

Performance comparison between Entity
Framework Core 6 and Dapper

Mohammed Syamand Yaba

Bachelor's thesis

2023

Performance comparison between Entity
Framework Core 6 and Dapper

Mohammed Syamand Yaba

Bachelor's thesis
2023

I hereby declare that:

• I understand that by submitting my Bachelor´s Thesis, I agree to the publication of my

work according to Law No. 111/1998, Coll., On Universities and on changes and

amendments to other acts (e.g. the Universities Act), as amended by subsequent

legislation, without regard to the results of the defence of the thesis.

• I understand that my Bachelor´s Thesis will be stored electronically in the university

information system and be made available for on-site inspection, and that a copy of the

Bachelor´s Thesis will be stored in the Reference Library of the Faculty of Applied

Informatics, Tomas Bata University in Zlín, and that a copy shall be deposited with my

Supervisor.

• I am aware of the fact that my Bachelor´s Thesis is fully covered by Act No. 121/2000

Coll. On Copyright, and Rights Related to Copyright, as amended by some other laws

(e.g. the Copyright Act), as amended by subsequent legislation; and especially, by §35,

Para. 3.

• I understand that, according to §60, Para. 1 of the Copyright Act, TBU in Zlín has the

right to conclude licensing agreements relating to the use of scholastic work within the

full extent of §12, Para. 4, of the Copyright Act.

• I understand that, according to §60, Para. 2, and Para. 3, of the Copyright Act, I may use

my work - Bachelor´s Thesis, or grant a license for its use, only if permitted by the

licensing agreement concluded between myself and Tomas Bata University in Zlín with

a view to the fact that Tomas Bata University in Zlín must be compensated for any

reasonable contribution to covering such expenses/costs as invested by them in the

creation of the thesis (up until the full actual amount) shall also be a subject of this

licensing agreement.

• I understand that, should the elaboration of the Bachelor´s Thesis include the use of

software provided by Tomas Bata University in Zlín or other such entities strictly for

study and research purposes (i.e. only for non-commercial use), the results of my

Bachelor´s Thesis cannot be used for commercial purposes.

• I understand that, if the output of my Bachelor´s Thesis is any software product(s),

this/these shall equally be considered as part of the thesis, as well as any source codes,

or files from which the project is composed. Not submitting any part of this/these

component(s) may be a reason for the non-defence of my thesis.

I herewith declare that:

• I have worked on my thesis alone and duly cited any literature I have used. In the case

of the publication of the results of my thesis, I shall be listed as co-author.

• That the submitted version of the thesis and its electronic version uploaded to IS/STAG

are both identical.

In Zlín; dated:

 Student´s Signature

ABSTRAKT

Hlavním zaměřením této práce jsou veřejně dostupné nástroje pro mapování objektů na

relační databáze (ORM), konkrétně na Dapper a Entity Framework Core 6. Tyto nástroje

jsou často první volbou vývojářů, kteří potřebují spravovat a manipulovat s daty v relačních

databázích v .NET. S rozvojem technologií jsou vyvíjeny nové nástroje pro ORM a stávající

jsou neustále aktualizovány a zdokonalovány. Cílem této práce je vybrat nejpopulárnější a

moderní nástroje pro ORM, Dapper a Entity Framework Core 6, sestavit standardní sadu

kritérií pro porovnání a provést podrobnou analýzu na základě těchto kritérií. Výsledkem

této studie je informační zdroj pro vývojáře, kteří se chtějí seznámit s výhodami a

nevýhodami těchto dvou předních ORM a na základě svých specifických požadavků si

vybrat vhodný nástroj.

Klíčová slova:

Objektově-relační mapování (ORM), Entity Framework Core 6, Dapper, .NET

ABSTRACT

The focus of this thesis is on publicly accessible Object-Relational Mapping (ORM) tools,

specifically Dapper and Entity Framework Core 6. These tools are often the first choice for

developers who need to manage and manipulate data in relational databases in the .NET

ecosystem. As technology evolves, new ORM tools are developed, and existing ones are

constantly updated and improved. The goal of this thesis is to select the most popular and

contemporary ORM tools, Dapper and Entity Framework Core 6, formulate a standard set

of criteria for comparison, and perform a detailed analysis based on these criteria. The result

of this research aims to be an insightful resource for developers seeking to understand the

pros and cons of these two leading ORMs and make an informed choice based on their

specific requirements.

Keywords:

Object-Relational Mapping (ORM), Entity Framework Core 6, Dapper, .NET,

ACKNOWLEDGEMENTS

I would like to express my deepest and most heartfelt gratitude to everyone who has been an

unwavering pillar of support throughout my academic journey. Your constant love,

encouragement, and unwavering belief in my abilities have been instrumental in my

achievements and success.

My beloved family and friends, I am sincerely grateful for your unending support,

understanding, and encouragement. Your belief in my abilities, even during the most

challenging times, has pushed me to overcome obstacles and reach new heights. I am forever

blessed to have such an incredible support system in my life.

I am deeply grateful to my esteemed supervisor, Ing. Tomáš Vogeltanz, Ph.D. , for his

invaluable guidance, unwavering commitment, and mentorship. His trust, wisdom, and

passion have shaped my academic journey profoundly. Additionally, I deeply appreciate

Luis Antonio Beltran Prieto, MSc, for his invaluable contributions as my consultant. His

insights, expertise, and unwavering support greatly enriched my research.

I hereby declare that the print version of my Bachelor's/Master's thesis and the electronic

version of my thesis deposited in the IS/STAG system are identical.

CONTENTS

INTRODUCTION .. 9

I THEORY ... 10

1 LITERATURE REVIEW .. 11

1.1 OBJECT RELATIONAL MAPPING (ORM) ... 11

1.1.1 ORM TOOLS FOR .NET .. 13

1.1.2 WHY AN ORM IS NEEDED .. 14

1.1.3 ADVANTAGES OF ORM .. 15

1.1.4 DISADVANTAGES OF ORM ... 15

1.2 DAPPER .. 15

1.2.1 ADVANTAGES OF DAPPER .. 16

1.2.2 DISADVANTAGES OF DAPPER ... 16

1.2.3 IMPORTANCE OF DAPPER .. 17

1.2.4 WHEN TO USE DAPPER ... 17

1.2.5 VERSIONS OF DAPPER .. 17

1.3 ENTITY FRAMEWORK CORE ... 18

1.3.1 ADVANTAGES OF ENTITY FRAMEWORK CORE ... 19

1.3.2 DISADVANTAGES OF ENTITY FRAMEWORK CORE .. 19

1.3.3 IMPORTANCE OF EF ... 19

1.3.4 DETERMINING OPTIMAL USE CASE FOR ENTITY FRAMEWORK IN SOFTWARE

DEVELOPMENT ... 20

1.3.5 VERSIONS OF ENTITY FRAMEWORK CORE .. 20

II ANALYSIS .. 22

2 PERFORMANCE COMPARISON .. 23

2.1 METHODOLOGY ... 23

2.2 CLASSIFICATION .. 32

2.2.1 CONTROLLERS .. 32

2.2.2 DATABASE SERVERS .. 41

2.2.3 MODEL ... 49

2.2.4 CALL RESULTS ... 51

2.3 PERFORMANCE COUNTER AND HTTP REQUEST 55

2.4 SCREENSHOT OF APP ... 62

2.5 BENCHMARKS ... 67

2.6 RESULT .. 73

CONCLUSION ... 78

BIBLIOGRAPHY .. 79

LIST OF ABBREVIATIONS ... 82

LIST OF FIGURES .. 83

LIST OF TABLES ... 87

APPENDICES .. 88

TBU in Zlín, Faculty of Applied Informatics 9

INTRODUCTION

This thesis explores deeply into the realm of ORM frameworks. In the first part, we will

compare the relative merits of two popular solutions in terms of speed: EF Core 6 and

Dapper. It is impossible to overstate the significance of ORM frameworks in modern

software engineering. These frameworks simplify the process of interacting with databases

while simultaneously boosting output. The purpose of this study is to shed light on the extent

to which these frameworks may be used in a diverse assortment of use cases, with a particular

concentration on how well they perform. Investigating important variables such as query

execution time, memory utilization, and scalability allows developers to choose an ORM

framework that not only satisfies the requirements of their application but also achieves the

highest possible level of performance. The effective management of data is of the utmost

importance in our increasingly computerized society. Object-Relational Mapping (ORM)

plays a significant role in the process of integrating object-oriented programming languages

with relational databases. There are two prominent ORM tools available for use in the

context of the.NET framework, Dapper and Entity Framework Core 6. The current

investigation intends to fill the gap in knowledge by carrying out a focused analysis that

places an emphasis on performance, contrasting Dapper with Entity Framework Core 6. The

primary objective of this study is to carry out exhaustive benchmarking tests, with an

emphasis on the performance characteristics of several Object-Relational Mapping tools

while performing a variety of database operations under a range of different load conditions.

The major purpose of this inquiry is to supply the.NET community with a comprehensive

grasp of the performance of each Object-Relational Mapping (ORM) tool, thereby

facilitating the.NET community's capacity to make well-informed judgements that are

tailored to their individual requirements.

TBU in Zlín, Faculty of Applied Informatics 10

I. THEORY

TBU in Zlín, Faculty of Applied Informatics 11

1 LITERATURE REVIEW

Data is a pervasive and essential force that is driving the progression of the digital

environment in the current age of technology. To make the most of the opportunities

presented by their data, businesses are increasingly relying on data-centric technologies such

as big data, data science, and data visualization. Relational database management systems

RDBMS are typically the tools of choice for businesses when it comes to effectively storing

and managing data. SQL queries are employed to extract data and make use of it so that a

variety of business applications may be improved. Developers that work with object-oriented

programming languages (OOP) can successfully align with the structure of relational

database systems RDB. ORM is a technique that links two disparate methods of organizing

and storing data by providing a foundation for doing so. ORM is a valuable resource for

tasks that are not too difficult. However, it can be difficult to use it for quick queries due to

the complexity of the tool and the difficulty of expressing such queries via code. In my own

experience, I've learned that the most effective way to convey complicated questions is

through the use of programming languages. This is due to the inherent complexity of these

tools and the difficulty of successfully expressing such queries via code [1].

1.1 Object Relational Mapping (ORM)

Since it may make the development process more efficient, object-relational mapping is

widely used in the field of web development. This is especially true in circumstances that

entail the use of a database. This article provides a definition of ORM, as can be seen in

Figure 1 as well as a description of the procedures necessary to implement it in a software

application developed with. NET. Within the realm of.NET web development, the idea of

ORM is very common knowledge and is likely a requirement for professional roles. Because

the use of ORM makes the creation and maintenance of a database easier, it is necessary for

developers to acquire a full grasp of this concept [2].

When working with databases and object-oriented programming (OOP) languages, one of

the issues that might arise is aligning the programming code with the architecture of the

database. ORM is an approach that builds an intermediate layer between the database and

the computer language. Because of this, programmers are given the opportunity to modify

data in a way that is not constrained by the OOP paradigm. OOP developers need to have a

full grasp of the structured query language SQL and be able to write code in SQL fluently to

be able to link their application to a SQL database. Developers that are well-versed in SQL

TBU in Zlín, Faculty of Applied Informatics 12

are more than capable of developing programs that can access data. It may be a very time-

consuming operation for developers to extract data items from code strings in raw SQL. SQL

query generators give an extra layer of abstraction to the SQL code, which allows for a more

complete representation of the data. Nevertheless, developers are expected to have an in-

depth knowledge of SQL and the ability to apply it in an effective manner. Despite the

widespread usage of ORMs, which are also known as Object-Relational Mappers, they

continue to be the subject of discussion in academic circles. Those who are in favor of object-

relational mapping ORM claim that its implementation results in a gain in productivity, an

enhancement of application architecture, a better potential for code reuse, and an increased

ease of application maintenance over an extended period. According to the findings of study

carried out by specialists in the industry, the efficacy of ORMs is seen as a disadvantage by

a lot of people. This article's goals are to provide a full explanation of Object-Relational

Mapping ORMs, compare ORMs and SQL tools, and discuss the relative benefits and

drawbacks of each of these two categories of software. This article's goal is to provide the

reader with sufficient information to enable them to establish a knowledgeable assessment

of the suitability of employing ORMs for the purpose of constructing database applications

in their separate projects. This assessment will be made possible by providing the reader

with[3].

Figure 1: Architecture of ORM [29]

The use of object-relational mapping technology offers a considerable advantage in terms of

shortening the amount of time required for development and removing SQL code that is not

needed or repetitive. An extra perk is gained by having the capability to monitor changes

made to databases. There are ORM-specific libraries that log every alteration that is made to

a database and maintain track of the history of those changes[4].

TBU in Zlín, Faculty of Applied Informatics 13

1.1.1 ORM Tools for .NET

An ORM utility, is a piece of software that was designed to assist developers of Object-

Oriented Programming in their interactions with relational databases. The creation of a one-

of a kind ORM software solution from the ground up could be avoided if one chooses to

make use of the technologies instead. The example SQL code that follows is one way that

data may be retrieved from a database that is specific to a book table by using the SQL as

shown in Figure 2.

Figure 2 :The SQL script provides an example of SQL code for retrieving data

from a specific book table in a database.

The code in Figure 2 retrieves a specific field from the Book’s table. Using the WHERE

clause, it was specified that the data must come from a subscriber with id 10. On the other

hand, an ORM tool may conduct a similar query by making use of simplified approaches to

do the task. To put it another way:

Figure 3 : Retrieving specific data using ORM.

Therefore, the piece of code in Figure 3 is equivalent to the SQL query. It is essential to

recognize that each Object-Relational Mapping tool is developed in a distinctive way, which

results in differences in the approaches that they take. However, the primary purpose that

each of these technologies was designed to accomplish has not changed[5].

1. Entity Framework: The EF Core is a data access technology that is open source,

cross-platform, flexible, and lightweight. It serves as a version of the Entity

Framework, which is extensively used[6].

2. nHibernate: is an established ORM that is open source and de-signed for utilization

within the .NET framework. The software is currently undergoing active

development[7].

TBU in Zlín, Faculty of Applied Informatics 14

3. Dapper: is an open-source ORM framework that can be used in.NET and.NET Core

programmers to map objects to databases[8].

4. Base One Foundation Component: The toolkit is a solution that is very efficient

for accelerating the process of developing database applications on the Windows and

ASP.NET platforms, while also guaranteeing that these applications are secure and

fault tolerant. In conjunction with the integrated development environment IDE that

is provided by Microsoft's Visual Studio[9].

5. iBatis: is a data mapping system that simplifies the integration of relational databases

with OOP[10].

6. LINQ to SQL: is a runtime architecture that was included in version 3.5 of the.NET

Framework by Microsoft. Its objective is to facilitate the management of relational

data in the form of objects[11].

7. nHydrate: is a solution available on the Microsoft.NET platform. This solution

provides a framework for mapping.NET objects to relational database tables. When

it comes to assembling persistence domains, one of the most monotonous tasks for

software developers is often doing so with the help of this design[12].

1.1.2 Why an ORM is Needed

Even while ORMs may be of aid, it is essential to see them to an end rather than the goal

themselves. It is essential to factor in the possibility of making concessions, since the

usefulness of these things could not be applicable in every situation. If a significant number

of object-oriented functions of a programming language are being used to manage many

states, then it is possible that Object-Relational Mapping, also known as an ORM, is the most

suitable solution to use.

When dealing with objects that have complex inheritance links, the manual handling of state

management might provide difficulties in terms of accounting for its ramifications. The

management of adjustments to the data structure may be made easier thanks to the schema

migration functionality's ability to aid. This, in turn, will make it simpler for the developer

to start a project.

ORM has the potential to be beneficial yet, it is not free of drawbacks and does have certain

restrictions. When compared to the original state, the employment of an ORM could result

in a higher degree of abstraction being achieved. which will make the process of debugging

more difficult. It is possible that the representation provided by the ORM, which is used to

TBU in Zlín, Faculty of Applied Informatics 15

facilitate communication between the database and the application, may not be totally exact

or may mistakenly divulge information about the application's internal implementation. This

scenario might occur in several different scenarios.

These concerns could become problematic in certain contexts and situations. When

designing software, it is necessary to have a thorough understanding of the project's

requirements as well as its preferences on the distribution of resources. An approach to

software engineering known as ORM is one that makes it simpler to develop applications

that are driven by a database. The apparent advantages that an Object-Relational Mapping

(ORM) framework may give to an application that is currently under construction are

ultimately what determines whether or not a software development project will include the

use of an ORM framework[13].

1.1.3 Advantages of ORM

1. Enhance the productiveness of the development process while reducing costs.

Making development more object-oriented

2. It offers portability by supporting multiple databases and programming languages.

3. It is possible to implement new features and capabilities without much difficulty,

such as the capacity to cache data[14].

1.1.4 Disadvantages of ORM

1. It is typical for developers to have lower levels of productivity when they are going

through the process of learning how to program using Object-Relational Mapping

(ORM).

2. Developers tend to have a lessening understanding of the real operation of the code;

the usage of SQL supplies developers with more authority is typically a sluggish

process.

3. When compared to SQL queries, the Object-Relational Mapping (ORM) technique

is insufficient for processing sophisticated queries[15].

1.2 DAPPER

Sam Saffron, a veteran software developer at Stack Overflow, is the person responsible for

the creation of Dapper. It was released in 2011. It was first built for production use at Stack

Overflow with the intention of improving performance with the understanding that LINQ to

TBU in Zlín, Faculty of Applied Informatics 16

SQL was not considered to be sufficiently efficient during that time[16]. Dapper is open

source and publicly accessible. It was developed to work with.NET and.NET Core software

applications. The library eliminates the need for developers to engage in laborious coding

by providing a quick and simple interface for accessing data stored in databases. Dapper

offers a wide variety of functions, such as the capability to carry out stored procedure

executions, map results to objects, and carry out raw SQL query operations. The NuGet

package may be obtained without much difficulty and is easily accessible. Because it is both

quick and lightweight. The object mapping tool is a professional solution for any.NET

language, such as C#, that allows developers to effectively map query results from

ADO.NET data readers to business object instances in an easy way. This is made possible

by the object mapping tool's support for any.NET languages. The platform provides

extensive support for combining several database searches into a single invocation, and it

also makes it possible to conduct synchronous and asynchronous database queries

simultaneously. In addition to this, Dapper makes it easier to perform parameterized queries,

which is another action that can be taken to protect against the possibility of SQL injection

issues[17].

1.2.1 Advantages of Dapper

1. The ORM framework known as Dapper is widely regarded as being among the most

time-efficient of its kind. It’s functional for both elementary and advanced

computations.

2. Establishing a connection to the database and gaining access to its features is made

easier with the help of the IDBConnection object, which is responsible for facilitating

the execution of these activities. The database system is SQL Query compatible.

3. Fewer lines of code are needed to establish a connection to the database.

4. It allows users to input data in bulk[18].

1.2.2 Disadvantages of Dapper

1. Dapper’s major shortcoming is its inability to construct a class model automatically.

2. It is unable to monitor objects or their associated modifications.

3. Manual SQL query creation and maintenance are required.

4. While the raw dapper library doesn't support CRUD operations, it need to utilize the

contribute library as a separate package to complete the job [19].

TBU in Zlín, Faculty of Applied Informatics 17

1.2.3 Importance of Dapper

1. One of the most notable qualities of this specific micro-ORM is its lightning-fast

speed.

2. Reduces by a significant margin the amount of code that must be written in order to

access the database.

3. The programme is equipped with the capacity to participate in cooperative

endeavours with a wide number of databases, including SQL Server, Oracle, SQLite,

MySQL, and PostgreSQL, amongst other potential choices.

4. The handling of SQL queries and stored procedures has been made easier to

understand and use thanks to this achievement.

5. The technology is able to help with a single as well as several requests at the same

time.

6. This feature makes it easier to get several datasets all at once depending on a variety

of inputs[20].

1.2.4 When to Use Dapper

Utilizing Dapper unquestionably results in an increase in performance, which is the

fundamental advantage of doing so. When circumstances call for exceptional performance,

Dapper could be thought of as the best option to choose. It is essential to keep in mind that

the use of Dapper may call for a longer period of development since it requires the

construction of SQL queries that will be carried out by the framework. Taking this into

consideration is essential. In addition, the platform does not come equipped with a native

capacity for automatic migrations, unlike EF Core, which offers this feature. This implies

that all essential construction or alteration of databases and tables must be accomplished

using SQL scripts, regardless of whether they are being created or modified[21].

1.2.5 Versions of Dapper

The below table show the only 2 versions of dapper that are available as can be observed in

Table 1. This gives an idea of which version the user prefers. There are many sub versions

for users to download, but most are the same after the new version 2.0.0. It is very clear that

the version which is used by the application (v2.0.x) is the most used version by other

programmers around the world which is also the newest one.

TBU in Zlín, Faculty of Applied Informatics 18

Table 1: Versions of Dapper [22]

Version Downloads

2.0.X 140,030,281

V1.0.x 83,882,346

The above tables show the only 2 versions of dapper that are available. This gives an idea of

which version the user prefers. There are many sub versions for users to download, but most

are the same after the new version 2.0.0. It is very clear that the version which is used by the

application (v2.0.x) is the most used version by other programmers around the world which

is also the newest one. This is also shown in the chart form in Figure 4: The most popular

and recent version used worldwide is v2.0.x.

Figure 4: The most popular and recent version used worldwide is v2.0.x.

1.3 ENTITY FRAMEWORK CORE

For.NET applications, developers may access databases using the EF Core Object Relational

Mapping ORM framework. The framework is a development tool that improves ADO.NET

and gives programmers an automated approach to retrieve and save data in a database. The

key difference between EF Core and its predecessor is that this upgraded version is

interoperable across Linux, OS, and Windows. This framework offers a DbContext feature

TBU in Zlín, Faculty of Applied Informatics 19

that sits in between the domain and database. It functions as a bridge between the domain

model and the database, enabling developers to easily define how mappings operate. This

feature provides a connection to a database and can be used to query and store instances of

the entities. It allows software developer teams to work more effectively [23].

1.3.1 Advantages of Entity Framework Core

1. It has been shown that making use of EF has a favorable influence on the amount of

time spent on development as well as the cost.

2. The platform offers automatically produced code and gives developers the ability to

graphically construct models and map databases. In addition, the platform offers a

visual mapping feature.

3. This functionality makes it possible to map business items in an easy and

straightforward manner.

4. The use of .NET Applications makes the speedy execution of CRUD tasks simpler

and more convenient [24].

1.3.2 Disadvantages of Entity Framework Core

1. The use of lazy loading is one of the most significant drawbacks associated with EF.

2. One notable aspect of its syntax is its intricacy.

3. The logical schema demonstrates a limitation in terms of its ability to grasp business

entities and the interrelationships between them.

4. A model with a big domain may not be the best option [25].

1.3.3 Importance of EF

The EF gives developers the ability to deal with data in the form of domain-specific objects

and attributes, such as customers and customer addresses, without having to worry about the

underlying database tables and columns where this data is kept. In contrast to conventional

programs, data-oriented applications may be built and maintained with fewer code thanks to

the EF, which allows developers to work at a higher degree of abstraction when working

with data. Entity Framework applications may be used on any machine that has the.NET

Framework installed since the EF is a part of the.NET Framework, beginning with version

3.5 SP1 [26].

TBU in Zlín, Faculty of Applied Informatics 20

1.3.4 Determining optimal use case for Entity Framework in software

development

The added support for LINQ that is provided by the EF Core framework helps to make the

process of building queries to run against the information that is stored in the database more

straightforward. Instead of using SQL or any other kind of query language, it is

recommended to use LINQ since it enables the construction of queries in the C#

programming language [27]. This is an advantage over using any other query language.

Because it makes it easier to save data and retrieve it from memory, the EF Core In-Memory

Database Provider is well suited for use in programs that need to store data temporarily or

for testing reasons. This is because it offers support for in-memory storage. An in-memory

database is a very handy alternative for use in unit testing due to its expeditious setup and

characteristics for speedy processing. This makes it an excellent choice to consider [27].

1.3.5 Versions of Entity Framework Core

The table below represent the 7 versions of Entity Framework Core as shown in Table 2.

The most used versions are around version 6 and below inclusively. This can be due to many

reasons but mainly it takes time and testing to adapt the software to newer versions of EF

Core. Which means that not many users/programmers have adapted to the newer versions.

At the time of creating this application, version 6.0.0 was the one available at hand and the

most used version. This is also shown in the chart form in Figure 5.

Table 2 : Versions of Entity Framework Core [28]

Version Downloads

V8.0.x 110,020

V7.0.x 20,190,582

V6.0.x 152,534,525

V5.0.x 126,200,671

V3.0.x 191,753,032

V2.0.x 143,462,726

V1.0.x 9,425,062

TBU in Zlín, Faculty of Applied Informatics 21

Figure 5 : Number of versions downloaded by users.

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

140,000,000

160,000,000

180,000,000

200,000,000

V1.0.x V2.0.x V3.0.x V5.0.x V6.0.x V7.0.x V8.0.x

9,425,062

143,462,726

191,753,032

126,200,671

152,534,525

20,190,582

110,020

Downloads

TBU in Zlín, Faculty of Applied Informatics 22

II. ANALYSIS

TBU in Zlín, Faculty of Applied Informatics 23

2 PERFORMANCE COMPARISON

There are 2 versions of rest API’s Dapper and EF core 6. Their job is to connect the backend

to the frontend of the application. The main jobs of the REST APIs are to use the

functionalities of CRUD operation to send information to the database and vice versa.

There are 3 benchmarks used in the application: one is the open-source benchmark that was

imported through an application, the other was created manually to do the job at hand and

`benchmarkDotNet`. All benchmarks are used to calculate the times of the CRUD

functionality timing. There is a performance counter that is created in the program to do the

timing of the transactions and calculate the memory usage of the endpoints. There are 1000

transactions that are sent to the database and back, so that the performance counter can

calculate the data.

Both implementations, the applications and the JMeter, have a performance counter and are

compared to see which framework can execute the endpoints faster. In addition to the two

implementations that calculate everything for us, there is also a third that is imported to be

compared for better results.

2.1 Methodology

The methods that have been used to obtain our results are Read, Create, Update and Delete.

Many may already know the function of each method, but we will give a brief detail about

each.

The first method is Read, which calls and gets the information from the database. For

example, getting to read a product’s detail or reading/getting a user’s details.

Second Creating, which adds data to a database which has not been there or has not existed.

An example of creating would be adding a product to an inventory or creating some user in

the database.

Third which is the update. This deletes the already existing information and replaces it which

something else such as updating a product’s price in the inventory.

Finally deleting, the operation is for removing something that already exists in the database.

For example, permanently removing a product that does not exist in the inventory anymore.

In Figure 6, Figure 7, Figure 8, Figure 9, Figure 10 both APIs we can see that the endpoint

TBU in Zlín, Faculty of Applied Informatics 24

retrieves books from the database. It starts to count between the starting time laps and the

ending time, then it gets the difference of both. Then it shows the result stats in milliseconds.

In the following figures, we can see these endpoints post, put, get by ID, and delete

respectively. In all these endpoints there is one operating that is common between all five

which is calculating the time. As the results are already shown below,

these five endpoints are distinct from one another as compared to one another., each giving

a different result. This clarifies the case of dapper vs EF6 by showing that dapper has the

higher hand in almost every aspect of the procedure.

Figure 6 : Endpoint for GET method for retrieving books for Dapper and Entity

Framework.

TBU in Zlín, Faculty of Applied Informatics 25

Figure 7 : Endpoint for POST method for inserting book into the database for

Dapper and Entity Framework.

Figure 8 : Endpoint for PUT method updating book info for Dapper and Entity

Framework.

TBU in Zlín, Faculty of Applied Informatics 26

Figure 9 : Endpoint for GETById method getting book by id for Dapper and

Entity Framework.

Figure 10 : Endpoint for DELETE method for Dapper and Entity Framework.

The implementations of the endpoints below, are the second version of the APIs that are only

used for the JMeter. The reason for this is that the new version does not require an id for

each item in the database.

The ASP.NET Core class for EF core method CountAsync() is an example of an ASP.NET

Core class method written in C#. The HttpDelete property indicates that the function's role

is to handle HTTP DELETE requests, and the ProducesResponseType parameters provide

many forms of HTTP responses as the implementation can e observed in Figure 11. The

function returns an object of the type ActionResult CallResults, and checks the current value

of the numberOfItemsToDelete variable. The employment of Ef Core in conjunction with

the execution of the CountAsync() function is a standard procedure in relation to the

TBU in Zlín, Faculty of Applied Informatics 27

administration of databases, allowing for the asynchronous retrieval of the count of books.

The software will delete a book if the value of numberOfItemsToDelete is larger than zero.

To do this, the FindAsync() function is used to obtain the book and provide the argument

numberOfItemsToDelete. The removal of books is accomplished by using the Remove()

function and the asynchronous saving of changes to the database by utilising the

SaveChangesAsync() method. The value of numberOfItemsToDelete is decreased and the

function produces an Ok() result. It is important to note that in the absence of the whole class

and its elements, it may be difficult to appreciate the aim and behaviour of this code in its

totality.

Figure 11 : Endpoint for deleting books for entity.

The method called deleteAllBooks(), which has the [HttpDelete] property and is used to

handle HTTP DELETE requests. It makes an asynchronous call to the

_booksData.getAllBooks() method and uses the "await" keyword to wait for the completion

of the operation as shown in Figure 12. An iteration using the foreach statement is carried

out to go through each book in the list of books. The _booksData.deleteBookById(book.Id)

TBU in Zlín, Faculty of Applied Informatics 28

function is used to delete a book based on its ID. The await keyword allows the developer

to suspend the program's execution until the operation is finished. The method produces an

output of type ok(), which indicates that the operation was successful. When invoked by the

framework as an HTTP DELETE request, the result will be turned into an appropriate HTTP

response.

Figure 12 : Endpoint for deleting all books for dapper.

The class method that has the HttpPost property as illustrated in Figure 13, which indicates

its function as an action method that handles requests made through HTTP POST. This

method generates a new record in a database that pertains to a literary publication, using an

argument with the name 'book' and the type 'Books'. The 'Add Async' method is used to

include the book object into the context, while the 'await' keyword is used to perform an

asynchronous wait for the completion of the database activity. The 'SaveChangesAsync'

function is used to preserve the novel book entry. The 'CreatedAtAction' function is called

upon to generate a response that includes a location header that contains the Uniform

Resource Locator URL of the newly generated book resource. The 'GetById' action method

is passed along as a route value, but the results of this method are not included in the code

snippet. The 'Ok' result indicates a successful HTTP response with a status code of 200.

TBU in Zlín, Faculty of Applied Informatics 29

Figure 13 : Endpoint for inserting books for entity.

In Figure 14. It show The value "All Book insert" is used to kick off the "m" string variable

and create a new instance of the "CallResults" class. The current system tick count is the

beginning time of the process. Invoking the method "_booksData.insertBook" in an

asynchronous fashion makes the insertion of the "book" object into a particular data source

possible. The "id" variable receives the value that has been returned and the final time is

reported as being equal to the tick count of the system at the current moment. The amount

of time that has elapsed is stored in the "milliseconds" property of the "stats" property of the

"results" object. The "data" property of the "results" entity has been given a collection that

consists of the "book" object as its component. The "results

TBU in Zlín, Faculty of Applied Informatics 30

Figure 14 : Endpoint for inserting books for dapper.

The [HttpPut] property in the function's annotations specifies the function's duty as a PUT

request handler in Figure 15. It proves The execution of the method will result in the

production of a TaskActionResultCallResults outcome, which identifies an asynchronous

process as the source of an ActionResult belonging to the CallResults category. The HTTP

status codes that the method is able to return are outlined in the [ProducesResponseType]

annotations that are placed on the method. The process starts off by getting all of the books

from the context asynchronously using the implementation of the ToListAsync() function.

A response code of 404 (NotFound) is sent if the collection of books does not include any

items. In the case that the condition is not satisfied, the computer system will choose the

book that is currently situated at the current index and will continue to modify the book's

properties. Invoking the SaveChanges

TBU in Zlín, Faculty of Applied Informatics 31

Figure 15 : Endpoint for updating title of the books for entity.

The function UpdateTitle in a class is used to carry out asynchronous operations. This is

indicated by the use of the async keyword in the function's definition. To acquire a collection

of books, the method involves an asynchronous call of the _booksData.getAllBooks()

function as can be seen in Figure 16. If the collection of books being searched for does not

exist or is null, the function will provide a return of NotFound() and a NoContent() result. If

the value of the variable currentIndexUpdateMethod is equal to or greater than the total

number of books, the method will reset the value of currentIndexUpdateMethod to 0 and

produce a NoContent() result. The _booksData.updateBook(bookToUpdate) method is used

to retrieve a collection of books, adjust the characteristics of a specific book, maintain the

changes, and move on to the next book in the collection until all of the books have been

worked with. This method entails the retrieval of a collection of books, the adjustment of the

TBU in Zlín, Faculty of Applied Informatics 32

characteristics of a specific book, the maintenance of the changes, and the movement on to

the next book in the collection until all of the books have been worked with.

Figure 16 : Endpoint for updating title of the books for dapper.

2.2 Classification

2.2.1 Controllers

2.2.1.1 Dapper Controllers

The "BooksController" is a class that handles HTTP requests specific to books. It is found

in the namespace "DapperAPI.Controllers" and is identified by the [ApiController] and

[Route("book")] properties. Multiple HTTP action methods, such as [HttpGet], [HttpPost],

[HttpDelete], and [HttpPut].

TBU in Zlín, Faculty of Applied Informatics 33

• The getBooks() method manages a GET request to obtain all books, while the

aggregated data is combined in a ListBooks object and the amount of time that the

operation took as shown in Figure 17.

• GetBookById(int id) is used to get a book based on its specific identifier in response

to a GET request as illustrated in Figure 18.

• InsertBook(Books book) is used to add a new book to the database.

• DeleteBookById(int id) is used to find a specific book by id and then delete the book

from the system, as can be seen Figure 19. The _booksData.getBook(id) and

_booksData.deleteBookById(id) functions are used to remove books from the

database.

• The Update() function handles any PUT requests that are sent in with the intention

of making changes to an existing book. An API endpoint is provided by the class that

makes it easier to do CRUD operations on books, which engages in communication

with a data service responsible for the implementation of the IBooksData interface.

TBU in Zlín, Faculty of Applied Informatics 34

Figure 17 : Endpoint for retrieving books in Dapper Framework.

TBU in Zlín, Faculty of Applied Informatics 35

Figure 18 : Endpoints for retrieving book by id and sending new book to database

in Dapper Framework.

TBU in Zlín, Faculty of Applied Informatics 36

Figure 19 : Endpoints for deleting book by id and updating book in Dapper

Framework.

TBU in Zlín, Faculty of Applied Informatics 37

2.2.1.2 Entity Framework Core’s Controller

The BooksController class is a derivation of ControllerBase, which is an essential base class

for all ASP.NET Core controllers. It contains a constructor that receives an argument of type

SqlDataAccess and assigns that parameter to a private field called context.

• The Get() function is used to obtail a list of books from the database, which is an

implementation of the HTTP GET method as can be seen in Figure 20.

• The GetById function is an HTTP GET operation that obtains a specific book from

the database based on the unique identifier for that book. If the book cannot be found,

the system will respond with "404 Not Found". The BooksController class acts as an

API controller by providing endpoints for performing CRUD capabilities on books

through the usage of Entity Framework for data retrieval. This includes creating new

books, reading existing books, updating existing books, and deleting books.

• The Create (Books book) function of the HTTP POST protocol is applied to create

an entry for a novel book as can be seen in Figure 21.

• the Update (Books books) function makes changes to the state of the books argument

and saves those changes to the Books table.

• The Delete (int id) method is used to delete a book from the database that has been

assigned a certain ID as can be seen in Figure 22. The information and metrics that

are acquired from each API method are saved in the Call Results class. The

implementation makes use of a variety of namespaces, such

EntityFramework.dbServer, EntityFramework.Models, and

EntityFramework.ThesisTools, amongst others. The Books Controller class acts as

an API controller by providing endpoints for performing CRUD.

TBU in Zlín, Faculty of Applied Informatics 38

Figure 20 : Endpoint for getting in Entity framework.

TBU in Zlín, Faculty of Applied Informatics 39

Figure 21 : Endpoints for retrieve book by Id and send new books to database in

Entity Framework.

TBU in Zlín, Faculty of Applied Informatics 40

Figure 22 : Endpoints for updating books and deleting book by Id in Entity

Framework.

TBU in Zlín, Faculty of Applied Informatics 41

2.2.2 Database Servers

2.2.2.1 Dapper’s Book Data

The BooksData class is part of the Dapper ORM and is used to manage namespaces and

dependencies. The constructor is intended to take in two arguments, ISqlDataAccess and

IConfiguration respectively, to initiate the sqlDataAccess and config fields in the database.

The SQL query and the _sqlDataAccess object used in the getAllBooks() function enable

the user to obtain all the books stored in the database. A list of Books objects is returned in

an asynchronous fashion by the procedure.

• The "getBook(int id)" function is used to obtain a book from a database.

• The "getBooksByAuthor" function is used to obtain books from a database that

correspond to the name of a certain author.

• The "insertBook" method is used to add a new book to the database.

• The "insertManyBooks" function is used to enter many books into the database as

observed in Figure 24.

• The "deleteBookById(int id)" function is used to delete a book from the database

according to a certain identifier.

• The "updateBook(Books book)" function is used to update the information about a

book that is saved in the database as can be seen in Figure 25.

TBU in Zlín, Faculty of Applied Informatics 42

Figure 23 : Implementation of getting book from database in Dapper framework.

TBU in Zlín, Faculty of Applied Informatics 43

Figure 24: Implementation for POST method and inserting book into database in

Dapper framework.

TBU in Zlín, Faculty of Applied Informatics 44

Figure 25 : Implementations of DELEET method for deleting book by id and

UPDATE method for updating book info in database in Dapper framework.

2.2.2.2 Dapper’s Book Data Interface

The IBooksData interface is a series of procedures that make communication with a database

management system easier as illustrated in Figure 26. It provides the necessary methods for

carrying out CRUD activities on a collection of books in the underlying database by utilizing

Dapper ORM. These methods include getAllBooks(), getBooksByAuthor(),

getBooksByTitle(), insertBook(), deleteBookById(int id), updateBook(Books book) and

updateBook().

TBU in Zlín, Faculty of Applied Informatics 45

Figure 26: Interface for communicating with the database.

2.2.2.3 Dapper’s SQL Data Access

This class provides its own implementation of the ISqlDataAccess interface and uses the

Dapper ORM library to provide data access capabilities for the purpose of interacting with

a SQL Server database as illustrated in Figure 27. The class makes use of the private field

_config, which is of type IConfiguration, to store the necessary configuration settings for

establishing a connection with the database. The class has a constructor that takes in an object

of type IConfiguration and assigns it to the _config field after receiving it. The

LoadMany<T> function executes a SQL query to get a collection of objects of type T, which

is named after the type T. The query is carried out in an asynchronous fashion by using the

QueryAsync function provided by Dapper. The LoadSingle function is used to retrieve a

single instance of type T as illustrated in Figure 28. It is executed using Dapper's

QuerySingleAsync function, which allows for the execution of the query in an asynchronous

TBU in Zlín, Faculty of Applied Informatics 46

manner. The insertDataWithObjectReturn<T> function is responsible for the execution of a

SQL statement designed to insert data into the database. It then delivers a return value that

is an object of type T. The ExecuteScalarAsync function then typecasts the output to T,

allowing for the statement to be executed asynchronously. The SqlDataAccess class provides

a simplified and efficient method for dealing with a SQL Server database by using Dapper.

It encapsulates the underlying database connection and query execution functionality and

handles any exceptions that may occur.

Figure 27 : Uses ISqlDataAccess interface and Dapper ORM library for SQL

Server database access.

TBU in Zlín, Faculty of Applied Informatics 47

Figure 28: Constructor assigns IConfiguration to _config. LoadMany<T>

executes async SQL query. LoadSingle retrieves T instance.

2.2.2.4 Dapper’s SQL Data Access Interface

ISqlDataAccess is an interface that can be found within the DapperAPI.dbServices

namespace as can be seen in Figure 29. It outlines a selection of procedures that make it

simpler to deal with a database. These include LoadMany, LoadSingle,

InsertDataWithReturn, and InsertDataWithObjectReturn. LoadMany uses a SQL query to

obtain several instances of objects belonging to type T from the database. LoadSingle uses

a SQL query to obtain a single instance of an object of type T. InsertDataWithReturn is

TBU in Zlín, Faculty of Applied Informatics 48

responsible for the execution of a SQL query that inserts data into the database and returns

the number of rows that were modified as a result. InsertDataWithObjectReturn is intended

to carry out a SQL query that runs an insertion operation in the database and returns an object

of type T. The execution of the required methods enables a class that has this interface

implemented to provide the necessary functionality to interact with a database using Dapper.

Figure 29 : ISqlDataAccess is a DapperAPI.dbServices interface.

2.2.2.5 Entity Framework Core’s SQL Data Access

SqlDataAccess sets the definition of a class, which is located inside the Entity Framework

library and derives from the DbContext class as can be seen in Figure 30. This class is

responsible for setting a connection to a SQL database and interacting with it by means of

EF. It also manages the associated access tokens. An instance of the DbContext

OptionsSqlDataAccess class must be sent along to the SqlDataAccess class's constructor for

it to be possible to instantiate the class. The course also includes a characteristic known as

Books, which has the type DbSet<Books>. This characteristic allows for a variety of actions

to be performed on the Books table that is included inside the linked SQL database. The

SqlDataAccess class acts as a mediator between the SQL database and the application,

providing an abstraction layer.

TBU in Zlín, Faculty of Applied Informatics 49

Figure 30 : User's code defines a class called SqlDataAccess in Entity Framework,

derived from DbContext.

2.2.3 Model

2.2.3.1 Dapper’s Models

The ” DapperAPI.Models" includes the definition of a class known as "Books", as observed

in Figure 31. These books include a unique identifier, a title, a description, an author, an

International Standard Book Number (ISBN), a PublicationDate element, a Publisher name,

a total number of pages, and a ShelfLocation string. These characteristics enable the storing

and retrieval of data relevant to a literary work, which is facilitated by the characteristics

discussed so far. The Id is a unique identifier for the book, the Title is a property of the

literary work, the Description is a concise overview or synopsis of the book, the Author is a

string that specifies the name of the person who wrote the book, the International Standard

Book Number (ISBN) is associated with a certain book, the PublicationDate is a DateTime

data type, the Publisher is a string that contains the name of the publishing house, the Pages

is an integer, and the ShelfLocation string represents the specific location of the book on

TBU in Zlín, Faculty of Applied Informatics 50

Figure 31 : The code has a class called "Books" in the "DapperAPI.Models"

namespace.

2.2.3.2 Entity Framework Core’s Models

This class acts as a model for books stored in a database as shown in Figure 32. It includes

an integer identifier, title, description, author, ISBN, publication date, and publisher. The Id,

Title, Description, Author, ISBN, Publication Date, and Publisher attributes are used to

identify the book. It uses the "Pages" property, "ShelfLocation" string, System.Utilisation of

the ComponentModel platform, schema namespaces, the "Id" property, and Entity

Framework to represent book data inside a database. The "Pages" property indicates the total

number of pages, while the "ShelfLocation" string represents the precise location of a book

on a shelf.

TBU in Zlín, Faculty of Applied Informatics 51

Figure 32: The code creates a "Books" class using Entity Framework as a model

for database-stored books.

2.2.4 Call Results

2.2.4.1 Dapper’s Call Results

The CallResults class is a construct created by DapperAPI. It is composed of two attributes,

stats, and data as can be observed in Figure 33. A list of objects of type Books is included

inside the data attribute of the object. The CallResults class has a constructor called

TBU in Zlín, Faculty of Applied Informatics 52

CallResults () that initializes the stats property and the data property with a list of Books that

does not yet include any entries. The major function of the CallResults class is to act as a

repository for call results, storing statistical data in the form of stats and a collection of

information pertaining to books in the form of data.

Figure 33:CallResults class in DapperAPI consists of two attributes: stats and

data.

2.2.4.2 Dapper’s Stats

There are three different attributes available for the "Stats" class: the "start" property, the

"end" attribute, and the "milliseconds" attribute. The keywords "get”, and "set" indicate that

every property comes equipped with a getter and setter that may be accessed by the public.

The goal of this class is to provide statistical information that is relevant to a particular

process or activity, including the starting and ending values, as well as the total amount of

time, which will be measured in milliseconds.

TBU in Zlín, Faculty of Applied Informatics 53

Figure 34: Code instantiates "Stats" class in "DapperAPI.ThesisTools"

namespace.

2.2.4.3 Entity Framework Core’s Call Results Stats

The "EntityFramework.ThesisTools" namespace contains a class called "CallResults" which

is distinguished by two qualities: statistics and information. The "stats" property is classed

as a type of "Stats" and the "data" property is of the type "List<Books>" AS SHOWN IN

Figure 35. The "stats" property is initialised with a new instance of the "Stats" class and the

"data" property is initialised with an empty list of "Books". The default constructor of the

class is provided for initialising the attributes with values that are appropriate by default.

TBU in Zlín, Faculty of Applied Informatics 54

Figure 35 : The "EntityFramework.ThesisTools" namespace has a class called

"CallResults" with statistics and information qualities.

2.2.4.4 Entity Framework Core’s Stats

An instance of a class called "Stats" under the "EntityFramework.ThesisTools" namespace

as observed in Figure 36. The class has three properties, namely "start," "end," and

"milliseconds," which are all the double data types. The properties are accessible to the

public and have a getter accessor in addition to a setter accessor. The values of the

characteristics may be assigned or retrieved in a manner analogous to the way that traditional

variables are handled. The "Stats" course is an elementary kind of data construction that is

composed of statistical information. It has a trio of properties that can store numerical data,

referred to as "start," "end," and "milliseconds," respectively.

TBU in Zlín, Faculty of Applied Informatics 55

Figure 36 : The code creates an instance of "Stats" class in the

"EntityFramework.ThesisTools" namespace.

2.3 Performance Counter and HTTP Request

The class incorporates several private static variables, such as the Performance Counter class

and the SetupCategory and Create Counters methods as shown in Figure 37. The Main

function calls the CollectSamplesAsync procedure several times, and each invocation passes

a unique set of inputs to the system. The CollectSamplesAsync function is used to acquire

performance samples from a variety of URLs and HTTP protocols. The procedure requires

the consideration of several factors, including the Uniform Resource Locator URL, a defined

label (for example, "EF6" or "dapper"), the Hypertext Transfer Protocol (HTTP) method, a

binary indicator, and a series of numerical values indicating a range of counters. In summary,

the course entails the collecting of performance data from a variety of API endpoints via the

use of various HTTP methods, while also applying performance counters to assess and

analyze the performance metrics.

TBU in Zlín, Faculty of Applied Informatics 56

Figure 37: Curriculum includes private static variables like Performance Counter,

SetupCategory, and Create Counters methods.

SetupCategory() is used to create a performance counter category with the name

"EFCore6PerformanceCounterCategory". If the category does not exist, a new

CounterCreationDataCollection object is created. The averageCount64 counter is used to

represent the average count and uses the PerformanceCounterType. The AverageCount64

counter type is used in computer systems, and the EFCore6PerformanceCounterSample and

EFCore6PerformanceCounterSampleBase are used to track how many times the

averageCount64Base has been used. The code creates a performance counter category

known as "EFCore6PerformanceCounterCategory" to encapsulate the performance metrics

of the EFCore6 application, composed of two counters known as

"EFCore6PerformanceCounterSample" and "EFCore6PerformanceCounterSampleBase" as

can be observed in Figure 38.

TBU in Zlín, Faculty of Applied Informatics 57

Figure 38 : EFCore6PerformanceCounterSampleBase tracks usage.

"EFCore6PerformanceCounterCategory" has two counters for EFCore6 metrics.

Ther is private static function called "CreateCounters". This function is responsible for the

production of a pair of performance gauges, which are connected to a performance

monitoring group concerning EF Core 6. The first counter, which has the notation

"EFCore6PerformanceCounterSample," is an example of the category known as

PerformanceCounter. The second counter, whose notation is

"EFCore6PerformanceCounterSampleBase," stands for a further instance of the

PerformanceCounter class. When calculating the mean value of the performance metric that

is being assessed by the main counter, the beginning counter is used as the fundamental unit

that serves as the basis for the calculation as shown in Figure 39. The two counters are

created by using the same category denomination, which is referred to as the

"EFCore6PerformanceCounterCategory". Additionally, the RawValue of both counters is

TBU in Zlín, Faculty of Applied Informatics 58

set to zero when they are first created, which indicates that the monitoring of performance

metrics will begin with zero.

Figure 39 : Mean value of performance metric is calculated using the beginning

counter as the basis.

The CollectSamplesAsync class is responsible for retrieving samples by sending HTTP

requests to a certain URL. It requires multiple input parameters, including the base URL, the

framework, the HTTP method, the boolean value indicating whether an ID should be

automatically appended to the URL, and the starting and ending points for a loop. The

procedure sets up three data structures: an ArrayList with the name samplesList, a Listlong

with the name memoryUsages, and a Listlong with the name total time. During each cycle

of the loop, an instance of the HttpClientHandler class is created and set up to receive server

certificates without any limitations. The Post method is the subject of this conversation,

which involves the serialization of a JSON object that is then allocated as the content of the

request once the serialization process has been completed. The program uses the HttpClient

to wait for a response and sends the answer status code and any further data to the console.

If the answer is successful, a JSON string is used to represent the content of the answer and

is transformed into an instance of the CallResults type.Text.Json.JsonSerializer. A new entry

is added to the total-time list that contains the time value that was retrieved from the

deserialized object. A model is added to the samples list by using an avgCounter64Sample

object. The function determines how much memory is being used by the current process and

TBU in Zlín, Faculty of Applied Informatics 59

adds that information to the list of functions that use memory as can be observed in Figure

40.

Figure 40 : New entry added to total-time list. Sample added to samples list.

Function tracks and updates memory usage.

After the loop has been completed, the total of the memory use values is calculated, and a

method called CalculateResults is called. The console shows the lowest, average, and

maximum values for time, as well as the average value for memory, and it also indicates the

framework and technique that is being used as shown in Figure 41.

TBU in Zlín, Faculty of Applied Informatics 60

Figure 41 : Loop completes, CalculateResults calculates memory total. Console

shows time and memory stats, framework/technique indicated.

The code snippet demonstrates a private static function known as CalculateResults, which

includes a for loop and three key functions. It is called by typecasting the currently active

member of the samples list into an instance of the CounterSample class, and the

CounterSampleCalculator is used to compute and display the calculated counter value. The

MyComputeCounterValue method is used to determine the calculated counter value, and the

results are displayed using the.NET calculated counter value and my computed counter value

statements as shown in Figure 42.

TBU in Zlín, Faculty of Applied Informatics 61

Figure 42 : Code has CalculateResults function that computes and displays

counter values using CounterSample and CounterSampleCalculator.

This code snippet outlines a class that consists of two procedures, MyComputeCounterValue

and OutputSample. MyComputeCounterValue has two input arguments, both of which are

instances of the CounterSample class. The procedure entails carrying out a calculation by

making use of the numerical data collected from the samples, which ultimately results in a

single output. The numerator is calculated using the method described above, while the

denominator is found by computing the difference between the BaseValues of s0 and s1 and

then subtracting that value from the first BaseValue. The counter value is calculated by

dividing the numerator by the denominator. The program compiles a wide variety of data

about the sample and presents it to the user through the console. It is important to note that

the shown code segment only demonstrates the class's methods; it is impossible to infer the

class specification, or any more particulars based purely on this code segment as shown in

Figure 43

TBU in Zlín, Faculty of Applied Informatics 62

Figure 43 : Code snippet: Class with procedures, input arguments of

CounterSample class.

2.4 Screenshot of app

After the application is run successfully, As the supplied example demonstrates, it is possible

to retrieve the Swagger documentation that is associated with the Dapper API.. This UI helps

users to access the endpoints through an interface. The interface shows what the application

has in the specific API. Each endpoint call gives the details of the call and the timing of the

endpoint. In Figure 44, the endpoints that are used are by dapper API, and Figure 45 is for

Entity Framework.

TBU in Zlín, Faculty of Applied Informatics 63

Figure 44 : Swager dapper API.

Figure 45 : Swagger Entity Framework API.

In Figure 46 and Figure 47 a console application is shown, that includes the performance

counter. The application calculates the minimum time, maximum time, average time, and

the average memory. Thousands of requests that are sent to and from the database are

TBU in Zlín, Faculty of Applied Informatics 64

collected and put for the user to see and have a visual on how long the thousand transactions

took.

Figure 46 : The console for Thousands of transactions for Dapper.

Figure 47 : The console for Thousands of transactions for Entity Framework.

TBU in Zlín, Faculty of Applied Informatics 65

Apache JMeter is a library used for testing both APIs Entity Framework and Dapper. The

library’s usage is to calculate the minimum time, maximum time, average time, and

average memory of endpoints with already built in functionality as shown in Figure 48.

Unlike the functionality inside the application, this library already has everything built-in

for timing and estimating the calls memory. The only 2 things necessary for this

TBU in Zlín, Faculty of Applied Informatics 66

application to work are the JSON file and the local host for the swagger as shown in Figure

49.

Figure 48 : JMeter application for testing Dapper Endpoints.

TBU in Zlín, Faculty of Applied Informatics 67

Figure 49 : JMeter application for testing Entity framework endpoints.

2.5 Benchmarks

In our application, the main goal is to obtain our results and compare them at the end. It will

execute each method over 1000 times and compare them to determine which ORM

outperforms the other. The CRUD and get by id methods are utilized during the comparative

analysis of EF Core 6 and Dapper. Benchmarks are used in order to evaluate the amount of

time and memory that is consumed. Calculating the mean, minimum, and maximum duration

of each operation is the first step in the process, which is then followed by a comparison of

these values. as shown in Figure 50.

As it is shown from the figures below, in terms of the smallest amount of time, the largest

amount of time, and the average amount of time, Dapper surpasses EF core. This illustrates

that Dapper has a greater capacity to get data from the database in a more improper way

TBU in Zlín, Faculty of Applied Informatics 68

compared to EF core, while requiring similar average memory as EF core. This is the case

despite the fact that Dapper utilizes the same amount of memory on average as EF core. as

shown in Figure 51.

Figure 50 : Benchmark comparing time and memory performance Dapper for

GET method.

Figure 51 : Benchmark comparing time and memory performance Entity for GET

method.

In Figure 52 and Figure 53 both results of post endpoint are shown and unlike the get

endpoint, dapper is not faster in every aspect of the results. For minimum time of the post

endpoint, dapper and Entity Framework have obtained the same results. In both the average

time and the maximum time dapper is quicker than Entity Framework. On the other hand,

Entity Framework, uses 1 Mb of average memory less than dapper.

Figure 52 : Benchmark comparing time and memory performance Dapper for

POST method.

TBU in Zlín, Faculty of Applied Informatics 69

Figure 53 : Benchmark comparing time and memory performance Entity for

POST method.

As is clear from the information provided before in the form of these numbers, It is clear to

see that the minimum timeframes for any of the two entities are exactly the same. However,

when looking at the timings on average, it is clear that the Dapper framework beats EF core

by a wide margin. as shown in Figure 54 and Figure 55. And in terms of maximum time,

Dapper is twice slower than EF core. This indicates that Dapper can get information by id

from the database far less rapidly than EF core, even though it requires around the same

amount of memory as EF core.

Figure 54 : Benchmark comparing time and memory performance Dapper for

GET method.

Figure 55 : Benchmark comparing time and memory performance Entity for GET

method.

The statistical evidence that was provided suggests that the minimal timeframes required by

both frameworks are comparable to one another. On the other hand, when looking at the

timings on average, it is clear that the Dapper framework surpasses EF6 by a substantial

TBU in Zlín, Faculty of Applied Informatics 70

amount. Dapper statistics is also lower in maximum timing, but this comes at a cost of using

slightly more memory than Entity Framework as illustrated in Figure 56 and Figure 57.

Figure 56 : Benchmark comparing time and memory performance Dapper for

PUT method.

Figure 57 : Benchmark comparing time and memory performance Entity for PUT

method.

There is a similar pattern again in the delete endpoint of dapper and Entity Framework in the

numbers below in Figure 58 and Figure 59. All the timing are faster or at least similar

between the two frameworks but again at a cost of memory usage for dapper. Dapper slightly

sacrifices it memory usage to significantly boost its numbers.

Figure 58 : Benchmark comparing time and memory performance Dapper for

DELETE method.

TBU in Zlín, Faculty of Applied Informatics 71

Figure 59 : Benchmark comparing time and memory performance Entity for

DELETE method.

In Figure 60 and Figure 61, the results of JMeter that correspond to the Get endpoints of

Dapper and Entity Framework may be seen here. There are a lot of possible outcomes, but

what we really need to know is the shortest, longest, and average amount of time it took.

When compared against Entity Framework, it is very clear that Dapper has once again shown

greater performance. The minimum time for dapper is exactly a third of Entity Frameworks

minimum time. The average time for dapper is nearly half that of other frameworks, and the

utmost time for Entity Framework exceeds that of dapper.

Figure 60 : JMeter Result for GET method endpoint for dapper.

Figure 61 : JMeter Result for GET method endpoint for entity.

Unlike the outstanding numbers in Get endpoint, the results in the Post endpoint for Entity

Framework are double what the results in dapper show as can be seen in Figure 62 and Figure

63. For almost all the timings, Entity Framework has double the time in minimum time

maximum time and triple the time in average timing.

Figure 62 : JMeter Result for POST method endpoint for dapper.

TBU in Zlín, Faculty of Applied Informatics 72

Figure 63: JMeter Result for POST method endpoint for entity.

Get by Id timing for Dapper is a third of Entity Frameworks timing as shown in Figure 64

and Figure 65. The minimum time and average time for dapper is a third of Entity

Frameworks and the maximum time is almost a tenth of the others. This shows that in some

cases they might be similar or close but in the maximum time, dapper outshines Entity

Framework.

Figure 64 : JMeter Result for GET by Id method endpoint for dapper.

Figure 65 : JMeter Result for GET by Id method endpoint for entity.

Looking at the Figure 66 and Figure 67 it is seen that Dapper is much faster than EF6 when

it comes to updating data in bulk. Dapper is approximately 3.5 times faster than EF6 when

it comes to average timing and 4.5 times faster in minimum timing. However, Dapper

struggles when it comes to maximum timing. EF6 appears to be 2.5 times faster than Dapper.

Figure 66 : JMeter Result for PUT method endpoint for Dapper.

TBU in Zlín, Faculty of Applied Informatics 73

Figure 67 : JMeter Result for PUT method endpoint for entity.

While in Figure 68 dapper was extremely fast in the maximum times, in the delete endpoint

it not the same as other endpoints. It obvious that dapper is uses less than half of the time of

Entity Frameworks in maximum timing as can be seen in Figure 69, but it is six and seven

times faster in minimum time and average time respectively.

Figure 68 : JMeter Result for DELETE method endpoint for dapper.

Figure 69 : JMeter Result for DELETE method endpoint for entity.

2.6 Result

In the figure below there are three different implementations which two of them have already

been explained. One being the implementation done by the application and the other is the

JMeter application. The third implementation is done by a programmer who has already

compared both dapper and Entity Framework by using the .Net benchmark, which is a

separate open-source benchmark [].

In Figure 70, are the results of minimum time required for dapper framework to execute an

endpoint by all three of the implementations. The results show that in most of the endpoint

executions, the programs implementation are better than the JMeter’s timing and the

DotNet[30]timing. With one exception of get by Id, which both the .Net and the programs

timing are similar. On the other hand, JMeters implementation seems to be surpassing the

.Net implementation in Post, Put, and Delete.

TBU in Zlín, Faculty of Applied Informatics 74

Figure 70 : Minimum time required for dapper framework to execute an endpoint

by all three of the implementations.

In Figure 71, show results are for Entity Framework minimum time to execute an endpoint.

The implementation of the program again is way less than the other two implementations

except for get operation which is like JMeter but way more than DotNet[30] implementation.

The JMeter takes more time in Put, get by Id, and get operations while the other impetrations

are better on time.

Figure 71 : Minimum time required for entity framework to execute an endpoint

by all three of the implementations.

Dapper maximum time for the endpoints results shown in Figure 72 for all the three

implementations. The most outstanding number from the rest is the delete and put timing by

0 0 0 0 0

5

1 1

4

11.134

5.91

0

4.617 4.502

0

1

2

3

4

5

6

7

Get Post Get ById Put Delete

Dapper Min Time / Ms

PerformanceCounter Apache Jmeter BenchmarkDotNet

15

0 0 0 0

15

2
3

18

6

1.615

7.974

0

6.572 6.484

0

2

4

6

8

10

12

14

16

18

20

Get Post Get ById Put Delete

Ef6 Min Time / Ms

PerformanceCounter Apache Jmeter BenchmarkDotNet

TBU in Zlín, Faculty of Applied Informatics 75

the JMeter implementation. The DotNet[30]implementation performs better than the

programs implementation in put operation but vice versa in the delete operation. In get by

id, .Net is close to zero while JMeter takes the most time almost reaching 150. On the

contrary, .Net takes more time than both other implementations in both Post and Get

endpoints with the program’s implementation taking the least time in both.

Figure 72 : Max average time for dapper framework.

Entity Framework maximum timing for all three implementations results shown below.

JMeter again outstands in one operation than the rest, which is get operation and takes the

most time, while both other operations have almost the same timing and this seems to be the

case also in get by Id operation as illustrated in Figure 73. In the post operation, the

DotNet[30]uses the most time then JMeter and the implementation of the program

respectively. In both put and delete operation, the program and the JMeter are very close but

the .Net performs the best with almost close to zero in timing.

16 16 32 47 3134

86
44

387 388

57

131.1

0 10.65
43.73

0

50

100

150

200

250

300

350

400

450

Get Post Get ById Put Delete

Dapper Max Time / Ms

PerformanceCounter Apache Jmeter BenchmarkDotNet

TBU in Zlín, Faculty of Applied Informatics 76

Figure 73 : Max average time for entity framework.

Dapper average timing for all three implementations as shown in Figure 74. In post and get

by Id operations the programs implementations and the JMeter are the exact same while

DotNet[30]uses the most timing in Put and least timing in get by id. In get and put operations,

JMeter uses the same amount of time in both while .Net and the implementation in the

program do the vice versa of each other.

Figure 74 : Benchmark for average time for Dapper framework.

As shown in Figure 75, DotNet [30] has the least or equal amount of timing in almost all the

operations except for Post endpoint. The two other implementations are the same in all the

other endpoints with the outstanding average time in put operation that gives JMeter a bad

sign, while the rest are all the same.

63
31 16

94 78

646

117

223
153

8254.66

284.7

0 11.48 15.16
0

100

200

300

400

500

600

700

Get Post Get ById Put Delete

EF6 Max Time / Ms

PerformanceCounter Apache Jmeter BenchmarkDotNet

4

1 1 1

2

6

1 1

6

1

2.319

8.058

0

5.708 6.085

0

1

2

3

4

5

6

7

8

9

Get Post Get ById Put Delete

Dapper Avg Time / Ms

PerformanceCounter Apache Jmeter BenchmarkDotNet

TBU in Zlín, Faculty of Applied Informatics 77

Figure 75 : Benchmark for average time for entity framework.

Average memory for dapper and Entity Framework are equal in memory usage but only

significantly different in delete operations as shown in Figure 76. The other operations and

endpoints are mostly the same and have no significant change.

Figure 76 : Average memory for dapper and entity,

19

4 4 4

8

17

3 3

21

7

3.319

11.746

0

7.549 7.847

0

5

10

15

20

25

Get Post Get ById Put Delete

Ef6 Avg Time / Ms

PerformanceCounter Apache Jmeter BenchmarkDotNet

101
116 113 119

111102
115 113 117

69

0

20

40

60

80

100

120

140

Get Post Get ById Put Delete

Avg Memory / Mb

Dapper EF6

TBU in Zlín, Faculty of Applied Informatics 78

CONCLUSION

In conclusion, developers looking for the best ORM framework for their projects will find

the performance comparison between Entity Framework Core 6 and Dapper to be an

instructive reference. When sheer efficiency and simplicity are of crucial importance,

Dapper emerges as the leader, whereas EF Core 6 delivers a rich variety of functionality and

prioritizes developer productivity.

This study's benchmarks showed that Dapper regularly beat EF Core 6, demonstrating the

benefits of the latter's lightweight design and direct mapping of queries to objects in terms

of both query execution speed and resource use.

Performance is an important consideration when choosing an ORM framework, but it

shouldn't be the only one. The developer's knowledge of the framework, the project's unique

needs, and the project's long-term maintainability are all crucial factors. EF Core 6 is a great

option for large-scale systems that value quick development and long-term maintainability

because of its rich feature set, easy interaction with Microsoft technologies, and strong

community support.

Dapper, on the other hand, excels when speed is more important, such as in applications that

process large amounts of data or have complicated data manipulation needs. Developers may

pick the most appropriate ORM framework by carefully considering the performance

characteristics against other key variables. Developers may optimize the performance,

efficiency, and overall success of their software applications in accordance with their unique

project objectives and needs, whether they use the feature-rich environment of EF Core 6 or

use the raw performance capabilities of Dapper.

TBU in Zlín, Faculty of Applied Informatics 79

BIBLIOGRAPHY

[1] CONTRIBUTOR, Staff. Why Do We Need Object-Relational Mapping? Software

Reviews, Opinions, and Tips - DNSstuff [online]. 12 September 2022. Available

from: https://www.dnsstuff.com/why-do-we-need-object-relational-mapping

[2] .NET Basics: ORM (Object Relational Mapping). Telerik Blogs [online]. 27

September 2022. Available from: https://www.telerik.com/blogs/dotnet-basics-orm-

object-relational-mapping

[3] Understanding Object-Relational Mapping: Pros, Cons, and Types. AltexSoft

[online]. 11 March 2021. Available from: https://www.altexsoft.com/blog/object-

relational-mapping/

[4] .NET Basics: ORM (Object Relational Mapping). Telerik Blogs [online]. 27

September 2022. Available from: https://www.telerik.com/blogs/dotnet-basics-orm-

object-relational-mapping

[5] What is an ORM – The Meaning of Object Relational Mapping Database Tools.

freeCodeCamp.org [online]. 21 October 2022. Available from:

https://www.freecodecamp.org/news/what-is-an-orm-the-meaning-of-object-

relational-mapping-database-tools/

[6] ajcvickers. Overview of Entity Framework Core - EF Core. Overview of Entity

Framework Core - EF Core | Microsoft Learn [online]. 25 May 2021. Available from:

https://learn.microsoft.com/en-us/ef/core/

[7] Home - NHibernate. Home - NHibernate [online]. Available from:

https://nhibernate.info/

[8] DapperLib. GitHub - DapperLib/Dapper: Dapper - a simple object mapper for .Net.

GitHub [online]. 21 August 2022. Available from:

https://github.com/DapperLib/Dapper

[9] Wikiwand - Base One Foundation Component Library. Wikiwand [online]. 11

November 2020. Available from:

https://wikiwand.com/en/Base_One_Foundation_Component_Library

[10] iBATIS Home. iBATIS Home [online]. Available from: https://ibatis.apache.org/

https://www.dnsstuff.com/why-do-we-need-object-relational-mapping
https://www.telerik.com/blogs/dotnet-basics-orm-object-relational-mapping
https://www.telerik.com/blogs/dotnet-basics-orm-object-relational-mapping
https://www.altexsoft.com/blog/object-relational-mapping/
https://www.altexsoft.com/blog/object-relational-mapping/
https://www.telerik.com/blogs/dotnet-basics-orm-object-relational-mapping
https://www.telerik.com/blogs/dotnet-basics-orm-object-relational-mapping
https://www.freecodecamp.org/news/what-is-an-orm-the-meaning-of-object-relational-mapping-database-tools/
https://www.freecodecamp.org/news/what-is-an-orm-the-meaning-of-object-relational-mapping-database-tools/
https://learn.microsoft.com/en-us/ef/core/
https://nhibernate.info/
https://github.com/DapperLib/Dapper
https://wikiwand.com/en/Base_One_Foundation_Component_Library
https://ibatis.apache.org/

TBU in Zlín, Faculty of Applied Informatics 80

[11] mcleblanc. LINQ to SQL - ADO.NET. LINQ to SQL - ADO.NET | Microsoft Learn

[online]. 15 September 2021. Available from: https://learn.microsoft.com/en-

us/dotnet/framework/data/adonet/sql/linq/

[12] What does nhydrate mean. What does nhydrate mean - Definition of nhydrate - Word

finder [online]. Available from: https://findwords.info/term/nhydrate

[13] What is an ORM (Object Relational Mapper)? Prisma’s Data Guide [online].

Available from: https://www.prisma.io/dataguide/types/relational/what-is-an-orm

[14] ORM Framework uses advantages and disadvantages of the post-frame. ORM

Framework uses advantages and disadvantages of the post-frame [online]. Available

from: https://topic.alibabacloud.com/a/orm-framework-uses-advantages-and-

disadvantages-of-the-post-frame_8_8_20284586.html

[15] The advantages and disadvantages of using ORM. Stack Overflow [online]. 12

January 2011. Available from: https://stackoverflow.com/questions/4667906/the-

advantages-and-disadvantages-of-using-orm

[16] KATHIRESAPILLAI, Bavanthini. Introduction to Dapper — A micro ORM , a

simple Object Mapper for .NET. Medium [online]. 6 September 2020. Available

from: https://medium.com/@k.bavanthini/introduction-to-dapper-a-micro-orm-a-

simple-object-mapper-for-net-318201dc7030

[17] PROJECTS, ZZZ. Welcome To Learn Dapper ORM - A Dapper Tutorial for C# and

.NET Core. Welcome To Learn Dapper ORM - A Dapper Tutorial for C# and .NET

Core [online]. Available from: https://www.learndapper.com/

[18] Introduction to Dapper. Introduction to Dapper - ParTech [online]. Available from:

https://www.partech.nl/nl/publicaties/2021/02/introduction-to-dapper

[19] BONELLO, Simon. Entity Framework VS Dapper. Side by side comparison -

Chubby Developer. Chubby Developer [online]. 20 March 2022. Available from:

https://www.chubbydeveloper.com/entity-framework-vs-dapper/

[20] Using Dapper Micro ORM in ASP.NET Core - Mind IT Systems. Mind IT Systems

[online]. 16 March 2023. Available from: https://minditsystems.com/using-dapper-

micro-orm-in-asp-net-core/

[21] Building a CRUD API With Dapper. Telerik Blogs [online]. 27 April 2023. Available

from: https://www.telerik.com/blogs/building-crud-api-dapper

https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/sql/linq/
https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/sql/linq/
https://findwords.info/term/nhydrate
https://www.prisma.io/dataguide/types/relational/what-is-an-orm
https://topic.alibabacloud.com/a/orm-framework-uses-advantages-and-disadvantages-of-the-post-frame_8_8_20284586.html
https://topic.alibabacloud.com/a/orm-framework-uses-advantages-and-disadvantages-of-the-post-frame_8_8_20284586.html
https://stackoverflow.com/questions/4667906/the-advantages-and-disadvantages-of-using-orm
https://stackoverflow.com/questions/4667906/the-advantages-and-disadvantages-of-using-orm
https://medium.com/@k.bavanthini/introduction-to-dapper-a-micro-orm-a-simple-object-mapper-for-net-318201dc7030
https://medium.com/@k.bavanthini/introduction-to-dapper-a-micro-orm-a-simple-object-mapper-for-net-318201dc7030
https://www.learndapper.com/
https://www.partech.nl/nl/publicaties/2021/02/introduction-to-dapper
https://www.chubbydeveloper.com/entity-framework-vs-dapper/
https://minditsystems.com/using-dapper-micro-orm-in-asp-net-core/
https://minditsystems.com/using-dapper-micro-orm-in-asp-net-core/
https://www.telerik.com/blogs/building-crud-api-dapper

TBU in Zlín, Faculty of Applied Informatics 81

[22] Dapper 2.0.123. NuGet Gallery | Dapper 2.0.123 [online]. Available from:

https://nuget.org/packages/Dapper/

[23] Audacia. Investigating the performance benefits of EF Core 6.0 compiled models

feature. Medium [online]. 20 May 2022. Available from:

https://medium.com/@audaciasoftware/investigating-the-performance-benefits-of-

ef-core-6-0-compiled-models-feature-6f5acd750037

[24] Introduction to Entity Framework. Introduction to Entity Framework - ParTech

[online]. Available from:

https://www.partech.nl/nl/publicaties/2020/11/introduction-to-entity-framework

[25] Alam, Rashedul. “Advantages and Disadvantages of Entity Framework.” Cybarlab,

28 Sept. 2020, cybarlab.com/advantages-and-disadvantages-of-ef. Accessed 22 May

2023.

[26] mcleblanc. Entity Framework Overview - ADO.NET. Entity Framework Overview

- ADO.NET | Microsoft Learn [online]. 15 September 2021. Available from:

https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/ef/overview

[27] KANJILAL, Joydip. How to use EF Core as an in-memory database in ASP.NET

Core 6. InfoWorld [online]. Available from:

https://www.infoworld.com/article/3672154/how-to-use-ef-core-as-an-in-memory-

database-in-asp-net-core-6.html

[28] Microsoft.EntityFrameworkCore 7.0.5. NuGet Gallery |

Microsoft.EntityFrameworkCore 7.0.5 [online]. Available from:

https://nuget.org/packages/Microsoft.EntityFrameworkCore/

[29] What is Object Relational Mapping? Educative: Interactive Courses for Software

Developers [online]. Available from: https://www.educative.io/answers/what-is-

object-relational-mapping

[30] CANTEKIN, Salih. The Big Fight — Dapper vs Entity Framework Detailed

Benchmark. Medium [online]. 23 February 2022. Available from:

https://salihcantekin.medium.com/the-big-fight-dapper-vs-entity-framework-

detailed-benchmark-2345af933382

https://nuget.org/packages/Dapper/
https://medium.com/@audaciasoftware/investigating-the-performance-benefits-of-ef-core-6-0-compiled-models-feature-6f5acd750037
https://medium.com/@audaciasoftware/investigating-the-performance-benefits-of-ef-core-6-0-compiled-models-feature-6f5acd750037
https://www.partech.nl/nl/publicaties/2020/11/introduction-to-entity-framework
https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/ef/overview
https://www.infoworld.com/article/3672154/how-to-use-ef-core-as-an-in-memory-database-in-asp-net-core-6.html
https://www.infoworld.com/article/3672154/how-to-use-ef-core-as-an-in-memory-database-in-asp-net-core-6.html
https://nuget.org/packages/Microsoft.EntityFrameworkCore/
https://www.educative.io/answers/what-is-object-relational-mapping
https://www.educative.io/answers/what-is-object-relational-mapping

TBU in Zlín, Faculty of Applied Informatics 82

LIST OF ABBREVIATIONS

API Application Programming Interface

CRUD CREATE, READ, UPDATE AND DELETE

EF

HTTP

IDE

JSON

LINQ

OOP

ORM

OS

RDB

RDBMS

RDMS

 Entity Framework

Hypertext Transfer Protocol

Integrated Development Environment

JavaScript Object Notation

 Language Integrated Query

Object Oriented Programming

Object Relational Mapping

Operating System

Relational Database

Relational Database Management System

Registered Diagnostic Medical Sonographer

SQL Structured Query Language

URL Uniform Resource Locator

TBU in Zlín, Faculty of Applied Informatics 83

LIST OF FIGURES

Figure 1: Architecture of ORM [29] ... 12

Figure 2 :The SQL script provides an example of SQL code for retrieving data from a

specific book table in a database. .. 13

Figure 3 : Retrieving specific data using ORM. ... 13

Figure 4: The most popular and recent version used worldwide is v2.0.x. 18

Figure 5 : Number of versions downloaded by users. .. 21

Figure 6 : Endpoint for GET method for retrieving books for Dapper and Entity

Framework. .. 24

Figure 7 : Endpoint for POST method for inserting book into the database for Dapper

and Entity Framework. .. 25

Figure 8 : Endpoint for PUT method updating book info for Dapper and Entity

Framework. .. 25

Figure 9 : Endpoint for GETById method getting book by id for Dapper and Entity

Framework. .. 26

Figure 10 : Endpoint for DELETE method for Dapper and Entity Framework. 26

Figure 11 : Endpoint for deleting books for entity. .. 27

Figure 12 : Endpoint for deleting all books for dapper. .. 28

Figure 13 : Endpoint for inserting books for entity. ... 29

Figure 14 : Endpoint for inserting books for dapper. .. 30

Figure 15 : Endpoint for updating title of the books for entity. 31

Figure 16 : Endpoint for updating title of the books for dapper. 32

Figure 17 : Endpoint for retrieving books in Dapper Framework. 34

Figure 18 : Endpoints for retrieving book by id and sending new book to database in

Dapper Framework. ... 35

Figure 19 : Endpoints for deleting book by id and updating book in Dapper

Framework. .. 36

Figure 20 : Endpoint for getting in Entity framework. ... 38

Figure 21 : Endpoints for retrieve book by Id and send new books to database in Entity

Framework. .. 39

Figure 22 : Endpoints for updating books and deleting book by Id in Entity Framework.

 ... 40

Figure 23 : Implementation of getting book from database in Dapper framework. ... 42

TBU in Zlín, Faculty of Applied Informatics 84

Figure 24: Implementation for POST method and inserting book into database in

Dapper framework. .. 43

Figure 25 : Implementations of DELEET method for deleting book by id and UPDATE

method for updating book info in database in Dapper framework. 44

Figure 26: Interface for communicating with the database. 45

Figure 27 : Uses ISqlDataAccess interface and Dapper ORM library for SQL Server

database access. ... 46

Figure 28: Constructor assigns IConfiguration to _config. LoadMany<T> executes

async SQL query. LoadSingle retrieves T instance... 47

Figure 29 : ISqlDataAccess is a DapperAPI.dbServices interface. 48

Figure 30 : User's code defines a class called SqlDataAccess in Entity Framework,

derived from DbContext. ... 49

Figure 31 : The code has a class called "Books" in the "DapperAPI.Models"

namespace. .. 50

Figure 32: The code creates a "Books" class using Entity Framework as a model for

database-stored books. ... 51

Figure 33:CallResults class in DapperAPI consists of two attributes: stats and data. 52

Figure 34: Code instantiates "Stats" class in "DapperAPI.ThesisTools" namespace. 53

Figure 35 : The "EntityFramework.ThesisTools" namespace has a class called

"CallResults" with statistics and information qualities. 54

Figure 36 : The code creates an instance of "Stats" class in the

"EntityFramework.ThesisTools" namespace. ... 55

Figure 37: Curriculum includes private static variables like Performance Counter,

SetupCategory, and Create Counters methods. ... 56

Figure 38 : EFCore6PerformanceCounterSampleBase tracks usage.

"EFCore6PerformanceCounterCategory" has two counters for EFCore6 metrics.

 ... 57

Figure 39 : Mean value of performance metric is calculated using the beginning

counter as the basis. ... 58

Figure 40 : New entry added to total-time list. Sample added to samples list. Function

tracks and updates memory usage. .. 59

Figure 41 : Loop completes, CalculateResults calculates memory total. Console shows

time and memory stats, framework/technique indicated. 60

TBU in Zlín, Faculty of Applied Informatics 85

Figure 42 : Code has CalculateResults function that computes and displays counter

values using CounterSample and CounterSampleCalculator. 61

Figure 43 : Code snippet: Class with procedures, input arguments of CounterSample

class. .. 62

Figure 44 : Swager dapper API... 63

Figure 45 : Swagger Entity Framework API. ... 63

Figure 46 : The console for Thousands of transactions for Dapper. 64

Figure 47 : The console for Thousands of transactions for Entity Framework. 64

Figure 48 : JMeter application for testing Dapper Endpoints. 66

Figure 49 : JMeter application for testing Entity framework endpoints. 67

Figure 50 : Benchmark comparing time and memory performance Dapper for GET

method. .. 68

Figure 51 : Benchmark comparing time and memory performance Entity for GET

method. .. 68

Figure 52 : Benchmark comparing time and memory performance Dapper for POST

method. .. 68

Figure 53 : Benchmark comparing time and memory performance Entity for POST

method. .. 69

Figure 54 : Benchmark comparing time and memory performance Dapper for GET

method. .. 69

Figure 55 : Benchmark comparing time and memory performance Entity for GET

method. .. 69

Figure 56 : Benchmark comparing time and memory performance Dapper for PUT

method. .. 70

Figure 57 : Benchmark comparing time and memory performance Entity for PUT

method. .. 70

Figure 58 : Benchmark comparing time and memory performance Dapper for

DELETE method. .. 70

Figure 59 : Benchmark comparing time and memory performance Entity for DELETE

method. .. 71

Figure 60 : JMeter Result for GET method endpoint for dapper................................ 71

Figure 61 : JMeter Result for GET method endpoint for entity. 71

Figure 62 : JMeter Result for POST method endpoint for dapper.............................. 71

TBU in Zlín, Faculty of Applied Informatics 86

Figure 63: JMeter Result for POST method endpoint for entity. 72

Figure 64 : JMeter Result for GET by Id method endpoint for dapper. 72

Figure 65 : JMeter Result for GET by Id method endpoint for entity. 72

Figure 66 : JMeter Result for PUT method endpoint for Dapper. 72

Figure 67 : JMeter Result for PUT method endpoint for entity. 73

Figure 68 : JMeter Result for DELETE method endpoint for dapper. 73

Figure 69 : JMeter Result for DELETE method endpoint for entity. 73

Figure 70 : Minimum time required for dapper framework to execute an endpoint by

all three of the implementations. ... 74

Figure 71 : Minimum time required for entity framework to execute an endpoint by all

three of the implementations. .. 74

Figure 72 : Max average time for dapper framework. .. 75

Figure 73 : Max average time for entity framework. ... 76

Figure 74 : Benchmark for average time for Dapper framework. 76

Figure 75 : Benchmark for average time for entity framework. 77

Figure 76 : Average memory for dapper and entity, ... 77

TBU in Zlín, Faculty of Applied Informatics 87

LIST OF TABLES

Table 1: Versions of Dapper [22] ... 18

Table 2 : Versions of Entity Framework Core [28] .. 20

TBU in Zlín, Faculty of Applied Informatics 88

APPENDICES

APPENDIX P I: APPENDIX TITLE

	introduction 9
	I theory 10
	1 literature review 11
	1.1 Object Relational Mapping (ORM) 11
	1.1.1 ORM Tools for .NET 13
	1.1.2 Why an ORM is Needed 14
	1.1.3 Advantages of ORM 15
	1.1.4 Disadvantages of ORM 15

	1.2 DAPPER 15
	1.2.1 Advantages of Dapper 16
	1.2.2 Disadvantages of Dapper 16
	1.2.3 Importance of Dapper 17
	1.2.4 When to Use Dapper 17
	1.2.5 Versions of Dapper 17

	1.3 ENTITY FRAMEWORK CORE 18
	1.3.1 Advantages of Entity Framework Core 19
	1.3.2 Disadvantages of Entity Framework Core 19
	1.3.3 Importance of EF 19
	1.3.4 Determining optimal use case for Entity Framework in software development 20
	1.3.5 Versions of Entity Framework Core 20

	II Analysis 22
	2 performance comparison 23
	2.1 Methodology 23
	2.2 Classification 32
	2.2.1 Controllers 32
	2.2.2 Database Servers 41
	2.2.3 Model 49
	2.2.4 Call Results 51

	2.3 Performance Counter and HTTP Request 55
	2.4 Screenshot of app 62
	2.5 Benchmarks 67
	2.6 Result 73
	Conclusion 78
	bibliography 79
	List of abbreviations 82
	list of figures 83
	list of tables 87
	appendices 88
	introduction
	1 literature review
	1.1 Object Relational Mapping (ORM)
	1.1.1 ORM Tools for .NET
	1.1.2 Why an ORM is Needed
	1.1.3 Advantages of ORM
	1.1.4 Disadvantages of ORM

	1.2 DAPPER
	1.2.1 Advantages of Dapper
	1.2.2 Disadvantages of Dapper
	1.2.3 Importance of Dapper
	1.2.4 When to Use Dapper
	1.2.5 Versions of Dapper

	1.3 ENTITY FRAMEWORK CORE
	1.3.1 Advantages of Entity Framework Core
	1.3.2 Disadvantages of Entity Framework Core
	1.3.3 Importance of EF
	1.3.4 Determining optimal use case for Entity Framework in software development
	1.3.5 Versions of Entity Framework Core

	2 performance comparison
	2.1 Methodology
	2.2 Classification
	2.2.1 Controllers
	2.2.1.1 Dapper Controllers
	2.2.1.2 Entity Framework Core’s Controller

	2.2.2 Database Servers
	2.2.2.1 Dapper’s Book Data
	2.2.2.2 Dapper’s Book Data Interface
	2.2.2.3 Dapper’s SQL Data Access
	2.2.2.4 Dapper’s SQL Data Access Interface
	2.2.2.5 Entity Framework Core’s SQL Data Access

	2.2.3 Model
	2.2.3.1 Dapper’s Models
	2.2.3.2 Entity Framework Core’s Models

	2.2.4 Call Results
	2.2.4.1 Dapper’s Call Results
	2.2.4.2 Dapper’s Stats
	2.2.4.3 Entity Framework Core’s Call Results Stats
	2.2.4.4 Entity Framework Core’s Stats

	2.3 Performance Counter and HTTP Request
	2.4 Screenshot of app
	2.5 Benchmarks
	2.6 Result

	Conclusion
	bibliography
	List of abbreviations
	list of figures
	list of tables
	appendices

