
Postgres Lifecycle Management
Operators in Kubernetes

Miroslav Šiřina

Bachelor’s thesis
2023

Prohlašuji, že

• beru na vědomí, že odevzdáním bakalářské práce souhlasím se zveřejněním své
práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění
dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů,
bez ohledu na výsledek obhajoby;

• beru na vědomí, že bakalářské práce bude uložena v elektronické podobě v uni-
verzitním informačním systému dostupná k prezenčnímu nahlédnutí, že jeden
výtisk bakalářské práce bude uložen v příruční knihovně Fakulty aplikované in-
formatiky. Univerzity Tomáše Bati ve Zlíně;

• byl/a jsem seznámen/a s tím, že na moji bakalářskou práci se plně vztahuje
zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem
autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších
právních předpisů, zejm. § 35 odst. 3;

• beru na vědomí, že podle § 60 odst. 1 autorského zákona má Univerzita Tomáše
Bati ve Zlíně právo na uzavření licenční smlouvy o užití školního díla v rozsahu
§ 12 odst. 4 autorského zákona;

• beru na vědomí, že podle § 60 odst. 2 a 3 autorského zákona mohu užít své
dílo – bakalářskou práci nebo poskytnout licenci k jejímu využití jen připouští-li
tak licenční smlouva uzavřená mezi mnou a Univerzitou Tomáše Bati ve Zlíně
s tím, že vyrovnání případného přiměřeného příspěvku na úhradu nákladů, které
byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich
skutečné výše) bude rovněž předmětem této licenční smlouvy;

• beru na vědomí, že pokud bylo k vypracování bakalářské práce využito soft-
waru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze
ke studijním a výzkumným účelům (tedy pouze k nekomerčnímu využití), nelze
výsledky bakalářské práce využít ke komerčním účelům;

• beru na vědomí, že pokud je výstupem bakalářské práce jakýkoliv softwarový
produkt, považují se za součást práce rovněž i zdrojové kódy, popř. soubory,
ze kterých se projekt skládá. Neodevzdání této součásti může být důvodem
k neobhájení práce.

Prohlašuji,

• že jsem na bakalářské práci pracoval samostatně a použitou literaturu jsem cito-
val. V případě publikace výsledků budu uveden jako spoluautor.

• že odevzdaná verze bakalářské práce a verze elektronická nahraná do IS/STAG
jsou totožné.

Ve Zlíně, dne 25. 5. 2023 Miroslav Šiřina, v. r.

podpis studenta

ABSTRAKT

Tato bakalářská práce je zaměřena na poskytnutí doporučení zainteresovaným stranám
v rámci výběru vhodného operátora pro správu životního cyklu systému Postgres v
prostředí Kubernetes. Práce se zabývá životním cyklem Postgres, dále relevantními
metrikami pro testování a také samotným testováním operátorů a to: Crunchy Post-
gres for Kubernetes, CloudNativePG, StackGres Operator a Percona Operator for Post-
greSQL. Pokud jde o výkon a spolehlivost, byl Crunchy Postgres for Kubernetes do-
poručen jako nejvhodnější operátor. StackGres Operator byl naopak vyhodnocen jako
nejlepší z hlediska jednoduchosti použití a udržovanosti. Tato práce navrhuje další
studie na téma bezpečnosti operátorů životního cyklu systému Postgres v prostředí
Kubernetes.

Klíčová slova: postgres, kubernetes, operátor, životní cyklus, databáze, docker, autom-
atizace

ABSTRACT

This bachelor’s thesis is aimed at providing recommendations to stakeholders in select-
ing a suitable operator for Postgres lifecycle management in a Kubernetes environment.
The thesis covers the Postgres lifecycle, relevant metrics for testing, and also the testing
of the operators themselves namely; Crunchy Postgres for Kubernetes, CloudNativePG,
StackGres Operator, and Percona Operator for PostgreSQL. In terms of performance
and reliability, Crunchy Postgres for Kubernetes was recommended as the most suit-
able operator. StackGres Operator, on the other hand, was rated as the best in terms
of ease of use and maintenance. This thesis proposes further studies on the security of
Postgres lifecycle operators in a Kubernetes environment.

Keywords: postgres, kubernetes, operator, lifecycle, database, docker, automation

Na tomto místě bych rád vyjádřil své upřímné poděkování všem, kdo mi pomohli
a podporovali mě při psaní této bakalářské práce. Zvláště bych chtěl poděkovat mému
vedoucímu práce, Ing. Petrovi Janků, Ph.D. za jeho rady a konstruktivní kritiku, které
přispěly k finální podobě této práce. Dále děkuji Koala42 za pomoc při návrhu tématu
bakalářské práce a poskytnutí studijního volna. Rovněž děkuji své rodině, hlavně pak
manželce Lucii a mamince Heleně, za jejich nekonečnou podporu a pochopení během
mého studia. Nakonec děkuji Fakultě aplikované informatiky na UTB ve Zlíně za
poskytnutí potřebných zdrojů a prostředí, které mi umožnilo dokončit tuto práci.

TABLE OF CONTENTS

INTRODUCTION... 11

1 THESIS OBJECTIVE ... 12

2 RESOURCE QUESTIONS .. 13

I THEORY .. 14

3 BACKGROUND ... 15

3.1 Postgres.. 15
3.1.1 Write Ahead Log ... 16
3.1.2 Backup and restore .. 17
3.1.3 High Availability ... 17
3.1.4 Load Balancing and Connection Pooling 18

3.2 Kubernetes ... 18
3.2.1 Kubernetes Components... 19
3.2.2 Kubernetes Concepts ... 21

3.3 Running Postgres in Kubernetes.. 22

3.4 Database system lifecycle .. 23

3.5 Operators ... 25

4 OPERATORS FOR LIFECYCLE MANAGEMENT IN KUBERNETES 28

4.1 Crunchy Postgres for Kubernetes .. 29

4.2 EDB Postgres for Kubernetes ... 30

4.3 CloudNativePG .. 31

4.4 StackGres operator .. 32

4.5 Percona operator for PostgreSQL ... 35

4.6 Summary and key differences ... 36

5 METRICS... 37

5.1 Performance... 37

5.2 Reliability .. 37

5.3 Usability ... 38

5.4 Maintenance ... 38

5.5 Security .. 38

6 TESTING METHODOLOGY .. 39

6.1 Notice ... 39

6.2 Criteria... 39

6.2.1 Performance testing ... 41
6.2.2 Reliability testing .. 41
6.2.3 Usability testing .. 41
6.2.4 Maintenance testing ... 42
6.2.5 Security testing ... 43

6.3 Test management process ... 43

6.4 Test strategy and planning ... 43

6.5 Test plan .. 43

6.6 Test monitoring and control process 45

6.7 Test completion process ... 45

6.8 Dynamic and static test processes ... 46

6.9 Test design and implementation processes 47

6.10 Test environment and data management processes................ 47

6.11 Test execution process ... 47

6.12 Test incident report process ... 48

6.13 Level of detail ... 48

II APPLICATION OF THEORY ... 49

7 TEST PROCESS ... 50

7.1 Tools ... 50

7.2 Static test process .. 51
7.2.1 Reliability and maintenance .. 51
7.2.2 Usability: Learnability ... 52
7.2.3 Security.. 52

7.3 Dynamic test process... 55
7.3.1 Environments.. 56
7.3.2 Usability: Operability .. 56
7.3.3 Performance.. 59
7.3.4 Issues with CNPGO... 61
7.3.5 Issues with SPGO.. 61
7.3.6 Issues with PPO.. 61

8 EVALUATION .. 63

8.1 Measuring rule... 63

8.2 Reliability .. 63
8.2.1 Maturity... 63
8.2.2 Reliability... 64

8.2.3 Maintenance ... 64

8.3 Usability ... 65
8.3.1 Learnability .. 65
8.3.2 Operability ... 67

8.4 Overall usability... 68

8.5 Security .. 69

8.6 Performance... 69

8.7 Overall quality of the operators... 70

CONCLUSION ... 71

REFERENCES .. 72

LIST OF ABBREVIATIONS ... 81

LIST OF FIGURES... 82

LIST OF TABLES... 83

LIST OF APPENDICES ... 85

2.1 Test items ... 89

2.2 Test tools... 89

2.3 Test procedure .. 90

2.4 Test completition report ... 90

3.1 Checklist .. 91

3.2 Test procedure .. 92

3.3 Test results.. 92

3.4 Test completition report ... 95

4.1 Test plan No. 3 .. 96

4.2 Test items ... 96

4.3 Test tools... 97

4.4 Test procedure .. 97

4.5 Test completition report ... 97

5.1 Actors ... 98

5.2 Use cases ... 98

5.3 Test procedure .. 98

5.4 Test completition report ... 100

6.1 Test completition report ... 108

6.2 Test results.. 108

6.2.1 PGO .. 108
6.2.2 CNPGO ... 109
6.2.3 PPO .. 110
6.2.4 SPGO .. 110

TBU in Zlín, Faculty of Applied Informatics 11

INTRODUCTION

Databases are an integral part of most systems and play a significant role in our lives.
One of the most widely used database systems is Postgres, which was founded in the
1980s and continues to be the industry leader, employed in a wide range of applications.
However, with the emergence of Kubernetes and the extensive migration of software
systems to this orchestrator, the need to transition to Kubernetes for Postgres has
arisen.

While Kubernetes is a versatile platform originally designed for deploying stateless
microservice applications, it alone cannot fulfill all the requirements for achieving the
high availability demanded on Postgres. To address this, CoreOS introduced the op-
erator pattern, enabling the management of complex stateful applications that require
synchronization between their nodes. An operator is a specialized software that ex-
tends the Kubernetes API and possesses specific knowledge of managing resources that
Kubernetes lacks.

By utilizing the operator pattern, it becomes possible to achieve various functionalities
for Postgres, such as high availability, backup to different cloud storage, Point-In-Time
recovery, vertical or horizontal scaling, and upgrading to a new version of Postgres with-
out human operator intervention. This eliminates the need for tedious and repetitive
manual work, which is replaced by the Kubernetes Operator.

The focus of this thesis is to identify the appropriate Postgres lifecycle operators,
establish metrics for creating a testing methodology, conduct tests, evaluate the results,
and provide clear and comprehensive recommendations on selecting operators that align
best with the defined metrics.

TBU in Zlín, Faculty of Applied Informatics 12

1 THESIS OBJECTIVE

The objective of this thesis is to conduct an evaluation of various Kubernetes operators
available for Postgres lifecycle management.

The goal of the thesis is to deliver clear and comprehensive recommendations regarding
the selection of operators that are best suited for managing the lifecycle of Postgres
system based on defined metrics. This thesis intends to serve as a valuable resource
that can guide stakeholders in making informed decisions about choosing the right
operator for their specific operational context and requirements.

Furthermore, it aims to contribute to the broader knowledge base about Kubernetes
operators and their application in managing Postgres databases in a cloud-native en-
vironment.

TBU in Zlín, Faculty of Applied Informatics 13

2 RESOURCE QUESTIONS

With the thesis objective defined and a comprehensive understanding of Postgres,
Kubernetes, the Postgres lifecycle, and operators established in previous chapters, the
research questions can now be formulated. These questions are aimed at facilitating
a deeper exploration of the intricacies involved in managing Postgres in a Kubernetes
environment through the use of operators.

1. What operators exist for lifecycle management of Postgres in Kubernetes?

2. What metrics are suitable for comparing Opereators for lifecycle management in
Kubernetes?

3. What approach should be taken to determine the degree to which the metrics are
met?

4. How do the operators perform when evaluated according to the chosen metrics?

TBU in Zlín, Faculty of Applied Informatics 14

I. THEORY

TBU in Zlín, Faculty of Applied Informatics 15

3 BACKGROUND

This chapter introduces the key technologies used in this thesis including Postgres,
Kubernetes, and Kubernetes operators.

3.1 Postgres

PostgreSQL is a powerful object-relational database management system (ORDBMS)
derived from the POSTGRES package written at the University of California at Berke-
ley. [1] [2] The first version of POSTGRES was released in June 1989. POSTGRES
has been used in many applications, including financial data analysis systems, asteroid
tracking databases, medical information database, and several geographic information
systems. The size of external community users has nearly doubled by 1993. [3]

POSTGRES was using its POSTQUEL query language from version, until Andrew Yu
and Jolly Chen introduced SQL to POSTGRES in 1995. The name has changed to
Postgres95. Postgres95 was completely ANSI C code reduced by 25 % and was 30 –
50 % faster than Postgres 4.2. [3]

It was clear by 1996 that the name would not stand the test of time therefore it has
been renamed to PostgreSQL. As stated by PostgreSQL documentation [3]: “Many
people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters)
because of tradition or because it is easier to pronounce. This usage is widely accepted
as a nickname or alias.“ This thesis will use Postgres as an alias for PostgreSQL as
well.

More than 30 years after the first version Postgres has been considered the most used
ORDBMS for professional developers by Stack Overflow survey [4]. According to Riggs
and Ciolli [2]: “The PostgreSQL feature set attracts serious users who have serious
applications. Financial services companies may be PostgreSQL’s largest user group,
although governments, telecommunication companies, and many other segments are
strong users as well.“ It is fully ACID compliant [5] and supports many kinds of data
models such as relational, document, and key/value. [2] The Postgres architecture can
be observed in Figure 3.1

TBU in Zlín, Faculty of Applied Informatics 16

Figure 3.1 Postgres Architecture [6]

3.1.1 Write Ahead Log

Write-ahead Logging (WAL) is esential Postgres technique to ensure data integrity. Its
main concept is that changes in data files (where tables and indexes are stored) must
only be written after they are logged (saved to a log file). That means the database
is updated after the changes are written to disk. In the event of a system crash, all
transactions will be recovered from the disk. [7]

Although WAL is primarily designed for recovery after a database server crash, its
design also allows any changes to the database server state to be replayed backward.
A copy of the log is also a form of backup. Thus, for recovery to a point in time,
only logs that have been saved to that point in time can be restored. This technique

TBU in Zlín, Faculty of Applied Informatics 17

is called Point-In-Time Recovery (PITR). [8] These log files can also be streamed to
other nodes to serve as a replica or remote backup. [9]

3.1.2 Backup and restore

A full set of backup commands is included in Postgres. Among the simple backup
commands are pg_dump and pg_dumpall, which enable one or more databases to be
saved in SQL format. A wide range of configuration options are available for these
commands, including compression for large databases or exporting only the database
schema. To restore a database from a file at a later time, the psql command can be
used, which is capable of restoring a database from its dump. [10] These commands
are also helpful with migration from one major Postges version to another because the
dumped files are plain SQL commands.

However the backup options in Postgres are quite limited. Postgres allows to set up of
a backup command that runs after the next log file is created, database dumps, and
log streaming. For more advanced backup techniques, like scheduled backup or cloud
backup, additional software such as PgBackRest must be utilized. [8]

PgBackRest PgBackRest is a reliable and simple backup and restore solution that
provides many features on top of classic Postgres backup and restore tools like parallel
backup options with compression, local or remote backups, cloud backup (S3. Azure
and Google Cloud), or backup encryption. Full, incremental, or differential backup is
also supported. [11]

3.1.3 High Availability

The basic structure of a database cluster consists of one or more database servers,
which can be called nodes. In Postgres there are two types of nodes, Primary node
and Standby node. A Primary node is such a node that allows reading and writing
information. The newly written information is then streamed to the Standby nodes.
Standby nodes are read-only, they do not allow writing. [9]

Achieving high availability with Postgres is possible by using more than one node in
the cluster. Two options are possible here. A single Primary node option, where the
Primary node is read and write enabled, and the other nodes are Standby nodes. If the
Primary node is unavailable, then the Standby node is promoted to the Primary node.

TBU in Zlín, Faculty of Applied Informatics 18

If this event is planned it is called a switchover event, otherwise it is a failover. In this
variant, the Primary node streams the logs to the Standby nodes. The second option
is to use multiple Primary nodes. However, conflicts can occur because all Primary
nodes allow concurrent writes. [12]

Patroni Since Postgres does not provide any software that can detect that a node is
unavailable, it is necessary to use software outside of Postgres [13], such as Patroni.
Patroni is a popular open-source tool created by Zalando to achieve high availability of
Postgres clusters. Patroni uses a distributed configuration source such as ZooKeeper,
Etcd, Consul, or Kubernetes for its operation. Patroni can automatically adjust the
settings of all managed nodes, therefore it can automate failover and make it seamless.
[14] [15]

3.1.4 Load Balancing and Connection Pooling

Using more than one node allows to direct traffic to a node that is less busy and thus
achieve load balancing. Postgres doesn’t come with any software that allows splitting
the load on different nodes, so it is necessary to use an external load balancer such as
HA Proxy or pgBouncer. The load balancer then acts as an intermediary between the
database and the client and directs the traffic to the available nodes according to the
set rules. These load balancers also enable connection pooling which is a technique
for managing and reusing database connections to increase performance and reduce
overhead. Connection pooling involves creating a pool of pre-created connections that
can be shared and reused by multiple client requests, instead of creating a new con-
nection for each request. This removes the overhead of creating a new process each
time a client connects to Postgres and allows the client to use resources that would
otherwise be used to service multiple requests (or complete them faster). [16]

3.2 Kubernetes

Kubernetes, also known as K8s, is an open-source platform for automating deployment,
scaling, and management of containerized applications. It provides a way to manage
and orchestrate containers, which are units of software that package up an application
and its dependencies into a single, isolated package that can run consistently on any
infrastructure. [17]

As described by Kubernetes Documentation [18] Kubernetes provides several key fea-

TBU in Zlín, Faculty of Applied Informatics 19

tures, including:

• Service discovery: A container can be exposed by Kubernetes either through
its DNS name or its own IP address.

• Load balancing: In the case of high traffic to a container, stability of the
deployment can be ensured by Kubernetes load balancing and distributing the
network traffic.

• Storage Orchestration: Storage orchestration in Kubernetes allows for the
automatic mounting of a storage system of choice, including local storage, public
cloud providers, and others.

• Automated rollouts and rollbacks: The desired state of deployed containers
can be described using Kubernetes, and the actual state can be changed to the
desired state at a controlled rate. For instance, the automation of Kubernetes
can be utilized to create new containers for the deployment, remove existing
containers, and transfer all their resources to the newly created container.

• Automatic bin packing: A cluster of nodes for running containerized tasks
is provided to Kubernetes. The amount of CPU and memory required by each
container is specified to Kubernetes. The optimal utilization of resources can be
achieved by Kubernetes fitting the containers onto the nodes.

• Self healing: Containers that fail are restarted by Kubernetes, those that do
not respond to the user-defined health check are replaced or killed, and they are
not advertised to clients until they are deemed ready to serve.

• Secret and configuration management: Sensitive information, such as pass-
words, OAuth tokens, and SSH keys, can be stored and managed by Kubernetes.
The deployment and updating of secrets and application configuration can be
done without the need to rebuild container images and without the exposure of
secrets in the stack configuration.

3.2.1 Kubernetes Components

Kubernetes cluster is composed of a set of worker machines that run containerized
applications called nodes. Each cluster must have at least one node. [18]

The Kubernetes control plane is the management system of a Kubernetes cluster,
responsible for maintaining the desired state of the cluster. As depicted in Figure 3.1

TBU in Zlín, Faculty of Applied Informatics 20

Figure 3.2 The components of a Kubernetes cluster [18]

it consists of multiple components that work together to manage the cluster and its
resources, including pods, services, and volumes. The key components of control plane
are [19]:

• kube-APIserver: Acts as the front-end for the Kubernetes API and exposes
the API to other components. [18]

• Etcd: Highly available distributed key-value store that serves as the backing
store for the cluster’s configuration data. [20]

• kube-scheduler: Assigns work to nodes in the cluster, such as scheduling pods
to run on nodes. [21]

• kube-controller-manager: Monitors the cluster’s state and makes adjustments
as necessary to maintain the desired state. [19]

• cloud-controller-manager: Manages cloud-related tasks such as node creation
and management, volume management, and load balancing, allowing the other
components of the control plane to focus on their specific responsibilities. Cloud
manager is optional. Can be avoided when Kubernetes not used in cloud. [18]

Node components: Node components in a Kubernetes cluster run on each node and
provide crucial functionality for the operation of containers on that node. [18]

• kubelet: Is responsible for communicating with the control plane and ensuring
that containers are running and healthy. [22]

TBU in Zlín, Faculty of Applied Informatics 21

• kube-proxy: Is responsible for maintaining network rules on the nodes, allowing
network communication to the containers. It enables the containers in a pod to
communicate with other containers and the outside world, and performs tasks
such as load balancing and traffic routing. [22]

• container runtime: Is responsible for running containers. [18]

3.2.2 Kubernetes Concepts

Pod is the smallest deployable unit that can be created in Kubernetes. [23] A Pod
in Kubernetes is comprised of multiple containers and storage volumes that are run
together within the same execution environment. As a result, all containers included
in a single Pod will always run on the same machine. [21] A Pod’s specifications are
outlined in a Pod manifest, which is simply a JSON or YAML text file that represents
the Kubernetes API object. Kubernetes follows a declarative configuration approach,
where the system’s desired state is defined in a configuration file, and the service then
implements the necessary changes to make the desired state a reality. [24]

ReplicaSet’s purpose is to ensure a consistent number of replica Pods are running at
all times. It is commonly used to guarantee a specified number of identical Pods are
available. However, a Deployment is a more advanced concept that oversees ReplicaSets
and provides a more streamlined way to make updates to Pods. It also offers additional
features. As a result, it’s advisable to use Deployments instead of directly utilizing
ReplicaSets, unless there is a need for specific update requirements or no need for
updates at all. [25]

Service is an abstraction layer and defines a group of Pods and the method to access
them (often referred to as a micro-service). The group of Pods targeted by a Service
is usually specified through a selector. The Service abstraction makes this possible
by enabling the decoupling of components. [26] Kubernetes includes built-in service
discovery mechanisms. When a service is created in Kubernetes, it is automatically
assigned an IP address and DNS name. Clients and other services can use this name
or address to access the service within the Kubernetes cluster. [26]

Containers and pods in Kubernetes are ephemeral. When a container is terminated, any
data it has written to its own filesystem is lost. In Kubernetes, storage is represented by
a basic abstraction called "volumes". Containers use these volumes by binding them to
their respective pods, and can then access the storage regardless of its physical location
as if it were a part of their local filesystem. [27]

TBU in Zlín, Faculty of Applied Informatics 22

Kubernetes version 1.5 came with a new object called StatefulSet that allows a set of
stateful pods to be deployed and managed. Each pod has a unique, stable network iden-
tity and a persistent storage volume. This enables stateful applications like databases
to be run on Kubernetes. Advantages of using StatefulSets include predictable naming
schemes, ordered pod creation and deletion, and unique persistent storage. [28] [29]

In version 1.7, Kubernetes introduced the Custom Resources extension to its API. [30]
This extension allows Kubernetes to use user-defined resources that are not native to
Kubernetes as if they were native. [31] Custom resources (CR) is an extension to
the Kubernetes API that extends the deployment with additional parameters that are
not part of it. CR stores these parameters and allows the API server to access them
just like the native Kubernetes parts. CR is created in the Kubernetes cluster using
a definition called Custom Resource Definition (CRD). [32]

Kuberentes controllers (depicted in Figure 3.3) are control loops1) that constantly check
the state of their controlled objects. If the controlled objects are not in the desired
state, the controller performs actions to get the controlled objects into that state. For
example, restart a crashed node, add a new replica, modify settings, etc. [33] However,
to work with CR, custom controllers that can work with these resources must be
created, these controllers are called Custom Controllers. [34]

Figure 3.3 Kubernetes controller [35]

3.3 Running Postgres in Kubernetes

Kubernetes cannot know all complex stateful applications, which can contain a large
number of nodes and have a wide range of uses while remaining general-purpose. The
goal of Kubernetes is to provide an abstraction covering basic application concepts
and providing options for extensions for more complex applications and their specific

1)A control loop is a process that continuously monitors the state of a system, compares it to
a desired state, and makes adjustments to bring the system closer to the desired state.

TBU in Zlín, Faculty of Applied Informatics 23

operations. Kubernetes cannot and should not know all the possible settings and
operations that, for example, a Postgres cluster needs to run. [36]

The easiest way to run Postgres in Kubernetes is through the StatefulSet mentioned in
Chapter 3.2.1. This StatefulSet can start a Postgres pod, create a persistent volume,
and connect this volume to the pod. A stateful set can do this for all replicas set in
its configuration. It can also scale up or down. Unfortunately, however, all indepen-
dent Postgres instances created by StatefulSet controller are not synchronized in any
manner.

While this simple approach may be sufficient for running a single node, it is no longer
sufficient for managing the whole Postgres lifecycle. For managing whole Postgres
lifecycle it is necessary to install additional applications in the Kubernetes cluster and
then configure the Postgres to work with them. This represents a large amount of work
and subsequent maintenance that Kubernetes operators can facilitate.

3.4 Database system lifecycle

The database system itself is a software like any other. It is therefore also subject to
the same lifecycle as software. As depicted in Figure 3.4 application lifecycle consists
of three main parts. It is the governance part, development, and operations. For this
thesis, the focus will be specifically on the operations part, as it is the only controllable
aspect considered for testing and evaluation.

Operation is the process of running and managing the application, which starts with
deployment and continues until the application is taken out of service. This aspect of
the application lifecycle management covers the release of the application into produc-
tion, ongoing monitoring, and other related tasks. [37]

Therefore the complete database system lifecycle can be outlined by following events:

• System installation

• System upgrade to a newer version (major and minor)

• System backup

• System restore

• System monitoring

TBU in Zlín, Faculty of Applied Informatics 24

Figure 3.4 Application Lifecycle [37]

• System scaling (vertical and horizontal)

• System configuration update

• System uninstall

TBU in Zlín, Faculty of Applied Informatics 25

3.5 Operators

Kubernetes can run stateless applications very well. But its general purpose makes
running complex stateful applications on top of it quite challenging.

However, this has changed in 2016 when CoreOS came up with operators (depicted
in Figure 3.5) as a way to deploy complex applications with state such as databases,
caches, or monitoring systems. [38]

An operator is a special kind of software that extends the Kubernetes API and has
a particular knowledge of managed resource that Kubernetes does not have. The oper-
ator also serves as a packaging mechanism for distributing applications including their
dependencies in Kubernetes. The operator can manage, restore, update or monitor
the resource. It can also manage very complex applications. The Kubernetes operator
thus replaces the human operator after which it is named, who would otherwise take
care of these tasks. [39] [38]

Figure 3.5 Definition of Kubernetes operator [38]

CoreOS demonstrated the use of its operator on Etcd (described in the Kubernetes
Components chapter). When new Etcd nodes are created, it is necessary to give them
a DNS names and use the Etcd cluster management tools to add the new nodes to an
existing cluster. CoreOS has automated these tasks with the Etcd operator so that all
that is required is to increase the number of replicas in the operator CRD and the Etcd
operator will perform these tasks instead of a human operator. [38] By embedding the
human operator’s operational knowledge into the code, this ensures that these tasks are
repeatable, testable and upgradable. It also ensures that the necessary operations are
always performed, executed in the order in which they are supposed to be performed,
and none are skipped. This reduces the number of hours spent on dull but essential
work such as backups. [35]

As described by operator White Paper [35] and depicted in Figure 3.6, operator consists

TBU in Zlín, Faculty of Applied Informatics 26

of the following parts

• The managed application or infrastructure

• Software that has some specific knowledge of the managed application or infras-
tructure and allows the user to declaratively set the desired state

• Custom Controller, which is responsible for achieving the desired state

Figure 3.6 Operator pattern [35]

Like human operators, Kubernetes operators can have a level of manual skill ranging
from basic software installation and setup skills to a high level where they can scale
software vertically or horizontally to automatically change the configuration or detect
abnormalities. All operator maturity levels are depicted in the Figure 3.7. The high-
est level can only be reached by programming the operator in the GO programming
language or by using the Ansible automation tool. [40]

Figure 3.7 Operator maturity levels described by Operator Framework [41]

As stated in the Operator white paper, [35] the operator should be able to cover the
complete lifecycle of the managed resource as defined in the previous chapter without
the need for external installation or upgrade intervention. Specifically as follows:

TBU in Zlín, Faculty of Applied Informatics 27

• Install or take ownership of the controlled application.

• Upgrade the managed application, including the monitoring of the upgrade pro-
cess. It should also be able to roll back in case of failure.

• Back up the managed application and log when the application was last backed
up and the status of that backup.

• Restore the application from the backup.

• Provide monitoring of the managed application.

• Scale the application.

• Automatically adapt the configuration of the application.

• Uninstall or disconnect from the application.

These are all capabilities that an operator should have at the highest level No. 5 -
Autopilot. For lifecycle management described in Chapter 3.4, the minimum level of
operator capabilities must be at least level No. 4 - Deep Insights with an option to
scale.

The Kubernetes cluster is divided into individual namespaces that separate the objects
and names in the cluster and can have constraints applied to them. This partitioning
makes it easier to share the cluster between users or entire teams. The object name
must be unique within a namespace, but not between namespaces. An operator usually
operates in its own namespace so it has a Namespace Scope, but it can also operate in
the whole cluster in which case it will be a Cluster Scope operator. Namespace Scope
operators are more flexible and easier to upgrade due to their independence from the
rest of the cluster. Operator rights are further restricted by the so-called Role-Based
Acceess Control (RBAC), which grants the rights assigned to the operator. [32]

The following options are advised by the Operator white paper [35] in case the operator
is to be used for managing the resource:

• Consultation with the creator of the resource to be controlled about the possi-
bilities of using the operator.

• The search for public operator registries that provide a platform for publishing
operators and the underlying documentation.

• The creation of own operator.

TBU in Zlín, Faculty of Applied Informatics 28

4 OPERATORS FOR LIFECYCLE MANAGEMENT IN KUBERNETES

This chapter aims to answer the first research question: ’What operators exist for
lifecycle management of Postgres in Kubernetes?’" As recommended in chapter 3.5
the selection of the operator should first be consulted with the manufacturer of the
controlled source. Postgres offers the following Kubernetes operators in its software
catalog [42]: CloudNativePG, EDB Postgres for Kubernetes a Kubegres.

The next recommended step is to search operator registries. In particular the Operator
Hub. [43] Operator Hub presents eight operators with varying levels of capabilities,
including Crunchy Postgres for Kubernetes by Crunchy Data, EDB Postgres for Ku-
bernetes by EnterpriseDB Corporation, Ext Postgres Operator by movetokube.com,
Percona Operator for PostgreSQL by Percona, Postgres-Operator by Zalando SE, Post-
gresql Operator by Openlabs, PostgreSQL Operator by Dev4Ddevs.com and StackGres
by OnGres.

By further research the Stolon operator was revealed. [44]

Of the twelve operators available, only five meet the minimum capability requirement
of Deep Insight with a possibility to scale defined in Chapter 3.5, namely: Crunchy
Postgres for Kubernetes, EDB Postgres for Kubernetes, Percona operator for Post-
greSQL, CloudNativePG operator, and StackGres operator. As a result, only these
five will be subjected to deeper research, testing, and evaluation.

TBU in Zlín, Faculty of Applied Informatics 29

4.1 Crunchy Postgres for Kubernetes

Crunchy Postgres for Kubernetes (PGO) is a Postgres operator provided by Crunchy
Data, which offers a declarative solution for the management of PostgreSQL clusters,
with a focus on automation. Crunchy Data is a company that specializes in providing
open-source software solutions for Postgres. The company also provides a range of
support, consulting, and training services to help organizations implement and optimize
their Postgres deployment. [45]

PGO’s capabilities are the following:

• Postgres Cluster Provisioning: PGO is able to create [46], update [47] or
delete Postgres cluster [48]

• High Availability: High availability is achieved by adding additional nodes.
PGO uses a synchronous replication technique with Primary and Standby archi-
tecture. [49]

• Postgres updates: PGO is able to apply minor patches [50], and major up-
grades since version 5.1. [51]

• Backups: PGO backup capabilities features: automatic backup schedules,
backup to multiple locations, backup to cloud providers (AWS S3, Google Cloud
Storage, Azure Blob), ad hoc backups, backup compression, and backup encryp-
tion. [52]

• Disaster Recovery: PGO is capable of Point-In-Time recovery, in place Point-
In-Time Recovery, restore of an individual database. [53]

• Cloning: PGO is able to clone cluster. [53]

• Monitoring: Monitoring is provided by Prometheus, Grafana, and Alertman-
ager. [54]

• Connection Pooling: PgBouncer connection pooler is part of PGO. [55]

• Customization: PGO provides a wide area of Postgres customization. [56]

PGO consists of the following key components [57]:

• High Availability: Patroni

TBU in Zlín, Faculty of Applied Informatics 30

• Backups: PgBackRest

• Connection Pooler: PgBouncer

• Monitoring: PgMonitor, Prometheus, Grafana, and Alertmanager

Figure 4.1 PGO’s architecture [58]

The current stable version of PGO is 5.3.1 was released on 17th February 2023. [59]

PGO is distributed under the Apache License 2.0, an open-source license that allows
for both commercial and non-commercial use. With regards to capability, PGO is
considered to have the highest capability level, labeled as Autopilot. [60]

4.2 EDB Postgres for Kubernetes

The EDB Postgres for Kubernetes (EDBO) is a operator that has been designed,
developed, and maintained by EnterpriseDB Corporation. It provides comprehen-
sive coverage of the entire lifecycle of highly available Postgres database clusters with
a Primary/Standby architecture, utilizing native streaming replication. The operator
is based on the open-source CloudNativePG operator and offers additional benefits.
[61]

TBU in Zlín, Faculty of Applied Informatics 31

EDBO is distributed under the EDB Limited Usage License Agreement, a proprietary
license that is specific to software provided by EnterpriseDB Corporation. A license
key is always required for the operator to work longer than 30 days. [62] Due to
the restrictive nature of the license EDBO will no longer be subject to testing and
evaluation but its key component CloudNativePG will.

4.3 CloudNativePG

The CloudNativePG operator (CNPGO) is an operator that is available as an open-
source solution and aims to manage Postgres workloads across various Kubernetes
clusters running in private, public, hybrid, or multi-cloud environments. The oper-
ator aligns with DevOps principles and concepts like immutable infrastructure and
declarative configuration. [63]

Initially developed by EDB, CNPGO was later made available to the public as an
open-source software under the Apache License 2.0. In April 2022, the project was
submitted to CNCF Sandbox for further development and community engagement.
[63]

CNPGO’s capabilities are the following:

• Postgres Cluster Provisioning: CNPGO is able to create, update or delete
Postgres cluster. [64]

• High Availability: High availability is achieved by adding additional nodes.
PGO uses a synchronous replication technique with Primary and Standby archi-
tecture. [65]

• Direct database imports: CNPGO provides direct database import from re-
mote Postgres server by using pg_dump and pg_restore even on different Post-
gres versions. [66]

• Postgres updates: CNPGO is able to apply minor patches. [67] Major updates
are possible by Direct database imports2).

• Backups: CNPGO backup capabilities features: automatic backup schedules,
backup to multiple locations, backup to cloud providers (AWS S3, Google Cloud
Storage, Azure Blob), on-demand backups, and backup encryption [68][69].

2)Due to its nature Direct database imports cannot be considered as major upgrade option.

TBU in Zlín, Faculty of Applied Informatics 32

• Disaster Recovery: CNPGO is capable of Point-In-Time recovery. [68]

• Cloning: CNPGO is able to create cluster replicas. [65]

• Monitoring: Monitoring can be provided by the additional installation of
Prometheus, and Grafana, and Alertmanager. [70]

• Connection Pooling: Provided by native Postgres pooler PgBouncer. [71]

• Customization: CNPGO provides a wide area of Postgres customization such
as max parallel workers tuning or WAL configuration [72]

CNPGO consists of the following key components [73] [70]:

• High Availability: Postgres instance manager

• Backups: Barman

• Connection Pooler: PgBouncer

• Monitoring: Prometheus, Grafana, and Alertmanager

The current major stable version of CNPGO is 1.20.0 was released on 27th April 2023.
[74] CNPGO is distributed under the Apache License 2.0 open-source license. CNPGO
is considered to have the highest capability level, labeled as Autopilot. [63]

4.4 StackGres operator

StackGres (SPGO) is a comprehensive distribution of Postgres for Kubernetes, deliv-
ered in a user-friendly deployment package. The distribution includes a set of Postgres
components that have been carefully selected and optimized to work seamlessly with
each other. [75]

SPGO is developed by OnGres that was established as a result of years of experience
in working with and creating products based on Postgres and supporting clients with
their Postgres infrastructures. Postgres databases are at the heart of the company’s
business, as the name suggests. [76]

SPGO’s capabilities are the following [76]:

TBU in Zlín, Faculty of Applied Informatics 33

Figure 4.2 CNPGO’s architecture [71]

• Postgres Cluster Provisioning: SPGO is able to create, update or delete
Postgres cluster.

• High Availability: High availability is achieved by adding additional nodes
with Primary and Standby architecture.

• Postgres updates: SPGO is able to apply minor patches. Major updates are
possible by SGDbOps [77].

• Backups: SPGO backup capabilities features: automatic backup schedules,
backup to multiple locations, backup to cloud providers (AWS S3, Google Cloud
Storage, Azure Blob)

• Disaster Recovery: SPGO is capable of Point-In-Time recovery.

• Cloning: SPGO is able to create cluster replicas.

• Monitoring: Monitoring is provided by Prometheus, Grafana, and Alertman-
ager.

TBU in Zlín, Faculty of Applied Informatics 34

• Connection Pooling: Is provided by PgBouncer.

• Customization: SPGO provides a wide area of Postgres customization such as
WAL configuration, archive mode, vacuum, etc. [78]

• Mamagement Console: SPGO provides a fully featured management web
console.

SPGO consists of the following key components [73]:

• High Availability: Patroni

• Backups: WAL-G

• Connection Pooler: PgBouncer

• Monitoring: Prometheus, Grafana, and Alertmanager.

Figure 4.3 SPGO’s architecture [79]

TBU in Zlín, Faculty of Applied Informatics 35

The current stable version of SPGO is 1.4.33) was released on 20th February 2022.
[80] SPGO is distributed under the AGPL3 open-source license. [81] With regards to
capability, SPGO is considered to have the second highest capability level, labeled as
Deep Insights. [82]

4.5 Percona operator for PostgreSQL

Percona is a company that provides services and solutions for open-source database
technologies. It offers expertise, support, and software for MySQL, MongoDB, and
PostgreSQL. The company’s offerings help organizations manage their open-source
databases and ensure optimal performance, security, and scalability. [83]

Percona operator for PostgreSQL (PPO) is based on Crunchy Postgres for Kubernetes.
Percona forked PGO v 4.7 and has added enhancements for monitoring, upgradability,
and flexibility. [84]

Differences between PGO and PPO are the following:

• Postgres updates: PPO provides automatic Postgres updates for minor and
major versions of Postgres. [85]

• Backups: PPO is not able to back up to Azure. [86] Although it uses Patroni,
which has this ability.

• Disaster Recovery: PPO documentation does not mention the possibility of
restoring a single database from a backup. [87]

• Monitoring: PPO is not using the usual monitoring stack consisting of
Prometheus and Grafana but their own Percona Monitoring and Management.
[88]

The current stable version of PPO is 1.4.0 was released on 31st March 20234). [89] PPO
is distributed under the Apache License 2.0, an open-source license that allows for both
commercial and non-commercial use. With regards to capability, PPO is considered to
have the second highest capability level, labeled as Deep Insights. [90]

3)Version 1.5.0 has also been released, it is not production-ready yet. Therefore will not be tested
or evaluated.

4)Version 2.0.0 has also been released, it is not production-ready yet. Therefore will not be tested
or evaluated.

TBU in Zlín, Faculty of Applied Informatics 36

4.6 Summary and key differences

Table 4.1 Summary of selected operators

operator Maturity level Current production version Release date

PGO Autopilot 5.3.1 17th February 2023

CNPGO Autopilot 1.20.0 27th April 2023

SPGO Deep Insights 1.4.3 20th February 2022

PPO Deep Insights 1.4.0 31st March 2023

Table 4.2 Key differences between selected operators

Feature PGO CNPGO SPGO PPO

In place Point-In-Time recovery Yes No No No

Individual database restore Yes No No No

User interface No No Yes No

Major version upgrade Yes No Yes Yes

Supported Postgres versions v11 - v15 v11 - v15 v12 - v15 v12 - v14

TBU in Zlín, Faculty of Applied Informatics 37

5 METRICS

This chapter aims to answer the second research question: ’What metrics are suitable
for comparing Opereators for lifecycle management in Kubernetes?’" According to Tom
Gilb [91], the main issue in software attribute requirements is identified not in their
functionality, but in their quality. Gilb differentiates these attribute requirements into
two categories: Resources (people, time, money), which are always finite, and qualities
or benefits (security, performance, usability), which are always fewer than desired.

Knowledge about the functionality that an operator must provide to achieve a certain
level of capabilities is obtained from Chapter 3.5. The most significant functional
properties of operators have been detailed in Chapter 4. With the lifecycle of Postgres
and the capabilities of operators now understood, what remains to be examined are
their qualitative properties. The upcoming testing will be focused on the proposed
qualitative metrics.

5.1 Performance

Performance is a qualitative parameter of a system, defined by the efficiency with which
the system utilizes allocated resources. In the case of Postgres, performance can be
expressed as the number of transactions executed per unit of time. A higher transaction
rate is indicative of superior performance.

By striving for high-performance levels, stakeholders can ensure that Postgres system
effectively meet the demands of applications, deliver efficient data processing, and
provide a satisfactory user experience.

5.2 Reliability

Reliability is a critical parameter in evaluating the effectiveness of any system. It
refers to the degree of reliability and consistency that can be placed on a system
to consistently perform its intended functions. A reliable system can be trusted to
operate without faults or interruptions and to deliver the expected results under normal
operating conditions.

Relying on the system is essential for smooth operations, productivity and customer
satisfaction. A system that is not reliable carries risks of outages, data corruption,

TBU in Zlín, Faculty of Applied Informatics 38

errors and potential financial or reputational losses.

5.3 Usability

Usability is a key aspect of software design that prioritises user experience and satis-
faction. It includes the ability of the system to meet specific user goals in a particular
context of use. A usable software system is intuitive and effective because it allows
users to achieve their goals with ease and minimal cognitive effort.

By prioritizing usability the stakeholders can promote increased productivity, reduce
user errors, and ultimately increase user satisfaction and adoption.

5.4 Maintenance

Activities that are performed after the software is deployed to ensure its correct func-
tionality and performance. Maintenance may include bug fixes, adding new features,
performance optimization, updates for compatibility with new systems, etc. Ignoring
software maintenance can lead to increased repair costs and reduced system perfor-
mance over time. Additionally, it can cause system instability, increased vulnerability
to security threats, and eventually, potential system failure.

5.5 Security

Software security is a key aspect of modern technology systems. It involves imple-
menting measures to protect software and related data from unauthorized access, ma-
nipulation or misuse. Effective software security requires a proactive approach which
addresses potential vulnerabilities and mitigates risks throughout the software lifecy-
cle. This includes secure coding practices, regular security testing and auditing, timely
patching and updates, and robust access control mechanisms.

By prioritising software security, stakeholders can protect sensitive information, main-
tain the integrity of their systems and protect themselves from potential security
breaches and malicious activity.

TBU in Zlín, Faculty of Applied Informatics 39

6 TESTING METHODOLOGY

This chapter aims to answer the third research question: ’What approach should be
taken to determine the degree to which the metrics are met?’" and presents a high-
level overview of the testing methodology. The goal of the methodology is to deliver
rules and guidance for test process that produces test reports forming the basis of this
evaluation.

6.1 Notice

It is important to notice at the beginning of this chapter that testing as described in
[92] has following seven testing princliples:

1. Testing shows the presence of defects, not their absence

2. Exhausting testing is impossible

3. Early testing saves time and money

4. Defects clusters together

5. Beware of pesticide paradox

6. Testing is context dependent

7. Absence of errors is fallacy

Therefore, the test process derived from this methodology as every test process will not
exhaustively test the operators and will be depended on thesis context, author bias, and
author skills. Because The objective of this thesis is to conduct an extensive evaluation
of various Kubernetes Operators available for Postgres lifecycle management the main
scope of this methodology is to deliver test process that will produce test reports that
will form the base for this evaluation.

6.2 Criteria

Some metrics are well measurable on their own, while others require further breakdown
into multiple sub-metrics in order to obtain the results. The metrics definied in Chapter
5 have been divided to criteria according to Figure 6.1.

TBU in Zlín, Faculty of Applied Informatics 40

Figure 6.1 Criteria breakdown

To keep track of these criteria, each one has been assigned an ID. The list of identified
criteria is as follows:

• CP: Performance

– CP1: Performance analysis

• CR: Reliability

– CR1: Maturity

∗ CR1A: Popularity

∗ CR1B: Fixed issues

• CU: Usability

– CU1: Learnability

∗ CU1A: Documentation examples

∗ CU1B: Required training

– CU2: Operability

∗ CU2A: Ease of use

∗ CU2B: Monitoring

TBU in Zlín, Faculty of Applied Informatics 41

• CM: Maintenance

– CM1: Renewal

• CS: Security

– CS1: Vulnerability analysis

6.2.1 Performance testing

Performance testing must be conducted using performance analysis. To test the perfor-
mance, an environment must be set up in which the deployed operator creates a high-
availability (HA) Postgres cluster consisting of three nodes. The test environment
must be recreated for each operator being evaluated. Additionally, an equal number of
pooler nodes must be created. It is essential that the settings of all Postgres clusters
are the same, and only the HA service must be tested. The performance tests must be
carried out at least three times to ensure accurate and reliable results.

6.2.2 Reliability testing

Reliability must be tested through operator maturity testing.

Maturity testing Determining the maturity of operators must be done by assessing
their popularity and the ratio of fixed issues. Popularity can serve as an indicator of
maturity because widespread recognition and usage of a product often imply reliability,
efficiency, and the ability to meet user requirements. Popularity must be determined
by considering the number of stars in the operators’ repositories.

Furthermore, the ratio of the number of open issues to the number of resolved issues
must be examined. This results shall also be gathered from the operator’s repositories.

By considering both popularity and the ratio of resolved issues, valuable insights can
be gained regarding the maturity level of the operators.

6.2.3 Usability testing

Usability must be tested through operator learnability testing and operability testing.

TBU in Zlín, Faculty of Applied Informatics 42

Learnability testing To determine the learnability of operators, a list of Postgres
lifecycle events (described in Chapter 3.4) must be created, and the operator docu-
mentation must be examined to ensure that it provides examples for each Postgres
lifecycle event. Throughout this process, the number of tools required to successfully
use the operator must be recorded to determine the level of training needed.

Learnability testing, which is a crucial aspect of usability testing, must be conducted
to assess the ease with which new users can understand and use the operator. The
testing aims to achieve two primary objectives. Firstly, it must identify the presence of
examples in the documentation, as learning facilitated by examples is generally more
effective. Secondly, it must measure the level of learning required to operate the system
effectively.

By conducting thorough learnability testing, valuable insights can be obtained regard-
ing the user-friendliness and accessibility of the operators, contributing to the overall
evaluation of their usability.

Operability testing To test the operability of the operator, the testing methodology
involves creating use cases derived from the Postgres lifecycle (Chapter 3.4), developing
corresponding test cases for these use cases, and determining the number of commands
necessary to accomplish the desired functionality. Configuration updates must consist
of at least three types of updates: extension installation, change of Postgres config-
uration parameter, and change of cluster component parameter. These updates are
necessary to ensure the flexibility and adaptability of the system.

Additionally, a comprehensive list of required monitoring items must be compiled,
and the test case incorporating monitoring activities assesses whether the operator’s
monitoring adequately includes these items. This comprehensive approach ensures
that the operability of the operator is thoroughly assessed, taking into account its
functionality, and monitoring capabilities.

6.2.4 Maintenance testing

Maintenance testing must be performed by measuring the number of commits in the
operator’s repository. The ratio of these commits to the number of days since the
repository was created must be determined. This approach is necessary to calculate
the number of commits per unit of time, which is crucial in assessing the rate at which
the software is being renewed.

TBU in Zlín, Faculty of Applied Informatics 43

6.2.5 Security testing

Security testing must be conducted by analyzing the vulnerability of the docker image
for each individual operator. As the overall cluster comprises multiple docker containers
with various dependencies such as Postgres, pooling, backups, etc., to streamline the
testing process, only the operator image will be subjected to vulnerability analysis.
This approach allows focusing on the specific security aspects of the operator without
testing of the Postgres cluster dependencies. However, in case of unusual results, other
docker containers utilized by the operator may be subject of the vulnerability analysis
as well.

6.3 Test management process

According to the IEEE Standard for Software Test Documentation [93], test man-
agement processes have three main test processes: test strategy and planning, test
monitoring and control, and test completion. As depicted in Figure 6.2 testing has
more than one management test process. The main process is the Organizational pro-
cess which is further divided into Test management processes that are then devided
into Dynamic test processes.

Thesis test process will consist of one management process that will create two managed
subprocesses, one for static testing and one for dynamic testing. This test manage-
ment process will monitor and control subprocesses. Subprocesses will deliver all their
deliverables to this main process.

6.4 Test strategy and planning

The output of the test strategy and planing will be the test plan, as the basis for its
creation will be the criteria created earlier. Details about activities are described by
ISO/IEC/IEE 29119-3.

As depicted on 6.2 test plan is not static but it changes according to monitoring.

6.5 Test plan

In order to create a test plan, IEEE proposes the following procedure shown in the
figure 6.3 with the idea that some activities can be repeated.

TBU in Zlín, Faculty of Applied Informatics 44

Figure 6.2 Test management process relationships [93]

The result of a properly designed test plan should be:

• Scope of testing

• List of identified risks

• Testing strategy

• Test environment

• Test tools

• Test data

• Staffing

• Scheduling

• Required training

• Estimates of time and resources

TBU in Zlín, Faculty of Applied Informatics 45

Figure 6.3 Test plan creation activities [93]

• Compliance with all stakeholders

6.6 Test monitoring and control process

The role of the test monitoring and control process is to observe the test process and
detect deviations from the plan. This process controls the test process throughout its
duration. The findings are then used to modify the test plan.

To avoid unnecessary bureaucracy, where the manager and tester are the same person,
and consequently the testing progress would be reported to the person who is also filing
it, there will be no status reports during the test process.

6.7 Test completion process

The test completion process as depicted in the figure 6.4 will be used in testing after
each test the test competition report will be created and delivered to a higher level.

TBU in Zlín, Faculty of Applied Informatics 46

Figure 6.4 Test completion process [93]

6.8 Dynamic and static test processes

According to ISTQB [92] there are two types of tests. Static and dynamic. The main
difference is that the static technique does not execute the tested software, but the
dynamic does. The testing process will utilize both techniques using the dynamic
testing process depicted in figure 6.5.

Figure 6.5 Dynamic test processes [93]

TBU in Zlín, Faculty of Applied Informatics 47

6.9 Test design and implementation processes

Test design and implementation process must follow the process depicted in the figure
6.6. Test design techniques should be used to derive test cases. Test cases must be
traceable to criterion. This process can be reentered multiple times and must meet the
completion criteria specified in the test plan.

Figure 6.6 Test design and implementation [93]

6.10 Test environment and data management processes

Based on the test plan all the environments must be established and well mainteained.

6.11 Test execution process

Test execution process depicted in 6.7 must be followed. After the test execution,
the execution log should be delivered. But since all roles are performed by the same
person, the test execution log will not be created or delivered. Details about activities
are described by ISO/IEC/IEE 29119-3.

TBU in Zlín, Faculty of Applied Informatics 48

Figure 6.7 Test execution process [93]

6.12 Test incident report process

The process for reporting test incidents, as depicted in Figure 6.7, must be followed. It
is important to note that the purpose of testing is not to finding incidents, but rather
to test the capabilities of the system. As such, the term "finding" will be used in cases
where it is more appropriate.

6.13 Level of detail

Please note that this chapter provides only a high-level overview of the testing method-
ology. More detailed information can be found in ISO/IEC/IEEE 29119-25). If there
are any doubts regarding the testing process, this standard should be used as a guide-
line, but it is not necessary to strictly adhere to it in its entirety.

5)https://standards.ieee.org/ieee/29119-2/7498/

TBU in Zlín, Faculty of Applied Informatics 49

II. APPLICATION OF THEORY

TBU in Zlín, Faculty of Applied Informatics 50

7 TEST PROCESS

As stated in the methodology, the main test process with a general test plan was
created. The general test plan can be seen in Appendix AI. This process was divided
into two subprocesses: one for static testing and one for dynamic testing.

According to the priorities stated in the general test plan, the first test process to be
conducted was the static test process.

Figure 7.1 Test process

7.1 Tools

During the creation of the test plan, the following tools were identified as essential for
conducting effective testing.

• Bash: Bash, short for "Bourne Again SHell," is a command-line interpreter and
scripting language used in Unix-like operating systems.

• Kubectl: Command-line utility for managing Kubernetes clusters.

• Terraform: Infrastructure as code tool for provisioning and managing cloud
resources.

• Trivy: Vulnerability scanner specifically designed for containerized environ-
ments.

• PgBench: Benchmarking tool for Postgres systems that allows for the simulation
of various database workloads to measure and evaluate performance.

TBU in Zlín, Faculty of Applied Informatics 51

Additional tools were identified and incorporated into the testing process at later stages.

• Git: Distributed version control system.

• Kustomize: Configuration management tool for Kubernetes.

• Snyk: Security scanning tool that helps identify and fix vulnerabilities in open-
source libraries and container images.

7.2 Static test process

The static test process was divided into three separate subprocesses, each with its own
test plan.

7.2.1 Reliability and maintenance

Reliability and maintenance testing consists of two parts: renewal and maturity. Both
of these parts form the first static testing process because they share the same test items
and therefore dividing them into separate processes doesn’t make sense. This process
was designed to provide the necessary information for decision-making regarding the
maintenance quality and maturity level of the operators. A detailed test plan and
further specifics of this process can be found in Appendix A II.

During the test process, it was observed that PPO does not use the repository to track
issues, instead it uses Jira. Another challenge arose when trying to determine the
repository creation date and getting the number of commits in repository. Retrieving
this data from Gitlab or Github proved to be quite difficult. As a workaround, all
the repositories were cloned, and the date of the initial commit was obtained using
the command mentioned in Listing 1. Likewise, the total number of commits was
determined using the command mentioned in Listing 2. Due to these modifications,
the test plan was subsequently revised.

Listing 1 Reverse git log

$ g i t l og −−rev e r s e

Listing 2 Commits count

$ g i t rev−l i s t −−a l l −count

TBU in Zlín, Faculty of Applied Informatics 52

The results of this repository analysis are presented in Table 7.1. As can be seen, PGO
and PPO share the same creation date. This is due to the fact that PPO is a fork of
PGO, as metioned earlier in Chapter 4.5.

Table 7.1 Operator repository analysis

PGO CNPGO SPGO PPO

Repo creation 27th Feb 2017 18th Feb 2020 29th May 2019 27th Feb 2017

Test date 1st May 2023 1st May 2023 1st May 2023 1st May 2023

Stars 3258 1198 84 149

Issues 1884 764 1959 317

Issues fixed 1755 691 1514 282

Commits 5582 3362 7208 4689

7.2.2 Usability: Learnability

The learnability testing process was divided into two distinct aspects: the first one be-
ing the training required to operate with the operators, and the second one being the
presence of examples concerning Postgres lifecycle events in the operator’s documenta-
tion. Following the guidelines of the test plan (available in Appendix A III), a checklist
was created. The documentation for each operator was thoroughly reviewed, resulting
in the findings presented in Tables 7.2 and 7.3.

Table 7.2 Training needed

PGO CNPGO SPGO PPO

1st training Kubectl Kubectl Kubectl Kubectl

2nd training Kustomize Helm Helm Helm

3rd training - Cnpg - -

7.2.3 Security

To proceed with the security testing, a vulnerability analysis test plan was created
(which can be found in Appendix A IV), and the process was carried out according to
this plan.

The test items for this process were identified, the test tool was installed, and a test
procedure was developed which consisted of four test cases - one for each operator

TBU in Zlín, Faculty of Applied Informatics 53

Table 7.3 Documentation examples

PGO CNPGO SPGO PPO

Cluster creation Yes Yes Yes Yes

Minor upgrade Yes Yes No Yes

Major upgrade Yes No No Yes

Backup Yes Yes Yes Yes

Restore Yes Yes Yes Yes

Monitoring Yes Yes Yes Yes

Vertical scaling Yes Yes Yes No

Horizontal scaling Yes Yes Yes Yes

Configuration Update Yes Yes Yes Yes

Uninstall Yes Yes Yes No

(details in Appendix A IV). Each operator was then tested according to this procedure,
with the overall vulnerability results presented in Table 7.4.

During this test process the security scanner Trivy was unable to detect any vulnerabil-
ities in CNPGO’s container image utilizing Debian 11.6. The rest of the operators are
using the Red Hat 8.7 container image, which resulted in almost identical vulnerability
scores. Unfortunately, the implementation of Red Hat 8.7 in both PGO and SPGO
has a high vulnerability in openssl-libs (CVE-2023-0286). More details about this vul-
nerability can be found here: https://avd.aquasec.com/nvd/2023/cve-2023-0286/.

Table 7.4 Trivy vulnerability analysis results

PGO CNPGO SPGO PPO Debian 11.6

Critical 0 0 0 0 1

High 1 0 1 0 17

Medium 40 0 41 35 6

Low 36 0 36 36 59

Unkown 0 0 0 0 0

The absence of any detected vulnerabilities in CNPGO by Trivy raised a question:
Is Trivy accurately scanning this image? To address this concern, the test plan was
updated to include an additional test case. This test involved scanning the base image
of CNPGO to ascertain if Trivy could detect any vulnerabilities in Debian 11.6.

https://avd.aquasec.com/nvd/2023/cve-2023-0286/

TBU in Zlín, Faculty of Applied Informatics 54

Debian image was scanned with the results presented in Table 7.4 which can be in-
terpreted in two ways. The first interpretation suggests that CNPGO might be using
Debian but has effectively removed or mitigated the vulnerable parts. The second in-
terpretation considers the possibility that Trivy may not be able to accurately identify
Debian vulnerabilities within CNPGO.

To eliminate the second interpretation an additional vulnerability analysis tool, Snyk,
was incorporated into the testing process. The test plan was subsequently adjusted, and
the images were scanned using Snyk. This alternative method produced results similar
to those from the Trivy scanning for each operator. However, there were exceptions
in terms of High severity issues; Snyk identified three additional vulnerabilities in the
openssl-libs of PGO and SPGO and provided different results for Debian.

Table 7.5 Snyk vulnerability analysis results

PGO CNPGO SPGO PPO Debian 11.6

Critical 0 0 0 0 0

High 4 0 4 0 1

Medium 38 0 39 36 2

Low 39 0 39 39 48

Unkown 0 0 0 0 0

Even after conducting these two testing rounds, it was surprising to find that the
CNPGO operator did not have any vulnerabilities. Presumably, this indicates that
the operator is currently free from vulnerabilities as of the testing date. However,
to ensure that this false result does not create the impression that no vulnerabilities
would be introduced into the Kubernetes cluster when deploying a Postgres cluster
using this operator, an additional round of testing was carried out. This series of
tests involved deploying the operator onto a Kubernetes cluster, creating a Postgres
cluster with primary and standby replicas, a connection pooler, and a backup. To
ensure consistency in the Postgres versions, Postgres version 14.7 was utilized whenever
possible. In cases where version 14.7 was not feasible, version 14 was employed, and
the choice of version was left to the discretion of the operator.

The entire cluster was then scanned using Trivy, and the number of vulnerabilities in
the namespace where the Postgres cluster was deployed was recorded in Table 7.6. In
cases where it was evident that the vulnerabilities were the same in both replicas, only
one instance of the vulnerability was counted.

TBU in Zlín, Faculty of Applied Informatics 55

Table 7.6 Results of the Postgres cluster deployment using the operator

PGO CNPGO SPGO PPO

Critical 0 5 0 0

High 54 55 16 10

Medium 1171 26 461 467

Low 2334 115 433 744

Unkown 0 0 0 0

During this testing, a significant number of additional vulnerabilities were identi-
fied, particularly critical vulnerabilities in the CNPGO’s image ghcr.io/cloudnative-
pg/postgresql:14.7. One recurring vulnerability was found in Python 3.9 (CVE-2021-
29921), and more information about it can be found at https://avd.aquasec.com/

nvd/cve-2021-29921. Additionally, a vulnerability was discovered in SQlite (CVE-
2019-8457), and further details can be found at https://avd.aquasec.com/nvd/cve-

2019-8457.

Due to the presence of multiple docker containers (up to 6) within clusters created by
operators, it is crucial to assess the severity of errors in the cluster rather than simply
counting the number of errors. This is necessary as some errors may occur repeatedly,
leading to inflated error counts. Furthermore, it is important to note that the same
vulnerabilities can be present multiple times within a single image. For instance, the
critical Python 3.9 bug (CVE-2021-29921) was identified four times in the CNPGO
Postgres 14.7 image.

Complete results of Trivy and Snyk scans can be located in the thesis repository6) folder
at tests/vulnerability_analysis. The overall results are presented in Tables 7.4,
7.5 and 7.6

7.3 Dynamic test process

The dynamic test process was divided into two separate subprocesses, each with its
own test plan.

6)https://github.com/Ovec/Bachelors-thesis

https://avd.aquasec.com/nvd/cve-2021-29921
https://avd.aquasec.com/nvd/cve-2021-29921
https://avd.aquasec.com/nvd/cve-2019-8457
https://avd.aquasec.com/nvd/cve-2019-8457
tests/vulnerability_analysis

TBU in Zlín, Faculty of Applied Informatics 56

7.3.1 Environments

Two environments were used for the dynamic test process, each designed for specific
test types based on resource requirements:

1. Kind Kubernetes Cluster: Kind is a tool that creates Kubernetes clusters
within Docker, Kind was utilized for less resource-intensive tests. This setup was
run on a first-generation M1 MacBook Air equipped with 8 GB of RAM and
a 500 GB disk.

2. Google Kubernetes Engine (GKE): More resource-demanding tests, such
as performance testing, were conducted on a robust Google Kubernetes Engine
cluster, consisting of three e2-standard-2 nodes. Each node with 2 virtual CPUs
and 8GB of RAM. Additionally, a standalone Postgres node with PgBench was
deployed to this cluster for performance analysis.

The configurations for Kind and the Terraform plans used for deploying the GKE
cluster, as well as the commands used for both deployments, can be found in the
repository directory located at tests/environments.

7.3.2 Usability: Operability

The operability testing process was divided into two distinct aspects: the first one being
ease of use, and the second one being the quality of provided monitoring. Following
the guidelines of the test plan, use cases derived from Postgres lifecycle and testing
procedure was created (all available in Appendix A V).

Ease of use Testing the ease of use involved testing each operator for the function-
ality outlined by the use cases and quantifying the number of commands required to
implement these functions. This form of testing tested the functional aspects of the
operator in conjunction with its ease of use. To achieve this, three types of shell scripts
were utilized: before.sh, test.sh, and cleanup.sh.

The before.sh script prepared the environment for the test, the test.sh script executed
the test itself, and the cleanup.sh script restored the environment to its state prior
to the test. The precondition for testing the operators was a functioning Kubernetes

tests/environments

TBU in Zlín, Faculty of Applied Informatics 57

cluster with kubectl configured for this cluster. Additionally, to perform tests on the
Postgres clusters, it was necessary for the operator to be installed in the cluster.

In cases where it was necessary to verify functionality, this verification was made man-
ually. Result are presented in Table 7.7.

SPGO The reason why SPGO has a zero value in most test cases is due to its user-
friendly interface. Most tasks can be accomplished directly within this interface, elimi-
nating the need for using the terminal. Even complex tasks, such as performing a major
version upgrade, can be easily carried out via this interface. An example of this user
interface is shown in Figure 7.2. Additional images can be found in the repository
folder at doc/graphics/monitoring/SPGO.

Figure 7.2 SPGO’s user interface

Cluster major version upgrade The upgrade to a new major version appears to be
the most challenging task for each operator. While SPGO handled the cluster up-
grade seamlessly, PGO required four steps to proceed with the major version upgrade.
On the other hand, CNPGO claimed to be capable of an "Offline import of existing
PostgreSQL databases, including major upgrades of PostgreSQL". This process in-
volves dumping the database and restoring it to a new cluster, which can be done
with any cluster and is not considered a major upgrade. PPO declared in their doc-
umentation that they are capable of automatic updates even between versions. How-
ever, this Jira issue (https://jira.percona.com/projects/K8SPG/issues/K8SPG-
254?filter=allopenissues) suggests otherwise.

doc/graphics/monitoring/SPGO
https://jira.percona.com/projects/K8SPG/issues/K8SPG-254?filter=allopenissues
https://jira.percona.com/projects/K8SPG/issues/K8SPG-254?filter=allopenissues

TBU in Zlín, Faculty of Applied Informatics 58

PPO During the cluster update test case, specifically the update of max_wal_size,
PPO experienced a failure. Despite updating the cluster configuration, the
max_wal_size of Postgres remained unchanged. PPO also was the only operator
that did not support the PostGis extension for Postgres.

CNPGO During the testing procedure, it was noted that CNPGO didn’t require
the CNPG plugin, as initially mentioned in Chapter 7.2.2, to perform any operation.
Consequently, the necessity for training related to this plugin was reevaluated, leading
to its removal. The updated results are presented in Table 7.8.

Table 7.7 Ease of use

PGO CNPGO SPGO PPO

Operator installation 2 1 2 3

Cluster installation 1 2 0 1

Cluster monitoring 2 4 3 5

Cluster vertical scaling 1 1 0 1

Cluster horizontal scaling 1 1 0 1

Cluster connection pooling 1 1 0 0

Cluster extension install 1 1 0 -

Cluster number of connections increase 1 1 0 2

Cluster max_wall_size increase 1 1 0 -

Cluster scheduled backup 1 1 0 1

Cluster ad-hoc backup 2 1 0 1

Cluster restore 2 1 1 1

Cluster minor version upgrade 1 1 0 1

Cluster major version upgrade 4 - 0 -

Operator uninstall 1 1 1 1

Cluster uninstall 1 1 0 1

Table 7.8 Training needed: udpated

PGO CNPGO SPGO PPO

1st training Kubectl Kubectl Kubectl Kubectl

2nd training Kustomize Helm Helm Helm

TBU in Zlín, Faculty of Applied Informatics 59

Monitoring During the monitoring deployment test case, screenshots of each moni-
toring system were taken. The results are presented in Table 7.9. These screenshots
can be found in the repository folder at doc/graphics/monitoring.

All of the operators, except for PPO, use the traditional Grafana Prometheus moni-
toring stack, while PPO uses the Percona Monitoring and Management solution. This
Percona monitoring system is quite extensive, but its coverage of parameters is com-
parable to that of the less extensive CNPGO monitoring system.

Table 7.9 Monitoring

PGO CNPGO SPGO PPO

Health Yes Yes Yes Yes

Query performance Yes Yes No Yes

Number of connections Yes Yes Yes Yes

Locks Yes Yes Yes Yes

Index hit No No No No

Cache hit Yes No Yes Yes

Disk space usage Yes Yes No Yes

CPU and memory usage Yes Yes Yes Yes

WAL generation rate Yes Yes No Yes

Replication lag Yes Yes No No

Errors and logs No No No Yes

Backup and recovery Yes Yes Yes No

7.3.3 Performance

To measure the performance of the Postgres cluster, an operator was deployed to
the GKE cluster. Subsequently, a high availability Postgres cluster was established,
consisting of three nodes (one primary and two replicas), along with three connection
pooler instances. A simplified representation of this cluster configuration is depicted
in Figure 7.3.

For each operator test, the Kubernetes cluster was recreated to ensure a clean starting
point. A Postgres cluster with three nodes (one primary and two replicas) was deployed,
along with three connection pooler instances.

doc/graphics/monitoring

TBU in Zlín, Faculty of Applied Informatics 60

Figure 7.3 Kubernetes performance configuration

To standardize the settings across each cluster, configurations were calibrated in line
with recommendations provided by the pgTune7). The adjusted settings were as follows:

• max_connections: 200

• shared_buffers: 1536MB

• effective_cache_size: 4608MB

• maintenance_work_mem: 384MB

• checkpoint_completion_target: 0.9

• wal_buffers: 16MB

• default_statistics_target: 100

• random_page_cost: 4

• effective_io_concurrency: 2

• work_mem: 3932kB

• min_wal_size: 1GB

• max_wal_size: 4GB
7)https://pgtune.leopard.in.ua

TBU in Zlín, Faculty of Applied Informatics 61

After the creation of the Postgres cluster, each cluster was tested using the PgBench
tool. This tool was configured to execute 10,000 transactions across 25 concurrent
clients and utilizing 10 threads. This benchmark was directed towards the Postgres
cluster’s pooler service. This procedure was replicated twice more for thoroughness.

The results presented in Table 8.13 only display the transactions per second, as these
offer a sufficient indication of the operator’s performance. For a comprehensive view
of the results from this benchmark, along with the test process details, please refer to
Appendix A VI.

The commands executed throughout this procedure, along with the complete config-
uration of the operators, can be located in the tests/performance directory in the
repository.

7.3.4 Issues with CNPGO

CNPGO was the only one unable to execute 250,000 transactions in each run due to
an error (client 6 script 0 aborted in command 4 query 0: FATAL: query wait timeout,
SSL connection has been closed unexpectedly). This error usually occurs when a query
takes too long to execute, leading to a timeout. The SSL connection is then closed
unexpectedly, causing the transaction to fail. This might suggest that CNPGO is
struggling with performance or network stability in this particular scenario.

7.3.5 Issues with SPGO

The possible reason for SPGO’s low transactions per second score is that a cluster
profile is needed to deploy an SPGO cluster. When this profile was correctly set,
Google Kubernetes Engine was unable to deploy the cluster. By gradually reducing
these values, the available resources were eventually found, but these settings were
probably too low for optimal performance (500m CPU and 2Gi RAM). Despite the
cluster showing that it had more memory and CPU allocable, as may be seen in Figure
7.4, the reduced resource allocation might have constrained SPGO’s performance.

7.3.6 Issues with PPO

As mentioned in Chapter 7.3.2, changes to PPO’s configuration do not affect the clus-
ter, therefore, the cluster was not modified during this test. This means that the

tests/performance

TBU in Zlín, Faculty of Applied Informatics 62

performance results for PPO are based on its default configuration settings.

Table 7.10 Performance analysis

PGO CNPGO SPGO PPO

First run 544.91 tps 403.70 tps 284.39 tps 401.46 tps

Second run 543.29 tps 402.54 tps 279.89 tps 392.04 tps

Third run 538.51 tps 392.63 tps 309.16 tps 387.79 tps

Mean 542.24 tps 399.62 tps 291.15 tps 393.77 tps

Figure 7.4 GKE nodes details

TBU in Zlín, Faculty of Applied Informatics 63

8 EVALUATION

This chapter aims to answer the fourth research question: ’How do the operators
perform when evaluated according to the chosen metrics?’". It will utilize the findings
presented in Chapter 7 to conduct a comprehensive evaluation of each quality attribute
associated with the operators. Each criterion will be quantified and discussed in detail.
The cumulative results will be presented at the end of this chapter.

8.1 Measuring rule

In this chapter, the operators will be evaluated. When a dedicated measuring tool is
not available, the operators will be compared against each other to provide a relative
measure of their attributes. This comparative analysis will help illuminate their relative
strengths and weaknesses.

8.2 Reliability

8.2.1 Maturity

In order to determine the maturity of the system, data was statically collected from
the repositories of each operator (Chapter 7.2.1). This included the popularity of the
operators, the number of issues they had, and the number of issues that were resolved.
The maturity was then determined based on the popularity of the operators and the
ratio of resolved issues.

Popularity After examining the popularity by the number of stars, it is clear that
PGO far exceeds the others (results presented in Table 8.1). In contrast, CNPGO shows
much lower popularity. The remaining operators show marginal levels of popularity
to the level of popularity that PGO or CNPGO have received. If the ranking were
based solely on a popularity contest, PGO would clearly win. However, the evaluation
requires a more comprehensive examination beyond simply measuring popularity.

Fixed issues As presented in Table 8.2, PGO, CNPGO, and PPO are shown to have
resolved a significant number of issues, with PGO registering the highest ratio of fixed
issues. On the other hand, despite being less popular and more recent than PGO,

TBU in Zlín, Faculty of Applied Informatics 64

Table 8.1 Popularity of operators

PGO CNPGO SPGO PPO

Popularity (stars) 3258 1198 84 149

Popularity ratio 100% 37% 3% 5%

SPGO has a larger number of reported issues, many of which remain unresolved (445
in total). This might suggest that the development of SPGO is still in progress.

Table 8.2 Operators issues

PGO CNPGO SPGO PPO

Total issues 1884 764 1959 317

Issues fixed 1755 691 1514 282

Fixed issues ratio 93% 90% 77% 89%

8.2.2 Reliability

The overall reliability of the operators was determined maturity. These results are
presented in Table 8.3.

Due to its high popularity and impressive ratio of fixed issues, PGO’s results are
outstanding, suggesting that it can be considered the most reliable operator among all.
The results for CNPGO are good, while those for SPGO and PPO can be regarded as
fair.

Table 8.3 Operators reliability

PGO CNPGO SPGO PPO

Reliability 97% 64% 40% 47%

8.2.3 Maintenance

Renewal The overall renewal rate of the operators, as presented in Table 8.4, was
calculated based on the number of commits since the repository’s creation date. SPGO
achieved the highest average ratio of commits per day, at 5.03.

Interestingly, this contrasts with the operator Fixed Issues, where SPGO scored the
lowest, suggesting that it is still in the development stage. A potential explanation for

TBU in Zlín, Faculty of Applied Informatics 65

this could be that SPGO utilizes the ’issues’ function for internal project management
purposes, rather than exclusively for issue tracking, or for the frequent updating of
SPGO’s user interface.

PGO and PPO share the same lifetime since PPO was forked from PGO. However,
PGO has a higher rate of commits per day, indicating that it is updating more rapidly
than PPO.

The overall results for this attribute are high, with values greater than 2 indicating
that all of the operators are frequently updated. When comparatively analyzed, SPGO
is updated more than twice as frequently as PGO and PPO, and almost 1.8 times more
frequently than CNPGO.

Table 8.4 Operators renewal

PGO CNPGO SPGO PPO

Lifetime (days) 2254 1168 1433 2254

Sum of commits 5582 3362 7208 4689

Commits/day 2.48 2.88 5.03 2.08

Renewal / maintenance 49% 57% 100% 41%

8.3 Usability

Usability testing was conducted in two separate test processes: the first being the static
test process described in Chapter 7.2.2, which aimed to review the documentation, and
the second being the dynamic test process outlined in Chapter 7.3.2, which aimed to
test the operator’s operability. The results from both processes will be evaluated in
this chapter.

8.3.1 Learnability

Learnability was divided into two parts: one evaluating the required training for each
operator, and the other assessing the presence of examples in the documentation. Both
aspects are tested in Chapter 7.2.2.

Required training The training required presented in Table 8.5 was calculated as the
additional training needed to work with each operator, over and above knowledge of

TBU in Zlín, Faculty of Applied Informatics 66

Kubectl (the Kubernetes command-line tool). Each additional tool required to work
successfully with the operator resulted in a 5% score decrease. The choice of a 5%
score decrease for each additional tool required is a subjective decision made based on
considerations of practicality, fairness, and relative impact. While

Overall, the required training to work with operators is minimal. For PGO, the only
additional software needed, apart from Kubectl—which is essential for working with
Kubernetes clusters—is Kustomize. For the rest of the operators, Helm is required
to install the monitoring stack. It can therefore be asserted that proficiency with
Kubernetes equates to the ability to work with operators.

Table 8.5 Training needed

PGO CNPGO SPGO PPO

Required Training 95% 95% 95% 95%

Documentation examples As indicated in Table 7.3, examples in the documenta-
tion are prevalent across all operators. SPGO, however, is at a slight disadvantage.
Despite having a Graphical User Interface capable of managing the entire cluster and
efficiently handling all cluster operations, it does not provide examples for major and
minor upgrades. These could be easily configured via the GUI, making it beneficial if
the provided examples indicate that the respective functionality can be conveniently
implemented using the GUI. Given that there are ten examples, each one has been
assigned a value contributing 10% towards the total score.

Examples in the documentation were widely presented in the operators’ documenta-
tion. PGO achieved the highest rate, presenting all the examples in its documentation
and thus offering the most helpful guidance. Although CNPGO has extensive docu-
mentation, it lacks some examples, rendering it slightly less helpful than PGO’s. Both
SPGO and PPO were missing even more examples, but despite this, the level of detail
in the available examples was still high.

Table 8.6 Documentation examples

PGO CNPGO SPGO PPO

Documentation examples 100% 90% 80% 80%

Overall learnability The overall learnability rating of the operators, as presented in
Table 8.7, was calculated as the average of the scores from the required training and

TBU in Zlín, Faculty of Applied Informatics 67

the documentation examples.

Overall, the learnability levels are quite high, suggesting that all of the operators are
relatively easy to learn.

Table 8.7 Learnability of operators

PGO CNPGO SPGO PPO

Learnability 98% 93% 88% 88%

8.3.2 Operability

Operability was divided into two parts: one evaluating the ease of use for each operator,
and the other assessing the quality of monitoring. Both aspects are tested in Chapter
7.3.2.

Ease of use The number of commands executed to achieve the objective was counted
for each test case. In instances where an operator did not provide the necessary func-
tionality, or the functionality was malfunctioning, the number of steps required was
designated as 10. This allocation is due to the significant effort that would be required
to realize this functionality, or the possibility that it might not be achievable at all.

Due to its GUI, SPGO is the easiest operator to use. In comparison to SPGO’s ease
of use, the ease of use level of the remaining operators is relatively poor.

Table 8.8 Ease of use

PGO CNPGO SPGO PPO

Sum of commands 23 29 7 49

Ease of use 30% 24% 100% 14%

Monitoring The quality of monitoring was tested in Chapter 7.3.2. Each operator
was evaluated based on the number of necessary attributes covered in the monitoring.

PGO has the highest monitoring capabilities, followed closely by CNPGO and PPO,
both of which also demonstrate good monitoring abilities. Although SPGO is equipped
with a GUI, its monitoring performance is only fair.

TBU in Zlín, Faculty of Applied Informatics 68

Table 8.9 Monitoring

PGO CNPGO SPGO PPO

Monitoring 83% 75% 50% 75%

Overall operability The overall operability rating of the operators, as presented in
Table 8.10, was calculated as the average of the scores from the ease of use and the
monitoring.

Owing to its high score in ease of use, SPGO has the highest operability among the
operators. PGO and CNPGO exhibit similar levels of operability, while PPO, with the
lowest score, can be considered the least operable.

Table 8.10 Operability

PGO CNPGO SPGO PPO

Ease of use 30% 24% 100% 14%

Monitoring 83% 75% 50% 75%

Operability 57% 50% 75% 45%

8.4 Overall usability

The overall usability was calculated as the average of learnability, as presented in Table
8.7, and operability, as presented in Table 8.10.

The results, as shown in Table 8.11, indicate that SPGO is the most usable operator
among all, followed by PGO and then CNPGO, with PPO being the least usable.
Nevertheless, the overall usability of the operators is at a good level.

Table 8.11 Usability

PGO CNPGO SPGO PPO

Learnability 98% 93% 88% 88%

Operability 57% 50% 75% 45%

Usability 78% 73% 82% 67%

TBU in Zlín, Faculty of Applied Informatics 69

8.5 Security

The results of the vulnerability analysis, as presented in Table 7.4 and 7.6, were as-
signed quantitative scores based on the severity of the vulnerabilities. The absence
of vulnerabilities was given a score of 100%, unknown vulnerabilities received a score
of 80%, vulnerabilities with low severity were rated at 60%, medium severity at 40%,
high severity at 20%, and critical vulnerabilities were assigned a score of 0%. It is
worth noting that the results from Table 7.5 were not included separately, as they were
the same as the results from Table 7.4. The results from both tables were quantified,
and the average score was calculated to provide an overall result, which is displayed in
Table 8.12.

Although CNPGO was the only operator that did not have any vulnerabilities, its
dependencies for cluster creation do contain critical vulnerabilities. PGO and SPGO
operators have high severity vulnerabilities both in the operators themselves and in
the Postgres cluster they create. The PPO operator has the highest vulnerability of
medium severity, but the cluster created by it contains high severity vulnerabilities.

Evaluating the extent to which these vulnerabilities pose a threat to the overall security
of the Kubernetes cluster, both externally and internally, is beyond the scope of this
thesis and depends on whether the Postgres cluster will be accessible from the internet
or only within the Kubernetes environment and other parts of the Kubernetes cluster.
From the perspective of this thesis, it can be concluded that the CNPGO operator itself
is not vulnerable, but it creates a highly vulnerable Postgres cluster. Other operators
are vulnerable and create vulnerable clusters.

Table 8.12 Vulnerability analysis

PGO CNPGO SPGO PPO

Operator vulnerabilities 20% 100% 20% 40%

Cluster vulnerabilities 20% 0% 20% 20%

Security 20% 50% 20% 30%

8.6 Performance

According to the results presented in Table 7.10 the most performant operator PGO
received a score of 100% in this test, while the other operators were assigned scores
proportionally based on their performance relative to PGO.

TBU in Zlín, Faculty of Applied Informatics 70

Table 8.13 Operators performance

PGO CNPGO SPGO PPO

Performance 100% 74% 54% 73%

8.7 Overall quality of the operators

The overall quality, according to the metric defined in Chapter 5, was calculated as the
average of these metrics and is presented in Table 8.14. According to these results, the
PGO operator can be considered the highest quality among the evaluated operators,
followed by CNPGO, SPGO, and finally PPO.

Table 8.14 Overall quality of the operators

PGO CNPGO SPGO PPO

Performance 100% 74% 54% 73%

Reliability 97% 64% 40% 47%

Usability 78% 73% 82% 67%

Maintenance 49% 57% 100% 41%

Security 20% 50% 20% 30%

Overall quality 68.8% 63.6% 59.2% 51.6%

TBU in Zlín, Faculty of Applied Informatics 71

CONCLUSION

In this final chapter of the thesis, the objective outlined in Chapter 1 is aimed to be
met by delivering clear and comprehensive recommendations for stakeholders on which
operators are best suited based on defined metrics.

The metrics for comparing operators were established in the previous chapters, and the
operators were tested against these metrics, with the measured values being evaluated.

Each operator possesses its strengths and weaknesses across different metrics. The
optimal choice depends on which factors are of the greatest importance to the stake-
holders.

• If performance is a priority, Crunchy Postgres for Kubernetes (PGO) excels,
achieving the highest scores (100%) and can therefore be considered the best
choice in terms of performance.

• When reliability is a key consideration, Crunchy Postgres for Kubernetes again
achieves top marks (97%), marking it as the most reliable operator.

• If ease of use is a significant criterion, StackGres Operator (SPGO) boasts the
highest score (82%), suggesting it as the most user-friendly operator.

• If maintenance is a crucial aspect, StackGres Operator obtains the highest scores
(100%), indicating it as the most appropriate operator for this factor.

According to the overall results the Crunchy Postgres for Kubernetes is leading with
the highest score (68.8%) followed by CloudNativePG (CNPGO). Nevertheless, it’s
essential to bear in mind the significance of individual categories and their relevance
to the stakeholder’s specific needs.

Regarding the security aspect, only a vulnerability analysis has been performed, which
does not provide a comprehensive view of security. Furthermore, it remains undeter-
mined what effects these vulnerabilities may have on the cluster, both externally and
internally. With this metric in mind, we suggest further research in future studies.

The Percona Operator for PostgreSQL (PPO) cannot be recommended due to its un-
derperformance across all evaluated categories. With the lowest scores across the board,
its overall performance falls short in comparison to the other operators, making it the
least suitable option based on evaluation criteria.

TBU in Zlín, Faculty of Applied Informatics 72

REFERENCES

[1] Group, T. P. G. D.: PostgreSQL 15.1 Documentation - What Is PostgreSQL?
[visited 2023-02-08].
URL https://www.postgresql.org/docs/15/intro-whatis.html

[2] Riggs, S.; Ciolli, G.: PostgreSQL 14 Administration Cookbook, chapter Intro-
ducing PostgreSQL 14. Birmingham: Packt publishing, 1st edition, 2022, ISBN
9781803248974, pp. 2–8.

[3] Group, T. P. G. D.: PostgreSQL 15.1 Documentation - History. [visited 2023-02-
08].
URL https://www.postgresql.org/docs/15/history.html

[4] Inc., S. E.: Stack Overflow 2022 Developer Survey. [visited 2023-02-07].
URL https://survey.stackoverflow.co/2022/

[5] Juba, S.; Vannahme, A.; Volkov, A.: Learning PostgreSQL, chapter Relational
databases. Packt Publishing Ltd, 1st edition, 2015, ISBN 9781783989188, pp. 1–4.

[6] Nasser, H.: PostgreSQL Process Architecture. Creating a listener on the back-
end. . . . 2023, [visited 2023-03-16].
URL https://medium.com/@hnasr/postgresql-process-architecture-

f21e16459907

[7] Group, T. P. G. D.: PostgreSQL: Documentation: 15: 30.3. Write-Ahead Logging
(WAL). [visited 2023-02-21].
URL https://www.postgresql.org/docs/current/wal-intro.html

[8] Group, T. P. G. D.: PostgreSQL: Documentation: 15: 26.3. Continuous Archiving
and Point-in-Time Recovery (PITR). [visited 2023-02-23].
URL https://www.postgresql.org/docs/15/continuous-archiving.html

[9] Riggs, S.; Ciolli, G.: PostgreSQL 14 Administration Cookbook, chapter Repli-
cation and Upgrades. Birmingham: Packt publishing, 1st edition, 2022, ISBN
9781803248974, pp. 499–557.

[10] Group, T. P. G. D.: PostgreSQL: Documentation: 15: 26.1. SQL Dump. [visited
2023-02-23].
URL https://www.postgresql.org/docs/15/backup-dump.html

[11] Group, T. P. G. D.: Reliable PostgreSQL Backup and Restore. [visited 2023-02-
23].
URL https://pgbackrest.org

https://www.postgresql.org/docs/15/intro-whatis.html
https://www.postgresql.org/docs/15/history.html
https://survey.stackoverflow.co/2022/
https://medium.com/@hnasr/postgresql-process-architecture-f21e16459907
https://medium.com/@hnasr/postgresql-process-architecture-f21e16459907
https://www.postgresql.org/docs/current/wal-intro.html
https://www.postgresql.org/docs/15/continuous-archiving.html
https://www.postgresql.org/docs/15/backup-dump.html
https://pgbackrest.org

TBU in Zlín, Faculty of Applied Informatics 73

[12] Group, T. P. G. D.: PostgreSQL: Documentation: 15: 27. High Availability, Load
Balancing, and Replication. [visited 2023-02-23].
URL https://www.postgresql.org/docs/15/high-availability.html

[13] Group, T. P. G. D.: PostgreSQL: Documentation: 15: 27.3. Failover. [visited
2023-02-23].
URL https://www.postgresql.org/docs/15/warm-standby-failover.html

[14] Stratnev, P.: Migrating a PostgreSQL database cluster managed by Patroni. [vis-
ited 2023-02-24].
URL https://blog.palark.com/migrating-a-postgresql-cluster-managed-

by-patroni/

[15] SE, Z.: Introduction — Patroni 3.0.1 documentation. [visited 2023-02-24].
URL https://patroni.readthedocs.io/en/latest/

[16] Avinash Vallarapu, F. L. C., Jobin Augustine: Scaling PostgreSQL using Connec-
tion Poolers and Load Balancers for an Enterprise Grade environment. [visited
2023-02-24].
URL https://www.percona.com/blog/scaling-postgresql-using-

connection-poolers-and-load-balancers-for-an-enterprise-grade-

environment/

[17] Vayghan, L. A.; Saied, M. A.; Toeroe, M.; et al.: Kubernetes as an availability
manager for microservice applications. arXiv preprint arXiv:1901.04946, 2019.

[18] Authors, T. K.: Kubernetes Components. [visited 2023-02-07].
URL https://kubernetes.io/docs/concepts/overview/components/

[19] Sayfan, G.: Mastering Kubernetes, chapter Kubernetes concepts. Birmingham:
Packt Publishing, third edition edition, [2020]., ISBN 978-183-9211-256, pp. 5–12.

[20] Dobies, J.; Wood, J.: Kubernetes operators. Sebastopol, CA: O’Reilly Media, 2020,
ISBN 978-149-2048-046.

[21] Burns, B.; Beda, J.; Hightower, K.; et al.: Kubernetes: up and running, chapter
Pods. "O’Reilly Media, Inc.", third edition edition, 2022, ISBN 978-1098110208,
pp. 47–64.

[22] Burns, B.; Beda, J.; Hightower, K.; et al.: Kubernetes: up and running. "O’Reilly
Media, Inc.", third edition edition, 2022, ISBN 978-1098110208.

[23] Authors, T. K.: Pods. [visited 2023-02-07].
URL https://kubernetes.io/docs/concepts/workloads/pods/

https://www.postgresql.org/docs/15/high-availability.html
https://www.postgresql.org/docs/15/warm-standby-failover.html
https://blog.palark.com/migrating-a-postgresql-cluster-managed-by-patroni/
https://blog.palark.com/migrating-a-postgresql-cluster-managed-by-patroni/
https://patroni.readthedocs.io/en/latest/
https://www.percona.com/blog/scaling-postgresql-using-connection-poolers-and-load-balancers-for-an-enterprise-grade-environment/
https://www.percona.com/blog/scaling-postgresql-using-connection-poolers-and-load-balancers-for-an-enterprise-grade-environment/
https://www.percona.com/blog/scaling-postgresql-using-connection-poolers-and-load-balancers-for-an-enterprise-grade-environment/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/workloads/pods/

TBU in Zlín, Faculty of Applied Informatics 74

[24] Authors, T. K.: Create static Pods. [visited 2023-02-07].
URL https://kubernetes.io/docs/tasks/configure-pod-container/

static-pod/

[25] Authors, T. K.: ReplicaSet. [visited 2023-02-07].
URL https://kubernetes.io/docs/concepts/workloads/controllers/

replicaset/

[26] Authors, T. K.: Service. [visited 2023-02-07].
URL https://kubernetes.io/docs/concepts/services-networking/

service/

[27] Sayfan, G.: Mastering Kubernetes, chapter Managing Storage. Birmingham: Packt
Publishing, third edition edition, [2020]., ISBN 978-183-9211-256, pp. 175–219.

[28] Authors, T. K.: StatefulSets. [visited 2023-02-24].
URL https://kubernetes.io/docs/concepts/workloads/controllers/

statefulset/

[29] Foundaution, C. N.: kubernetes/CHANGELOG-1.5.md at master ·
a0x8o/kubernetes. [visited 2023-02-24].
URL https://github.com/a0x8o/kubernetes/blob/master/CHANGELOG-1.5.md

[30] Foundaution, C. N.: Custom Resource (CR). [visited 2023-03-02].
URL https://ibm.github.io/kubernetes-operators/lab1/

[31] Ziolkowski, D.: Kubernetes CRDs: What They Are and Why They Are Useful.
[visited 2023-03-01].
URL https://thenewstack.io/kubernetes-crds-what-they-are-and-why-

they-are-useful/

[32] Dobies, J.; Wood, J.: Kubernetes operators, chapter The Operator Framework.
Sebastopol, CA: O’Reilly Media, 2020, ISBN 978-149-2048-046, pp. 27–32.

[33] Authors, T. K.: Controllers. [visited 2023-03-02].
URL https://kubernetes.io/docs/concepts/architecture/controller/

[34] Authors, T. K.: Custom Resources. [visited 2023-03-02].
URL https://kubernetes.io/docs/concepts/extend-kubernetes/api-

extension/custom-resources/

[35] Kahani, O.; Strejevitch, J.; Schuetz, T.; et al.: CNCF Operator White Paper -
Final Version. 2023.

https://kubernetes.io/docs/tasks/configure-pod-container/static-pod/
https://kubernetes.io/docs/tasks/configure-pod-container/static-pod/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://github.com/a0x8o/kubernetes/blob/master/CHANGELOG-1.5.md
https://ibm.github.io/kubernetes-operators/lab1/
https://thenewstack.io/kubernetes-crds-what-they-are-and-why-they-are-useful/
https://thenewstack.io/kubernetes-crds-what-they-are-and-why-they-are-useful/
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

TBU in Zlín, Faculty of Applied Informatics 75

URL https://github.com/cncf/tag-app-delivery/blob/main/operator-wg/

whitepaper/Operator-WhitePaper_v1-0.md

[36] Dobies, J.; Wood, J.: Kubernetes operators, chapter Operators Teach Kubernetes
New Tricks. Sebastopol, CA: O’Reilly Media, 2020, ISBN 978-149-2048-046, pp.
4–8.

[37] David, C.: WHAT IS APPLICATION LIFECYCLE MANAGEMENT? [visited
2023-02-07].
URL http://davidchappell.com/writing/white_papers/What_is_ALM_v2.0-

-Chappell.pdf

[38] Philips, B.: Introducing Operators: Putting Operational Knowledge into Soft-
ware. [visited 2023-03-01].
URL https://web.archive.org/web/20170129131616/https://coreos.com/

blog/introducing-operators.html

[39] Dobies, J.; Wood, J.: Kubernetes operators, chapter Preface. Sebastopol, CA:
O’Reilly Media, 2020, ISBN 978-149-2048-046, pp. XIII–XVI.

[40] Dobies, J.; Wood, J.: Kubernetes operators, chapter Operators at the Kubernetes
Interface. Sebastopol, CA: O’Reilly Media, 2020, ISBN 978-149-2048-046, pp. 27–
32.

[41] Framework, T. O.: Welcome to Operator framework. [visited 2023-03-03].
URL https://operatorframework.io/operator-capabilities/

[42] Group, T. P. G. D.: PostgreSQL: Software Catalogue - Clustering/replication.
[visited 2023-03-10].
URL https://www.postgresql.org/docs/15/warm-standby-failover.html

[43] OperatorHub.io: OperatorHub.io | The registry for Kubernetes Operators. [visited
2023-03-10].
URL https://operatorhub.io/?keyword=postgres

[44] Bogdanov, N.: Comparing Kubernetes operators for PostgreSQL. [visited 2023-
02-20].
URL https://blog.palark.com/comparing-kubernetes-operators-for-

postgresql/

[45] Crunchy Data Solutions, I.: Trusted Open Source PostgreSQL and Commercial
Support for the Enterprise. [visited 2023-02-07].
URL https://www.crunchydata.com

https://github.com/cncf/tag-app-delivery/blob/main/operator-wg/whitepaper/Operator-WhitePaper_v1-0.md
https://github.com/cncf/tag-app-delivery/blob/main/operator-wg/whitepaper/Operator-WhitePaper_v1-0.md
http://davidchappell.com/writing/white_papers/What_is_ALM_v2.0--Chappell.pdf
http://davidchappell.com/writing/white_papers/What_is_ALM_v2.0--Chappell.pdf
https://web.archive.org/web/20170129131616/https://coreos.com/blog/introducing-operators.html
https://web.archive.org/web/20170129131616/https://coreos.com/blog/introducing-operators.html
https://operatorframework.io/operator-capabilities/
https://www.postgresql.org/docs/15/warm-standby-failover.html
https://operatorhub.io/?keyword=postgres
https://blog.palark.com/comparing-kubernetes-operators-for-postgresql/
https://blog.palark.com/comparing-kubernetes-operators-for-postgresql/
https://www.crunchydata.com

TBU in Zlín, Faculty of Applied Informatics 76

[46] Crunchy Data Solutions, I.: PGO, the Postgres Operator from Crunchy Data.
[visited 2023-02-15].
URL https://access.crunchydata.com/documentation/postgres-operator/

5.3.0/tutorial/create-cluster/

[47] Crunchy Data Solutions, I.: PGO, the Postgres Operator from Crunchy Data.
[visited 2023-02-15].
URL https://access.crunchydata.com/documentation/postgres-operator/

5.3.0/tutorial/customize-cluster/

[48] Crunchy Data Solutions, I.: PGO, the Postgres Operator from Crunchy Data.
[visited 2023-02-15].
URL https://access.crunchydata.com/documentation/postgres-operator/

5.3.0/tutorial/delete-cluster/

[49] Crunchy Data Solutions, I.: PGO, the Postgres Operator from Crunchy Data.
[visited 2023-02-15].
URL https://access.crunchydata.com/documentation/postgres-operator/

5.3.0/tutorial/high-availability/

[50] Crunchy Data Solutions, I.: PGO, the Postgres Operator from Crunchy Data.
[visited 2023-02-15].
URL https://access.crunchydata.com/documentation/postgres-operator/

5.3.0/tutorial/update-cluster/

[51] Crunchy Data Solutions, I.: PGO, the Postgres Operator from Crunchy Data.
[visited 2023-02-17].
URL https://www.crunchydata.com/blog/easy-major-postgresql-

upgrades-using-pgo-v51

[52] Crunchy Data Solutions, I.: PGO, the Postgres Operator from Crunchy Data.
[visited 2023-02-15].
URL https://access.crunchydata.com/documentation/postgres-operator/

5.3.0/tutorial/backups/

[53] Crunchy Data Solutions, I.: PGO, the Postgres Operator from Crunchy Data.
[visited 2023-02-15].
URL https://access.crunchydata.com/documentation/postgres-operator/

5.3.0/tutorial/disaster-recovery/

[54] Crunchy Data Solutions, I.: PGO, the Postgres Operator from Crunchy Data.
[visited 2023-02-15].

https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/create-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/create-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/customize-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/customize-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/delete-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/delete-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/high-availability/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/high-availability/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/update-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/update-cluster/
https://www.crunchydata.com/blog/easy-major-postgresql-upgrades-using-pgo-v51
https://www.crunchydata.com/blog/easy-major-postgresql-upgrades-using-pgo-v51
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/backups/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/backups/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/disaster-recovery/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/disaster-recovery/

TBU in Zlín, Faculty of Applied Informatics 77

URL https://access.crunchydata.com/documentation/postgres-operator/

5.3.0/tutorial/monitoring/

[55] Crunchy Data Solutions, I.: PGO, the Postgres Operator from Crunchy Data.
[visited 2023-02-15].
URL https://access.crunchydata.com/documentation/postgres-operator/

5.3.0/tutorial/connection-pooling/

[56] Crunchy Data Solutions, I.: Customize a Postgres Cluster. [visited 2023-03-10].
URL https://access.crunchydata.com/documentation/postgres-operator/

v5/tutorial/customize-cluster/

[57] Crunchy Data Solutions, I.: PGO, the Postgres Operator from Crunchy Data.
[visited 2023-02-15].
URL https://github.com/CrunchyData/postgres-operator

[58] L’Ecuyer, A.: Easy Postgres Major Version Upgrades Using PGO v5.1. [visited
2023-02-15].
URL https://access.crunchydata.com/documentation/postgres-operator/

5.3.0/architecture/overview/

[59] Crunchy Data Solutions, I.: Customize a Postgres Cluster. [visited 2023-04-15].
URL https://access.crunchydata.com/documentation/postgres-operator/

5.3.1/releases/5.3.1/

[60] OperatorHub.io: OperatorHub.io | The registry for Kubernetes Operators. [visited
2023-02-07].
URL https://operatorhub.io/operator/postgresql

[61] OperatorHub.io: OperatorHub.io | The registry for Kubernetes Operators. [visited
2023-02-13].
URL https://operatorhub.io/operator/cloud-native-postgresql

[62] Corporation, E.: EDB Postgres for Kubernetes v1. [visited 2023-02-17].
URL https://www.enterprisedb.com/docs/postgres_for_kubernetes/

latest/license_keys

[63] Contributors, T. C.: CloudNativePG. [visited 2023-02-17].
URL https://cloudnative-pg.io/documentation/1.19/

[64] Contributors, T. C.: CloudNativePG. [visited 2023-02-17].
URL https://cloudnative-pg.io/documentation/1.19/

postgres_for_kubernetes/latest/replica_cluster/

https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/monitoring/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/monitoring/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/connection-pooling/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/tutorial/connection-pooling/
https://access.crunchydata.com/documentation/postgres-operator/v5/tutorial/customize-cluster/
https://access.crunchydata.com/documentation/postgres-operator/v5/tutorial/customize-cluster/
https://github.com/CrunchyData/postgres-operator
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/architecture/overview/
https://access.crunchydata.com/documentation/postgres-operator/5.3.0/architecture/overview/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/releases/5.3.1/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/releases/5.3.1/
https://operatorhub.io/operator/postgresql
https://operatorhub.io/operator/cloud-native-postgresql
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/license_keys
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/license_keys
https://cloudnative-pg.io/documentation/1.19/
https://cloudnative-pg.io/documentation/1.19/postgres_for_kubernetes/latest/replica_cluster/
https://cloudnative-pg.io/documentation/1.19/postgres_for_kubernetes/latest/replica_cluster/

TBU in Zlín, Faculty of Applied Informatics 78

[65] Contributors, T. C.: CloudNativePG. [visited 2023-02-17].
URL https://cloudnative-pg.io/documentation/1.19/replication/

[66] Contributors, T. C.: CloudNativePG. [visited 2023-02-17].
URL https://cloudnative-pg.io/documentation/1.19/database_import/

[67] Contributors, T. C.: CloudNativePG. [visited 2023-02-17].
URL https://cloudnative-pg.io/documentation/1.19/rolling_update/

#rolling-updates

[68] Corporation, E.: EDB Postgres for Kubernetes v1. [visited 2023-02-16].
URL https://cloudnative-pg.io/documentation/1.19/

postgres_for_kubernetes/latest/backup_recovery/

[69] Contributors, T. C.: CloudNativePG. [visited 2023-02-17].
URL https://cloudnative-pg.io/documentation/1.19/

postgres_for_kubernetes/latest/tde/

[70] Contributors, T. C.: CloudNativePG. [visited 2023-02-17].
URL https://cloudnative-pg.io/documentation/1.19/quickstart/

[71] Contributors, T. C.: CloudNativePG. [visited 2023-02-17].
URL https://cloudnative-pg.io/documentation/1.19/

postgres_for_kubernetes/latest/connection_pooling/

[72] Contributors, T. C.: CloudNativePG. [visited 2023-02-17].
URL https://cloudnative-pg.io/documentation/1.19/

postgres_for_kubernetes/latest/postgresql_conf/

[73] Stölting, S. J.: PostgreSQL On Kubernetes Experiences. [visited 2023-02-20].
URL https://proopensource.it/blog/postgresql-on-k8s-experiences

[74] Contributors, T. C.: Release notes for CloudNativePG 1.19. [visited 2023-04-15].
URL https://cloudnative-pg.io/documentation/1.19/release_notes/

v1.19/

[75] Inc., O.: OnGres Inc. / StackGres. [visited 2023-02-20].
URL https://gitlab.com/ongresinc/stackgres

[76] Inc., O.: About. [visited 2023-02-20].
URL https://www.ongres.com/about-us/

[77] Inc., O.: SGDbOps. [visited 2023-02-20].
URL https://stackgres.io/doc/latest/reference/crd/sgdbops/#major-

version-upgrade

https://cloudnative-pg.io/documentation/1.19/replication/
https://cloudnative-pg.io/documentation/1.19/database_import/
https://cloudnative-pg.io/documentation/1.19/rolling_update/#rolling-updates
https://cloudnative-pg.io/documentation/1.19/rolling_update/#rolling-updates
https://cloudnative-pg.io/documentation/1.19/postgres_for_kubernetes/latest/backup_recovery/
https://cloudnative-pg.io/documentation/1.19/postgres_for_kubernetes/latest/backup_recovery/
https://cloudnative-pg.io/documentation/1.19/postgres_for_kubernetes/latest/tde/
https://cloudnative-pg.io/documentation/1.19/postgres_for_kubernetes/latest/tde/
https://cloudnative-pg.io/documentation/1.19/quickstart/
https://cloudnative-pg.io/documentation/1.19/postgres_for_kubernetes/latest/connection_pooling/
https://cloudnative-pg.io/documentation/1.19/postgres_for_kubernetes/latest/connection_pooling/
https://cloudnative-pg.io/documentation/1.19/postgres_for_kubernetes/latest/postgresql_conf/
https://cloudnative-pg.io/documentation/1.19/postgres_for_kubernetes/latest/postgresql_conf/
https://proopensource.it/blog/postgresql-on-k8s-experiences
https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/
https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/
https://gitlab.com/ongresinc/stackgres
https://www.ongres.com/about-us/
https://stackgres.io/doc/latest/reference/crd/sgdbops/#major-version-upgrade
https://stackgres.io/doc/latest/reference/crd/sgdbops/#major-version-upgrade

TBU in Zlín, Faculty of Applied Informatics 79

[78] Inc., O.: SGPostgresConfig. [visited 2023-02-20].
URL https://stackgres.io/doc/latest/reference/crd/sgpgconfig/

[79] Inc., O.: Architecture. [visited 2023-02-20].
URL https://stackgres.io/doc/latest/intro/architecture/

[80] Inc., O.: CHANGELOG.md · main · OnGres Inc. / StackGres. [visited 2023-02-
20].
URL https://gitlab.com/ongresinc/stackgres/-/blob/main/CHANGELOG.md

[81] Inc., O.: Licensing. [visited 2023-02-20].
URL https://stackgres.io/doc/latest/intro/license/

[82] OperatorHub.io: OperatorHub.io | The registry for Kubernetes Operators. [visited
2023-02-14].
URL https://operatorhub.io/operator/stackgres

[83] LLC, P.: About Percona - Percona. [visited 2023-02-14].
URL https://www.percona.com/about

[84] Pronin, S.: Run PostgreSQL in Kubernetes: Solutions, Pros and Cons. [visited
2023-02-20].
URL https://www.percona.com/blog/run-postgresql-in-kubernetes-

solutions-pros-and-cons/

[85] LLC, P.: Update Percona Operator for PostgreSQL. [visited 2023-02-21].
URL https://docs.percona.com/percona-operator-for-postgresql/

update.html

[86] LLC, P.: Comparison with other solutions. [visited 2023-02-20].
URL https://docs.percona.com/percona-operator-for-postgresql/

compare.html

[87] LLC, P.: Providing Backups. [visited 2023-02-21].
URL https://docs.percona.com/percona-operator-for-postgresql/

backups.html

[88] LLC, P.: Monitor with Percona Monitoring and Management (PMM). [visited
2023-02-2o].
URL https://docs.percona.com/percona-operator-for-postgresql/

monitoring.html

https://stackgres.io/doc/latest/reference/crd/sgpgconfig/
https://stackgres.io/doc/latest/intro/architecture/
https://gitlab.com/ongresinc/stackgres/-/blob/main/CHANGELOG.md
https://stackgres.io/doc/latest/intro/license/
https://operatorhub.io/operator/stackgres
https://www.percona.com/about
https://www.percona.com/blog/run-postgresql-in-kubernetes-solutions-pros-and-cons/
https://www.percona.com/blog/run-postgresql-in-kubernetes-solutions-pros-and-cons/
https://docs.percona.com/percona-operator-for-postgresql/update.html
https://docs.percona.com/percona-operator-for-postgresql/update.html
https://docs.percona.com/percona-operator-for-postgresql/compare.html
https://docs.percona.com/percona-operator-for-postgresql/compare.html
https://docs.percona.com/percona-operator-for-postgresql/backups.html
https://docs.percona.com/percona-operator-for-postgresql/backups.html
https://docs.percona.com/percona-operator-for-postgresql/monitoring.html
https://docs.percona.com/percona-operator-for-postgresql/monitoring.html

TBU in Zlín, Faculty of Applied Informatics 80

[89] LLC, P.: Percona Operator for PostgreSQL. [visited 2023-02-21].
URL https://docs.percona.com/percona-operator-for-postgresql/2.0/

index.html

[90] OperatorHub.io: OperatorHub.io | The registry for Kubernetes Operators. [visited
2023-02-14].
URL https://operatorhub.io/operator/percona-postgresql-operator

[91] Gilb, T.; Finzi, S.; et al.: Principles of software engineering management, vol-
ume 11. Addison-wesley Reading, MA, 1988.

[92] Graham, D.; Black, R.; van Veenendaal, E.: Foundations of software testing.
Australia: Cengage, 4th edition, 2020, ISBN 978-147-3764-798.

[93] ISO/IEC/IEEE International Standard - Software and systems engineering —Soft-
ware testing —Part 2:Test processes. ISO/IEC/IEEE 29119-2:2013(E), 2013: pp.
1–68, doi:10.1109/IEEESTD.2013.6588543.

https://docs.percona.com/percona-operator-for-postgresql/2.0/index.html
https://docs.percona.com/percona-operator-for-postgresql/2.0/index.html
https://operatorhub.io/operator/percona-postgresql-operator

TBU in Zlín, Faculty of Applied Informatics 81

LIST OF ABBREVIATIONS

ACID Atomicity, Consistency, Isolation, Durability
API Application Programming Interface
CNPGO CloudNativePG
CR Custom Resource
CRD Custom Resource Definition
EDBO EDB Postgres for Kubernetes Operator
GKE Google Kubernetes Engine
GUI Graphical User Interface
HA High Availability
K8s Kubernetes
ORDBMS Object-relational Database Management System
PGO Crunchy Postgres for Kubernetes
PITR Point-In-Time Recovery
PPO Percona Operator for PostgreSQL
RBAC Role-Based Acceess Control
SPGO StackGres Operator
WAL Write Ahead Log

TBU in Zlín, Faculty of Applied Informatics 82

LIST OF FIGURES

Fig. 3.1. Postgres Architecture [6] ... 16
Fig. 3.2. The components of a Kubernetes cluster [18].................................... 20
Fig. 3.3. Kubernetes controller [35] ... 22
Fig. 3.4. Application Lifecycle [37] ... 24
Fig. 3.5. Definition of Kubernetes operator [38] ... 25
Fig. 3.6. Operator pattern [35] ... 26
Fig. 3.7. Operator maturity levels described by Operator Framework [41]......... 26
Fig. 4.1. PGO’s architecture [58] ... 30
Fig. 4.2. CNPGO’s architecture [71]... 33
Fig. 4.3. SPGO’s architecture [79].. 34
Fig. 6.1. Criteria breakdown ... 40
Fig. 6.2. Test management process relationships [93] 44
Fig. 6.3. Test plan creation activities [93] ... 45
Fig. 6.4. Test completion process [93] ... 46
Fig. 6.5. Dynamic test processes [93] .. 46
Fig. 6.6. Test design and implementation [93] ... 47
Fig. 6.7. Test execution process [93] ... 48
Fig. 7.1. Test process ... 50
Fig. 7.2. SPGO’s user interface.. 57
Fig. 7.3. Kubernetes performance configuration ... 60
Fig. 7.4. GKE nodes details .. 62

TBU in Zlín, Faculty of Applied Informatics 83

LIST OF TABLES

Tab. 4.1. Summary of selected operators ... 36
Tab. 4.2. Key differences between selected operators 36
Tab. 7.1. Operator repository analysis... 52
Tab. 7.2. Training needed .. 52
Tab. 7.3. Documentation examples ... 53
Tab. 7.4. Trivy vulnerability analysis results .. 53
Tab. 7.5. Snyk vulnerability analysis results... 54
Tab. 7.6. Results of the Postgres cluster deployment using the operator 55
Tab. 7.7. Ease of use ... 58
Tab. 7.8. Training needed: udpated .. 58
Tab. 7.9. Monitoring ... 59
Tab. 7.10. Performance analysis ... 62
Tab. 8.1. Popularity of operators .. 64
Tab. 8.2. Operators issues.. 64
Tab. 8.3. Operators reliability .. 64
Tab. 8.4. Operators renewal ... 65
Tab. 8.5. Training needed .. 66
Tab. 8.6. Documentation examples ... 66
Tab. 8.7. Learnability of operators.. 67
Tab. 8.8. Ease of use ... 67
Tab. 8.9. Monitoring ... 68
Tab. 8.10. Operability... 68
Tab. 8.11. Usability .. 68
Tab. 8.12. Vulnerability analysis .. 69
Tab. 8.13. Operators performance .. 70
Tab. 8.14. Overall quality of the operators .. 70
Tab. 2.1. Test plan No. 1 .. 89
Tab. 3.1. Test plan No. 2 .. 91
Tab. 4.1. Test plan No. 3 .. 96
Tab. 5.1. Test plan No. 4 .. 98
Tab. 5.2. Use case No. 1.. 99
Tab. 5.3. Use case No. 2.. 100
Tab. 5.4. Use case No. 3.. 101
Tab. 5.5. Use case No. 4.. 101
Tab. 5.6. Use case No. 5.. 102
Tab. 5.7. Use case No. 6.. 102

TBU in Zlín, Faculty of Applied Informatics 84

Tab. 5.8. Use case No. 7.. 103
Tab. 5.9. Use case No. 8.. 103
Tab. 5.10. Use case No. 9.. 104
Tab. 5.11. Use case No. 10 .. 104
Tab. 5.12. Use case No. 11 .. 105
Tab. 5.13. Use case No. 12 .. 105
Tab. 5.14. Use case No. 13 .. 106
Tab. 5.15. Use case No. 14 .. 106
Tab. 5.16. Use case No. 15 .. 107
Tab. 5.17. Use case No. 16 .. 107
Tab. 6.1. Test plan No. 5 .. 108

TBU in Zlín, Faculty of Applied Informatics 85

LIST OF APPENDICES

A I. General test plan
A II. Test process No. 1
A III. Test process No. 2
A IV. Test process No. 3
A V. Test process No. 4
A VI. Test process No. 5

APPENDIX A I. GENERAL TEST PLAN

• Test plan ID: TP0

• Context of testing:

– Project: Bachelor’s thesis.

– Test levels: Acceptance testing.

– Test types: Static and dynamic.

– Test items:

∗ Crunchy Postgres for Kubernetes Operator v5.3.1.

∗ CloudNativePG Operator v1.20.0.

∗ StackGres Operator v1.4.3.

∗ Percona Operator for Postgres 1.4.0.

– Test scope: Operator, Operator’s documentation, Operator’s repository.

– Test basis: Defined criteria.

• Risk register:

– Limited staff and time might prevent thorough testing of all features and
functionalities of the software during acceptance testing.

– Inadequately trained staff might struggle to design effective test cases, which
could result in missed defects and lower overall testing effectiveness.

– Due to the lack of expertise among staff members, the software’s readiness
for production might be inaccurately assessed, leading to incorrect conclu-
sions about its quality.

• Test strategy:

– General: The purpose of testing is to evaluate the ability of Operators to
fulfill the desired criterias, and to provide information for making informed
decisions on which Operator to select in last chapter. Non-functional re-
quirements will be tested with static and dynamic test techniques.

– Test levels: Acceptance testing

– Test deliverables: Test plans, test completion reports.

– Entry criteria: Created environments.

– Exit criteria: Decision metrics were collected.

– Test competition criteria: All criteria covered by at least one test case.

– Degree of independence: No connection between tested Operators and
tester. Tester is fully independent.

– Metrics to be collected:

∗ Static testing: Vulnerability analysis (number of vulnerabilities and
their severity), Repository review (sum of issues, sum of repaired issues,
sum of stars, sum of commits, repository creation date), Documentation
review (examples, training needed),

∗ Dynamic testing: The sum of the commands required to achieve func-
tionality. Covered monitoring. Performance described by transactions
per second.

– Test data requirements:

∗ Crunchy Postgres for Kubernetes Operator v5.3.1

· PGO: https://github.com/CrunchyData/postgres-operator-
examples

· PGODOC: https://access.crunchydata.com/documentation/postgres-
operator/v5/

· PGOREPO: https://github.com/CrunchyData/postgres-operator

∗ CloudNativePG Operator version 1.20.0

· CNPGO: https://raw.githubusercontent.com/cloudnative-
pg/cloudnative-pg/release-1.20/releases/cnpg-1.20.0.yaml

· CNPGODOC: https://cloudnative-pg.io/documentation/1.20/

· CNPGOREPO: https://github.com/cloudnative-pg/cloudnative-pg

∗ StackGres Operator version 1.4.3

· SPGO: https://stackgres.io/downloads/stackgres-
k8s/stackgres/helm/

· SPGODOC: https://stackgres.io/doc/1.4/

· SPGOREPO: https://gitlab.com/ongresinc/stackgres

∗ Percona Operator for PostgreSQL version 1.4.0

· PPOO: https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v1.4.0/deploy/operator.yaml

· PPODOC: https://docs.percona.com/percona-operator-for-
postgresql/index.html

· PPOREPO: https://github.com/percona/percona-postgresql-
operator

– Test environment requirements:

∗ Kind Kubernetes cluster with two worker nodes for all dynamic test
except performance tests, installed on Unix/Linux compatible machine.

∗ Google Kubernetes Engine with two worker nodes.

∗ Terraform

∗ Trivy security scanner.

∗ Kubectl kubernetes controll tool.

∗ EXCEL.

– Retesting: Retesting is not needed.

– Reggresion testing: Reggresion testing is not needed.

– Testing activities and estimates:

∗ Environment setup – 30m.

∗ Repository walkthrough – 2h/Operator.

∗ Documentation walkthrough – 2h/Operator.

∗ Deployment and configuration – 4h/Operator.

∗ Performance – 4h/Operator.

∗ Operabilitiy and documentation – 8h/Operator.

– Staffing (roles and responsibilities)

∗ Roles: Test architect, test manager, test designer, tester and test ana-
lyst.

∗ Staff: Miroslav Šiřina.

– Training needed

∗ Test management.

∗ Test design.

∗ Test analyst.

∗ Trivy and results interpretation skills.

– Test priorities

∗ Static tests have higher priority to dynamic.

∗ Critical criterias have higher priority.

– Schedule

∗ 1st May: repositories and documentations walkthroughs.

∗ 2nd May: vulnerability analysis.

∗ 3rd - 8th May: operability testing.

∗ 9th May: performance testing.

∗ 10th May: 11th Testing closure.

APPENDIX A II. TEST PROCESS NO. 1

Table 2.1 Test plan No. 1

Test plan ID tp1

Revision 2

Introducton Repositories walkthrough

Test items Operator’s repositories

Covered criteria CR1, CM1

Test type Static

Test approach Repositories walkthrough

Exit criteria All metrics gathered

Delivarables Sum of commits, sum of stars, sum of issues, sum of fixed issues.

Duration 2 h for each Operator

Reviewer Miroslav Šiřina

Start 1st May

Schedule 1st May: repositories walkthrough and test report.

Revisions Rev No. 2 - added test cases MRC5 to MRC9.

2.1 Test items

Test items for the procedure were following:

• PGOREPO from General test plan

• CNPGOREPO from General test plan

• SPGOREPO from General test plan

• PPODREPO from General test plan

• PPOJIRA https://jira.percona.com/projects/DISTPG/issues/DISTPG-
352?filter=allopenissues

2.2 Test tools

Excel sheet

2.3 Test procedure

• MRC1 - PGOREPO walkthrough

• MRC2 - CNPGOREPO walkthrough

• MRC3 - SPGOREPO walkthrough

• MRC4 - PPODREPO walkthrough

• MRC5 - PGOREPO cloning - retrieving the date of creation and number of
commits

• MRC6 - CNPGOREPO cloning - retrieving the date of creation and number of
commits

• MRC7 - SPGOREPO cloning - retrieving the date of creation and number of
commits

• MRC8 - PPODREPO cloning - retrieving the date of creation and number of
commits

• MRC9 - PPOJIRA walkthrough

2.4 Test completition report

Testing performed: Repositories walkthrough, repositories cloning, Percona Jira walk-
through
Deviations from planed testing: Percona is using Jira for tracking issues. To get issues
Jira walkthrough was necessary. To count number of commits and get the date of first
commit the repository cloning was necessary.
Test completion evaluation: The testing process was successful in gathering key data
about the system despite deviations from the initial plan. The flexibility in testing
procedures resulted in a more comprehensive evaluation and provided valuable insights
into the system.
Factors that blocked progress: reposistory clonning, Jira walkthrough
Test Result Analysis: The tests provided valuable data about the state and history of
repositories, as well as key insights into issue tracking.
Lessons Learned: The necessity to deviate from the initial test plan underlines the
importance of flexibility in testing procedures. An adaptive approach can lead to a
more thorough evaluation and better data collection.

APPENDIX A III. TEST PROCESS NO. 2

Table 3.1 Test plan No. 2

Test plan ID tp2

Revision 1

Introducton Checklist-based documentations review

Test items Operator’s documentations

Covered criteria CU1

Test type Static

Test approach Checklist-based Testing

Exit criteria All checklists completed

Delivarables List of examples and checklist

Duration 2 h for each Operator

Reviewer Miroslav Šiřina

Start 1st May

Schedule 1st May: documentations walkthrough and test report.

3.1 Checklist

• Instalation

• Minor upgrade to new version

• Major upgrade to new version

• Backup

• Restore

• Monitoring

• Vertical scaling

• Horizontal scaling

• Configuration Update

• Uninstall

• Training needed

3.2 Test procedure

• LC1 - PGODOC checklist-based review

• LC2 - CNPGODOC checklist-based review

• LC3 - SPGODOC checklist-based review

• LC4 - PPODOC checklist-based review

3.3 Test results

PGO Documentation https://access.crunchydata.com/documentation/postgres-

operator/v5/

Cluster creation
https://access.crunchydata.com/documentation/postgres-operator/v5/

tutorial/create-cluster/

Minor upgrade to new version
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/

tutorial/update-cluster/

Major upgrade to new version
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/

guides/major-postgres-version-upgrade/

Backup
https://access.crunchydata.com/documentation/postgres-operator/v5/

tutorial/backup-management/

Restore
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/

tutorial/disaster-recovery/

Monitoring
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/

tutorial/monitoring/

Vertical scaling
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/

tutorial/resize-cluster/

Horizontal scaling
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/

tutorial/resize-cluster/

Configuration Update
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/

tutorial/customize-cluster/

https://access.crunchydata.com/documentation/postgres-operator/v5/
https://access.crunchydata.com/documentation/postgres-operator/v5/
https://access.crunchydata.com/documentation/postgres-operator/v5/tutorial/create-cluster/
https://access.crunchydata.com/documentation/postgres-operator/v5/tutorial/create-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/update-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/update-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/guides/major-postgres-version-upgrade/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/guides/major-postgres-version-upgrade/
https://access.crunchydata.com/documentation/postgres-operator/v5/tutorial/backup-management/
https://access.crunchydata.com/documentation/postgres-operator/v5/tutorial/backup-management/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/disaster-recovery/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/disaster-recovery/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/monitoring/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/monitoring/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/resize-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/resize-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/resize-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/resize-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/customize-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/customize-cluster/

Uninstall
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/

tutorial/delete-cluster/

Notes: PGO use kustomize for customization of yaml manifests.
CNPGO
Documentation
https://cloudnative-pg.io/documentation/1.19/

Cluster creation
https://cloudnative-pg.io/documentation/1.19/quickstart/#part-3-deploy-

a-postgresql-cluster

Minor upgrade to new version
https://cloudnative-pg.io/documentation/1.19/rolling_update/

Major upgrade to new version Not found
Backup
https://cloudnative-pg.io/documentation/1.19/backup_recovery/#scheduled-

backups

Restore
https://cloudnative-pg.io/documentation/1.19/backup_recovery/#scheduled-

backups

Monitoring
https://cloudnative-pg.io/documentation/1.19/monitoring/

Vertical scaling
https://cloudnative-pg.io/documentation/1.19/resource_management/

#resource-management

Horizontal scaling
https://cloudnative-pg.io/documentation/1.19/resource_management/

#resource-management

Configuration Update
https://cloudnative-pg.io/documentation/1.19/postgresql_conf/

#postgresql-configuration

Uninstall
https://cloudnative-pg.io/documentation/1.19/cnpg-plugin/#destroy

Notes: Uninstall example use cnpg plugin. Helm is needed to install monitoring.
SPGO Documentation
https://stackgres.io/doc/1.4/

Cluster creation
https://stackgres.io/doc/1.4/demo/quickstart/

Minor upgrade to new version – It is mentioned in documentation but without example

https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/delete-cluster/
https://access.crunchydata.com/documentation/postgres-operator/5.3.1/tutorial/delete-cluster/
https://cloudnative-pg.io/documentation/1.19/
https://cloudnative-pg.io/documentation/1.19/quickstart/#part-3-deploy-a-postgresql-cluster
https://cloudnative-pg.io/documentation/1.19/quickstart/#part-3-deploy-a-postgresql-cluster
https://cloudnative-pg.io/documentation/1.19/rolling_update/
https://cloudnative-pg.io/documentation/1.19/backup_recovery/#scheduled-backups
https://cloudnative-pg.io/documentation/1.19/backup_recovery/#scheduled-backups
https://cloudnative-pg.io/documentation/1.19/backup_recovery/#scheduled-backups
https://cloudnative-pg.io/documentation/1.19/backup_recovery/#scheduled-backups
https://cloudnative-pg.io/documentation/1.19/monitoring/
https://cloudnative-pg.io/documentation/1.19/resource_management/#resource-management
https://cloudnative-pg.io/documentation/1.19/resource_management/#resource-management
https://cloudnative-pg.io/documentation/1.19/resource_management/#resource-management
https://cloudnative-pg.io/documentation/1.19/resource_management/#resource-management
https://cloudnative-pg.io/documentation/1.19/postgresql_conf/#postgresql-configuration
https://cloudnative-pg.io/documentation/1.19/postgresql_conf/#postgresql-configuration
https://cloudnative-pg.io/documentation/1.19/cnpg-plugin/#destroy
https://stackgres.io/doc/1.4/
https://stackgres.io/doc/1.4/demo/quickstart/

https://stackgres.io/doc/1.4/reference/crd/sgdbops/#major-version-

upgrade

Major upgrade to new version - It is mentioned in documentation but without example
https://stackgres.io/doc/1.4/reference/crd/sgdbops/#minor-version-

upgrade

Backup
https://stackgres.io/doc/1.4/tutorial/complete-cluster/backup-

configuration/

Restore
https://stackgres.io/doc/1.4/runbooks/restore-backup/

Monitoring
https://stackgres.io/doc/1.4/install/prerequisites/monitoring/

Vertical scaling
https://stackgres.io/doc/1.4/tutorial/complete-cluster/instance-profile/

Horizontal scaling
https://stackgres.io/doc/1.4/tutorial/complete-cluster/create-cluster/

Configuration Update
https://stackgres.io/doc/1.4/tutorial/complete-cluster/postgres-config/

Uninstall
https://stackgres.io/doc/1.4/administration/uninstall/

Notes: Helm is needed to install monitoring.
PPO Documentation
https://docs.percona.com/percona-operator-for-postgresql/index.html

Cluster creation
https://docs.percona.com/percona-operator-for-postgresql/

gke.html#installing-the-operator

Minor upgrade to new version
https://docs.percona.com/percona-operator-for-postgresql/update.html?h=

postgres+update#semi-automatic-upgrade

Major upgrade to new version
https://docs.percona.com/percona-operator-for-postgresql/update.html?h=

postgres+update#semi-automatic-upgrade

Backup
https://docs.percona.com/percona-operator-for-postgresql/backups.html?h=

backup#use-google-cloud-storage-for-backups

Restore
https://docs.percona.com/percona-operator-for-postgresql/backups.html?h=

backup#use-google-cloud-storage-for-backups

https://stackgres.io/doc/1.4/reference/crd/sgdbops/#major-version-upgrade
https://stackgres.io/doc/1.4/reference/crd/sgdbops/#major-version-upgrade
https://stackgres.io/doc/1.4/reference/crd/sgdbops/#minor-version-upgrade
https://stackgres.io/doc/1.4/reference/crd/sgdbops/#minor-version-upgrade
https://stackgres.io/doc/1.4/tutorial/complete-cluster/backup-configuration/
https://stackgres.io/doc/1.4/tutorial/complete-cluster/backup-configuration/
https://stackgres.io/doc/1.4/runbooks/restore-backup/
https://stackgres.io/doc/1.4/install/prerequisites/monitoring/
https://stackgres.io/doc/1.4/tutorial/complete-cluster/instance-profile/
https://stackgres.io/doc/1.4/tutorial/complete-cluster/create-cluster/
https://stackgres.io/doc/1.4/tutorial/complete-cluster/postgres-config/
https://stackgres.io/doc/1.4/administration/uninstall/
https://docs.percona.com/percona-operator-for-postgresql/index.html
https://docs.percona.com/percona-operator-for-postgresql/gke.html#installing-the-operator
https://docs.percona.com/percona-operator-for-postgresql/gke.html#installing-the-operator
https://docs.percona.com/percona-operator-for-postgresql/update.html?h=postgres+update#semi-automatic-upgrade
https://docs.percona.com/percona-operator-for-postgresql/update.html?h=postgres+update#semi-automatic-upgrade
https://docs.percona.com/percona-operator-for-postgresql/update.html?h=postgres+update#semi-automatic-upgrade
https://docs.percona.com/percona-operator-for-postgresql/update.html?h=postgres+update#semi-automatic-upgrade
https://docs.percona.com/percona-operator-for-postgresql/backups.html?h=backup#use-google-cloud-storage-for-backups
https://docs.percona.com/percona-operator-for-postgresql/backups.html?h=backup#use-google-cloud-storage-for-backups
https://docs.percona.com/percona-operator-for-postgresql/backups.html?h=backup#use-google-cloud-storage-for-backups
https://docs.percona.com/percona-operator-for-postgresql/backups.html?h=backup#use-google-cloud-storage-for-backups

Monitoring
https://docs.percona.com/percona-operator-for-postgresql/

monitoring.html?h=version#installing-the-pmm-client

Vertical scaling Not found
Horizontal scaling
https://docs.percona.com/percona-operator-for-postgresql/scaling.html?h=

scale

Configuration Update
https://docs.percona.com/percona-operator-for-postgresql/

options.html#creating-a-cluster-with-custom-options

Uninstall Not found
Notes: Helm is needed to install monitoring.

3.4 Test completition report

Testing performed: Checklist-based review
Deviations from planed testing: None
Test completion evaluation: The testing process was successful.
Factors that blocked progress: None
Test Result Analysis: The tests provided valuable data about the state of documenta-
tions, as well as key insights into Operators operation.
Lessons Learned: Future projects should be prepared for a high level of diversity in
documentations. This might involve allocating more time for research or including
personnel with a broader range of expertise.

https://docs.percona.com/percona-operator-for-postgresql/monitoring.html?h=version#installing-the-pmm-client
https://docs.percona.com/percona-operator-for-postgresql/monitoring.html?h=version#installing-the-pmm-client
https://docs.percona.com/percona-operator-for-postgresql/scaling.html?h=scale
https://docs.percona.com/percona-operator-for-postgresql/scaling.html?h=scale
https://docs.percona.com/percona-operator-for-postgresql/options.html#creating-a-cluster-with-custom-options
https://docs.percona.com/percona-operator-for-postgresql/options.html#creating-a-cluster-with-custom-options

APPENDIX A IV. TEST PROCESS NO. 3

4.1 Test plan No. 3

Table 4.1 Test plan No. 3

Test plan ID tp3

Revision 4

Introducton Vulnerability analysis of operators

Test items Operator’s container images

Covered criteria CS1

Test type Static

Test approach Vulnerability analysis

Exit criteria Completed analysis

Tools Trivy security scanner, Snyk security scanner

Delivarables Sum of vulnerabilities, vulnerability reports

Duration 4 h for each Operator

Tester Miroslav Šiřina

Start 2nd May

End 18th May

Schedule 2nd May: analysis and test report.

Revisions 19th May: Rev No. 2 - added test case STC5.

19th May: Rev No. 3 - added test cases STC6 - STC10.

19th May: Rev No. 3 - Snyk introduced

23th May: Rev No. 4 - added test cases STC11 - STC14.

4.2 Test items

Test items for the procedure were following:

• registry.developers.crunchydata.com/crunchydata/postgres-operator:ubi8-5.3.1-
0

• ghcr.io/cloudnative-pg/cloudnative-pg:1.20.0

• stackgres/operator:1.4.3

• percona/percona-postgresql-operator:1.4.0-postgres-operator

4.3 Test tools

Trivy security scaner version: 0.39.0, Vulnerability DB for all test cases except STC5
from 2nd May. Vulnerability DB for STC5 from 18th May. Snyk v1.1159.0.

4.4 Test procedure

• STC1 - Vulnerability analysis of PGO

• STC2 - Vulnerability analysis of CNPGO

• STC3 - Vulnerability analysis of SPGO

• STC4 - Vulnerability analysis of PPO

• STC5 - Vulnerability analysis of Debian

• STC6 - Vulnerability analysis of PGO

• STC7 - Vulnerability analysis of CNPGO

• STC8 - Vulnerability analysis of SPGO

• STC9 - Vulnerability analysis of PPO

• STC10 - Vulnerability analysis of Debian

• STC11 - Vulnerability analysis of Kubernetes cluster with Postgres cluster de-
ployed by PGO

• STC12 - Vulnerability analysis of Kubernetes cluster with Postgres cluster de-
ployed by CNPGO

• STC13 - Vulnerability analysis of Kubernetes cluster with Postgres cluster de-
ployed by SPGO

• STC14 - Vulnerability analysis of Kubernetes cluster with Postgres cluster de-
ployed by PPO

4.5 Test completition report

Testing performed: Vulnerability analysis
Deviations from planed testing: Described in revisions.
Test completion evaluation: The testing process was successful.
Factors that blocked progress: None
Test Result Analysis: The tests provided valuable data about vulnerabilities in Oper-
ators.

APPENDIX A V. TEST PROCESS NO. 4

Table 5.1 Test plan No. 4

Test plan ID tp4

Revision 1

Introducton This test should test the operators usability

and quality of their monitoring.

Test items Operator deployed in the cluster

Covered criteria CU2

Test type Dynamic

Test approach Use case based Blackbox testing

Exit criteria Each use case covered with atleast one test case

Tools Kind cluster, kubectl, helm, kustomize

Delivarables Number of commands needed to perform required operation.

List of covered monitoring topics. Print screens of monitoring.

Duration 8 h for each Operator

Tester Miroslav Šiřina

Start 3rd May

End 8th May

Schedule 3rd May: Use cases creation

4th May: PGO

5th May: CNPGO

6th May: SPGO

7th May: PPO

5.1 Actors

K - Kubernetes cluster
U - User
O - Operator

5.2 Use cases
5.3 Test procedure

• TOA1 - Operator installation.

Table 5.2 Use case No. 1

Use case name Operator installation

Use case ID UCA1

Traceability CU2A

Precondition Prepared Kubernetes cluster.

Scenario

Step No. Actor Description

1 U Use case starts with prepared kubernetes cluster.

2 U The user initiates the installation of the operator.

3 K Kubernetes installs the operator.

4 U Use case ends.

• TOB1 - Cluster installation.

• TOC1 - Cluster monitoring.

• TOD1 - Cluster vertical scaling.

• TOE1 - Cluster horizontal scaling.

• TOF1 - Cluster connection pooling.

• TOG1 - Cluster extension install.

• TOG2 - Cluster number of connections update.

• TOG3 - Cluster max_wal_size change.

• TOH1 - Cluster scheduled backup.

• TOH2 - Cluster ad-hoc backup.

• TOI1 - Cluster restore.

• TOJ1 - Cluster minor update.

• TOK1 - Cluster major update.

• TOL1 - Operator uninstallation.

• TOM1 - Cluster uninstall.

Table 5.3 Use case No. 2

Use case name Basic cluster creation

Use case ID UCA2

Traceability CU2A

Precondition Installed Operator.

Scenario

Step No. Actor Description

1 U Use case starts with the operator installed.

2 U The user initiates basic cluster install.

3 O The operator installs the cluster.

4 U Use case ends.

5.4 Test completition report

Testing performed: Use case base Black box testing
Deviations from planed testing: None
Test completion evaluation: The testing process was successful.
Factors that blocked progress: Diverse documentation and diversity of operators.
Test Result Analysis: The tests provided valuable data about the ease of use of the
operators.
Lessons Learned: Future projects should be prepared for a high level of diversity in
documentations and tested items.

Table 5.4 Use case No. 3

Use case name Monitoring installation

Use case ID UCC1

Traceability CU2A, CU2B

Precondition Installed Operator and created cluster.

Scenario

Step No. Actor Description

1 U Use case starts with created cluster.

2 U The user initiates monitoring installation.

3 O The operator installs cluster monitoring.

4 U Use case ends.

Table 5.5 Use case No. 4

Use case name Vertical scaling

Use case ID UCD1

Traceability CU2A

Precondition Installed Operator and created cluster.

Scenario

Step No. Actor Description

1 U Use case starts with created cluster.

2 U The user initiates vertical scaling.

3 O The operator scales the cluster.

4 U Use case ends.

Table 5.6 Use case No. 5

Use case name Horizontal scaling

Use case ID UCE1

Traceability CU2A

Precondition Installed Operator and created cluster.

Scenario

Step No. Actor Description

1 U Use case starts with created cluster.

2 U The user initiates horizontal scaling.

3 O The operator scales the cluster.

4 U Use case ends.

Table 5.7 Use case No. 6

Use case name Connection pooling

Use case ID UCF1

Traceability CU2A

Precondition Installed Operator and created cluster.

Scenario

Step No. Actor Description

1 U Use case starts with created cluster.

2 U The user initiates connection pooling installation.

3 O The operator installs connection pooler.

4 U Use case ends.

Table 5.8 Use case No. 7

Use case name Configuration update - extension installation

Use case ID UCG1

Traceability CU2A

Precondition Installed Operator and created cluster.

Scenario

Step No. Actor Description

1 U Use case starts with created cluster.

2 U The user initiates Postgis extension installation.

3 O The operator installs Postgis extension.

4 U Use case ends.

Table 5.9 Use case No. 8

Use case name Configuration update - connections increase

Use case ID UCG2

Traceability CU2A

Precondition Installed Operator, created cluster, installed pooler.

Scenario

Step No. Actor Description

1 U Use case starts with created cluster and installed pooler.

2 U The user increase connection pooler connections.

3 O The operator updates connection pooler configuration.

4 U Use case ends.

Table 5.10 Use case No. 9

Use case name Configuration update - max wal size

Use case ID UCG3

Traceability CU2A

Precondition Installed Operator and created cluster.

Scenario

Step No. Actor Description

1 U Use case starts with created cluster.

2 U The user initiates max_wal_size parameter update.

3 O The operator updates max_wal_size parameter.

4 U Use case ends.

Table 5.11 Use case No. 10

Use case name Cluster scheduled backup

Use case ID UCH1

Traceability CU2A

Precondition Installed Operator and created cluster.

Scenario

Step No. Actor Description

1 U Use case starts with created cluster.

2 U The user creates cluster backup schedule.

3 O The operator applies the cluster backup schedule.

4 O The operator creates cluster backup.

5 U Use case ends.

Table 5.12 Use case No. 11

Use case name Cluster ad-hoc backup

Use case ID UCH2

Traceability CU2A

Precondition Installed Operator and created cluster.

Scenario

Step No. Actor Description

1 U Use case starts with created cluster.

2 U The user initiates ad-hoc backup.

3 O The operator creates cluster backup.

4 U Use case ends.

Table 5.13 Use case No. 12

Use case name Cluster restore

Use case ID UCI1

Traceability CU2A

Precondition Installed Operator and created backup.

Scenario

Step No. Actor Description

1 U Use case starts with created backup.

2 U The user initiates cluster restore.

3 O The operator restores the cluster.

4 U Use case ends.

Table 5.14 Use case No. 13

Use case name Minor upgrade

Use case ID UCJ1

Traceability CU2A

Precondition Installed Operator and created lower minor version cluster.

Scenario

Step No. Actor Description

1 U The use case with the operator installed

and lower minor version cluster created.

2 U The user initiates minor version upgrade.

3 O The operator performs minor version upgrade.

4 U Use case ends.

Table 5.15 Use case No. 14

Use case name Major upgrade

Use case ID UCK1

Traceability CU2A

Precondition Installed Operator and created lower major version cluster.

Scenario

Step No. Actor Description

1 U The use case with the operator installed.

and lower major version cluster created.

2 U The user initiates major version upgrade.

3 O The operator performs major version upgrade.

4 U Use case ends.

Table 5.16 Use case No. 15

Use case name Operator uninstallation

Use case ID UCL1

Traceability CU2A

Precondition Installed Operator and created cluster.

Scenario

Step No. Actor Description

1 U Use case starts with created cluster.

2 U The user initiates Operator uninstallation.

3 O Operator uninstalls but keep the cluster

4 U Use case ends.

Table 5.17 Use case No. 16

Use case name Cluster uninstallation

Use case ID UCM1

Traceability CU2A

Precondition Installed Operator and created cluster.

Scenario

Step No. Actor Description

1 U Use case starts with created cluster.

2 U The user initiates cluster uninstallation.

3 O Operator uninstalls cluster.

4 U Use case ends.

APPENDIX A VI. TEST PROCESS NO. 5

Table 6.1 Test plan No. 5

Test plan ID tp5

Revision 1

Introducton Performance analysis

Test items Operator deployed GKE in the cluster

Covered criteria CP

Test type Dynamic

Test approach Performance analysis

Exit criteria Completed analysis

Tools PgBench Postgres benchmark tool

Delivarables Performance reports

Duration 4 h for each Operator

Tester Miroslav Šiřina

Start 9th May

Schedule 9th May: analysis and test report.

6.1 Test completition report

Testing performed: Performance analysis
Deviations from planed testing: SPGO analysis took too long
Test completion evaluation: None
Factors that blocked progress: Deploying SPGO proved challenging due to the fact that
SPGO requires a cluster profile to deploy the cluster, which will specify the allocated
processor and memory. With the correct settings of these values, the cluster was unable
to find suitable resources for SPGO. By gradually reducing these values, available
resources were eventually found.
Test Result Analysis: The tests provided valuable data about performanc of Postgres
deployed by Operators.

6.2 Test results
6.2.1 PGO

pgbench (15.2)
starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>

scaling factor: 1
query mode: simple
number of clients: 25
number of threads: 10
maximum number of tries: 1
number of transactions per client: 10000
number of transactions actually processed: 250000/250000
number of failed transactions: 0 (0.000%)
latency average = 45.879 ms
initial connection time = 745.406 ms
tps = 544.913924 (without initial connection time)
latency average = 46.016 ms
initial connection time = 688.436 ms
tps = 543.289895 (without initial connection time)
latency average = 46.424 ms
initial connection time = 750.453 ms
tps = 538.511794 (without initial connection time)

6.2.2 CNPGO

pgbench (15.2)
starting vacuum...end.
pgbench: error: client 6 script 0 aborted in command 4 query 0: FATAL: query wait
timeout
SSL connection has been closed unexpectedly
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 25
number of threads: 10
maximum number of tries: 1
number of transactions per client: 10000
number of transactions actually processed: 240000/250000
number of failed transactions: 0 (0.000%)
latency average = 61.927 ms
initial connection time = 729.483 ms
tps = 403.698126 (without initial connection time)
pgbench: error: Run was aborted; the above results are incomplete.
command terminated with exit code 2

latency average = 62.105 ms
initial connection time = 710.013 ms
tps = 402.544415 (without initial connection time)
latency average = 63.673 ms
initial connection time = 706.203 ms
tps = 392.629101 (without initial connection time)

6.2.3 PPO

pgbench (15.2, server 14.7 - Percona Distribution)
starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 25
number of threads: 10
maximum number of tries: 1
number of transactions per client: 10000
number of transactions actually processed: 250000/250000
number of failed transactions: 0 (0.000%)
latency average = 62.272 ms
initial connection time = 707.856 ms
tps = 401.464378 (without initial connection time)
pgbench (15.2, server 14.7 - Percona Distribution)
latency average = 63.769 ms
initial connection time = 690.586 ms
tps = 392.039997 (without initial connection time)
latency average = 64.467 ms
initial connection time = 574.644 ms
tps = 387.793393 (without initial connection time)

6.2.4 SPGO

pgbench (15.2, server 15.1 (OnGres 15.1-build-6.18))
starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 25
number of threads: 10

maximum number of tries: 1
number of transactions per client: 10000
number of transactions actually processed: 250000/250000
number of failed transactions: 0 (0.000%)
latency average = 87.906 ms
initial connection time = 60.527 ms
tps = 284.394442 (without initial connection time)
latency average = 89.321 ms
initial connection time = 67.533 ms
tps = 279.890815 (without initial connection time)
latency average = 80.863 ms
initial connection time = 74.577 ms
tps = 309.164610 (without initial connection time)

	Introduction
	Thesis objective
	Resource questions
	I Theory
	Background
	Postgres
	Write Ahead Log
	Backup and restore
	High Availability
	Load Balancing and Connection Pooling

	Kubernetes
	Kubernetes Components
	Kubernetes Concepts

	Running Postgres in Kubernetes
	Database system lifecycle
	Operators

	Operators for Lifecycle Management in Kubernetes
	Crunchy Postgres for Kubernetes
	EDB Postgres for Kubernetes
	CloudNativePG
	StackGres operator
	Percona operator for PostgreSQL
	Summary and key differences

	Metrics
	Performance
	Reliability
	Usability
	Maintenance
	Security

	Testing methodology
	Notice
	Criteria
	Performance testing
	Reliability testing
	Usability testing
	Maintenance testing
	Security testing
	Test management process
	Test strategy and planning
	Test plan
	Test monitoring and control process

	Test completion process
	Dynamic and static test processes
	Test design and implementation processes
	Test environment and data management processes
	Test execution process
	Test incident report process
	Level of detail
	II APPLICATION OF THEORY
	Test process
	Tools
	Static test process
	Reliability and maintenance
	Usability: Learnability
	Security

	Dynamic test process
	Environments
	Usability: Operability
	Performance
	Issues with CNPGO
	Issues with SPGO
	Issues with PPO

	Evaluation
	Measuring rule
	Reliability
	Maturity
	Reliability
	Maintenance

	Usability
	Learnability
	Operability

	Overall usability
	Security
	Performance
	Overall quality of the operators

	Conclusion

	References
	List of Abbreviations
	List of Figures
	List of Tables
	List of Appendices
	Test items
	Test tools
	Test procedure
	Test completition report
	Checklist
	Test procedure
	Test results
	Test completition report

	Test plan No. 3
	Test items
	Test tools

	Test procedure
	Test completition report
	Actors
	Use cases
	Test procedure
	Test completition report
	Test completition report
	Test results
	PGO
	CNPGO
	PPO
	SPGO

