firewalls should be configured and SELinux (kernel-level mandatory
access control and security policy mechanism) running in enforcing mode, if available.

6.1 Transport security

User connecting to the application should rightfully expect for their data to be pro-
tected in transit (i.e. on the way between their browser and the server), which is what
Transport Layer Security family of protocols [15] was designed for, and which is the
underpinning of HTTPS. TLS utilises the primitives of asymmetric cryptography to let
the client authenticate the server (verify that it is who it claims it is) and negotiate a
symmetric key for encryption in the process named the TLS handshake (see Section 1.2
for more details), the final purpose of which is establishing a secure communications
connection. The operator should configure the program to either directly utilise TLS
using configuration or have it listen behind a TLS-terminating reverse proxy.

6.2 Containerisation

Whether containerised or not, the application needs runtime access to secrets such as
cookie encryption and authentication keys, or the database connection string (contain-
ing database host, port, user, password/encrypted password, authentication method
and database name). It is a relatively common practice to deliver secrets to programs in
configuration files; however, environment variables should be preferred. The program

TBU in Zlín, Faculty of Applied Informatics 31

could go one step further and only accept certain secrets as environment variables.

While it is not impossible to run a process scheduler (such as SystemD) inside a
container, containers are well suited for single-program workloads. The fact that the
application needs persistent storage also begs the question of how to run the database in
the container?. Should data be stored inside the ephemeral container, it could end up
being very short-lived (wiped on container restart), and barring container root volume
snapshotting, it could turn backing up of data into a chore, which are likely not the
desired features in this case. Moreover, it is the opinion of the author that multiprocess
scheduling would inordinately complicate the container set-up. Instead of running a
single program per container, which also provides good amounts of isolation if done
properly, running multiple programs in one container would likely do the opposite.

As per the above, a more sane thing to do is to store data externally using a proper
persistent storage method, such as a database. With Postgres being the safe bet
among database engines, the program should be able to handle Postgres’ most common
authentication methods, namely peer, scram-sha-256 and raw password, although the
password option should not be used in production, unless the database connection is
protected by TLS [36]. In any case, using the scram-sha-256 method is preferable [37].
One way to verify during development that authentication works as intended is the
Password generator for PostgreSQL tool, which generates an encrypted string from a
raw user input [38].

If the application wants to use the peer authentication method, it is up to the operator
to supply the Postgres socket to the container (e.g. as a volume bind mount). Equally,
the operator needs to make sure that the database is either running in a network that
is also directly attached to the container or that there is a mechanism in place that
routes the requests for the database hostname to the destination, unless a static IP
configuration is used, which is also possible.

Practically every container runtime satisfies this use case with a container name-based
routing mechanism, which inside pods (in case of Podman/Kubernetes) or common
default networks (that are both NAT-ted and routed) enables resolution of container
names. This abstraction is a responsibility of specially configured (most often autocon-
figured) pieces of software, Aardvark in case of Podman, and CoreDNS for Kubernetes,
and it makes using short-lived containers in dynamic networks convenient.

TBU in Zlín, Faculty of Applied Informatics 32

7 SUMMARY

Passwords (and/or passphrases) are in use everywhere and will quite probably continue
to be for the foreseeable future. If not as the principal way to authenticate, then at least
as a way to authenticate. And for as long as passwords are going to be handled and
stored, they are going to get leaked, be it due to user or provider carelessness, or the
attackers’ resolve and wit. Of course, sifting through the heaps of available password
breach data by hand is not a reasonable option, and therefore tools providing assistance
come in handy. The following part of this thesis will explore that issue and suggest a
solution.

TBU in Zlín, Faculty of Applied Informatics 33

II. PRACTICAL PART

TBU in Zlín, Faculty of Applied Informatics 34

8 INTRODUCTION

A part of the task of this thesis was to build an actual application, which was named
Password Compromise Monitoring Tool, or pcmt for short. Therefore, the development
process, the general tools and practices as well as the specific outcome are all described
in the following sections. A whole section is dedicated to application architecture,
whereby relevant engineering choices are justified and motifs preceding the decisions
are explained. This part then flows into recommendations for more of a production
deployment and concludes by describing the validation methods chosen and used to
ensure correctness and stability of the program.

8.1 Kudos

The program that has been developed as part of this thesis used and utilised a great
deal of free (as in freedom) and open-source software in the process, either directly or
as an outstanding work tool, and the author would like to take this opportunity to
recognise that fact1).

In particular, the author acknowledges that this work would not be the same without:

• vim (https://www.vim.org/)

• Arch Linux (https://archlinux.org/)

• ZSH (https://www.zsh.org/)

• kitty (https://sw.kovidgoyal.net/kitty/)

• Nix (https://nixos.org/explore.html)

• pre-commit (https://pre-commit.com/)

• Podman (https://podman.io/)

• Go (https://go.dev/)

All the code was typed into VIM, the shell used was ZSH, and the terminal emulator of
choice was kitty. The development machines ran a recent installation of Arch Linux2)

and Fedora 38, both using a 6.{2,3,4}.x XanMod variant of the Linux kernel.
1)Disclaimer: the author is not affiliated with any of the projects mentioned on this page.
2)(by the way) https://i.redd.it/mfrfqy66ey311.jpg.

https://www.vim.org/
https://archlinux.org/
https://www.zsh.org/
https://sw.kovidgoyal.net/kitty/
https://nixos.org/explore.html
https://pre-commit.com/
https://podman.io/
https://go.dev/
https://i.redd.it/mfrfqy66ey311.jpg

TBU in Zlín, Faculty of Applied Informatics 35

9 DEVELOPMENT

The source code of the project was being versioned since the start, using the popular
and industry-standard git (https://git-scm.com) source code management (SCM)
tool. Commits were made frequently and, if at all possible, consist of small and self-
contained changes of code, trying to follow sane commit message hygiene, i.e. striving
for meaningful and well-formatted commit messages. The name of the default branch
is development, since that is what the author likes to choose for new projects that are
not yet stable (it is in fact the default in author’s .gitconfig).

9.1 Commit signing

Since git allows cryptographically singing all commits, it would be unwise not to take
advantage of this. For the longest time, GPG was the only method available for signing
commits in git; however, that is no longer applicable [39]. These days, it is also possible
to both sign and verify one’s git commits (and tags!) using SSH keys, namely those
produced by OpenSSH, which can be the same ones that can be used to log in to
remote systems. The author has, of course, not reused the same key pairs that are
used to connect to machines for signing commits. A different, Ed25519 elliptic curve
key pairs have been used specifically for signing. Public components of these keys are
enclosed in this thesis as Appendix 1.1 for future reference.

The validity of a signature on a particular commit can be viewed with git using the
following commands (the % sign denotes the shell prompt):

% cd <cloned project dir>

% git show ---show-signature <commit>

% # alternatively:

% git verify-commit <commit>

Listing 9.1 Verifying the signature of a git commit

There is one caveat to this though, git first needs some additional configuration for the
code in Listing 9.1 to work as one would expect. Namely that the public key used to
verify the signature needs to be stored in git’s “allowed signers file”, then git needs to be
told where that file is located using the configuration value gpg.ssh.allowedsignersfile
and finally the configuration value of the gpg.format field needs to be set to ssh.
Luckily, because git also allows the configuration values to be local to each repository,
both of the mentioned issues can be solved by running the following commands from
inside the cloned repository:

https://git-scm.com

TBU in Zlín, Faculty of Applied Informatics 36

% # set the signature format for the local repository.

% git config ---local gpg.format ssh

% # save the public key.

% cat > ./.tmp-allowed_signers \

<<<<<'surtur <insert literal surtur pubkey>

leo <insert literal leo pubkey>'

% # set the allowed signers file path for the local repository.

% git config ---local gpg.ssh.allowedsignersfile=./.tmp-allowed_signers

Listing 9.2 Prepare allowed signers file and signature format for git

After the code in Listing 9.2 is run, everything from the Listing 9.1 should remain
applicable for the lifetime of the repository or until git changes implementation of
signature verification. The git user.name that can be seen on the commits in the
Author field is named after the machine that was used to develop the program, since
the author uses different signing keys on each machine. That way the committer
machine can be determined post-hoc.

For future reference, git has been used in the version git version 2.4{0,1,2}.x.

9.2 Continuous Integration

To increase both the author’s and public confidence in the atomic changes made over
time, it was attempted to thoroughly integrate them using a continuous integration
(CI) service that was plugged into the main source code repository since the early
stages of development. This, of course, was again self-hosted, including the workers.
The tool of choice there was Drone (https://drone.io) and the “docker” runner (in
fact it runs any OCI container) was used to run the builds.

The way this runner works is that it creates an ephemeral container for every pipeline
step and executes given commands inside of it. At the end of each step, the con-
tainer is discarded while the repository clone, which is mounted into each container’s
/drone/src, is persisted between steps, allowing it to be cloned from origin only at
the start of the pipeline and then shared for all the following steps, saving bandwidth,
time and disk writes.

The entire configuration used to run the pipelines can be found in a file named
.drone.yml at the root of the main source code repository. The workflow consists
of four pipelines, which are run in parallel. Two main pipelines are defined to build
the frontend assets, the pcmt binary and run tests on x86_64 GNU/Linux targets, one
for each of Alpine (version 3.1{7,8}) and Arch. These two pipelines are identical apart
from OS-specific bits such as installing a certain package, etc. For the record, other

https://drone.io

TBU in Zlín, Faculty of Applied Informatics 37

OS-architecture combinations were not tested.

A third pipeline contains instructions to build a popular static analysis tool called
golangci-lint, which is a sort of meta-linter, bundling a staggering number of lin-
ters (linter is a tool that performs static code analysis and can raise awareness of
programming errors, flag potentially buggy code constructs, or mere stylistic errors),
from sources and then perform the analysis of project’s codebase using the freshly
built binary. If the result of this step is successful, a handful of code analysis services
get pinged in the next steps to take notice of the changes to project’s source code
and update their metrics. Details can be found in the main Drone configuration file
.drone.yml and the configuration for the golangci-lint tool itself (such as what linters
are enabled/disabled and their configurations) can be found in the root of the repository
in the file named .golangci.yml.

The fourth pipeline focuses on linting the Containerfile and building the container and
pushing in to a public container registry, although the latter action is only performed
on feature branches, pull request or tag events.

Figure 9.1 Drone CI median build time

The median build time as of writing was 1 minute, which includes running all four
pipelines, and that is acceptable. Build times might of course vary depending on
the hardware, for reference, these builds were run on a machine equipped with a
Zen 3 Ryzen 5 5600 CPU with nominal clock times, DDR4 @ 3200 MHz RAM, a
couple of PCIe Gen 4 NVMe drives in a mirrored setup (using ZFS) and a 600 Mbps
downlink, software-wise running Arch with an author-flavoured Xanmod kernel version
6.{2,3,4}.x.

TBU in Zlín, Faculty of Applied Informatics 38

9.3 Source code repositories

The git repository containing source code of the pcmt project:
https://git.dotya.ml/mirre-mt/pcmt.git.
The git repository hosting the pcmt configuration schema:
https://git.dotya.ml/mirre-mt/pcmt-config-schema.git.
The repository containing the LATEX source code of this thesis:
https://git.dotya.ml/mirre-mt/masters-thesis.git.

All the pertaining source code was published in repositories on a publicly available
git server operated by the author, the reasoning pro self-hosting being that it is the
preferred way of guaranteed autonomy over one’s source code, as opposed to large
silos owned by big corporations having a track record of arguably not always deciding
with user’s best interest in mind (although recourse has been observed [40]). When
these providers act on impulse or under public pressure they can potentially (at least
temporarily) disrupt operations of their users. Thus, they are not only beholding their
users to lengthy terms of service that are subject to change at any given moment, but
also outside factors beyond their control. Granted, decentralisation can take a toll on
discoverability of the project, but that is only a concern if rapid market penetration is
a goal, not when aiming for an organically grown community.

9.4 Toolchain

Throughout the creation of this work, the then-current version of the Go programming
language was used, i.e. go1.20.

To read more on why Go was chosen in particular, see Appendix 2.1. Equally, Nix and
Nix-based tools such as devenv have also aided heavily during development, more on
those is written in Appendix 2.2.

Table 9.2 contains the names and versions of the most important libraries and sup-
porting software that were used to build the application.

Additionally, the dependency-version mapping for the Go program can be inferred
from looking at the go.mod’s first require block at any point in time. The same can be
achieved for frontend by glancing at the package-lock.json file.

https://git.dotya.ml/mirre-mt/pcmt.git
https://git.dotya.ml/mirre-mt/pcmt-config-schema.git
https://git.dotya.ml/mirre-mt/masters-thesis.git

TBU in Zlín, Faculty of Applied Informatics 39

Table 9.1 Tool/Library-Usage Matrix

Tool/Library Usage
Go programming language program core
Dhall configuration language program configuration
Echo HTTP handlers, controllers
ent ORM using graph-based modelling
pq Pure-Go Postgres drivers
bluemonday sanitising HTML
TailwindCSS utility-first approach to Cascading Style Sheets
PostgreSQL persistent data storage

Table 9.2 Dependency-Version Matrix

Name version
echo (https://echo.labstack.com/) 4.11.1
go-dhall (https://github.com/philandstuff/dhall-golang) 6.0.2
ent (https://entgo.io/) 0.12.3
pq (https://github.com/lib/pq/) 1.10.9
bluemonday (https://github.com/microcosm-cc/bluemonday) 1.0.25
tailwindcss (https://tailwindcss.com/) 3.3.0
PostgreSQL (https://www.postgresql.org/) 15.3

https://echo.labstack.com/
https://github.com/philandstuff/dhall-golang
https://entgo.io/
https://github.com/lib/pq/
https://github.com/microcosm-cc/bluemonday
https://tailwindcss.com/
https://www.postgresql.org/

TBU in Zlín, Faculty of Applied Informatics 40

10 APPLICATION ARCHITECTURE

The application is written in Go and uses gomodules. The full name of the module is
git.dotya.ml/mirre-mt/pcmt.

user

+ id (uuid)

+ username (string)

+ email (string)

+ password ([]byte)

+ isActive (bool)

+ isAdmin (bool)

+ createdAt (date.Time)

updatedAt (date.Time)

lastLogin (date.Time)

+ saveSearchQueries (bool)

+ UpdateUser()

+ DeleteUser()

+ GetUser()

GenerateAgeKey()

DecryptAgeKey(AES256Key)

SearchOnlineBreaches()

SearchLocalBreaches()

hibpBreach

+ id (uuid)

+ domain (string)

+ breachDate (date.Time)

+ addedDate (date.Time)

+ modifiedDate (date.Time)

+ pwnCount (int)

+ description (string)

+ dataClasses ([]string)

+ isVerified (bool)

+ isFabricated (bool)

+ isSensitive (bool)

+ isRetired (bool)

+ isSpamList (bool)

+ isMalware (bool)

+ logo (string)

+ name (string)

localBreach

+ id (uuid)

+ date (date.Time)

+ isVerified (bool)

+ containsPasswords (bool)

+ containsHashes (bool)

+ hashType (string)

+ hashSalted (bool)

+ hashPeppered (bool)

+ containsUsernames (bool)

+ containsEmails (bool)

+ data (any)

+ name (string)

+ addedAt (date.Time)

+ Load(path)

+ View()

ageKey

+ id (uuid)

+ key (binary)

+ createdAt (date.Time)

+ owner (uuid) FK

searchQuery

+ id (uuid)

+ date (date.Time)

+ query (string)

+ user (uuid) FK

trackedBreaches

+ id (uuid)

+ breach (uuid) FK

+ user (uuid) FK

+ onlineBreach (bool)

slogger

+ isJSON (bool)

+ level (int)

+ Debug(any)

+ Debugf(any, fmt)

+ Info(any)

+ Infof(any, fmt)

+ Warning(any)

+ Warningf(any, fmt)

+ Error(any)

+ Errorf(any, fmt)

+ Init(isJSON)

settings

host (string)

post (int)

appPath (string)

httpDomain (string)

httpSecure (bool)

httpGzipEnabled (bool)

httpGzipLevel (int)

httpRateLimitEnabled (bool)

httpRateLimit (int)

isDevel (bool)

isLive (bool)

+ Consolidate()

+ Host() string

+ Port() int

+ ...() <type>

config

authKeySize (int)

encrKeySize (int)

schemaCompatibility (string)

+ Load(path)

cls pcmt class diagram

Figure 10.1 Application class diagram

TBU in Zlín, Faculty of Applied Informatics 41

10.1 Package structure

The source code of the module is organised into smaller, self-contained Go packages
appropriately along a couple of domains: logging, core application, web routers, con-
figuration and settings, etc. In Go, packages are delimited by folder structure – each
folder can be a package.

Generally speaking, the program aggregates decision points into central places, such as
run.go, which then imports child packages that facilitate each of the tasks of loading the
configuration, connecting to the database and running migrations, consolidating flag,
environment variable and configuration-based values into canonical settings struct,
setting up web routes, authenticating requests, or handling signals and performing
graceful shutdowns.

10.1.1 Internal package

The internal package was not used as of writing, but the author plans to eventually
migrate internal logic of the program into the internal package to prevent accidental
imports.

10.2 Logging

The program uses dependency injection to share a single logger instance (the same
technique is also used to share the database client). This logger is then passed around
as a pointer, so that the underlying data stays the same or is modified concurrently
for all consumers. As a rule of thumb throughout the application, every larger struct
that needs to be passed around is passed around as a pointer.

An experimental (note: not anymore, with go1.21 it was brought into Go’s stdlib)
library for structured logging slog was used to facilitate every logging need that the
program might have. It supports both JSON and plain-text logging, which was made
configurable by the program. Either a configuration file value or an environment
variable can be used to set this.

There are four log levels available by default (DEBUG, INFO, WARNING, ERROR) and the
pertinent library funtions are parametric. The first parameter of type string is the
main message, that is supplied as a value to the key named appropriately ‘msg’, a feature

TBU in Zlín, Faculty of Applied Informatics 42

of structured loggers which can later be used for filtering. Any other parameters need
to be supplied in pairs, serving as key and value, respectively.

This main slog interface has been extended in package slogging to also provide
the formatting functionality of the fmt standard library package. This was achieved
by directly embedding slog.Logger in a custom struct type named Slogger and
implementing the additional methods on the custom type. The new type that embeds
the original slog.Logger gets to keep its methods thanks to the composition nature
of Go. Thus, common formatting directives like the one seen in Listing 10.1 are now
supported with the custom logger, in addition to anything the base slog.Logger offers.

slogger.Debugf("operation %q for user %q completed at %s", op, usr.ID, time.Now())

Listing 10.1 Example formatting expression supplied to the logger

Furthermore, functionality was added to support changing the log level at runtime,
which is a convenient feature in certain situations.

10.3 Authentication

The authentication logic is relatively simple and its core has mostly been isolated into
a custom middleware. User passwords are hashed using a secure KDF before ever
being sent to the database. The KDF of choice is bcrypt (with a sane Cost of 10),
which automatically includes salt for the password and provides “length-constant” time
hash comparisons. The author plans to add support for the more modern scrypt and
the state-of-the-art, P-H-C (Password Hashing Competition) winner algorithm Argon2

(https://github.com/P-H-C/phc-winner-argon2) for flexibility.

10.4 SQLi prevention

No raw SQL queries are directly used to access the database, thus decreasing the
likelihood of SQL injection attacks. Instead, parametric queries are constructed in code
using a graph-like API of the ent library, which is attended to in depth in Section 11.3.

10.5 Configurability

Virtually any important value in the program has been made into a configuration
value, so that the operator can customise the experience as needed. A choice of sane

https://github.com/P-H-C/phc-winner-argon2

TBU in Zlín, Faculty of Applied Informatics 43

configuration defaults was attempted, which resulted in the configuration file essentially
only needing to contain secrets, unless there is a need to override the defaults. It is
not entirely a zero-config situation, rather a minimal-config one. An example can be
seen in Section 11.1.

Certain options deemed important enough (this was largely subjective) were addition-
ally made into command-line flags, using the standard library package flags. Users
wishing to display all available options can append the program with the -help flag, a
courtesy of the mentioned flags package.

-host <hostname/IP> (string) Takes one argument and specifies the hostname, or the
address to listen on.

-port <port number> (int) This flag takes one integer argument and specifies the port
to listen on. The argument is validated at program start-up and the program has a
fallback built in for the case that the supplied value is bogus, such as a string or a
number outside the allowed TCP range 1− 65535.

-printMigration A boolean option that, if set, makes the program print any upcom-
ing database migrations (based on the current state of the database) and exit. The
connection string environment variable still needs to be set in order to be able connect
to the database and perform the schema diff. This option is mainly useful during
debugging.

-devel This flag instructs the program to enter devel mode, in which all templates are
re-parsed and re-executed upon each request, and the default log verbosity is changed
to level DEBUG. Should not be used in production.

-import <path/to/file> (string) This option tells the program to perform an import
of local breach data into program’s main database. Obviously, the database connection
string environment variable also needs to be present for this. The option takes one
argument that is the path to file formatted according to the ImportSchema (consult
Listing 5.1). The program prints the result of the import operation, indicating success
or failure, and exits.

-version As could probably be inferred from its name, this flag makes the program
to print its own version (that has been embedded into the binary at build time) and
exit. A release binary would print something akin to a semantic versioning-compliant
git tag string, while a development binary might simply print the truncated commit
ID (consult Containerfile and justfile) of the sources used to build it.

TBU in Zlín, Faculty of Applied Informatics 44

10.6 Embedded assets

An important thing to mention is embedded assets and templates. Go has multiple
mechanisms to natively embed arbitrary files directly into the binary during the regular
build process. embed.FS from the standard library embed package was used to bundle
all template files and web assets, such as images, logos and stylesheets at the module
level. These are then passed around the program as needed, such as to the handlers

package.

There is also a toggle in the application configuration (LiveMode), which instructs the
program at start-up to either rely entirely on embedded assets, or pull live template and
asset files from the filesystem. The former option makes the application more portable
as it is wholy self-contained, while the latter allows for flexibility and customisation
not only during development. Where the program looks for assets and templates in live
mode is determined by another configuration options: assetsPath and templatePath.

10.7 Composability

The core templating functionality was provided by the html/template Go standard
library package. Echo’s Renderer interface has been implemented, so that template
rendering could be performed directly using Echo’s built-in facilities in a more er-
gonomic manner using return c.Render(http.StatusOk, "home.tmpl").

{{ if and .User .User.IsLoggedIn .User.IsAdmin }}

.....

{{ end }}

Listing 10.2 Conditionaly enabling functionality inside a Go template based on user
access level

Templates used for rendering of the web pages were created in a composable manner,
split into smaller, reusable parts, such as footer.tmpl and head.tmpl. Those could
then be included e.g. using {{ template "footer.tmpl" }}. Specific functionality
is conditionally executed based on the determined level of access of the user, see
Listing 10.2 for reference.

A popular HTML sanitiser bluemonday has been employed to aid with battling XSS.
The program first runs every template through the sanitiser before rendering it, so that
any user-controlled inputs are handled safely.

TBU in Zlín, Faculty of Applied Informatics 45

A dynamic web application should include a CSP configuration. The program therefore
has the ability to calculate the hashes (SHA256/SHA384) of its assets (scripts, images)
on the fly and it is able to use them inside the templates. This unlocks potentially using
third party assets without opening up CSP with directives like script-src 'unsafe-

hashes'. It also means that there is no need to maintain a set of customised head

templates with pre-computed hashes next to script sources, since the application can
perform the necessary calculations in user’s stead.

10.8 Server-side rendering

The application constructs the web pages entirely on the server side, and it runs without
a single line of JavaScript, of which the author is especially proud. It improves load
times, decreases the attack surface, increases maintainability and reduces cognitive
load that is required when dealing with JavaScript. Of course, that requires extensive
usage of non-semantic POST requests in web forms even for data updates (where HTTP
PUTs should be used) and the accompanying frequent full-page refreshes, but that still
is not enough to warrant the use of JavaScript.

10.9 Frontend

Frontend-wise, the application Tailwind was used for CSS. It promotes the usage of
flexible utility-first classes in the HTML markup instead of separating out styles from
content. Understandably, this is somewhat of a preference issue and the author does not
hold hard opinions in either direction; however, it has to be noted that this approach
empirically allows for rather quick UI prototyping. Tailwind was chosen for having a
reasonably detailed documentation and offering built-in support for dark/light mode,
and partially also because it looks nice.

The Go templates containing the CSS classes need to be parsed by Tailwind in order to
produce the final stylesheet that can be bundled with the application. The upstream
provides an original CLI tool (tailwindcss), which can be used exactly for that action.
Simple and accessible layouts were overall preferred, a single page was rather split
into multiple when becoming convoluted. Data-backed efforts were made to create
reasonably contrasting pages.

TBU in Zlín, Faculty of Applied Informatics 46

10.9.1 Frontend experiments

As an aside, the author has briefly experimented with WebAssembly to provide client-
side dynamic functionality for this project, but has ultimately scrapped it in favour
of the entirely server-side rendered approach. It is possible that it would get revisited
in the future if necessary. Even from the short experiments it was obvious how much
faster WebAssembly was when compared to JavaScript.

10.10 User isolation

Admin

User

1. Use Cases
(from Password Compromise Monitoring Tool)

Create user

Delete user

Promote user to admin

Demote admin

Change own account

details

Search credentials

databases

Update non-sensitive user

information

Change encryption key

Re-encrypt age key

using AES256

Look up data from local

leak DB

Look up data in online breach

API

«include»

«include»

«include»

uc Password Compromise Monitoring Tool

Figure 10.2 Application use case diagram

Users are only allowed into specific parts of the application based on the role they
currently possess (Role-based Access Control).

TBU in Zlín, Faculty of Applied Informatics 47

While this short list might get amended in the future, initially only two basic roles
were envisioned:

• Administrator

• User

It is paramount that the program protects itself from the insider threats as well, and
therefore each role is only able to perform actions that it is explicitly assigned. While
there definitely is a certain overlap between the capabilities of the two outlined roles,
each also possesses unique features that the other one does not.

For instance, the administrator role is not able to perform breach data searches directly,
for that a separate user account has to be devised. Similarly, a regular user is not able
to manage breach lists and other users, because that is a privileged operation.

In-application administrators are not able to view (any) sensitive user data and should
therefore only be able to perform the following actions:

• Create user accounts

• View user listing

• View user details

• Change user details, including administrative status

• Delete user accounts

• Refresh breach data from online sources

Let us consider a case when a user performs an operation on their own account. While
demoting from administrator to a regular user should be permitted, promoting self to
be an administrator would constitute a privilege escalation and likely be a precursor
to at least a denial of service of sorts, as there would be nothing preventing the newly-
admined user from disabling the accounts of all other administrators.

TBU in Zlín, Faculty of Applied Informatics 48

10.11 Zero trust principle and confidentiality

The program only sets generic titles (Settings, Home, Search) and thus foregoes dis-
closing information that would make it to browsers history.

There is no way for the application (and consequently, the in-application administrator)
to read user’s data (such as saved search queries). This is possible by virtue of
encrypting the pertinent data before saving them in the database by a state-of-the-
art age tool (backed by X25519) [41], [42]. The age identity itself is in turn encrypted
by a passphrase that only the user controls. Of course, the user-supplied password is
run by a password based key derivation function (argon2, version id with the officially
recommended configuration parameters) before letting it encrypt anything.

The age identity is only generated once the user changes their password for the first
time, in an attempt to prevent scenarios like the in-application administrator with
access to physical database being able to both recover the key from the database and
decrypt it, given that they already know the user password (because they set it when
they created the user), which would subsequently give them unbounded access to any
future encrypted data, as long as they would be able to maintain their database access.
This is why generating the age identity is bound to the first password change.

Of course, the supposed evil administrator could simply perform the password change
themselves! However, the user would at least be able to find those changes in the
activity logs and know to not use the application under such circumstances. But given
the scenario of a total database compromise, the author finds that all hope is already
lost at that point (similar to physical access to a computer). At least when the database
is dumped, it should only contain non-sensitive, functional information in plain text,
everything else should be encrypted.

Consequently, both the application operators and the in-application administrators
should never be able to learn the details of what the user is searching for, the same
being by extension partly applicable even to potential attackers with direct access to
the database. Thus, the author maintains that a scenario, which could potentially lead
to a breach (apart from a compromised actual password) would have to entail some
form of operating memory acquisition on the machine hosting the application, for
instance using LiME [43], or perhaps directly the hypervisor, if considering a virtualised
(“cloud”) environments. Alternatively, all but one (memory acquisition) of the above
issues could perhaps be remedied by simply not storing any user queries, turning off
informative logging, and only letting the program be mediate the data sources.

TBU in Zlín, Faculty of Applied Informatics 49

11 IMPLEMENTATION

11.1 Dhall Configuration Schema

The configuration schema was at first being developed as part of the main project’s
repository, before it was determined that both the development and overall clarity
would benefit from the schema living in its own repository (see Section 9.3 for details).
This enabled the schema to be independently developed and versioned, and only be
pulled into the main application whenever it was determined to be ready.
let Schema =

{ Type =

{ Host : Text

, Port : Natural

, HTTP :

{ Domain : Text

, Secure : Bool

, AutoTLS : Bool

, TLSKeyPath : Text

, TLSCertKeyPath : Text

, HSTSMaxAge : Natural

, ContentSecurityPolicy : Text

, RateLimit : Natural

, Gzip : Natural

, Timeout : Natural

}

, Mailer :

{ Enabled : Bool

, Protocol : Text

, SMTPAddr : Text

, SMTPPort : Natural

, ForceTrustServerCert : Bool

, EnableHELO : Bool

, HELOHostname : Text

, Auth : Text

, From : Text

, User : Text

, Password : Text

, SubjectPrefix : Text

, SendPlainText : Bool

}

, LiveMode : Bool

, DevelMode : Bool

, AppPath : Text

, Session :

{ CookieName : Text

, CookieAuthSecret : Text

, CookieEncrSecret : Text

, MaxAge : Natural

}

, Logger : { JSON : Bool, Fmt : Optional Text }

, Init : { CreateAdmin : Bool, AdminPassword : Text }

, Registration : { Allowed : Bool }

}

}

Listing 11.1 Dhall configuration schema version 0.0.1-rc.2

Full schema with type annotations can be seen in Listing 11.1.

TBU in Zlín, Faculty of Applied Informatics 50

The let statement declares a variable called Schema and assigns to it the result of the
expression on the right side of the equals sign, which has for practical reasons been
trimmed and is displayed without the default block. The default block is instead shown
in its own Listing 11.2.

The main configuration comprises both raw attributes and child records, which allow
for grouping of related functionality. For instance, configuration settings pertaining
mailserver setup are grouped in a record named Mailer. Its attribute Enabled is an-
notated as Bool, which was deemed appropriate for an on-off switch-like functionality,
with the only permissible values being either True or False.

Do note that in Dhall true ! = True, since internally True is a Bool constant built
directly into Dhall (see “The Prelude” for reference), while true is evaluated as an
unbound variable, that is, a variable not defined in the current scope and thus not
present in the current scope [44].

Another one of Dhall’s specialties is that ‘==’ and ‘! =’ (in)equality operators only
work on values of type Bool, which for example means that variables of type Natural

(uint) or Text (string) cannot be compared directly as is the case in other languages.
That either leaves the comparing work for a higher-level language (such as Go). Al-
ternatively, from the perspective of the Dhall authors enums are the promoted way to
solve this when the value matters, i.e. derive a custom named type from a primitive
type and compare that.

TBU in Zlín, Faculty of Applied Informatics 51

, default =

--- | have sane defaults.

{ Host = ""

, Port = 3000

, HTTP =

{ Domain = ""

, Secure = False

, AutoTLS = False

, TLSKeyPath = ""

, TLSCertKeyPath = ""

, HSTSMaxAge = 0

, ContentSecurityPolicy = ""

, RateLimit = 0

, Gzip = 0

, Timeout = 0

}

, Mailer =

{ Enabled = False

, Protocol = "smtps"

, SMTPAddr = ""

, SMTPPort = 465

, ForceTrustServerCert = False

, EnableHELO = False

, HELOHostname = ""

, Auth = ""

, From = ""

, User = ""

, Password = ""

, SubjectPrefix = "pcmt - "

, SendPlainText = True

}

, LiveMode =

--- | LiveMode controls whether the application looks for

--- | directories "assets" and "templates" on the filesystem or

--- | in its bundled Embed.FS.

False

, DevelMode = False

, AppPath =

--- | AppPath specifies where the program looks for "assets" and

--- | "templates" in case LiveMode is True.

"."

, Session =

{ CookieName = "pcmt_session"

, CookieAuthSecret = ""

, CookieEncrSecret = ""

, MaxAge = 3600

}

, Logger = { JSON = True, Fmt = None Text }

, Init =

{ CreateAdmin =

--- | if this is True, attempt to create a user with admin

--- | privileges with the password specified below

False

, AdminPassword =

--- | used for the first admin, forced change on first login.

"50ce50fd0e4f5894d74c4caecb450b00c594681d9397de98ffc0c76af5cff5953eb795f7"

}

, Registration.Allowed = True

}

}

in Schema

Listing 11.2 Dhall configuration defaults for schema version 0.0.1-rc.2

TBU in Zlín, Faculty of Applied Informatics 52

11.2 Data integrity and authenticity

The user can interact with the application via a web client, such as a browser, and is
required to authenticate for all sensitive operations. To not only know who the user is
but also make sure they are permitted to perform the action they are attempting, the
program employs an authorisation mechanism in the form of sessions. These are on
the client side represented by cryptographically signed and encrypted (using 256-bit
AES) HTTP cookies. That lays foundations for a few things: the data saved into the
cookies can be regarded as private because short of future quantum computers only the
program itself can decrypt and access the data, and the data can be trusted since it is
both signed using the key that only the program controls and encrypted with another
key that equally only the program holds.

The cookie data is only ever written or read at the server side, solidifying the authors
decision to let it be encrypted, as there is no point in not encrypting it for some
perceived client-side simplification. Users navigating the website send their session
cookie (if it exists) with every request to the server, which subsequently verifies the
integrity of the data and in case it is valid, determines the existence and potential
amount of user privilege that should be granted. Public endpoints do not mandate
the presence of a valid session by definition, while at protected endpoints the user is
authenticated at every request. When a session expires or if there is no session to
begin with, the user is either shown a Not found error message, the Unauthorised error
message or redirected to /signin, depending on the endpoint or resource, as can be
seen, this behaviour is not uniform and depends on the resource and/or the endpoint.

Another aspect that contributes to data integrity from another point of view is utilising
database transactions for bundling together multiple database operations that collec-
tively change the state. Using the transactional jargon, the data is only committed if
each individual change was successful. In case of any errors, the database is instructed
to perform an atomic rollback, which brings it back to a state before the changes were
ever attempted.

The author has additionally considered the thought of utilising an embedded immutable
database like immudb (https://immudb.io) for record keeping (verifiably storing
data change history) and additional data integrity checks, e.g. for tamper protection
purposes and similar; however, that work remains yet to be materialised.

https://immudb.io

TBU in Zlín, Faculty of Applied Informatics 53

11.3 Database schema

The database schema is not being created by manually typing out SQL statements.
Instead, an Object-relational Mapping (ORM) tool named ent is used, which allows
defining the table schema and relations entirely in Go. The upside of this approach is
that the entity types are natively understood by code editors, and they also get type-
checked by the compiler for correctness, preventing all sorts of headaches and potential
bugs.

Since ent encourages the usage of declarative migrations at early stages of the project,
it is not required for the database schema to exist on application start-up in form of raw
SQL (or HCL). Instead, ent only requires a valid connection string providing reasonably
privileged access to the database and it handlers the database configuration by auto-
generating SQL with the help of the companion embedded library Atlas (https:
//atlasgo.io/). The upstream project (ent) encourages moving to otherwise more
traditional versioned migrations for more mature projects, so that is on the roadmap
for later.

The best part about using ent is that there is no need to define supplemental methods
on the models, as with ent these are meant to be code generated (in the older sense of
word, not with Large Language Models) into existence. Code generation creates files
with actual Go models based on the types of the attributes in the database schema
model, and the respective relations are transformed into methods on the receiver or
functions taking object attributes as arguments.

For instance, if the model’s attribute is a string value Email, ent can be used to generate
code that contains methods on the user object like the following:

• EmailIn(pattern string)

• EmailEQ(email string)

• EmailNEQ(email string)

• EmailHasSuffix(suffix string)

These methods can further be imported into other packages and this makes working
with the database a morning breeze.

https://atlasgo.io/
https://atlasgo.io/

TBU in Zlín, Faculty of Applied Informatics 54

All the database entity IDs were declared as type UUID (universally unique ID, theo-
retically across space and time), contrary to the more traditional integer IDs.

Support for UUIDs was provided natively by the supported databases and in Go via
a popular and vetted open-source library (github.com/google/uuid). Among the
upsides of using UUIDs over integer IDs is that there is no need to manually increment
the ID. But more importantly, there is also the fact that compared to 32-bit1) signed
integers the UUID is a somewhat randomly generated 16 byte (128 bit) array, reducing
chances of collision.

Barring higher chances of preventing conflicts during imports of foreign databases, this
design decision might not provide any advantage for the current system at the moment.
It could, however, hold importance in the future, should the database ever be deployed
in a replicated, high-availability (HA) manner with more than one concurrent writer
(replicated application instances).

The relations between entities as modelled with ent can be imagined as the edges
connecting the nodes of a directed graph, with the nodes representing the entities.
This conceptualisation lends itself to a more human-friendly querying language, where
the directionality can be expressed with words describing ownership, like so:

descr, err ::= users.Query().

Where().

LocalBreach.

Has(BreachDetailXyz).

Has(Description).

Only(ctx)

Listing 11.3 Ent graph query

1)In Go, integer size is architecture dependent, see https://go.dev/ref/spec#Numeric_types.

github.com/google/uuid
https://go.dev/ref/spec#Numeric_types

TBU in Zlín, Faculty of Applied Informatics 55

12 DEPLOYMENT

A deployment set-up, as suggested in Section 6, is already partially covered by the
multi-stage Containerfile that is available in the main sources. Once built, the
resulting container image only contains a handful of things it absolutely needs:

• a self-contained statically linked copy of the program

• a default configuration file and corresponding Dhall expressions cached at build
time

• a recent CA certs bundle

Since the program also needs a database for proper functioning, an example scenario
includes the application container being run in a Podman pod (as in a pea pod or pod of
whales) together with the database. That results in not having to expose the database
to the entire host or out of the pod at all, it is only available over pod’s localhost.
Hopefully it goes without saying that the default values of any configuration secrets
should be substituted by the application operator with new, securely generated ones
(read: using openssl rand or pwgen).

12.1 Rootless Podman

Assuming rootless Podman set up and the just tool installed on the host, the appli-
cation could be deployed by following a series of relatively simple steps:

• build (or pull) the application container image

• create a pod with user namespacing, exposing the application port

• run the database container inside the pod

• run the application inside the pod

In concrete terms, it would resemble something along the lines of Listing 12.1. Do note
that all the commands are executed under the unprivileged user@containerHost that
is running rootless Podman, i.e. it has UID/GID mapping entries in /etc/setuid and
/etc/setgid files prior to running any Podman commands.

TBU in Zlín, Faculty of Applied Informatics 56

From inside the project folder, build the image locally using kaniko.

just kaniko

Create a pod, limit the amount of memory/CPU available to its containers.

podman pod create ---replace ---name pcmt \

---memory=100m ---cpus=2 \

---userns=keep-id -p3005:3000

Create the database folder and run the database in the pod.

mkdir -pv ./tmp/db

podman run ---pod pcmt ---replace -d ---name "pcmt-pg" ---rm \

-e POSTGRES_INITDB_ARGS="---auth-host=scram-sha-256 \

---auth-local=scram-sha-256" \

-e POSTGRES_PASSWORD=postgres \

-v $PWD/tmp/db:/var/lib/postgresql/data:Z \

---health-cmd "sh -c 'pg_isready -U postgres -d postgres'" \

---health-on-failure kill \

---health-retries 3 \

---health-interval 10s \

---health-timeout 1s \

---health-start-period=5s \

docker.io/library/postgres:15.2-alpine3.17

Run the application itself in the pod.

podman run ---pod pcmt ---replace ---name pcmt-og -d ---rm \

-e PCMT_LIVE=False \

-e PCMT_DBTYPE="postgres" \

-e PCMT_CONNSTRING="host=pcmt-pg port=5432 sslmode=disable \

user=postgres dbname=postgres password=postgres"

-v $PWD/config.dhall:/config.dhall:Z,ro \

docker.io/immawanderer/mt-pcmt:testbuild -config /config.dhall

Listing 12.1 Example application deployment using rootless Podman

To summarise Listing 12.1, first the application container is built from inside the
project folder using kaniko. The container image could alternatively be pulled from
the container repository, but it makes more sense showing the image being built from
sources with the listing depicting a :testbuild tag being used.

Next, a pod is created and given a name, setting the port binding for the application.
Then, the database container is started inside the pod, configured with a healthchecking
mechanism.

As a final step, the application container itself is run inside the pod. The application
configuration named config.dhall located in $PWD is mounted as a volume into con-
tainer’s /config.dhall, providing the application with a default configuration. The
default container does contain a default configuration for reference, however, running
the container without additionally providing the necessary secrets would fail.

TBU in Zlín, Faculty of Applied Informatics 57

12.1.1 Sanity checks

Also do note that the application connects to the database using its container name,
i.e. not the IP address. This is possible thanks to Podman setting up DNS resolution
inside pods using default networks in such a way that all containers in the pod can
reach each other using their (container) names.

Interestingly, connecting via localhost from containers inside the pod would also work.
Inside the pod, any container in the pod can reach any other container in the same
pod via pod’s own localhost, thanks to a shared network name space [45].

In fact, pinging (sending ICMP packets using the ping command) the database and
application containers from an ad-hoc Alpine Linux container that just joined the pod
temporarily yields:

user@containerHost % podman run ---rm -it \

---user=0 \

---pod=pcmt \

docker.io/library/alpine:3.18

/ % ping -c2 pcmt-og

PING pcmt-og (127.0.0.1): 56 data bytes

64 bytes from 127.0.0.1: seq=0 ttl=42 time=0.072 ms

64 bytes from 127.0.0.1: seq=1 ttl=42 time=0.118 ms

--- pcmt-og ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 0.072/0.095/0.118 ms

/ % ping -c2 pcmt-pg

PING pcmt-pg (127.0.0.1): 56 data bytes

64 bytes from 127.0.0.1: seq=0 ttl=42 time=0.045 ms

64 bytes from 127.0.0.1: seq=1 ttl=42 time=0.077 ms

--- pcmt-pg ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 0.045/0.061/0.077 ms

/ %

Listing 12.2 Pinging pod containers using their names

Was the application deployed in a traditional manner instead of using Podman, the
use of FQDNs or IPs would be probably be necessary, as there would be no magic
resolution of container names happening transparently in the background.

TBU in Zlín, Faculty of Applied Informatics 58

12.1.2 Database isolation from the host

A keen observer has undoubtedly noticed that the pod constructed in Listing 12.1
did only create the binding for a port used by the application (5005/tcp). The
Postgres default port 5432/tcp is not among pod’s port bindings, as can be seen in the
pod creation command in the said listing. This can also easily be verified using the
command in Listing 12.3:
user@containerHost % podman pod inspect pcmt \

---format="Port bindings: {{.InfraConfig.PortBindings}}\n\

Host network: {{.InfraConfig.HostNetwork}}"

Port bindings: map[3000/tcp:[{ 5005}]]

Host network: false

Listing 12.3 Podman pod port binding inspection

To be absolutely sure that the database is available only internally in the pod (unless,
of course, there is another process listening on the subject port), and that connecting
to the database from outside the pod (i.e. from the container host) really does fail, the
following commands can be issued:
user@containerHost % curl localhost:5432

-->- curl: (7) Failed to connect to localhost port 5432 after 0 ms: Couldn't

connect to server

Listing 12.4 In-pod database is unreachable from the host

The error in Listing 12.4 is indeed expected, as it is the result of the database port not
been exposed from the pod.

Of course, since a volume (essentially a bind mount) from the host is used, the actual
data is still accessible on the host, both to privileged users and the user running the
pod. On the host with SELinux support, the :Z volume addendum at least ensures
that the content of the volume is directly inaccessible to other containers, including
the application container running inside the same pod, via SELinux labelling.

12.1.3 Health checks

Running the containers with health checks can be counted among the few crucial
settings. That way the container runtime can periodically check that the application
running inside the container is behaving correctly and instructions can be provided on
what action should be taken, should the health of the application evaluate unsatis-
fyingly. Furthermore, different sets of health checking commands can be passed with
Podman for start-up and runtime.

TBU in Zlín, Faculty of Applied Informatics 59

12.2 Reverse proxy configuration

If the application is deployed behind a reverse proxy, such as NGINX, the configuration
snippet in Listing 12.5 might apply. Do note how the named upstream server pcmt

references the port that was exposed from the pod created in Listing 12.1.
upstream pcmt {

server 127.0.0.1:5005;

}

server {

return 301 https:///<pcmt domain>$request_uri;

listen 80;

listen [:::]:80;

server_name: <pcmt domain> wwwww.<pcmt domain>;

return 404;

add_header Referrer-Policy "no-referrer, origin-when-cross-origin";

}

server {

server_name <pcmt domain>;

access_log /var/log/nginx/<pcmt domain>.access.log;

error_log /var/log/nginx/<pcmt domain>.error.log;

location / {

proxy_pass http:///pcmt;

proxy_set_header X-Forwarded-Host $host;

proxy_set_header X-Forwarded-For $proxy_add_forwarded_for;

}

location /robots.txt {

allow all;

add_header Content-Type "text/plain; charset=utf-8";

add_header X-Robots-Tag "all, noarchive, notranslate";

return 200 "User-agent: *\nDisallow: /";

}

include sec-headers.conf;

add_header X-Real-IP $remote_addr;

add_header X-Forwarded-For $proxy_add_x_forwarded_for;

add_header X-Forwarded-Proto $scheme;

more_set_headers 'Early-Data: $ssl_early_data';

listen [:::]:443 ssl http2;

listen 443 ssl http2;

ssl_certificate /etc/letsencrypt/live/<pcmt domain>/fullchain.pem;

ssl_certificate_key /etc/letsencrypt/live/<pcmt domain>/privkey.pem;

include /etc/letsencrypt/options-ssl-nginx.conf;

ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;

reduce TTFB

ssl_buffer_size 4k;

}

Listing 12.5 Example reverse proxy configuration snippet

The snippet describes how traffic arriving at port 80/tcp (IPv4 or IPv6) that matches
the domain name(s) {wwwww.,}<pcmt domain> (<pcmt domain> being the domain name
that the program was configured with, including appropriate DNS records) gets 301-
redirected to the same location ($request_uri), only over HTTPS. If the server name
does not match, a 404 is returned instead. In the main location block, all traffic except
for /robots.txt is forwarded to the named backend, with headers added on top by the
proxy in order to label the incoming requests as not originating at the proxy. The robots
route is treated specially, immediately returning a directive that disallows crawling of
any resource on the page for all. The proxy is also instructed to log access and error
events to specific log files, finally load the domain’s TLS certificates (obtained out of
band), reduce the ssl_buffer_size and listen on port 443/tcp (dual stack).

TBU in Zlín, Faculty of Applied Informatics 60

13 VALIDATION

13.1 Unit tests

Unit testing is a hot topic for many people and the author does not count himself to be
a staunch supporter of neither extreme. The “no unit tests” opinion seems to discount
any benefit there is to unit testing, while a “TDD-only”1) approach can be a little too
much for some people’s taste. The author tends to prefer a middle ground approach
in this particular case, i.e. writing enough tests where meaningful, but not necessarily
testing everything or writing tests prior to business logic code. Arguably, following the
practice of TDD should result in writing a better designed code, particularly because
there needs to be a prior thought about the shape and function of the code, as it
is tested for before being even written, but it adds a slight inconvenience to what is
otherwise a straightforward process.

Thanks to Go’s built in support for testing via its testing package and the tool-
ing in the go tool, writing tests is relatively simple. Go looks for files in the form
<filename>_test.go in the present working directory but can be instructed to look for
test files in packages recursively found on any path using the ellipsis, like so: go test

./path/to/package/…, which then runs all the tests found, and reports some statistics,
such as the time it took to run the test or whether it succeeded or failed. To be precise,
the test files also need to contain test functions, which are functions with the signature
func TestWhatever(t *testing.T){} and where the function prefix “Test” is just as
important as the signature. Without it, the function is not considered to be a testing
function despite having the required signature and is therefore not executed during
testing.

This test lookup behaviour, however, also has a neat side effect: all the test files can be
kept side-by-side their regular source counterparts, there is no need to segregate them
into a specially blessed tests folder or similar, which in author’s opinion improves
readability. As a failsafe, in case no actual test are found, the current behaviour of
the tool is to print a note informing the developer that no tests were found, which is
handy to learn if it was not intended/expected. When compiling regular source code,
the Go files with _test in the name are simply ignored by the build tool.

1)TDD, or Test Driven Development, is a development methodology whereby tests are written first,
then a complementary piece of code that is supposed to be tested is added, just enough to get past
the compile errors and to see the test fail and then is the code finally refactored to make the test pass.
The code can then be fearlessly extended because the test is the safety net catching the programmer
when the mind slips and alters the originally intended behaviour of the code.

TBU in Zlín, Faculty of Applied Informatics 61

13.2 Integration tests

Integrating with external software, namely the database in case of this program, is
designed to utilise the same mechanism that was mentioned in the previous section:
Go’s testing package. These tests verify that the code changes can still perform the
same actions with the external software that were possible before the change and are
run before every commit locally and then after pushing to remote in the CI.

13.2.1 func TestUserExists(t *testing.T)

In the integration test shown in Listing 13.1, it is prefaced at line 10 by declaring a
helper function getCtx() context.Context, which takes no arguments and returns
a new context.Context initialised with the value of the global logger. As previ-
ously mentioned, that is how the logger gets injected into the user module functions.
The actual test function with the signature TestUserExists(t *testing.T) defines
a database connection string at line 21 and attempts to open a connection to the
database. The database in use here is SQLite3 running in memory mode, meaning no
file is actually written to disk during this process. Since the testing data is not needed
after the test, this is desirable. Next, a defer statement calls the Close() method
on the database object, which is the Go idiomatic way of closing files and network
connections (which are also an abstraction over files on UNIX-like operating systems
such as GNU/Linux). Contrary to where it is declared, the defer statement is only
called after all the statements in the surrounding function, which makes sure no file
descriptors (FDs) are leaked and the file is properly closed when the function returns.

In the next step at line 25 a database schema creation is attempted, handling the
potential error in a Go idiomatic way, which uses the return value from the function
in an assignment to a variable declared in the if statement, and checks whether the
err was nil or not. In case the err was not nil, i.e. there was an error in the callee
function, the condition evaluates to true, which is followed by entering the inner block.
Inside it, the error is announced to the user (likely a developer running the test in this
case) and the testing object’s FailNow()method is called. That marks the test function
as having failed, and thus stops its execution. In this case, that is the desired outcome,
since if the database schema creation call fails, there really is no point in continuing
the testing of user creation.
Conversely, if the schema does get created without an error, the code continues to
declare a few variables (lines 30-32): username, email and ctx, where the context
injected with the logger is saved. Two of them are subsequently (line 33) passed into

TBU in Zlín, Faculty of Applied Informatics 62

the UsernameExists function, ctx being the first argument and the database pointer
and username following, while the email variable is only used at a later stage (line 46).
The point of declaring them together is to give a sense of relatedness. The error value
returned from this function is again checked (line 33) and if everything goes well, the
usernameFound boolean value is checked next at line 38.

1 /// modules/user/user_test.go

2 package user

3

4 import (

5 "context"

6 "testing"

7

8 "git.dotya.ml/mirre-mt/pcmt/ent/enttest"

9 "git.dotya.ml/mirre-mt/pcmt/slogging"

10 _ "github.com/xiaoqidun/entps"

11)

12

13 func getCtx() context.Context {

14 l ::= slogging.Init(false)

15 ctx ::= context.WithValue(context.Background(), CtxKey{}, l)

16 return ctx

17 }

18

19 func TestUserExists(t *testing.T) {

20 connstr ::= "file:ent_tests?mode=memory&_fk=1"

21 db ::= enttest.Open(t, "sqlite3", connstr)

22 defer db.Close()

23

24 if err ::= db.Schema.Create(context.Background()); err !!= nil {

25 t.Errorf("failed to create schema resources: %v", err)

26 t.FailNow()

27 }

28

29 username ::= "dude"

30 email ::= "dude@b.cc"

31 ctx ::= getCtx()

32

33 usernameFound, err ::= UsernameExists(ctx, db, username)

34 if err !!= nil {

35 t.Errorf("error checking for username {%s} existence: %q", username, err)

36 }

37

38 if usernameFound {

39 t.Errorf("unexpected: user{%s} should not have been found", username)

40 }

41

42 if _, err ::= EmailExists(ctx, db, email); err !!= nil {

43 t.Errorf("unexpected: user email '%s' should not have been found", email)

44 }

45

46 usr, err ::= CreateUser(ctx, db, email, username, "so strong")

47 if err !!= nil {

48 t.Errorf("failed to create user, error: %q", err)

49 t.FailNow()

50 } else if usr === nil {

51 t.Error("got nil usr back")

52 t.FailNow()

53 }

54

55 if usr.Username !!= username {

56 t.Errorf("got back wrong username, want: %s, got: %s",

57 username, usr.Username,

58)

59 } ///more checks.....

60 }

Listing 13.1 User existence integration test

Since the database has just been created, there should be no users, which is checked
in the body of the if statement (line 35). The same check is then performed using an

TBU in Zlín, Faculty of Applied Informatics 63

email (line 42), which is also correctly expected to fail.

The final statements of the described test attempts to create a user by calling the
function CreateUser(.....) at line 46, whose return values are again checked for both
error and nillability, respectively. The test continues with more of the checks similar
to what has been described so far, but the rest was omitted for brevity.

As was just demonstrated in the test, a neat thing about error handling in Go is that it
allows for very easy checking of all code paths, not just the happy path where there are
no issues. The recommended approach of immediately explicitly handling (or deciding
to ignore) the error is in author’s view superior to wrapping hundreds of lines in try

blocks and then catching (or not) all the exceptions, as is the practice in some other
languages.

13.3 Test environment

The application has been deployed in a test environment on author’s modest Virtual
Private Server (VPS) at https:///testpcmt.dotya.ml, protected by Let’s Encrypt
issued, short-lived, ECDSA secp384r1 curve TLS certificate, and configured with strict
CSP. It is a test instance, therefore limits (and rate-limits) to prevent abuse might be
imposed.
The test environment makes the program available over both modern IPv6 and legacy
IPv4 protocols, to maximise accessibility. Redirects were set up from plain HTTP to
HTTPS, as well as from wwwww to non-wwwww domain. The subject domain configuration is
hardened by setting the CAA record, limiting certificate authorities (CAs) that are able
to issue TLS certificates for it (and let them be trusted by validating clients). Addition-
ally, HTTP Strict Transport Security (HSTS) had been enabled for the main domain
(dotya.ml) including the subdomains quite some time ago (consult the preload lists in
Firefox/Chrome), which mandates that clients speaking HTTP only ever connect to it
(and the subdomains) using TLS.

13.3.1 Deployment validation

The deployed application has been validated using the Security Headers tool (see ht

tps://securityheaders.com/?q=https%3A%2F%2Ftestpcmt.dotya.ml), the results of
which can be seen in Figure 13.1.

It shows that the application sets the Cross Origin Opener Policy to same-origin,

https://securityheaders.com/?q=https%3A%2F%2Ftestpcmt.dotya.ml
https://securityheaders.com/?q=https%3A%2F%2Ftestpcmt.dotya.ml

TBU in Zlín, Faculty of Applied Informatics 64

which isolates the browsing context exclusively to same-origin documents, preventing
cross-origin documents from loading in the same browser context.

Figure 13.1 Security Headers scan

Furthermore, a Content Security Policy of upgrade-insecure-requests; default-

src 'none'; manifest-src 'self'; font-src 'self'; img-src 'self' https:///*;

script-src 'self'; style-src 'self'; object-src 'self'; form-action 'self';

frame-ancestors'self'; base-uri 'self' is set by the program using a header. This
policy essentially pronounces the application (whatever domain it happens to be hosted
at - 'self') as the only permissible source for any scripts, styles and frames, the
only destination of web forms. One exception is the image-src 'self' https:///*

directive, which more leniently also permits images from any secure sources. This
measure ensures that no unvetted content is ever loaded from elsewhere.

The Referrer-Policy header setting of no-referrer, strict-origin-when-cross-

origin ensures that user tracking is reduced, since no referrer is included (the Referer
header is omitted) when the user navigates away from the site or somehow send
requests outside the application using other means. The Permissions-Policy set to
geolocation=(), midi=(), sync-xhr=(), microphone=(), camera=(), gyroscope=(),

magnetometer=(), fullscreen=(self), payment=() declares that the application is,

TBU in Zlín, Faculty of Applied Informatics 65

for instance, never going to request access to payment information, user microphone
or camera devices, or geolocation.

gobuster was used in fuzzing mode to aid in uncovering potential application miscon-
figurations. The wordlists used include:

• Anton Lopanitsyn’s fuzz.txt (https://github.com/Bo0oM/fuzz.txt/tree/mas
ter)

• Daniel Miessler’s SecLists (https://github.com/danielmiessler/SecLists)

• Sam’s samlists (https://github.com/the-xentropy/samlists)

Many requests yielded 404s for non-existent pages, or possibly pages requiring authen-
tication (NotFound is used so as not to disclose page’s existence). The program initially
also issued quite a few 503s as a result of rate-limiting, until gobuster was tamed using
the ---delay parameter. Anti-CSRF measures employed by the program caused most
of the requests to yield 400s (missing CSRF token), or 403s with a CSRF token.

The deployed application was scanned with Quallys’ SSL Labs scanner and the results
can be seen in Figure 13.2, confirming that HSTS (includes subdomains) is deployed,
the server runs TLS 1.3, the DNS Certificate Authority Authorisation (CAA) is con-
figured for the domain, with the overall grade being A+.

Figure 13.2 Quallys SSL Labs scan

https://github.com/Bo0oM/fuzz.txt/tree/master
https://github.com/Bo0oM/fuzz.txt/tree/master
https://github.com/danielmiessler/SecLists
https://github.com/the-xentropy/samlists

TBU in Zlín, Faculty of Applied Informatics 66

14 APPLICATION SCREENSHOTS

Figure 14.1 depicts the initial page that a logged-out user is greeted with when they
load the application.

Figure 14.1 Homepage

Figure 14.2 is showing a registration page with input fields turned green after basic
validation. Visiting this page with registration disabled in settings would yield a 404.

Figure 14.2 Registration page

Figure 14.3 Registration page
email error

A sign-up form error telling the user to provide a valid email address is shown in
Figure 14.3.

TBU in Zlín, Faculty of Applied Informatics 67

Figure 14.4 Sign-in page

Figure 14.4 depicts a sign-in form similar to the sign-up one.

Figure 14.5 Short password error
on sign-in

An error in Figure 14.5 prompts the user to lengthen the content of the password field
from 3 to at least 20 characters.

Figure 14.6 User management screen

Figure 14.6 shows the user management screen, which provides links to view user details
page, start creating a new user.

User creation form can be seen in Figure 14.7. Both regular and admin level users can
be created here. In this case, an error is shown, telling the user there is an issue with
username uniqueness. User experience of this process could in the future be improved
by using a bit of JavaScript (or WebAssembly) to check uniqueness of the username
on user’s key-up.

TBU in Zlín, Faculty of Applied Informatics 68

Figure 14.7 User creation: ‘username not unique’ error

Figure 14.8 ‘demo’ user creation post-hoc

The user management screen is again shown in Figure 14.8 after user ‘demo’ was
created. An informative flash message is printed near the top of the page immediately
after the action and not shown on subsequent page loads.

Figure 14.9 User details screen

The user details page is depicted in Figure 14.9. The interface presents key information
about the user such as ID, username and admin status. Additionally, it provides a link
back to the previous page and two buttons: one for editing the user and one for user
deletion.

TBU in Zlín, Faculty of Applied Informatics 69

Figure 14.10 User edit screen

Figure 14.10 shows the form for user editing with a button ‘Update’ in the bottom
for submitting, a couple of checkboxes for toggling ‘admin’ and ‘active’ state of the
user. Above those, there are input fields for ‘username’, ‘email’, ‘password’ and the
confirmation of the password.

Figure 14.11 User deletion confirmation

When attempting to delete a user, the administrator is presented with the screen shown
in Figure 14.11, which asks them whether they are absolutely sure to perform an action
with permanent consequences. The ‘Confirm permanent deletion’ button is highlighted
in intense red colour, while the ‘Cancel’ button is displayed in a light blue tone. There
are two additional links: the ‘All users’ one that points to the user management page,
and the ‘Back to detail’ one that simply brings the administrator one step back to the
user details page.

Figure 14.12 User deletion post-hoc

TBU in Zlín, Faculty of Applied Informatics 70

After successful user deletion, the administrator is redirected back to user management
page and a flash message confirming the deletion is printed near the top of the page,
as shown in Figure 14.12.

Figure 14.13 Manage API keys

Figure 14.13 shows a page that allows administrators to manage instance-wide API
keys for external services, such as Have I Been Pwned? or DeHashed.com. Do note
that these keys are never distributed to clients in any way and are only ever used by
the application itself to make the requests on behalf of the users.

Figure 14.14 Import of locally available breach data from the CLI

Figure 14.14 depicts how formatted breach data can be imported into the program’s
database using the CLI.

Figure 14.15 displays the result of a search using the online data source. The account
was not found to be a part of any of the available breaches.

TBU in Zlín, Faculty of Applied Informatics 71

Figure 14.15 Compromise monitoring using online
sources - no breach found

Figure 14.16 depicts the result of a search using the online API, providing a message
and list of links to breach details.

Figure 14.16 Compromise listing using online
API (and a test account)

Figure 14.17 Stratfor breach details page

Figure 14.17 shows the Stratfor breach details page, with the data sourced from an
online API.

TBU in Zlín, Faculty of Applied Informatics 72

CONCLUSION

The objectives of the thesis have been to create a tool that would enable users to
verify the potentiality of their compromise in time, i.e. monitor it, by validating the
assumptions on the security of their credentials.

In the theoretical part, conceptual foundations and technical underpinnings of common
pieces of the infrastructure were attended to and explained, with a focus relating to
creating web applications. Additionally, security mechanisms such as Site Isolation and
Content Security Policy, commonly employed by mainstream browsers of today, were
briefly introduced and it was proven how Content Security Policy could be configured
simply and quickly. Furthermore, the criteria for local and online data sources were
evaluated.

An extensive body of the thesis then revolved around the practical part, describing
everything from tooling and development processes used, to high-level view of appli-
cation architecture, and then dove into implementation details of specific parts of the
application across the stack. Import of local breach data and constructing database
queries using a graph-like API were also highlighted.

Various deployment and configuration scenarios were considered, the validation meth-
ods used to verify the correct working of the application were described and justified,
and the practical part concluded by showing screenshots of the application in use.

The list of potential improvements for the future may also be amended by adding
fuzzing tests for the program to help uncover potential bugs, producing Software Bill
of Materials to aid in ensuring compliance, and utilising additional immutable database
for activity logs.

The program does have a very solid core, it listens for OS signals and can handle
shutdowns gracefully. It supports structured logging, with the option to plug in a
log exporter. Most importantly, it gives users a tool in the battle against the always
vigilant attackers that are after their passwords.

Even though it might not be called an utterly finished project yet, it can already serve
a clear purpose.

TBU in Zlín, Faculty of Applied Informatics 73

REFERENCES

[1] Wang, X.; Yu, H.: How to Break MD5 and Other Hash Functions. 05 2005, ISBN
978-3-540-25910-7, pp. 561–561, doi:10.1007/11426639_2.

[2] Klíma, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. IACR
Cryptology ePrint Archive, volume 2006, January 2006: p. 105.

[3] Sasaki, Y.; Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. Springer, Berlin, Heidelberg, 2009, pp. 134–152, doi:10.1007/978-3-642-0
1001-9_8.

[4] Mao, M.; Chen, S.; Xu, J.: Construction of the Initial Structure for Preimage
Attack of MD5. In 2009 International Conference on Computational Intelligence
and Security, volume 1, 2009, pp. 442–445, doi:10.1109/CIS.2009.214.

[5] O’Connor, J.; Aumasson, J.-P.; Neves, S.; et al.: BLAKE3 - one function, fast
everywhere. [online], 2021, Available from: https://raw.githubusercontent.co

m/BLAKE3-team/BLAKE3-specs/master/blake3.pdf [viewed 2023-08-14].

[6] Goodin, D.: Why passwords have never been weaker—and crackers have never
been stronger. [online], August 2012, Available from: https://arstechnica.

com/information-technology/2012/08/passwords-under-assault/ [viewed
2023-08-13].

[7] Thorsheim, P.: Linkedin Password Infographic. [online], June 2012, Available
from: https://securitynirvana.blogspot.com/2012/06/linkedin-passwor

d-infographic.html [viewed 2023-08-13].

[8] m3g9tr0n: Cracking Story - How I Cracked Over 122 Million SHA1 and MD5
Hashed Passwords. [online], 2012, Available from: https://blog.thireus.com/c

racking-story-how-i-cracked-over-122-million-sha1-and-md5-hashed-passw

ords/ [viewed 2023-08-13].

[9] Velazco, C.: 6.5 Million LinkedIn Passwords Reportedly Leaked, LinkedIn Is
“Looking Into” It. [online], 2012, Available from: https://techcrunch.com/2

012/06/06/6-5-million-linkedin-passwords-reportedly-leaked-linkedin-i

s-looking-into-it/ [viewed 2023-08-13].

[10] Perez, S.: 117 million LinkedIn emails and passwords from a 2012 hack just got
posted online. [online], May 2016, Available from: https://techcrunch.com/201

6/05/18/117-million-linkedin-emails-and-passwords-from-a-2012-hack-jus

t-got-posted-online/ [viewed 2023-08-13].

https://raw.githubusercontent.com/BLAKE3-team/BLAKE3-specs/master/blake3.pdf
https://raw.githubusercontent.com/BLAKE3-team/BLAKE3-specs/master/blake3.pdf
https://arstechnica.com/information-technology/2012/08/passwords-under-assault/
https://arstechnica.com/information-technology/2012/08/passwords-under-assault/
https://securitynirvana.blogspot.com/2012/06/linkedin-password-infographic.html
https://securitynirvana.blogspot.com/2012/06/linkedin-password-infographic.html
https://blog.thireus.com/cracking-story-how-i-cracked-over-122-million-sha1-and-md5-hashed-passwords/
https://blog.thireus.com/cracking-story-how-i-cracked-over-122-million-sha1-and-md5-hashed-passwords/
https://blog.thireus.com/cracking-story-how-i-cracked-over-122-million-sha1-and-md5-hashed-passwords/
https://techcrunch.com/2012/06/06/6-5-million-linkedin-passwords-reportedly-leaked-linkedin-is-looking-into-it/
https://techcrunch.com/2012/06/06/6-5-million-linkedin-passwords-reportedly-leaked-linkedin-is-looking-into-it/
https://techcrunch.com/2012/06/06/6-5-million-linkedin-passwords-reportedly-leaked-linkedin-is-looking-into-it/
https://techcrunch.com/2016/05/18/117-million-linkedin-emails-and-passwords-from-a-2012-hack-just-got-posted-online/
https://techcrunch.com/2016/05/18/117-million-linkedin-emails-and-passwords-from-a-2012-hack-just-got-posted-online/
https://techcrunch.com/2016/05/18/117-million-linkedin-emails-and-passwords-from-a-2012-hack-just-got-posted-online/

TBU in Zlín, Faculty of Applied Informatics 74

[11] Imperva: Consumer Password Worst Practices. [online], 2014, Available from:
https://www.imperva.com/docs/gated/WP_Consumer_Password_Worst_Practice

s.pdf [viewed 2023-08-13].

[12] Goodin, D.: 13 million plaintext passwords belonging to webhost users leaked
online. [online], 2015, Available from: https://arstechnica.com/information-t
echnology/2015/10/13-million-plaintext-passwords-belonging-to-webhost

-users-leaked-online/ [viewed 2023-08-13].

[13] Forcepoint: Chinese Internet Suffers the Most Serious User Data Leak in History.
[online], December 2011, Available from: https://www.forcepoint.com/blog/

x-labs/chinese-internet-suffers-most-serious-user-data-leak-history

[viewed 2023-08-13].

[14] Goodin, D.: 6.6 million plaintext passwords exposed as site gets hacked to the
bone. [online], September 2016, Available from: https://arstechnica.com/info

rmation-technology/2016/09/plaintext-passwords-and-wealth-of-other-dat

a-for-6-6-million-people-go-public/ [viewed 2023-08-13].

[15] Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, August 2018, doi:10.17487/RFC8446, Also available from: https://www.rf
c-editor.org/info/rfc8446.

[16] Alexander, K.: Speakeasies of the Prohibition Era. [online], December 2022,
Available from: https://www.legendsofamerica.com/ah-prohibitionspeakeasy/
[viewed 2023-05-24].

[17] National Institute of Standards and Technology: Passphrase. [online], Available
from: https://csrc.nist.gov/glossary/term/Passphrase [viewed 2023-05-24].

[18] McMillan, R.: The World’s First Computer Password? It Was Useless Too.
[online], January 2012, Available from: https://www.wired.com/2012/01/co

mputer-password/ [viewed 2023-05-24].

[19] Lars Klint: Excuse me @EtihadAirways, why do you insist on making my
passwords worse? [online], June 2016, Available from: https://twitter.com/

larsklint/status/748615185762484224 [viewed 2023-05-24].

[20] Etihad Airways: Reply to Lars Klint. [online], June 2016, Available from: https:
//twitter.com/EtihadAirways/status/748626413306150912 [viewed 2023-05-
24].

https://www.imperva.com/docs/gated/WP_Consumer_Password_Worst_Practices.pdf
https://www.imperva.com/docs/gated/WP_Consumer_Password_Worst_Practices.pdf
https://arstechnica.com/information-technology/2015/10/13-million-plaintext-passwords-belonging-to-webhost-users-leaked-online/
https://arstechnica.com/information-technology/2015/10/13-million-plaintext-passwords-belonging-to-webhost-users-leaked-online/
https://arstechnica.com/information-technology/2015/10/13-million-plaintext-passwords-belonging-to-webhost-users-leaked-online/
https://www.forcepoint.com/blog/x-labs/chinese-internet-suffers-most-serious-user-data-leak-history
https://www.forcepoint.com/blog/x-labs/chinese-internet-suffers-most-serious-user-data-leak-history
https: //arstechnica.com/information-technology/2016/09/plaintext-passwords- and-wealth-of-other-data-for-6-6-million-people-go-public/
https: //arstechnica.com/information-technology/2016/09/plaintext-passwords- and-wealth-of-other-data-for-6-6-million-people-go-public/
https: //arstechnica.com/information-technology/2016/09/plaintext-passwords- and-wealth-of-other-data-for-6-6-million-people-go-public/
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.legendsofamerica.com/ah-prohibitionspeakeasy/
https://csrc.nist.gov/glossary/term/Passphrase
https://www.wired.com/2012/01/computer-password/
https://www.wired.com/2012/01/computer-password/
https://twitter.com/larsklint/status/748615185762484224
https://twitter.com/larsklint/status/748615185762484224
https://twitter.com/EtihadAirways/status/748626413306150912
https://twitter.com/EtihadAirways/status/748626413306150912

TBU in Zlín, Faculty of Applied Informatics 75

[21] Nick Heer: This does not give me confidence in your password security,
@YourAlberta. (cc. @troyhunt). [online], July 2017, Available from: https:

//twitter.com/nickheer/status/887196833872658432 [viewed 2023-05-24].

[22] Cerf, V.: ASCII format for network interchange. RFC 20, October 1969, doi:10.1
7487/RFC0020, Also available from https://www.rfc-editor.org/info/rfc20.

[23] ISO/IEC 10646:2020: Information technology – Universal Coded Character Set
(UCS). Standard, International Organization for Standardization, Geneva, CH,
2020.

[24] National Cyber Security Centre: Password policy: updating your approach.
[online], November 2018, Available from: https://twitter.com/nickheer/s

tatus/887196833872658432 [viewed 2023-05-24].

[25] The Chromium Projects: Chromium Security – Site Isolation. [online], 2023,
Available from: https://www.chromium.org/Home/chromium-security/site

-isolation/ [viewed 2023-05-24].

[26] Anny Gakhokidze: Introducing Firefox’s new Site Isolation Security Architecture.
[online], May 2021, Available from: https://hacks.mozilla.org/2021/05/in

troducing-firefox-new-site-isolation-security-architecture/ [viewed
2023-05-24].

[27] The Open Worldwide Application Security Project: OWASP Top 10:2021. [online],
2021, Available from: https://owasp.org/Top10/ [viewed 2023-05-24].

[28] Weichselbaum, L.; Spagnuolo, M.; Janc, A.; et al.: CSP Is Dead, Long
Live CSP! On the Insecurity of Whitelists and the Future of Content Security
Policy. In Proceedings of the 5th ACM SIGSAC Conference on Computer and
Communications Security (CCS ’16), New York, NY, USA, 2016, ISBN 978-1-
4503-4139-4/16, pp. 1376–1387, doi:10.1145/297674.

[29] Stamm, S.; Sterne, B.; Markham, G.: Reining in the Web with Content Security
Policy. In Proceedings of the 19th International Conference on World Wide Web,
Raleigh, North Carolina, USA, 2010, ISBN 978-1-60558-799, pp. 921–930.

[30] NixOS Contributors: Nix Language. [online], Nix Reference Manual, 2023,
Available from: https://nixos.org/manual/nix/stable/language/index.html.
[viewed 2023-05-17].

[31] NixOS Contributors: How Nix Works. [online], 2023, Available from: https:

//nixos.org/guides/how-nix-works.html. [viewed 2023-05-17].

https://twitter.com/nickheer/status/887196833872658432
https://twitter.com/nickheer/status/887196833872658432
https://www.rfc-editor.org/info/rfc20
https://twitter.com/nickheer/status/887196833872658432
https://twitter.com/nickheer/status/887196833872658432
https://www.chromium.org/Home/chromium-security/site-isolation/
https://www.chromium.org/Home/chromium-security/site-isolation/
https://hacks.mozilla.org/2021/05/introducing-firefox-new-site-isolation-security-architecture/
https://hacks.mozilla.org/2021/05/introducing-firefox-new-site-isolation-security-architecture/
https://owasp.org/Top10/
https://nixos.org/manual/nix/stable/language/index.html
https://nixos.org/guides/how-nix-works.html
https://nixos.org/guides/how-nix-works.html

TBU in Zlín, Faculty of Applied Informatics 76

[32] The Dhall Language Contributors: Dhall Configuration Language. [online], 2017,
Available from: https://dhall-lang.org. [viewed 2023-05-17].

[33] The Dhall Language Contributors: Safety Guarantees. [online], 2023, Available
from: https://docs.dhall-lang.org/discussions/Safety-guarantees.html?h

ighlight=normalization. [viewed 2023-05-18].

[34] Bastian, W.; Karlitskaya, A.; Poettering, L.; et al.: XDG Base Directory
Specification. [online], May 2021, Available from: https://specifications.f

reedesktop.org/basedir-spec/basedir-spec-latest.html. [viewed 2023-05-17].

[35] Troy Hunt: The Have I Been Pwned API Now Has Different Rate Limits and
Annual Billing. [online], 2022, Available from: https://www.troyhunt.com/the-h
ave-i-been-pwned-api-now-has-different-rate-limits-and-annual-billing/

[viewed 2023-08-15].

[36] The PostgreSQL Global Development Group: Postgres 15 Authentication
Methods. [online], 2023, Available from: https://www.postgresql.org/docs/

15/auth-methods.html [viewed 2023-05-17].

[37] Hansen, T.: SCRAM-SHA-256 and SCRAM-SHA-256-PLUS Simple Authentica-
tion and Security Layer (SASL) Mechanisms. RFC 7677, November 2015, doi:10.1
7487/RFC7677, Also available from https://www.rfc-editor.org/info/rfc7677.

[38] Taishi Kasuga: Password-encryption tool for PostgreSQL with SCRAM-SHA-256.
[online], 2023, Available from: https://github.com/supercaracal/scram-sha-2

56. [viewed 2023-05-17].

[39] Ayer, A.: It’s Now Possible To Sign Arbitrary Data With Your SSH Keys. [online],
November 2021, Available from: https://www.agwa.name/blog/post/ssh_signat
ures. [viewed 2023-05-17].

[40] Harmon, E.; Stoltz, M.: GitHub Reinstates youtube-dl After RIAA’s Abuse of the
DMCA. [online], November 2020, Available from: https://www.eff.org/deepli

nks/2020/11/github-reinstates-youtube-dl-after-riaas-abuse-dmca. [viewed
2023-05-24].

[41] Valsorda, F.; Cox, B.; age contributors: A simple, modern and secure encryption
tool (and Go library) with small explicit keys, no config options, and UNIX-style
composability. [online], 2021, Available from: https://github.com/FiloSottile

/age. [viewed 2023-05-23].

https://dhall-lang.org
https://docs.dhall-lang.org/discussions/Safety-guarantees.html?highlight=normalization
https://docs.dhall-lang.org/discussions/Safety-guarantees.html?highlight=normalization
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://www.troyhunt.com/the-have-i-been-pwned-api-now-has-different-rate-limits-and-annual-billing/
https://www.troyhunt.com/the-have-i-been-pwned-api-now-has-different-rate-limits-and-annual-billing/
https://www.postgresql.org/docs/15/auth-methods.html
https://www.postgresql.org/docs/15/auth-methods.html
https://www.rfc-editor.org/info/rfc7677
https://github.com/supercaracal/scram-sha-256
https://github.com/supercaracal/scram-sha-256
https://www.agwa.name/blog/post/ssh_signatures
https://www.agwa.name/blog/post/ssh_signatures
https://www.eff.org/deeplinks/2020/11/github-reinstates-youtube-dl-after-riaas-abuse-dmca
https://www.eff.org/deeplinks/2020/11/github-reinstates-youtube-dl-after-riaas-abuse-dmca
https://github.com/FiloSottile/age
https://github.com/FiloSottile/age

TBU in Zlín, Faculty of Applied Informatics 77

[42] Langley, A.; Hamburg, M.; Turner, S.: Elliptic Curves for Security. RFC 7748,
January 2016, doi:10.17487/RFC7748, Also available from https://www.rfc-edi

tor.org/info/rfc7748.

[43] Digital Forensics & Computer Security Research: LiME - Linux Memory
Extractor. [online], 2007, Available from: https://github.com/504ensicsLa

bs/LiME. [viewed 2023-05-23].

[44] The Dhall Language Contributors: Prelude-v23.0.0. [online], 2023, Available from:
https://store.dhall-lang.org/Prelude-v23.0.0/. [viewed 2023-05-24].

[45] Brent Baude: Podman: Managing pods and containers in a local container
runtime. [online], May 2019, Available from: https://developers.redhat.co

m/blog/2019/01/15/podman-managing-containers-pods [viewed 2023-07-24].

[46] Howe, D.: Linux from FOLDOC. [online], 2000, Available from: https://foldoc
.org/linux. [viewed 2023-05-17].

[47] Stallman, R.: Linux and the GNU System. [online], November 2021, Available
from: https://www.gnu.org/gnu/linux-and-gnu.html. [viewed 2023-05-17].

https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://github.com/504ensicsLabs/LiME
https://github.com/504ensicsLabs/LiME
https://store.dhall-lang.org/Prelude-v23.0.0/
https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods
https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods
https://foldoc.org/linux
https://foldoc.org/linux
https://www.gnu.org/gnu/linux-and-gnu.html

TBU in Zlín, Faculty of Applied Informatics 78

LIST OF ABBREVIATIONS

SHA Secure Hash Algorithm
AES Advanced Encryption Standard
CSPRNG Cryptographically Secure Pseudo-Random Number Generator
ID Identity
PID Process ID
Cgroup Control group
TLS Transport Layer Security
TCP Transmission Control Protocol
SSH Secure Shell
DNS Domain Name System
ZSTD Z Standard
ZFS Zettabyte File System
ISP Internet Service Provider
GPG GNU Privacy Guard
GNU GNU’s Not Unix!
CSS Cascading Style Sheets
API Application Programming Interface
CLI Command Line Interface
SCM Source Code Management
HIBP Have I Been Pwned?
TDD Test Driven Development
TOML Tom’s Obvious Minimal Language
YAML Yet Another Markup Language
JSON Java Script Object Notation
INI Initialization file
CPU Central Processing Unit
RAM Random Access Memory
NVMe Non-Volatile Memory Express
PCIe Peripheral Component Interconnect Express
HPC High Performance Computing
OOM Out of Memory
OWASP Open Web Application Security Project
NIST National Institute of Standards and Technology
SEO Search Engine Optimisation

TBU in Zlín, Faculty of Applied Informatics 79

LIST OF FIGURES

Fig. 2.1. Short arbitrary password length limit.. 17
Fig. 2.2. Forbidden special characters in passwords 18
Fig. 9.1. Drone CI median build time .. 37
Fig. 10.1. Application class diagram .. 40
Fig. 10.2. Application use case diagram ... 46
Fig. 13.1. Security Headers scan ... 64
Fig. 13.2. Quallys SSL Labs scan .. 65
Fig. 14.1. Homepage.. 66
Fig. 14.2. Registration page ... 66
Fig. 14.3. Registration page email error ... 66
Fig. 14.4. Sign-in page ... 67
Fig. 14.5. Short password error on sign-in .. 67
Fig. 14.6. User management screen ... 67
Fig. 14.7. User creation: ‘username not unique’ error 68
Fig. 14.8. ‘demo’ user creation post-hoc ... 68
Fig. 14.9. User details screen .. 68
Fig. 14.10. User edit screen .. 69
Fig. 14.11. User deletion confirmation ... 69
Fig. 14.12. User deletion post-hoc... 69
Fig. 14.13. Manage API keys ... 70
Fig. 14.14. Import of locally available breach data from the CLI 70
Fig. 14.15. Compromise monitoring using online sources - no breach found.......... 71
Fig. 14.16. Compromise listing using online API (and a test account) 71
Fig. 14.17. Stratfor breach details page ... 71

TBU in Zlín, Faculty of Applied Informatics 80

LIST OF TABLES

Tab. 9.1. Tool/Library-Usage Matrix .. 39
Tab. 9.2. Dependency-Version Matrix ... 39

TBU in Zlín, Faculty of Applied Informatics 81

LIST OF LISTINGS

List. 1.1 Broken collision resistance of MD5 ... 14
List. 5.1 Breach ImportSchema Go struct (imports from the standard library

assumed) .. 27
List. 5.2 A YAML file containing breach data formatted according to the

ImportSchema, optionally containing multiple documents.......................... 28
List. 9.1 Verifying the signature of a git commit .. 35
List. 9.2 Prepare allowed signers file and signature format for git 36
List. 10.1 Example formatting expression supplied to the logger 42
List. 10.2 Conditionaly enabling functionality inside a Go template based on

user access level... 44
List. 11.1 Dhall configuration schema version 0.0.1-rc.2 49
List. 11.2 Dhall configuration defaults for schema version 0.0.1-rc.2 51
List. 11.3 Ent graph query .. 54
List. 12.1 Example application deployment using rootless Podman 56
List. 12.2 Pinging pod containers using their names 57
List. 12.3 Podman pod port binding inspection ... 58
List. 12.4 In-pod database is unreachable from the host.................................. 58
List. 12.5 Example reverse proxy configuration snippet................................... 59
List. 13.1 User existence integration test... 62

TBU in Zlín, Faculty of Applied Informatics 82

LIST OF APPENDICES

A I. List of supplemental material
A II. Whys
A III. Terminology

APPENDIX A I. LIST OF SUPPLEMENTAL MATERIAL

1.1 Git signing keys

File name: gitsign.pub
Blake3: af0f319aecd3ca1d1d4002ebd4ebd5f93e6030551a91f3e09664995340208c85

SHA3-256: 8cab97c322c26369437ba365159b14ac4b829056c8974c671fdc57bcba8f518b

File name: surtur.pub
Blake3: f6d87e457c9939063117a2ee243af279b39b07f47bbb190f3fe5b59a6972c531

SHA3-256: 0b53a5766c3f144fffa8ff7c1c24c5f10a52588cd75d86fb8150aacbbd7c7b10

1.2 ZSTD-compressed tarball of the PCMT source code repository

Note: Also contains the git history.
File name: pcmt.git.tar.zst
Blake3: ca53c60eb4f0f14e287ec866ccba63ef7e375c17c1fbbcd58950162f7d8ad172

SHA3-256: 3df969231ac8b464d9ed6ea6991aa61751629b997b4928cece2c5261543c3803

1.3 ZSTD-compressed tarball of the PCMT configuration schema reposi-
tory

Note: Also contains the git history.
File name: pcmt-config-schema.tar.zst
Blake3: 2f55e255318967e89443b5a1847466952599a5eae1080b8c973a0368920dbdcc

SHA3-256: 9a0b383fce6bf2918fc39b44a5d29dccf27a77adc6c4b4483cd05e8be410345a

1.4 ZSTD-compressed tarball of the LATEX sources of this thesis

Note: Also contains the git history. The hash digest of this file is omitted to avoid
chicken-egg problem when wishing to include its digest here.
File name: pcmt-latex-thesis.tar.zst

1.5 BLAKE3 checksums

Note: A list of BLAKE3 checksums for the supplementary material (excluding the
checksum files). Check using b3sum -c b3sums.
File name: b3sums
Blake3: 2cbb654aff2755eb00a0d61ce68dabdb9348b8d2f283e95b7619d39ec451f729

SHA3-256: b0c26f0ee638e1e26e3dfbf2973e50a6130c446f5e9ed5db2aa3295e08890f93

1.6 SHA3-256 checksums

Note: A list of SHA3-256 checksums for the supplementary material (excluding the
checksum files). Check using sha3-256sum -c sha3-256sums.
File name: sha3-256sums
Blake3: 464d1be89b7d8ae62ff4687722127498f4d9b91b86f94b83fc7a07c97743916c

SHA3-256: cc57c0cfc5ddd9e4db754e914e4d87733b967d0040356108ebc225ac9cacf68e

APPENDIX A II. WHYS
This appendix is concerned with explaining why certain technologies were used.

2.1 Why Go

First, a question of ‘Why pick Go for building a web application?’ might arise, so the
following few lines will try to address that.
Go1), or Golang for SEO-friendliness and disambiguating Go the ancient game, is
a strongly typed, high-level garbage-collected language where functions are first-class
citizens and errors are values.
The appeal for the author comes from a number of features of the language, such
as built-in support for concurrency and unit testing, sane zero values, lack of pointer
arithmetic, inheritance and implicit type conversions, easy-to-read syntax, producing
a statically linked binary by default, etc., on top of that, the language has got a cute
mascot. Thanks to the foresight of the Go Authors regarding the formatting question
(i.e. where to put the braces, tabs vs. spaces, etc.), most of the discussions on this
topic have been foregone. Every gopher2) is expected to format their source code with
the official formatter (gofmt), which automatically ensures that the code adheres to the
one formatting standard. Then, there is The Promise of backwards3) compatibility for
Go 1.x, which makes it a good choice for long-term without the fear of being rug-pulled.

2.2 Why Nix/devenv

Nix (https://builtwithnix.org/) is a functional programming language resembling
Haskell and a declarative package manager, which has been used in this project in the
form of devenv tool (https://devenv.sh/) to create declarable and reproducible
development environment. The author has previously used Nix directly with flakes and
liked devenv, as it effectively exposed only a handful of parameters for configuration,
and rid of the need to manage the full flake, which is of course still an option for people
who choose so. See devenv.nix in the repository root.

1)The Go programming language (https://go.dev)
2)euph. a person writing in the Go programming language
3)Now there is also the promise of forward compatibility (https://go.dev/blog/toolchain)

https://builtwithnix.org/
https://devenv.sh/
https://go.dev
https://go.dev/blog/toolchain

APPENDIX A III. TERMINOLOGY

3.1 Linux

The term Linux is exclusively used in the meaning of the Linux kernel [46].

3.2 GNU/Linux

As far as a Linux-based operating system is concerned, the term “GNU/Linux” as
defined by the Free Software Foundation [47] is used. While it is longer and arguably a
little bit cumbersome, the author aligns with the opinion that this term more correctly
describes its actual target. Being aware that there are many people who conflate the
complete operating system with its (be it core) component, the kernel, the author is
taking care to distinguish the two, although writing from experience, colloquially, this
probably brings more confusion and a lengthy explanation is usually required.

3.3 The program

By the program or the application without any additional context the author most
probably means the Password Compromise Monitoring Tool program.

	Introduction
	I Theoretical part
	1 Cryptography primer
	1.1 Hash functions
	1.1.1 Types and use cases
	1.1.2 Why are hashes interesting

	1.2 TLS

	2 Passwords
	2.1 Program-imposed constraints
	2.1.1 Short arbitrary length
	2.1.2 Restricting special characters
	2.1.3 Character composition requirements
	2.1.4 Other common issues

	3 Web security
	3.1 Site Isolation
	3.2 Cross-site scripting
	3.3 Content Security Policy

	4 Configuration
	4.1 Safety considerations
	4.2 Possible alternatives

	5 Compromise Monitoring
	5.1 Data Sources
	5.1.1 Local Dataset Plugin
	5.1.2 Have I Been Pwned? Integration

	6 Deployment recommendations
	6.1 Transport security
	6.2 Containerisation

	7 Summary
	II Practical part
	8 Introduction
	8.1 Kudos

	9 Development
	9.1 Commit signing
	9.2 Continuous Integration
	9.3 Source code repositories
	9.4 Toolchain

	10 Application architecture
	10.1 Package structure
	10.1.1 Internal package

	10.2 Logging
	10.3 Authentication
	10.4 SQLi prevention
	10.5 Configurability
	10.6 Embedded assets
	10.7 Composability
	10.8 Server-side rendering
	10.9 Frontend
	10.9.1 Frontend experiments

	10.10 User isolation
	10.11 Zero trust principle and confidentiality

	11 Implementation
	11.1 Dhall Configuration Schema
	11.2 Data integrity and authenticity
	11.3 Database schema

	12 Deployment
	12.1 Rootless Podman
	12.1.1 Sanity checks
	12.1.2 Database isolation from the host
	12.1.3 Health checks

	12.2 Reverse proxy configuration

	13 Validation
	13.1 Unit tests
	13.2 Integration tests
	13.2.1 func TestUserExists(t *testing.T)

	13.3 Test environment
	13.3.1 Deployment validation

	14 Application screenshots
	Conclusion
	References
	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	List of Appendices
	1.1 Git signing keys
	1.2 ZSTD-compressed tarball of the PCMT source code repository
	1.3 ZSTD-compressed tarball of the PCMT configuration schema repository
	1.4 ZSTD-compressed tarball of the LaTeX sources of this thesis
	1.5 BLAKE3 checksums
	1.6 SHA3-256 checksums
	2.1 Why Go
	2.2 Why Nix/devenv
	3.1 Linux
	3.2 GNU/Linux
	3.3 The program

