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SUMMARY

This Doctoral Thesis investigates the significant role of data handling in the
practical application of deep learning techniques for object detection in high-
resolution images. The study examines the impact of attention mechanisms and
introduces novel data processing methodologies, namely Artificial Size Slicing
Aided Fine Tuning (ASSAFT) and Artificial Size Slicing Aided Hyper Inference
(ASSAHI). Despite the potential of attention mechanisms observed in medi-
cal imaging, the practical application of similar principles in the custom-made
Tomato360 dataset does not prove to be beneficial. On the other hand, a sub-
stantial improvement in object detection performance in the Tomato360 dataset
was achieved through the newly proposed ASSAFT and ASSAHI techniques.
The research underlines the challenges of deploying deep learning techniques
in real-world scenarios; concretely, the final proposed solution is utilized and
evaluated for estimating crop yields in tomato greenhouses.

ABSTRAKT

Tato disertační práce zkoumá významnou roli zpracování dat při praktickém
použití technik hlubokého učení pro detekci objektů v obrazech s vysokým
rozlišením. Práce zkoumá dopad mechanismů pozornosti a představuje nové
metody zpracování dat, konkrétně Artificial Size Slicing Aided Fine Tuning (AS-
SAFT) a Artificial Size Slicing Aided Hyper Inference (ASSAHI). Přes úspěšné
použití mechanismů pozornosti při zpracování medicínských dat, praktické up-
latnění podobných principů v nově vytvořeném datasetu Tomato360 se neukázalo
prospěšné. Na druhou stranu, významné zlepšení kvality detekce objektů v datasetu
Tomato360 bylo dosaženo prostřednictvím nově navržených technik ASSAFT a
ASSAHI. Práce dokumentuje výzvy spojené s nasazením technik hlubokého učení
v reálných aplikacích; konkrétně je finální navržené řešení využito pro odhad skl-
izně rajčat ve skleníku.
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1 Introduction

There is an enormous amount of image/video data created each moment. The
internet, social networks, security cameras, and the data from medical scanners
are just a few examples of image data resources. Although the processing of
visual information is natural for us humans, and we can do it with ease, the
amount makes the manual analysis of all data impossible. Understanding infor-
mation encoded in images is critical and may be helpful in many social areas.
For example, automatic emergency braking is already standard equipment in
new cars; a machine can preventively screen a patient’s medical images, letting
a doctor check only suspicious samples; or a security camera can start an alarm
when an unattended child falls into a swimming pool.

Computer vision is an interdisciplinary field concerned with processing image
data to gain a high-level understanding of a scene. In other words, it tries
to mimic and automate the task the human visual system can do. Computer
vision deals with the automatic extraction, analysis, and understanding of useful
information from a single image or a sequence of images. To achieve this goal,
it uses algorithms often involving artificial intelligence. The image data are
available in many forms, such as video sequences, views from multiple cameras,
or multi-dimensional data from a medical scanner [23, 25].

This introduction section continues by discussing fundamental computer vision
tasks from a computer science perspective. Building upon this foundation, the
text delves into the application of computer vision in agriculture, a domain
with significant potential for technological advancements. One critical challenge
that remains unsolved is small object detection in high-resolution images. Small
objects often exhibit low contrast, partial occlusion, and complex spatial ar-
rangements, making their accurate detection a formidable task. Motivated by
the desire to address this challenge, this thesis focuses on developing novel ap-
proaches to tackle small object detection in high-resolution images, intending
to enhance precision and efficiency in agricultural applications. Outlining these
motivations establishes the rationale for the subsequent section that details the
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specific aims of this dissertation, which include the creation of a custom dataset,
incorporation of attention mechanisms within different CNN architectures, and
the development of a tailored processing pipeline for handling high-resolution
images and small object detection.

1.1 Basic Computer Vision Tasks

Computer vision seeks to interpret images in much the same way humans do.
To approach such a complex problem, it can be divided into five subtasks with
increasing complexity: classification, object detection, semantic segmentation,
instance segmentation, and panoptic segmentation. For illustration, please see
Fig. 1.1. The journey of computer vision has been characterized by gradual
advances in tackling these tasks.

Classification is the simplest task, which involves assigning an entire image to
a single class based on its content. For instance, if the image of two dogs lying
in the grass from Fig. 1.1 is considered, a classification model would label the
entire image as ’dogs’ or ’park’. Image recognition has witnessed the first sig-
nificant developments of a deep convolutional neural network (CNN), leading to
substantial advancements in the computer vision field. In 2012, the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) served as a catalyst for
progress in this field. The current models for image classification often assign
the top five classes present in the image. These models are able to classify many
different images with a startling preciousness, achieving even higher consistency
than various human operators [1].

The task of object detection advances this further by identifying and locating
objects within an image, marking them with bounding boxes. For the image of
two dogs in a park, an object detection model would locate and label each ’dog’
and draw a rectangle around them. It is closer to a real-world application but
simultaneously is more complex. In 2014, Girshick et al. introduced the RCNN
framework [30], which combined region proposal algorithms with convolutional
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Original Recognition/Classification

Object Detection Semantic Segmentation

Instance Segmentation Panoptic Segmentation
Fig. 1.1 Illustration of the fundamental computer vision tasks from a computer
science point of view.
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neural networks (CNNs), revolutionizing object detection accuracy. Since object
detection is one of the themes discussed in this thesis, subsection 3.2 describes the
historical development and current state of the art of object detection methods
in more detail.

Another approach to understand information coded in an image is semantic
segmentation. Here the model classifies each pixel of the input image. The
output then consists of the binary or multi-label mask assigning each input image
pixel a class. For our image of two dogs in a park, each pixel would be classified
as either part of the ’dogs’, the ’grass’ or ’tree’. Early attempts at semantic
segmentation were made using traditional image-processing techniques such as
thresholding. In 2014, the introduction of fully convolutional networks (FCNs)
by Long et al. [55] revolutionized semantic segmentation by enabling end-to-end
trainable architectures. The subsection 3.3 describes the fundamental principle
of segmentation models and the current state of the art.

Instance segmentation combines elements of object detection and semantic seg-
mentation. This technique distinguishes different instances of the same class,
meaning it could differentiate and label each individual ’dog’ in the park, even
if they are close to each other.

Finally, panoptic segmentation [46] unifies semantic and instance segmentation,
providing a holistic understanding of the image. It simultaneously labels all pix-
els according to their semantic class and identifies individual instances of objects.
As such, it distinguishes ’background’ classes like ’grass’ and also labels ’fore-
ground’ objects such as each individual ’dog’. This results in a highly detailed
and informative representation of the image scene.

1.2 Applying Computer Vision to Agriculture

Precision agriculture aims to establish an effective crop management system,
leveraging accurate monitoring of plant health and crop physiological status to
inform cost-effective fertilization, pesticide application, and plant management
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strategies [27]. A crucial component of this concept is acquiring detailed, fre-
quent information about a representative amount of plants or field sections. For
instance, the Ohio Agricultural Research and Development Center operates a
web-based decision support system for greenhouse climate control [76], while
other studies further refine this approach by examining optimal degrees of mi-
croclimate parameters, such as air temperature and relative humidity [74].

Despite the wealth of data gathered through various sensors monitoring the
plants, augmenting this information with new sources can always improve the
accuracy of decision-making processes. In this context, computer vision tech-
niques emerge as valuable tools, capable of generating insights not easily derived
from traditional sensor data.

This thesis aims to contribute to this evolving landscape by developing a novel
tomato fruit detection and counting method using deep learning applied to com-
puter vision. By determining the size and location of fruits within the green-
house, this system can be utilized for precise harvest prediction. Discrepancies
between accurate harvest predictions and actual yields can reveal previously
unidentified plant stress conditions in greenhouses, enabling early interventions.

Moreover, harvest prediction is crucial for optimal crop management and sig-
nificantly impacts the commercial aspects of tomato cultivation in greenhouses.
The tomato delivery contracts are based on tomato harvest predictions in the
following week. Greenhouse management is often committed to delivering a spe-
cific volume of tomatoes on particular days or weeks. Therefore, any deviation
between the predicted and actual harvest can lead to substantial commercial
losses and logistical challenges. This reinforces the necessity for accurate, reli-
able prediction models – one of the primary goals of this work is to tackle the
large scale of fruit counting in the context of a commercial tomato greenhouse.

A comprehensive review of the state of the art in this field, detailing the latest
applications and advancements of deep learning in agriculture, is presented in
section 3.5. This will provide the necessary context and groundwork for under-
standing the innovations brought in this study.
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1.3 Small Object Detection in High-Resolution Images

Detecting small objects within high-resolution images remains an open problem
in the field of computer vision and constitutes an active area of research. Despite
their significant achievements, current deep learning techniques often struggle to
identify and correctly classify small objects due to their limited spatial resolution
and the complex backgrounds within which these objects are located.

While this problem is frequently encountered in fields such as satellite imagery
analysis and surveillance systems, its relevance extends to various sectors, in-
cluding medical imaging and agriculture. Fig. 1.2 presents example images rep-
resenting the challenging small object detection, a satellite imagery example, an
image from a drone, and a picture of a tomato row in a greenhouse (from a
custom dataset named Tomato360, created as part of this thesis).

The disparity in scale between the overall image size and the target objects
of interest presents significant difficulties. Conventional convolutional neural
networks (CNNs) may struggle with such tasks due to factors such as the re-
duced feature representation of small objects, the overwhelming dominance of
background features, and the increased computational demands associated with
processing such large images.

One possible approach to address these challenges is the incorporation of at-
tention mechanisms into the model architecture. Attention mechanisms have
the potential to improve the model’s focus on the small but crucial parts of the
input, thereby enhancing its performance in detecting small objects.

The aim of this work is to explore these possibilities, devising methods that im-
prove the accuracy and efficiency of small object detection within high-resolution
images. Section 3.6 offers a detailed account of existing research and advance-
ments in the field of small object detection, while section 3.4 describes different
approaches to incorporate an attention mechanism, setting the stage for the
innovative approaches proposed in this dissertation.
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(a) (b)

(c) (d) (e)

(f)
Fig. 1.2 Example images representing the challenging small object detection, (a)
satellite image: DOTA dataset [22], (b) surveillance: Visdrone dataset [99], (c-e)
- medical images: KiTS dataset [59], LiTS dataset [5], MSD dataset, pancreas
segmentation [78], (f) Tomato row in a greenhouse: dataset created and analyzed
in this thesis.
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2 Aims of Doctoral Thesis

The following items are proposed as aims of the dissertation:

1. Appraise the current state of the research area: Specifically, deep
learning methods applied in computer vision with a particular focus on
small object detection and segmentation in high-resolution images.

2. Develop and curate a custom dataset in a tomato greenhouse: The
creation of a custom, real-world dataset aims to demonstrate the transfer
of AI technologies from theory to practical implementation. This involves
acquiring, collecting, and labeling high-resolution images that capture the
challenges specific to this domain.

3. Investigate and compare the effectiveness of attention mecha-
nisms: Explore possibilities of incorporating attention mechanisms into
different convolutional neural network (CNN) architectures. Compare their
performance in terms of accuracy and computational efficiency.

4. Develop an enhanced deep learning pipeline: Design and develop a
novel processing pipeline tailored to handle the challenging task of small
object detection in high-resolution images.

5. Evaluate the proposed pipeline on the custom dataset: Apply
and test the developed processing pipeline on the custom dataset from
the tomato greenhouse. Measure its performance against existing stan-
dard techniques used for small object detection. Assess and compare the
proposed pipeline’s accuracy, robustness, and efficiency.

6. Analyze the impact and practicality of the proposed methods:
Conduct a comprehensive analysis to understand the impact of incorpo-
rating attention mechanisms and the newly developed processing pipeline
on small object detection in high-resolution images. Evaluate their prac-
ticality in real-world scenarios, considering factors such as computational
requirements, scalability, and generalizability.
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3 Literature Review

This chapter brings a comprehensive review of the state-of-the-art methods and
techniques relevant to the research of this work. The review starts with an
exploration of Deep Learning (DL) in Computer Vision (CV), including the
fundamentals of Convolutional Neural Networks (CNNs), their basic layer struc-
ture, and the role of graphics processing unit (GPU) acceleration in enhancing
computational performance. Then the state-of-the-art techniques in object de-
tection and semantic segmentation are discussed in separate sections since they
are relevant to the experiments realized in this dissertation.

The literature review progresses to cover attention mechanisms within CNNs, a
promising advancement that aids in the detection of small objects within high-
resolution images. These mechanisms, utilized in fields such as medical semantic
segmentation and object detection, allow models to focus on regions of interest
within an image, potentially improving its performance.

The application of Deep Learning in agriculture, particularly in tasks like fruit
detection and counting, is also addressed. This area is of significant interest given
the increasing need for automated and efficient farming practices. Accurate fruit
detection and counting can provide precise crop estimates, aid in planning, and
even help identify diseases and pest infestations early. Again, this is relevant to
the experiments realized in this thesis, which deals with a custom-made dataset
captured in a tomato greenhouse.

The final section dissects the challenges and techniques associated with process-
ing high-resolution images. Due to their large-scale nature, effectively handling
these images necessitates specialized approaches to ensure that models can effi-
ciently process and extract meaningful information. The last section examines
strategies from current literature for managing high-resolution images, specifi-
cally within the context of small object detection. The insights gathered from
this review inform the design of a tailored deep learning pipeline, addressing the
challenges posed by small object detection in high-resolution images.
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3.1 Deep Convolutional Neural Networks

Deep learning is a term most commonly connected to models composed of multi-
ple processing layers, such as deep neural networks, deep belief networks, recur-
rent neural networks, and convolutional neural networks. Its composite struc-
ture allows the models to progressively extract features with an increasing level
of abstraction from the raw input. These models dramatically improved the
state-of-the-art in many fields such as speech recognition, language translation,
computer vision, and many others [47].

The computer vision research area is recently mainly occupied by deep convolu-
tional neural networks (deep CNN) [38]. A convolutional neural network (CNN)
is a shift-invariant or space-invariant artificial neural network [96]. CNNs are
regularized versions of multilayer perceptrons. Groups of neurons share their
weights which give the model translation invariance characteristics. The name
“convolutional neural network” cames from a mathematical operation called con-
volution employed through the network instead of general matrix multiplication.
The convolution is a special kind of linear operation.

The connectivity pattern between neurons in CNN is biologically inspired and
resembles the organization of the animal visual cortex (the part of a brain ded-
icated to processing visual information) [40, 70]. Individual neurons react to
stimuli only in a restricted region of the visual field. This region is known as
the receptive field. The receptive fields of different neurons partially overlap,
covering the entire visual field. Similarly, the output matrix values from the
convolution operation are calculated from overlapping regions of the input.

CNN requires relatively low preprocessing of input data compared to classical
image processing methods, where the initial filters for feature extraction are
hand-designed. CNN learns these filters directly from the training data. This
independence from prior knowledge and human effort is a significant advantage.
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3.1.1 Artificial Neural Network Layers

A CNN consists of an input and an output layer, as well as multiple hidden
layers. A series of convolutional, pooling, fully connected, and non-linearity
layers are typically present in a CNN model.

The convolution Layer (CL) convolves the input and passes its result to the
next layer. The input is a tensor with shape (batch size) × (image width) ×
(image height) × (image channels), after passing through the layer, the image
becomes abstracted to a feature map, with shape (batch size) × (feature map
width) × (feature map height) × (feature map channels). In a basic setup, a CL
has three hyper-parameters:

• the size of a convolutional kernel, which defines the receptive field,

• the stride parameter, which defines how much the receptive fields overlap,

• and the number of input and output channels.

The Pooling Layer (PL) reduces the dimensions of the data, usually combining
multiple values of neighboring image pixels into one output pixel. PL typically
involves maximum operation, choosing only the highest value of input pixels, or
average operation, which uses the average value from input pixels. In a basic
setup, a PL has two hyper-parameters:

• the size of a kernel, which defines how much the output is down-sampled,
typically 2× 2,

• the pooling operation, i.e., maximum, minimum, average...

The Fully Connected Layer (FCL) connects every neuron in one layer to every
neuron in another layer. It is typically present at the end of the network where
it converts the processed features into the final model decision.
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The Non-linearity Layer (NLL) applies the non-saturating activation func-
tion, such as ReLU (a rectified linear unit 3.1), the saturating hyperbolic tan-
gent 3.2, or sigmoid function 3.3. These layers effectively remove negative values
from an activation map by setting them to zero and thus increases the nonlinear
properties of the overall network.

f(x) = max(0, x) (3.1)

f(x) = thanh(x), f(x) = |thanh(x)| (3.2)

σ(x) = (1 + e−x)−1 (3.3)

All the above-mentioned layers are usually connected in a feed-forward man-
ner forming the final model architecture. Authors of [34] introduced the skip
connections, also linking not directly neighboring layers. These shortcuts help
information to flow through a network, increasing both the training speed and
the final network performance. The design of model architecture, i.e., the num-
ber of layers, their order, and the layout of skip connections, is a subject of
extensive research.

3.1.2 GPU Acceleration

The term deep learning goes back to 1986 when it was introduced to the ma-
chine learning community by Rina Dechter [20]. However, only the advances in
hardware have enabled renewed interest in deep learning. In 2009, Nvidia intro-
duced the possibility to train deep learning neural networks with Nvidia graphics
processing units (GPUs). GPUs proved to be well-suited for the matrix/vector
computations involved in machine learning and speed up training algorithms by
orders of magnitude, reducing running times from weeks to days [57].
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Significant additional impacts in the image and object recognition had the paper
[16] dealing with fast implementations of CNNs with max-pooling on GPUs.
In 2011, a deep convolutional neural network-based approach trained on GPU
achieved superhuman performance in a visual pattern recognition contest for the
first time [16], and from then on, deep CNN became basically the gold standard
in all computer vision tasks [38].

3.2 Object Detection

Object detection has a rich history of development within the computer vision
community. The main goal of object detection is to identify and locate objects
within an image, and it has become more sophisticated over time.

The early years of object detection were dominated by manual feature extraction
and machine learning classifiers. Techniques such as Scale-Invariant Feature
Transform (SIFT) [56] and Histogram of Oriented Gradients (HOG) [19] were
used to describe and capture patterns in images that could be used to detect
objects. These features would then be fed into a machine learning algorithm
such as Support Vector Machines (SVM) to classify whether an object is present
or not.

In 2001, Viola and Jones [85] introduced a novel approach that combined Haar-
like features with a cascaded classifier, making real-time face detection possible.
This was a major milestone, providing a robust solution to a real-world problem.

However, these traditional methods struggled to scale with the diversity and
complexity of real-world images. They were engineered to work under specific
conditions and were sensitive to variations in the object’s scale, pose, and ap-
pearance.

The introduction of Convolutional Neural Networks (CNNs) to image recognition
revolutionized the field of object detection, too. CNNs’ ability to learn rich,
hierarchical representations from raw pixel data made them ideally suited to
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the task. Subsequently, the focus shifted to applying these methods to object
detection. A classical object detector that consists of two parts was created: the
first module acted as a region proposal, and the second module was a classifier.

Girshick et al., in works [29, 30] was the first to successfully adapt such a struc-
ture utilizing CNNs to the recognition task, but it was computationally expensive
due to the independent processing of a large number of region proposals. Fast
RCNN [28] addressed this issue by introducing a technique known as Region of
Interest (RoI) pooling to share computations. Faster-RCNN [67] went a step
further by including a Region Proposal Network (RPN), enabling the detection
network to suggest potential object bounding boxes. In 2023, Faster-RCNN is
still one of the most popular object detection network architectures, especially in
custom computer vision problem solving, due to its availability, training stability,
and a good ratio of inference speed and detection precision.

Still, object detection methods have continued to evolve. Modern successful
object detector architectures consist of a single feed-forward convolutional neural
network (CNN) that directly predicts classes and anchor offsets without the need
for a second stage per-proposal classification operation. These detectors allow
a few potential bounding boxes to be considered as raw object locations and
require predicting an offset to the actual location of the object. Simultaneously,
they predict scores for object categories, effectively combining the steps of region
proposal and classification. This approach was first proposed in 2016 by You
Only Look Once (YOLO) [66]. The Single Shot Detector (SSD) [54] presents a
similar approach but adds layers of feature maps for each scale. The improvement
of the SSD detector by combining it with the state-of-the-art classifier (Residual-
101 [34]) is presented in work [26].

To provide a concrete illustration of how models perform in terms of accuracy
and evaluation speed, consider the following example. In 20181), the state-of-
the-art general-purpose detector was RetinaNet [52]. Its best model can detect

1)Starting from 2019, the COCO object detection challenge only features the detection task
with object segmentation output (that is, instance segmentation).
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more than 80 categories with mean average precision (mAP)2) 55.2 at 0.5 inter-
section over union (tested on COCO3)). With this setting, the model reached
the evaluation speed 122 ms on an Nvidia M40 GPU.

The field of object detection continues to develop, with ongoing research seeking
to enhance speed, accuracy, and robustness. Object detection systems have
wide-ranging applications, from autonomous driving and video surveillance to
medical imaging and augmented reality.

3.3 Semantic Segmentation

Many of the classic image segmentation methods consist of some thresholding
variant. If the image pixel satisfies a condition regarding its level of color or
brightness, it is assigned a class. This straightforward approach faces many dif-
ficulties if the object of interest has a variable appearance or the scene’s lighting
is uneven. This trouble can sometimes be fixed by applying the adaptive thresh-
old and other additive conditions. Another conventional technique for solving
the segmentation problem is the region-growing method – watershed algorithm.
This approach was used, for example, in the task of cell nuclei detection and
segmentation [50]. Many region-growing algorithms result in over-segmented
images, i.e., too many object regions are formed.

Aside from thresholding, there are edge-based segmentation techniques. In this
approach, the edges are detected first, and only then the segmented regions are
located. This approach is especially useful when looking for an object with a
stable shape, i.e., the human eye or iris. Hough transform is a method that
detects distinctive contours in the image, i.e., lines or circles [41].

In 2014, the introduction of fully convolutional networks (FCNs) by Long et
al. [55] revolutionized semantic segmentation by enabling end-to-end trainable
architectures. Since then, the research area dealing with semantic segmentation

2)Common evaluation metrics used in computer vision are introduced in sec. 4.4.
3)For more information about this dataset please visit http://cocodataset.org/#home.

http://cocodataset.org/#home
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Fig. 3.1 The schema of encoder-decoder network structure.

is mainly occupied by deep convolutional neural networks [38]. A general se-
mantic segmentation architecture often consists of an encoder network followed
by a decoder network. The encoder is often a pre-trained classification network
like VGG [77] or ResNet [34] followed by a decoder network. The task of the
decoder is to semantically project the discriminative features (lower resolution)
learned by the encoder onto the pixel space (higher resolution) to get a dense
classification.

The schema of the encoder-decoder network structure is in Fig.3.1. The encoder
usually consists of convolutional and pooling layers; the image resolution grad-
ually decreases while the number of feature channels increases. The decoder
usually incorporates unpooling and deconvolutional layers. It reversely mimics
the encoder structure, increasing the image resolution while decreasing the num-
ber of feature channels, for more information about layers used in convolutional
neural networks, refer to section 3.1.

The presence of several convolutional and pooling layers in the network archi-
tecture brings the problem that the resolution of the output feature maps is
downsampled. Therefore, the resulting object boundaries are relatively fuzzy. A
variety of network extensions directed to address this issue have been proposed
in the literature, including SegNet [4], Unet [71], and DeepLab [14].
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The Unet model series, starting with the original Unet proposed by Ronneberger
et al. [71], has become highly influential in the field of biomedical image segmen-
tation. Unet’s architecture, mirroring the encoder-decoder structure, introduced
a new approach where the decoder part uses high-resolution features from the
encoder part directly. This skip-connection scheme allows the model to utilize
both high-level semantic and low-level spatial information effectively, thereby
enhancing the precision of segmentation results. This basic structure has been
adopted and improved in numerous subsequent models, proving its effectiveness
in various scenarios. One such very successful implementation is nnUnet pre-
sented by Isensee et al. in 2020 [42], which sets a new state of the art in the
majority of tasks it was evaluated on, outperforming all respective specialized
processing pipelines. Even more interesting is that the strong performance of
nnUnet is not achieved by a new network architecture, loss function, or training
scheme (hence the name nnUnet - “no new Unet”) but by replacing the complex
process of manual pipeline optimization with a systematic approach based on
explicit and interpretable heuristic rules.

The DeepLab model series, introduced by Chen et al. [11], has significantly con-
tributed to the semantic segmentation domain. The series begins with DeepLabv1,
which introduced atrous (dilated) convolutions to control the resolution of fea-
ture responses in the network explicitly. In subsequent versions, DeepLabv2 [12],
DeepLabv3 [13], and DeepLabv3+ [14], the authors incrementally incorporated
various enhancements like atrous spatial pyramid pooling (ASPP), encoder-
decoder structure, and depthwise separable convolutions, effectively pushing the
state-of-the-art in semantic segmentation.

These advancements in Unet and DeepLab series have opened up new possibili-
ties for semantic segmentation tasks. Their significant performance in complex
segmentation tasks sets a benchmark for future models, while their design prin-
ciples provide valuable insights for the development of more sophisticated seg-
mentation algorithms. One such research direction is the incorporation of the
attention mechanism, which is discussed in the following section 3.4.
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3.4 Attention Mechanism in CNN

Many research papers have incorporated attention into artificial CNN visual
models for image captioning [92], classification [58, 91] and segmentation [10].
For example, in the case of Recurrent Neural Networks (RNN), [95] presents
an RNN model that learns to sequentially sample the entire X-ray image and
focus only on salient areas. In these models, attention could be divided into two
categories: hard and soft attention. As described by [92], hard attention is when
the attention scores are used to select a single hidden state, e.g., iterative region
proposal and cropping. Such an attention mechanism is often non-differentiable
and relies on reinforcement learning to update parameter values, making training
quite challenging. On the other hand, soft attention calculates the context vector
as a weighted sum of the encoder’s hidden states (feature vectors). Thus, soft
attention is differentiable, and the entire model is trainable by back-propagation.

The attention modules which generate attention-aware features presented by [87]
was the state-of-the-art object recognition performance on ImageNet in 2017.
The work [39] presents a Criss-Cross Network (CCNet) with a criss-cross atten-
tion module and achieves the state-of-the-art results on Cityscapes test set and
ADE20K validation set, respectively. The paper [33] combines deep CNN archi-
tecture with the components of attention for slice-level predictions and achieves
81.82% accuracy for the prediction of hemorrhage from 3D CT scans, matching
the performance of a human radiologist. Other boosted CNN with attention and
deep supervision (DAB-CNN) [44] achieves state-of-the-art results in automatic
segmentation of the prostate, rectum, and penile bulb.

3.4.1 Attention Gates

Medical image segmentation, specifically automatic abdominal organ segmenta-
tion from CT images, presents significant challenges for deep CNN models [37].
One such challenge is how to automatically locate the anatomical structures in
the target image because different organs lay close to each other and can also
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Fig. 3.2 A block diagram of additive attention gate (AG) [62]. Input features (xl)
are scaled with the attention coefficients (α) computed in AG. Spatial regions
are selected by analyzing both the activations and the contextual information
provided by the gating signal (g) which is collected from a coarser resolution
scale. Attention coefficients are resampled to match the resolution of (xl) by
trilinear interpolation.

overlap. Moreover, among individual patients exists a considerable variation
in the location, shape, and size of organs. Furthermore, abdominal organs are
characteristically represented by similar intensity voxels as identified surrounding
tissues in CT images. The other challenge is to determine the fuzzy boundaries
between neighboring organs and the soft tissues surrounding them.

The task of detecting cancerous tissue in an abdominal organ is even more diffi-
cult because of the large variability of tumors in size, position, and morphology
structure. Results are quite impressive when the focus is on organ detection; an
example of this is [42], achieving Dice scores4) of 95.43 and 79.30 for liver and
pancreas segmentation. On the other hand, these values drop dramatically when
the focus is on detecting the tumor, where values are as low as 61.82 and 52.12
for their respective (liver and pancreas) tumor classes. There is also a high vari-
ability on tumor classification depending on the organ, e.g., [94] presents Dice
scores of 93.1 and 80.2 when the organ is the kidney and its tumor detection,
respectively.

On the other hand, all the organs have a typical shape, structure, and relative
position in the abdomen. The model could then benefit from an attentional
mechanism consolidated in the network architecture, which could help to focus

4)Dice score [21] is a common metric used in medical image segmentation, value 100 means
100% conformity with ground true, for more information about this metric see sec. 4.4
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specifically on the organ of interest. One successful application of attention in
the context of medical image segmentation incorporated the idea of attention
gates (AG) [62]. Attention gates identify salient image regions and prune fea-
ture responses to preserve only the activations relevant to the specific task and
suppress feature responses in irrelevant background regions without the require-
ment to crop the region of interest. The principle of the attention gates is tested
in the results section of this thesis, in section 5.2. Therefore, a more detailed
description of the attention gates is provided here for reference.

Attention coefficients, αi ∈ [0, 1] emphasize salient image regions and significant
features to preserve only relevant activations specific to the actual task. The
output of Attention Gates ( 3.4) is the element-wise multiplication of input
feature maps and attention coefficients:

x̂li,c = xli,c · αli,c (3.4)

where αli,c is the attention coefficient (obtained using equation 3.6, below), and
xli,c is pixel i in layer l for class c. xli ∈ RFl where Fl corresponds to the number of
feature-maps in layer l. Therefore, each AG learns to focus on a subset of target
structures. The structure of an attention gate is shown in Fig. 3.2. A gating
vector gi is used for each pixel i to determine the regions of focus. The gating
vector contains contextual information to reduce lower-level feature responses.
The gate uses additive attention (3.5), formulated as follows [62]:

qlatt = ψT (σ1(W
T
x x

l
i,c +W T

g gi,c + bg)) + bψ (3.5)

αli,c = σ2(q
l
att(x

l
i,c, gi,c,Θatt)), (3.6)

where σ1(xli,c) = max(0, xli,c) is rectified linear unit. AG is characterised by a
set of parameters Θatt containing: linear transformations Wx ∈ RFl×Fint , Wg ∈
RFg×Fint , ψ ∈ RFint×1 and bias terms bψ ∈ R, bg ∈ RFint . σ2(xli,c) =

1
1+exp(−xli,c)

corresponds to a sigmoid activation function. The linear transformations are
computed using channel-wise 1×1×1 convolutions of the input tensors. All the
AG parameters can be trained with the standard back-propagation updates.



TBU in Zlín, Faculty of Applied Informatics 31

Fig. 3.3 Illustration of different attention terms [100]. The color bar above a
sampling point denotes its content feature. The existence of content features
and/or relative position indicates that the term uses them for attention weight
calculation.

3.4.2 Spatial Attention Mechanisms in Deep Networks

The landmark work of Transformer [84] set a new standard, and its latest variants
use relative positions instead of absolute positions for better generalization abil-
ity [75, 18]. The Transformer attention presented in [18] has attention weights
expressed as a sum of four terms (ϵ1, ϵ2, ϵ3, ϵ4). Specifically, these factors are
(1) the query and key content, (2) the query content and relative position, (3)
the key content only, and (4) the relative position only. In the vision, the key
and query refer to visual elements, but aside from that, a formulation similar
to Transformer attention introduced in [18] can be used. The visual meaning of
each attention factor is illustrated in Fig. 3.3.

The paper [100] follow on the success of the work of [18] and presents an em-
pirical study of spatial attention mechanisms in Convolutional Neural Networks
(CNNs). The authors propose a new spatial attention module that can be easily
integrated into existing CNN architectures. They also provide a comprehensive
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Fig. 3.4 Attended residual block [100], implementing spatial attention into fea-
ture extraction part of deep convolutional neural network for object detection.
The modules added to existing blocks are marked in red text.

comparison of their proposed module with existing spatial attention mechanisms.
For the object detection task, the authors recommend using a "query content
and relative position" attention term as the most beneficial in terms of solution
precision and efficiency. The incorporation of all attention factors might bring
slightly better results but needs 30% more GFLOPS for a computation.

This spatial attention mechanism is incorporated in the results section 5.3, where
a more detailed description of the implementation for the object detection task
is provided too. Within the feature extraction part of the network, the attention
mechanism extends a classical residual block common to most object detection
networks utilizing ResNet[34] as a backbone. The attended residual block is
visualized in Fig. 3.4. The modules added to existing blocks are marked in red
text. The attention mechanism is also combined with the deformable convolu-
tions [101], which position is illustrated in the diagram, too.

3.5 Applications of Deep Learning in Agriculture

In the continually evolving field of agriculture, cutting-edge technologies are
ceaselessly integrated into farming practices to optimize productivity, enhance
sustainability, and boost profitability. Among these technologies, computer vi-
sion holds a pivotal role in augmenting agricultural operations. A significant
subset of applications pertaining to computer vision in agriculture pertains to
harvest prediction and fruit counting. These tasks, when performed with pre-
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cision, can profoundly influence crop management strategies and affect the eco-
nomic aspects of cultivation. This section provides a comprehensive examination
of the current state-of-the-art, detailing the application of computer vision tech-
niques in agriculture, with a particular focus on their use in harvest prediction
and fruit counting. The review of these methods and models will underpin the
further development and discussion of this study’s unique contribution to the
field.

Many researchers have investigated fruit detection over the past several decades.
Authors of [98, 31] brought a valuable overview and significant improvements
in the field. Traditional image processing techniques have many constraints,
making applying the algorithms to other fruits or environments hard. They often
struggle with uneven illumination and incorrect leaf detection [88]. The growth
and development of artificial intelligence techniques enabled the application of
machine learning to computer vision tasks in agriculture, and it has practically
dominated the field.

Authors of [86] present a multi-class fruit detection system utilizing an adjusted
Faster-RCNN model. The paper focuses mainly on model adjustments and
training process automation. For this purpose, it utilizes the artificially cre-
ated dataset [61] where the fruits were filmed while rotating around a fixed axis
on a white background. On this dataset, they achieved a mean average preci-
sion of 88.94%. Unfortunately, the results for the tomato class are not stated in
the paper; even though it is present in the original dataset, the authors present
results only for apple, mango, and orange.

The paper [93] proposes an improved YOLOv3-tiny architecture for tomato de-
tection in real time. The experimental results show that the F1-score of the
model is 91.92%, while the detection speed on a CPU can reach 25 frames/s.
Another paper also utilizes the YOLO-based architecture, presenting a YOLO-
tomato detector [53]. It modifies the well-known YOLOv3 architecture for object
detection by adding dense connections between the layers for feature extrac-
tion and by applying the circular bounding box instead of the classic rectangle.
YOLO-tomato model achieves an even better 93.91% F1-score.
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The above-referred research only focused on tomato detection in images directly
capturing a tomato or a tomato cluster. Compared to that, the paper [60]
analyses the images of the whole tomato plant from a greenhouse, similarly as is
proposed in this thesis. The authors of paper [60] utilized a Faster-RCNN with
Resnet101 backbone model and obtained an F1-score of 83.67%. Compared
to the previously stated research, the performance drop can be accounted to a
more compilated scenario, including more small immature tomatoes and frequent
obstruction by leaves. Although the authors provide the yield mapping of the
whole image row by stitching the images together, the counting results were
estimated only on single images, which should, by principle, bring additional
errors into the final count: the tomatoes on the overlapped borders would be
counted twice.

A few research papers deal with fruit counting on a large scale, i.e., accessing
the whole crop counts. The authors of [63] attempt to produce a real-time pear
fruit counter using a video captured by a mobile phone capturing the bottom
side of the joint-tree pear orchard. It utilizes real-time object detection by the
YOLOv4-tiny model and consequently applies the unique ID deep sort method
for pear counting, achieving an F1-score of 87.85%. Compared to the scenario
in the tomato greenhouse, pears do not form trusses/clusters, and the sky forms
a relatively uniform background, making the detection process more straightfor-
ward.

Finally, the paper [8] presents a similar goal as this thesis proposes to solve,
delivering an approach for detection, counting, and maturity assessment of cherry
tomatoes but using multi-spectral images. Authors train deep CNN networks
on images captured in a tomato greenhouse. Consequently, similar to the paper
[63], they apply the deep sort algorithm to track the tomatoes in a video. The
value F1-score is not stated; the IDF1-score achieved by the best solution is
51.4%. The results show that detecting and tracking objects in complicated and
obscured scenes of tomato growth is very challenging.

The paper from the author of this thesis [A1] proposes a different solution, also
utilized in the results part of this thesis. This approach eliminates the tricky
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part of object tracking, making the whole process easier. The objects are not
detected in video frames, but rather an extra wide image capturing the whole
tomato plant row was produced first. This big image is cut into overlapping
patches, which are processed by an object detector, and the output predictions
are then stitched together to form the final output. The extended study of the
post-processing parameters was performed to ensure the best possible outcome of
the stitching procedure. The following section 3.6 discusses different possibilities
of how are such high-resolution images with small objects within processed in
state-of-the-art research.

3.6 Processing High-Resolution Images

High-resolution images present a complex problem in computer vision, particu-
larly when the task involves detecting small, sparsely distributed objects. The
combination of a vast amount of data in high-resolution images and the require-
ment to identify small details significantly escalates computational demands.
This complexity can lead to extended processing times and increased resource
needs, often making conventional object detection methods less effective or im-
practical.

These challenges are commonly seen in contexts such as aerial and surveillance
imagery, where small objects of interest make up a tiny fraction of the total
image data. The following paragraphs discuss selected research papers that pro-
pose potential solutions, emphasizing the need for novel techniques to effectively
process high-resolution images in such challenging scenarios.

3.6.1 Cropping Image Patches

Many current methods utilize the notion of cropping high-resolution images into
sequential subregions or chips for detection. Very successful implementation of
such an approach was brought by [2]. This technique aids in data augmentation
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during the training phase and supports the inference phase, with the final pre-
diction resulting from a combination of detections made in the original image
and image patches. A computer vision library5) for performing large-scale ob-
ject detection and instance segmentation is made available by the author of this
paper, creating a stable reusable baseline for other methods.

Nevertheless, the patch-cropping technique is not without issues. The need for
carefully chosen crop sizes presents one such challenge. Too-small patches risk
excluding larger objects, while overly large patches may lack necessary detail.
Balancing these factors often necessitates the sampling of different patch sizes,
significantly increasing processing time and resource demands. Furthermore,
objects may get sliced during image partitioning, complicating both training
and detection, though overlapping patches can somewhat alleviate this issue.

Adopting an innovative approach, the creators of AMRNet [89] introduce an
adaptive cropping schema that employs a scale statistic. Adjustments to patch
size are made according to the object size, with padding used to enlarge patches
and partitioning used to create smaller ones. While this adaptive scaling is only
utilized during training due to the unavailability of object size information in the
test set, the AMRNet still manages to achieve a significant increase in Average
Precision metrics when compared to a then-current baseline on the Visdrone
dataset.

The paper [83] proposes to use a reinforcement learning agent that adaptively
selects the spatial resolution of each image, choosing to sample high and low-
resolution patches. In particular, they trained two policy networks, using rein-
forcement learning with the dual reward of maintaining accuracy while maxi-
mizing the use of low-resolution images with a coarse detector. This increases
the runtime efficiency by 2.2x but brings a need for complicated reinforcement
learning in a training phase.

5)The python codes are available at github.com/obss/SAHI

https://github.com/obss/SAHI
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Finally, a distinct strategy is proposed in [49], leveraging a density map predic-
tion initially introduced in [97]. The authors developed the Density-Map guided
Object Detection Network (DMNet), which generates a density map and learns
scale information based on density intensities to form cropping regions. The
DMNet capitalizes on the fact that an image’s object density map displays ob-
ject distribution in relation to the pixel intensity of the map. This pixel intensity
variation reveals whether a region contains objects, providing valuable guidance
for statistically cropping images.

3.6.2 Multiple Detection Suppression

Techniques suppressing repeated object detection play a crucial role in object
detection, particularly in methodologies employing patch cropping. Object de-
tection models often propose multiple bounding boxes surrounding a potential
object within an image. However, this could lead to an issue known as multiple
detections, where several bounding boxes are proposed for the same object. This
is especially pronounced in patch-cropping methods, where each cropped patch
is processed independently, potentially leading to overlapping predictions for the
same object in adjacent patches.

To resolve this issue, Non-Maximum Suppression techniques are utilized. Non-
maximum suppression (NMS) has been an integral part of many detection al-
gorithms in computer vision for almost 50 years. It was first employed in edge
detection techniques [72]. For human detection, Dalal and Triggs [19] demon-
strated that a greedy NMS algorithm, where a bounding box with the maximum
detection score is selected and its neighboring boxes are suppressed using a pre-
defined overlap threshold improves performance over the approach used for face
detection [85]. Greedy NMS still obtains the best performance when average
precision (AP) is used as an evaluation metric and is therefore considered the
gold standard and is employed in popular detector Faster-RCNN [68].
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Over the years, some new approaches have been presented. Authors of [7] pro-
pose Soft-NMS, which attempts to address the problem of classic NMS, which
suppresses even a correctly detected object if the object lies within the prede-
fined overlap threshold. The algorithm decays the detection scores of all other
objects as a continuous function of their overlap with the first most confident
one. Hence, no object is eliminated. Just the confidence score is lowered. An-
other approach is presented in [15], where the algorithm judges the neighboring
bounding boxes of each bounding box and combines the neighboring boxes that
are strongly correlated with the corresponding bounding boxes. This approach
was designed, for the instance segmentation task, showing a steady increase in
accuracy.

The case of stitching image patches deals with a slightly different problem of
multiple detections. The original wide image is split into overlapping patches;
consequently, there are multiple detections in the overlapping areas of the final
output. Therefore, aside from a classical suppression after model inference, post-
processing suppression needs to be applied to the final stitched output, too. An
extensive study of different post-processing suppression algorithms to achieve
the best possible output is presented in the paper from this thesis author [A1].

4 Methodology

In order to develop a successful deep convolutional neural network model, an
extensive and complex workflow is necessary. The quality of the established
pipeline frequently has a significant impact on the final model results [42]. This
part, therefore, summarizes the essential building blocks of a robust workflow,
discussing the actual trends in the application area of computer vision. On
top of that, a novel method for small object detection in high-resolution images
is proposed. The novel methodology consists of two novel techniques, namely:
Artificial Size Slicing Fine Tuning and Artificial Size Slicing Hyper Inference.
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4.1 Dataset Collection and Preprocessing

Although one of the advantages of deep CNN models is their ability to extract
significant features without the need for extensive, human-designed preprocess-
ing, the proper understanding of training data and its appropriate adjustments
are essential for successful model development. Authors of [82] discussed the
presence of bias in image data collection, defining its leading causes and conse-
quences. The capture bias is connected both to the utilized device and to the
acquisition conditions, i.e., point of view, lighting conditions, etc. The label or
category bias is caused by high in-class variability and a poor class semantic
definition, caused by a disagreement between different expert annotations. This
bias can cause problems, especially in the medical field, where even the experts
may disagree on the correct answer. Finally, there is the negative set bias. The
negative set defines what the model takes as "the rest of the word". If this set
is too extensive or unbalanced, it may cause the model to be overconfident and
not very discriminative.

When using the publically available datasets, it is usually hard to change the
category and the negative set bias since they are directly connected to the data
collection and annotation, which usually are not available anymore at the mo-
ment of model training. On the other hand, the capture bias could be managed
or at least decreased by image preprocessing and normalization.

4.1.1 Dataset Normalization

Dataset normalization consists of the manipulation of images from a dataset in
a way, so they are generally more consistent, and for the model, it is easier to
process the images in a unified manner [32].

• Scaling: scaling to a range means converting floating-point feature val-
ues from their natural range (for example, 100 to 900) into a standard
range—usually 0 and 1 (or sometimes -1 to +1). This normalization is
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useful, if the estimated upper and lower bounds of the data are known,
and if the data are relatively uniformly distributed across that range. An
example can be the z-score normalization applied based on the mean and
standard deviation of data values, i.e., pixel intensity values.

• Clipping: clipping serves to remove outliers from the data. For example,
clip the data to [0.5, 99.5] percentiles or to plus-minus some multiplication
of dataset standard deviation.

• Log scaling: log scaling computes the logarithm of data values to com-
press a wide range to a narrow range. It is especially useful if some of the
values have many data points, while most other values have only few data
points.

• Special normalization techniques: special types of data may require
special normalization techniques. For example, volume medical image data
often needs to be resampled to the median voxel spacing of the dataset,
spline interpolation, or nearest-neighbor interpolation are commonly used
for this purpose [6].

4.1.2 Image Augmentation

Convolutional neural networks are quite a powerful tool but are heavily reliant
on huge amounts of data to avoid overfitting. Data augmentation techniques sys-
tematically enlarge the training dataset by explicitly generating more training
samples. Therefore they are effective in improving the generalization perfor-
mance of deep convolutional neural networks [48, 35]. The following list sum-
marises the techniques most commonly used in computer vision: random rota-
tions, random scaling, random elastic deformations, gamma correction augmen-
tation, and mirroring. All the augmentation techniques can be eighter adminis-
tered before the training, explicitly enlarging the number of training examples,
or can be applied on the fly during training, saving memory usage but demanding
higher processing time.
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4.1.3 Slicing Aided Fine-tuning

In various fields, including satellite imagery analysis, surveillance systems, med-
ical imaging, and agriculture, there can be situations where training images may
be too large for a CNN model to process in one go. This problem, relating to
small object detection in high-resolution images, is detailed in section 1.3. A
common approach to address this issue is to either downsample the images or
process the image in patches, which are sub-images extracted from the larger
image. These sub-images can overlap, and their size can vary depending on the
model and its application.

While downsampling or using larger patches allows the model to capture more
contextual information, this comes at the cost of reduced detail. On the other
hand, processing in smaller patches provides high-resolution details but at the
expense of broader contextual information, as the entire visual scene is not imme-
diately accessible. This necessitates finding a balance between the two extremes.
Patch cropping, for instance, is frequently employed in medical image segmenta-
tion, which frequently deals with extensive and often multimodal data. Models
in this area are typically trained on specific patch sizes that are tailored to the
application at hand.

The term "Slicing Aided Fine-tuning" was introduced in paper [2] to describe
a data processing pipeline that augments training images with cropped image
patches. This process enriches the training data to include both original resolu-
tion images and image patches or crops in preparation for Slicing Aided Hyper
Inference. The latter is a method that includes predictions based on both the
original image and its cropped sections in the final prediction. Details of Slic-
ing Aided Hyper Inference can be found in section 4.3.1. The best prediction
performance might be achieved by applying different cropping sizes, though this
method significantly increases computational requirements for both training and
inference, as it enlarges the training dataset size and requires the model predic-
tion multiple times: once for the original image and then for each image patch.
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4.1.4 Artificial Size Slicing Aided Fine-tuning

Certain situations necessitate using image patches for both training and predic-
tion as the input image data is too large for one-time model processing, and
simple downsampling can degrade the image to the extent that object detec-
tion becomes impossible. This is the case with the custom-made Tomato360
dataset addressed in this work; for more details about this dataset, please refer
to section 5.1. In a recent study [A1], the author of this thesis explores the
impact of varying image patch sizes on prediction accuracy. To generalize the
patch-cropping process, a novel proposal is made in this work to crop artificial-
sized image patches centered around object groups, effectively utilizing the fact
that tomatoes are growing in trusses. This strategy of augmenting the train-
ing data with these patches enhances the model’s ability to discern and localize
overlapping tomatoes.

During the training phase, generating these artificial-sized image patches is rel-
atively straightforward. The application of this principle in the inference phase
on test data is discussed in section 4.3.2; this section also provides a schematic
of the newly proposed Artificial Size Slicing Aided Hyper Inference (ASSAHI)
process, pictured in a Fig. 4.2. In the case of training data, where instance seg-
mentation masks are available (or the area of boxes in scenarios lacking instance
segmentation annotation), a foreground segmentation map was created from all
object’s instance masks. A binary dilation operation was employed to cluster
objects into larger groups, and image patches were cropped in accordance with
the position of each connected group. This method not only provides the model
with detailed information about small objects in the image but also effectively
avoids cutting objects during the patch cropping process.

However, implementing this solution poses a couple of challenges. Firstly, the
dilation operation can be computationally demanding in scenarios involving nu-
merous small objects in high-resolution images, especially with larger dilation
operator sizes. To improve efficiency, the input image was downscaled, the di-
lation operation was applied, and the output was subsequently upscaled. This
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streamlined the process without causing significant damage to the final output.
Secondly, the risk of cropping too small image patches around isolated objects in
the image was mitigated by imposing a minimum crop size, ensuring such small
objects were cropped with a broader context around them.

4.1.5 Dataset Splitting

In machine learning, the dataset is commonly split into three parts:

• Training set is a dataset of examples used for learning, that is to fit the
parameters (weights) of a model.

• Validation set is a dataset of examples used to tune the training hyperpa-
rameters, e.g., the optimization parameters as a learning rate or definition
of the moment to stop the training.

• Test set is a set of examples used only to assess the performance (i.e.,
generalization) of a trained model.

This division helps to verify if the model has learned the generalized features
and can deal with unseen data or if it overfits the training set [32]. Both the
validation and test sets should be independent of the training dataset but follow
the same probability distribution as the training dataset. In the most simple
case, three independent parts are separated randomly from the original dataset.
These parts usually have different sizes and are used for training, validation, and
testing, respectively. This method is called Holdout.

Cross-validation is a method of repeatedly splitting the training and validation
set, so in the end, all the examples are used both for training and validation.
The final model performance is estimated as mean performance achieved on all
validation subsets. Fig. 4.1 illustrates the common five-fold cross-validation
splitting method.
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Fig. 4.1 Five-fold cross-validation splitting method, blue color illustrates a train-
ing set, red color illustrates a validation set.

4.2 Model Training

Machine learning algorithms learn from examples. The example data point
passes through the model, and the final output is compared with the expected
result. The difference between the two is usually estimated by some loss function
and is called cost. Backpropagation is an algorithm widely used in the training of
feedforward neural networks for supervised learning [32]. This algorithm allows
the information from the cost to flow backward through the network, compute
the gradient, and accordingly adapt the neuron weights [64].

The hyperparameters of training workflow influence the learning process mas-
sively — the following subsections highlight which parameters of training work-
flow should be examined.

4.2.1 Loss Function

The process of model training looks for a particular set of weights with which
a convolutional neural network can make an accurate prediction. In order to
measure the difference between the model predictions and the ground-true label,
a loss function must be defined. The loss function heavily depends on the model
application; the traditional loss function ranges from the mean squared error or
multi-class cross-entropy loss used for image classification [1] over localization
loss for bounding box offset prediction in object detection [67, 66, 52], to pixel-
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wise cross-entropy loss or Dice coefficient loss for image segmentation [71, 42].
The loss function is often chosen with regard to final evaluation metrics, as its
choice strongly affects the learning process.

4.2.2 Optimizers

After defining the loss function or cost, the optimizer finds parameter values that
achieve the function’s minimum. In deep CNN training, the gradient descent al-
gorithm (GDA) creates the foundation of nearly all optimizing algorithms used
in practice. GDA iteratively tunes the parameter values to reduce the cost. At
every iteration, parameter values are adjusted according to the opposite direc-
tion of the cost gradient. Basic GDA is prone to a zigzag movement towards the
optimal weights (which slows the learning process) and inclines to get stuck in
the local optimum (not finding the global solution at all). In practice, more so-
phisticated algorithms are used, such as Stochastic Gradient Descent (SGD) with
Momentum [69], RMSProp [81], or Adam Optimizer [45]. The last-mentioned
combines the advantages of previous methods and becomes a gold standard in
deep CNN model training, but Wilson et al. [90] showed that adaptive methods
(such as Adam) do not generalize as well as SGD with momentum when tested
on a diverse set of deep learning tasks. The optimal optimizer choice always
depends on a model architecture as well as on data and a performed task.

4.2.3 Learning Rate

An important hyper-parameter of the training process is the learning rate (LR),
which indicates the extent of adjustments made in each iteration step. The same
LR can be applied throughout the whole training process, or its value may evolve
over time. In the beginning, the learning rate is usually set to a higher value to
speed up the training, but it should be decreased as the training gets closer to
the global optimum in order to minimize the risk of missing the best solution.
Different researchers use different learning rate tactics.
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4.3 Model Inference

Model inference refers to a process where the model predicts unseen data that
can be from a test set to access the model performance or during a real-world
application of the model. The inference process should follow the data processing
applied during the training as closely as possible.

The following subsections are devoted to the description of the process involved in
Slicing Aided Hyper Inference and the proposed extension Artificial Size Slicing
Aided Hyper Inference. The last subsection is devoted to the process of image
stitching common to both techniques.

4.3.1 Slicing Aided Hyper Inference

As previously discussed in the section 4.1.3, Slicing Aided Fine-tuning, there
are applications where an image may be too extensive for a CNN model to
process all at once. In these cases, downsampling could degrade the image to
the point where smaller objects become undetectable. Similarly, as the training
was augmented by image patches, the inference might be enriched by predicting
those patches. Paper [2] proposes Slicing Aided Hyper Inference, where the
input image is predicted whole and then also the image is cut into several image
patches, whose are predicted too. The final prediction then gathers all the
predictions together. The problem of multiple prediction merging is described
in the following section 4.3.3.

4.3.2 Artificial Size Slicing Aided Hyper Inference

In accordance with Artificial Size Slicing Aided Fine Tuning (ASSAFT) proposed
in section 4.1.4, a similar extension for Slicing Aided Hyper Inference (SAHI)
is provided. Following existing nomenclature, this innovative approach is re-
ferred to as Artificial Size Slicing Aided Hyper Inference (ASSAHI). To specify
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the placement of these artificially-sized patches, a mask that identifies object
group positions within the original image is required. For this purpose, a se-
mantic segmentation deep convolutional neural network might be trained. This
network does not require ultra-precise segmentation annotations but should re-
liably detect clusters of smaller objects utilizing a greater context of the image.
Hence, it should be trained on complete input images or relatively large image
patches if slicing is necessary. The example implementation of this method on
the Tomato360 dataset is discussed in the results section of this work, in section
5.4. Once the input image mask is generated, slicing follows the same rules es-
tablished in the ASSAFT. The mask undergoes dilation, and image patches are
situated around each detected object/group within the masked image. Those
patches are predicted by the model and utilized in the final prediction output
creation. The entire ASSAHI procedure is graphically represented in Fig. 4.2.

ASSAHI presents two key benefits. Firstly, it feeds the model with detailed infor-
mation about smaller objects within the image, enabling more precise detection,
which is especially beneficial in scenarios where objects overlap. Concurrently, it
effectively prevents objects from being cropped/segmented during patch slicing.
Furthermore, in a dataset where object groups sparsely populate the input data,
ASSAHI can save a substantial amount of computation resources, which would
otherwise be spent by processing many (empty) small image patches sliced by
the standard SAHI method, all while maintaining necessary detail for precise
small object detection.

On the other hand, ASSAHI may encounter difficulties in datasets where objects
do not group or form excessively large groups. In the former situation, a singular
small object could potentially be overlooked by the primary segmentation model,
thus being excluded from subsequent higher-resolution processing and missed
entirely in the final prediction. In the latter case of extensive object groups, such
a large group may be accommodated into a single patch whose resolution might
exceed the model’s handling capabilities. Consequently, the patch would be
downscaled during the data loading process, risking the loss of details necessary
for distinguishing smaller objects.
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Fig. 4.2 Visualization of Artificial Size Slicing Aided Hyper Inference (ASSAHI)
procedure proposed in this thesis.
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A balanced combination of ASSAHI and SAHI techniques appears to be the best
solution. Then ASSAHI assists with detailed small object detection while SAHI
ensures comprehensive coverage of the entire input image with relatively large
patches. Crop sizes in SAHI and ASSAHI parameter setups must always be
adjusted to suit the specific dataset in use. The exploration of these techniques
applied to the Tomato360 dataset is presented in the results part of this work,
in section 5.4.

4.3.3 Image stitching

The merging of overlapping patches’ predictions is relatively straightforward in
the semantic segmentation task. Output masks can be aligned to their original
positions within the larger image, and the values in overlapping areas might
be simply averaged to generate the final output. This method generally yields
satisfactory results, although it has been noted that output precision tends to
diminish towards image borders [71, 42]. This can be mitigated by assigning
greater weight to pixels near the center than to those near the border. To
further increase the prediction accuracy, inference augmentation can be applied;
for example, mirror all patches along all axes, and consider their average final
output.

For object detection tasks, however, merging patch predictions is more complex.
Objects on the border may be detected multiple times or even fragmented into
two or more parts if they are positioned on a crop border. There are several
potential strategies for merging or suppressing repeated predictions in object
detection. Generally speaking, the process has two main parameters: the match
metrics and the post-processing algorithm.

Match metrics identify potential detections for merging or suppression. The
threshold value of match metrics is crucial; a higher value allows only highly
similar predictions to be merged. The post-processing algorithm, on the other
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hand, dictates the sequence in which potential detections are processed and how
the final detection instance is formulated.

There are two common match metrics:

1. Intersection over union (IOU) is a term used to describe the extent of
overlap of two bounding boxes. The greater the region of overlap, the
greater the IOU. The metric is defined as:

IOU =
Area of intersection

Area of union
(4.1)

2. Intersection over a smaller area (IOS) is very similar to the IOU metric;
only the area of the intersection is divided by the area of the smaller of the
two boxes:

IOS =
Area of intersection
Area of smaller box

(4.2)

In this thesis work, those variants of the post-processing algorithms were utilized:

1. Greedy non-maximum suppression (NMS),

2. Non-maximum merging (NMM),

3. Greedy non-maximum merging (GREEDYNMM).

The Greedy non-maximum suppression (NMS) algorithm is documented by the
pseudocode 1. Only the greedy variant of non-maximum suppression is described
because it is the standard in object detection. The algorithm chooses the pre-
dictions with the maximum confidence and suppresses all the other predictions
overlapping with the selected predictions greater than a threshold of the match
metrics.



TBU in Zlín, Faculty of Applied Informatics 51

Algorithm 1 Pseudocode of the greedy non-maximum suppression (NMS) al-
gorithm, where P is the set of all predictions, S is the list of selected predictions
with the highest confidence score, T is the list of any other prediction present in
P being compared with S.
1: keep← ∅ ▷ Initialize the final prediction list
2: while P ̸= ∅ do ▷ Repeat until P is empty
3: S ← Select prediction with highest confidence score from P
4: Remove S from P
5: Add S to keep
6: for each prediction T in P do
7: Calculate overlap of S with T using IOU or IOS metrics
8: if overlap exceeds the match metrics threshold then
9: Remove T from P

10: end if
11: end for
12: end while
13: return keep ▷ Return the list containing the filtered predictions

As can be observed from the algorithm 1, the whole filtering process depends
on the match metrics threshold value. Therefore, a suitable threshold value
selection is vital for the final performance. Although the NMS is a commonly
adopted algorithm, it has several drawbacks. It is not ideal for object clusters
because it leads to a misdetection if an object lies within the predefined overlap
threshold.

From the nature of the problem of splitting the image, predicting the patches,
and then stitching the resulting predictions; It is not unusual that the bounding
boxes contain the cutoff objects. In this scenario, the NMS can only choose the
best cut of the object, dumping the others. The Non-Maximum Merging (NMM)
algorithm targets to solve this problem. It takes traditional NMS as the first
step and matches all the detected boxes between themselves. Instead of keeping
only the box with the higher confidence threshold and throwing away all the
overlapping boxes, it merges them to form the new output box.
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The greedy variant of non-maximum merging sorts the bboxes according to their
confidence and removes the processed boxes from the list, similar to greedy non-
maximum suppression, making the algorithm more efficient and effective

In a recent study [A1], the author of this thesis explores the influence of the
parameters mentioned above on the final prediction precision. The implemen-
tation details of all described post-processing algorithms can be found in the
open-source library SAHI: Slicing Aided Hyper Inference [2, 3], which is utilized
in the experiments. It is a lightweight vision library for performing large-scale
object detection and instance segmentation.

4.4 Validation metrics

There are several metrics to evaluate and understand the outputs correctly. The
definitions of the ones commonly used in computer vision tasks and relevant to
the experimental part of this work are in the sections below.

4.4.1 Metrics operating with the confusion matrix values

The confusion matrix (sometimes named as error matrix) is one of the standard
methods to analyze the model performance in greater detail [65]. It is classically
utilized in classification but can also be applied in object detection. Confusion
matrix in the context of object detection compares the results of the classifier
under test with trusted external judgments (dataset ground truth) using the
terms true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). The terms positive and negative refer to the classifier’s predic-
tion, and the terms true and false refer to whether that prediction corresponds
to the ground truth.

There are several metrics associated with the confusion matrix from which the
most commonly used are explained below:
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Precision =
TP

numDet
∗ 100%, (4.3)

Recall =
TP

numGT
∗ 100%, (4.4)

F1-score =
2 ∗ Precision ∗Recall
Precision+Recall

, (4.5)

False discovery rate =
FP

numDet
∗ 100%, (4.6)

False negative rate =
FN

numGT
∗ 100%, (4.7)

where numGT and numDet refer to the number of the ground true and detected
objects, respectively.

The precision or positive predictive value gives the percentage of true positive
samples from all the samples returned by the model. The recall value, sometimes
named sensitivity or true positive rate, informs us about the percentage of the
objects correctly retrieved by the model from all the objects present. The F1-
score is the harmonic mean of precision and recall. The false discovery rate gives
the fraction of incorrectly detected objects, while the false negative rate gives
the fraction of objects left out by the model.

Aside from assessing the values stated above, the precision-recall curve is a useful
diagnostic tool to judge model performance. The precision-Recall curve summa-
rizes the trade-off between the true positive rate and the positive predictive value
for a model using different probability thresholds. A high area under the curve
represents both high recall and high precision, where high precision relates to a
low false-positive rate, and high recall relates to a low false-negative rate. An
average precision metric described in the following section calculates such area
under a precision-recall curve.
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4.4.2 Object detection evaluation according to COCO challenge

COCO challenge evaluation1) [51] is the one most used in current research papers.
It calculates a 101-point interpolated mean average precision (mAP). Its primary
metric is an mAP averaged over multiple intersection over union (IOU) values;
specifically, it uses 10 IOU thresholds ranging from 0.5 to 0.95 with step 0.05.
This metric emphasizes the precision of the bbox localization. Please refer to
the original challenge evaluation for the details about these metrics.

In addition to the calculation of the mAP values, Derek’s PR curve inspired by
[36] provides a detailed breakdown of false positives. This plot is a series of
precision-recall curves where each PR curve is guaranteed to be strictly higher
than the previous as the evaluation setting becomes more permissive. The curves
are as follows:

• C75: mAP at IOU=0.75 (AP at strict IOU), area under curve corresponds
to mAP at IOU=0.75 metric.

• C50: mAP at IOU=0.50 (AP at PASCAL IOU), area under curve corre-
sponds to mAP at IOU=0.50 metric.

• Loc: mAP at IOU=0.10 (localization errors ignored, but not duplicate
detections). All remaining settings use IOU=0.1.

• Sim: mAP after supercategory false positives are removed. Specifically,
any matches to objects with a different class label but that belong to the
same supercategory do not count as either a FP (or a TP). Sim is computed
by setting all objects in the same supercategory to have the same class label
as the class in question and setting their ignore flag to 1. Note that when
a single category is used, Sim result is identical to Loc.

• Oth: mAP after all class confusions are removed. Like the Sim, except
now if a detection matches any other object, it is no longer a FP (or a
TP). Oth is computed by setting all other objects to have the same class

1)The coco detection challenge evaluation is described here: https://cocodataset.org/
#detection-eval

https://cocodataset.org/#detection-eval
https://cocodataset.org/#detection-eval
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label as the class in question and setting their ignore flag to 1. Note that
when a single category is used, Oth result is identical to Loc.

• BG: mAP after all background (and class confusion) FP samples are re-
moved. BG is a step function for a single category that is 1 until max recall
is reached then drops to 0 (the curve is smoother after averaging across
categories).

• FN: PR after all remaining errors are removed (trivially mAP=1).

4.4.3 Evaluation metrics for segmentation

Different metrics are used to evaluate segmentation masks produced by a seman-
tic segmentation model. The most commonly utilized ones are explained below.
For more information about metrics in segmentation, please refer to [79, 80].

The easiest metric is an Absolute Volume Difference (AVD) [79], which
counts the absolute number of voxels segmented differently by model than is
stated in ground true segmentation. It provides a simple and direct way to
measure the difference in segmented volumes, and while easy to understand
and calculate, it may lack sensitivity to spatial relationships between objects,
potentially leading to misleading interpretations.

Average distance, or Average Hausdorff Distance (AHD) [80] is the mean
distance between the segmented object (S) and ground true segmentation (GT).

AHD(S,GT ) = max(d(S,GT ), d(GT, S)) (4.8)

where d(S,GT) is the directed Average Hausdorff distance that is given by

d(S,GT ) =
1

N

∑
s∈S

min
gt∈GT

||s− gt|| (4.9)

where ∥s−gt∥ is some norm, e.g. Euclidean distance. AHD assesses the spatial
relationship between segmented and ground true objects and is often used in
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medical imaging where precision matters. It is sensitive to spatial structures but
may be sensitive to noise and outliers.

One of the most common metrics in medical imaging is the Dice Coefficient
[21](4.10), which equals twice the number of elements common to both sets
divided by the sum of the number of elements in each set. If |X| and |Y | are
denoted as the cardinalities of the two sets, the Dice coefficient can be written
as:

Dice =
2|X ∩ Y |
|X|+ |Y |

(4.10)

This coefficient evaluates the overlap between predicted segmentation and ground
truth, reflecting the quality of boundary segmentation. It is less sensitive to the
absolute size of the segmented regions but may not be suitable in scenarios where
false negatives and positives have different importance.

In summary, these metrics offer distinct perspectives on the segmentation quality,
with each having its unique strengths and weaknesses. The choice of metric
should align with the specific goals and constraints of the task, and using a
combination of these metrics may provide a more comprehensive understanding
of the model’s performance.
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5 Results

This section offers a comprehensive and detailed overview of the experiments
conducted throughout this research and the corresponding results. The first
part describes the creation of the Tomato360 dataset from the tomato greenhouse
environment. This part provides an in-depth view of the various stages involved
in dataset creation, including field data collection, data annotation, providing
basic dataset statistics, and revealing dataset challenges.

The next two subsections study the role of attention mechanisms integrated
into deep convolutional neural networks (CNN), with a particular emphasis on
small object detection. The first section covers the abdominal organs and tu-
mor segmentation domain, where attention gates are used to enhance the Unet
architecture’s accuracy, discerning tiny yet significant tumors. Continuing, the
discussion delves into spatial attention for small object detection, particularly
focusing on tomatoes within high-resolution images. This section includes an
ablation study that evaluates architectural choices’ effects on performance using
the Tomato360 dataset.

The following part continues on the topic of fruit detection within the high-
resolution Tomato360 dataset, employing novel techniques: Artificial Size Slicing
Aided Fine-tuning (ASSAFT) and Hyper Inference (ASSAHI).

Lastly, the results section concludes with an analysis of practical applications
within a tomato greenhouse environment, including whitefly counting, tomato
counting, and estimating tomato crops. This segment connects all previously dis-
cussed methodologies and techniques and demonstrates their direct applications
in real-world scenarios.

5.1 Creation of the Tomato360 Dataset

This section delineates the process of constructing a real-world, custom dataset
named Tomato360 that forms one of the cornerstones of this dissertation. It
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signifies the practical application of the studied deep learning models and acts
as a tangible example of transferring modern artificial intelligence technologies
into functional, real-world applications.

Its primary intent is to capture high-resolution images of tomato rows in a green-
house allowing precise counting of tomato fruits and enabling accurate current
and future harvest predictions. Such predictions hold significant implications
for the commercial aspects of greenhouse tomato cultivation, as they influence
crucial factors such as delivery contracts and supply chain logistics. The models
trained on the Tomato360 dataset then serve as a pivotal tool in understanding
and improving the dynamics of this critical process.

Aside from this, the Tomato360 dataset serves a dual purpose within the context
of this dissertation. Firstly, it provides a means to demonstrate the transfer of
AI technologies from theory to practical implementation, offering insights into
the challenges and potential solutions that such a process entails. Secondly, it
offers a valuable opportunity to evaluate the performance and applicability of
deep learning models outside the confines of standard, large-scale public datasets
commonly used in the research community. The variability and unique charac-
teristics of real-world data often present challenges not encapsulated in these
publicly available datasets. As such, working with such custom data offers in-
sights into the robustness and adaptability of the models, shedding light on their
capabilities to generalize and perform in diverse scenarios. Therefore, the value of
Tomato360 dataset creation extends beyond its immediate practical application
in a Tomato greenhouse, providing a fertile ground for academic investigation
and analysis.

The creation of the Tomato360 dataset is a product of a collaborative endeavor
supported by the Technology Agency of the Czech Republic. This project brings
together the efforts of the academic community and industry partners, specifi-
cally NWT, a technology-focused company, and Bezdinek, a farm with tomato
greenhouses. This partnership aims to leverage the power of modern AI tech-
nologies, transforming them from abstract concepts into tangible tools that have
a practical impact on real-world agricultural challenges. The Tomato360 dataset
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embodies the spirit of this initiative, serving as a pivotal resource in the project’s
quest to bring advanced deep learning techniques to the heart of precision agri-
culture.

5.1.1 Field Data Collection

As was mentioned in the literature review, section 3.5, the classical approach
for fruit detection in already published research uses object detection algorithms
applied on a video stream or simple images of plants. The practical usage of this
approach in tomato greenhouses faces several limitations. The alleys between
each tomato row are narrow, while the vertical range of tomato fruits on the plant
is wide. Therefore the vertical field of view (FOV) of the used camera needs to
be more than 90 degrees to capture the full plant height. Another limitation
is based on the requirement for maximal counting accuracy. When applying
image detection in single video frames or overlapping photos, some indexing or
tracking algorithm must be used to prevent multiple counting of single tomato
fruit. Due to the noise created during the capturing process - mainly vibrations
of the trolley on rails, this quest is quite complicated and brings additional errors
into final tomato counts.

To eliminate those limitations, a novel approach is proposed that uses 360 de-
grees camera (Ricoh Theta Z1 with high resolution 4K UHD (3840x2160) video)
for image acquisition to cover the necessary wide field of view. Here comes the
dataset name - Tomato360. The proposed counting solution works only with
the source image from the camera. This approach has a significant consequence
in that the process of data acquisition and data processing can be separated.
Therefore, the automation of the data acquisition can be done by simple au-
tonomous or semi-autonomous devices or by mounting the camera devices on
available technical equipment in greenhouses such as, for instance, commonly
used trolleys.
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Fig. 5.1 A frame from a 360-degree camera before any preprocessing.

The source videos for experiments described below were acquired during several
visits of the author and her colleagues from the project in the hydroponic green-
house of Farma Bezdínek (Dolní Lutyně, Czech Republic) in 2020-2022. The
videos were taken during the harvest period of the fully developed crops - cherry
(10 - 12 g / fruit) and cocktail (35 - 45 g / fruit) tomatoes. The camera was
mounted on a greenhouse trolley (Berkvens - Control Lift), allowing a maximum
5 km/ha speed.

5.1.2 Video converting

A 360-degree camera is utilized to produce a dual-view video stream, each offer-
ing a 180-degree perspective captured by fisheye lenses. The preliminary prepro-
cessing step involves merging these two vantage points into a unified panorama,
represented in equirectangular projection (see Fig. 5.1). This projection encom-
passes an expansive vertical view that approaches 180 degrees of the tomato row.
Despite the potential distortion at the image’s top and bottom regions, the cen-
tral area remains conducive to efficient tomato detection. An added advantage
of this method is simultaneously capturing both sides of the greenhouse aisle,
recording two rows of tomato plants in a single frame.
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Fig. 5.2 Projection of a 360-degree camera frame into two planes, only the vertical
part is utilized in the final image reconstruction.

Moving forward to image production, the process begins with decomposing the
video into individual frames (see Fig. 5.2). The focus is then narrowed to
the portion of the 360-degree equirectangular frame that directly captures the
tomato row. A narrow vertical section is extracted from each frame, positioned
immediately in front of the camera. These trimmed segments are then seamlessly
connected to generate a comprehensive image of the entire row. Any deforma-
tions appearing at the top and bottom regions of the picture arising from the
180-degree view are rectified mathematically.

This method allows the transition from video or isolated video frames to an in-
clusive, wide-format picture, which can also be referred to as a panorama for
the purposes of this document. This way, each fruit appears only once in the
resulting image, eliminating any overlapping boundaries that might complicate
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Tab. 5.1 Distribution of tomato ripeness categories in the Tomato360 dataset.

Category Total Number Mean per Image Range per Image
Tomato 13815 234 71-591

Green 9932 168 47-323
Orange 1997 34 4-184
Red 1886 32 2-159

the counting process. This approach facilitates more effective analysis and ap-
plication of computer vision techniques.

5.1.3 Data Annotation

To select a proper annotation tool, the following requirements for the annotation
tool were defined based on the obtained data from the 360-degree video and its
processing:

• the ability to process high image resolution of the composed images (image
size over 350MB and 100 000 pixels wide),

• the tool’s stability for dealing with the high frequency of tomato fruit
occurrence in images,

• the possibility to annotate tomato fruits with polygons (to be used both
for object detection and instance segmentation models),

• dividing the annotation task between multiple persons (working on differ-
ent platforms).

Considering all those factors, the multi-platform desktop annotation tool La-
belme [73] was selected as the annotation software. After completing the initial
annotation process (by multiple persons from Tomas Bata University in Zlin),
the segmentation masks were cross-validated by the leading person of the group
of annotators - the author of this thesis. In the end, the annotations were ex-
ported to COCO format.
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5.1.4 Dataset statistics

The compiled dataset comprises 58 images, each containing annotated tomatoes
classified according to their stage of ripeness: green (unripened), orange (par-
tially ripened), or red (fully ripened). In total, 1385 tomatoes were annotated.
The dimensions of the images vary significantly, with widths spanning from 7500
to 20,000 pixels and heights falling between 1920 and 2048 pixels. On average,
each image is marked with 234 objects, with a range between 71 and 591 objects.

When breaking down the total number of annotated tomatoes per category,
there are 9932 green, 1997 orange, and 1886 red tomatoes. The distribution of
the categories across images also varies substantially. For the green category,
an average of approximately 168 tomatoes is seen per image, ranging from 47
to 323. For the orange category, the average drops to around 34 tomatoes per
image, with a minimum of 4 and a maximum of 184. Similarly, the red category
has an average of nearly 32 tomatoes per image, ranging from as few as 2 to as
many as 159. Table 5.1 shows the described Tomato360 dataset statistic.

5.1.5 Dataset challenges

The Tomato360 dataset introduces several distinct challenges that make it unique.
Fig. 5.3 showcases the difficulties described in the following text. Most strik-
ing is the high resolution of the images (Fig. 5.3 (g-f)), with widths reaching
up to 20,000 pixels. Moreover, this high resolution comes with its own set of
challenges, such as the noise introduced by the frame sampling from the video
source. This noise visible especially in Fig. 5.3 (c, d, f), is mostly low-frequency
and adds another layer of complexity to the dataset.

Besides, environmental factors specific to greenhouses present additional diffi-
culties. One such issue is the high vertical range in the images, causing variable
brightness levels. For instance, the top of an image could be overexposed by the
light coming from a glass roof (Fig. 5.3 (b)), while the bottom portion appears
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(a) (b) (c)

(d) (e) (f)

(g)

(h)
Fig. 5.3 Example images documenting difficulties of Tomato360 dataset: (a)
dark, (b) bright, (c) back row tomatoes, (d) fruit overlapping each other, (e) leaf
occluding tomatoes, (f) indeterminacy of ripeness, (g-f) overview of whole wide
images.
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comparatively dark (Fig. 5.3 (a)). Since the accurate detection of the tomatoes
at the bottom is crucial, the camera settings were adjusted to capture these parts
more precisely, but this approach inherently impacts the overall image quality.

From an object detection standpoint, the Tomato360 dataset poses further com-
plications. Tomatoes, which typically grow in clusters, often overlap and ob-
scure each other (Fig. 5.3 (d)). Even more common is occlusion by leaves (Fig.
5.3 (e)). Additionally, unripe green tomatoes can be easily confused with the
surrounding leaves, especially in variable image brightness. The greenhouse’s
row setup further exacerbates these issues. Tomatoes from the back row might
sometimes appear in the images but should not be included in the count as they
belong to a different row. The situation is nicely visible in Fig. 5.3 (c), where
the bottom tomatoes are from the front row, but the top tomatoes come from
a background row, image shown in Fig. 5.3 (g) captures a tomato row with cut
bottom leaves, exposing the background row substantially. The front/back row
exchange led to frequent discrepancies also among human annotators; such er-
rors were the most common ones rectified during the annotation’s quality control
phase.

Lastly, there’s a subjective element when assigning ripeness categories to the
tomatoes (as an example, see Fig. 5.3 (e-f)). Judgments about whether a tomato
is half-ripened, unripened, or fully ripened can significantly vary from one indi-
vidual to another, adding another layer of complexity to the Tomato360 dataset.

5.2 Attention Gates for Tumor Segmentation

The paper [A2] represents the author’s contribution to advancing the field of
organ and tumor segmentation from computed tomography (CT) scans. The
research presents a novel methodology, integrating attention mechanisms and
deep supervision to enhance the precision of tumor segmentation. An exhaus-
tive comparison of different CNN architectures for various organ-tumor segmen-
tation tasks forms the core of this study. Besides, it visualizes the feature maps
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from trained CNN architectures to provide some insight into what is the focus
of attention in the different parts of the model. In the following sections, an
emphasis is placed on the attention mechanism applied in this work since it is
relevant to the aim of this thesis. A brief description of the methodology is
provided for the concept, and only the most salient results are discussed. For a
comprehensive understanding of the research, it is recommended to refer to the
original publication [A2].

5.2.1 Methodology

This section offers a short description of the proposed methodology. For de-
tailed information, please seek the original paper [A2]. A publicly accessible
implementation of the methodology using PyTorch is available at github.com/

tureckova/Abdomen-CT-Image-Segmentation.

Because of memory restrictions, the model was trained on 3D image patches.
Two different approaches were considered. Full-resolution, where the original
resolutions of images are used for the training, and relatively small 3D patches
are chosen randomly during training. And low-resolution, where the patient
image is downsampled by a factor of two until the median shape of the resampled
data has less than four times the voxels that can be processed as an input patch.

The popular architectural design of the fully convolutional encoder-decoder struc-
ture with skip connections was studied. This model is referred to as VNet. In
addition to the original encoder-decoder network structure, attention gates [62]
were added in the top two model levels and deep supervision [43]. Both exten-
sions are described in detail in the original paper [A2]. A block diagram of the
segmentation model with attention gates and deep supervision is in Fig. 5.4.

To minimize the problem of overfitting, a large variety of data augmentation tech-
niques are applied, namely: random rotations, random scaling, random elastic
deformations, gamma correction augmentation, and mirroring. All the augmen-
tation techniques were applied on the fly during training. All models were trained
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Fig. 5.4 A block diagram of an encoder-decoder segmentation model with atten-
tion gates and deep supervision.

with five-fold cross-validation using a combination of Dice and cross-entropy loss
function (5.1). The cross-entropy loss speeds up the learning at the beginning of
the training, while the Dice loss function helps to deal with the label unbalance,
which is typical for medical image data.

Ltotal = Ldice + LcrossEntropy (5.1)

According to the training, the inference of the final segmentation mask is also
made patch-wise. The patches are overlapped by half the size of the patch, and
voxels close to the center are weighted higher than those close to the border
when aggregating predictions across patches. To further increase the stability,
test time data augmentation by mirroring all patches along all axes was utilized.

5.2.2 Experimental Evaluation and Discussion

To demonstrate mainly the validity of incorporating an attention mechanism
into network architecture, only part of the results that highlight the difference
gained by the network architecture changes, namely attention gates and deep su-
pervision were extracted from the original paper. The methodology is evaluated
on the challenging abdominal CT segmentation problem - detection of cancerous
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Tab. 5.2 Comparison of the proposed VNet-AG-DSV to the state-of-the-art net-
work with similar parameters presented by [42]. All the models were trained on
the same dataset, released by Medical Decathlon Challenge (MDC), and vali-
dated in five-fold cross-validation. A better score from the comparison of the
two models is highlighted in bold.

MDC Task03-Liver MDC Task07-Pancreas
Model Liver Tumor Liver Tumor

VNet [42] - Low Res. 94.69 47.01 79.45 49.65
VNet [42] - Full Res. 94.11 61.74 77.69 42.69
VNet [42] - Best model 95.43 61.82 79.30 52.12

VNet-AG-DSV - Low Res. 94.54 54.72 79.58 52.43
VNet-AG-DSV - Full Res. 95.95 57.65 80.09 50.14
VNet-AG-DSV - Assembly 95,74 64,70 81,22 52,99

tissue inside two different organs: pancreas and liver, both datasets published in
Medical Decathlon Challenge 2018 [78], .

For each dataset, two model variants were trained to show the impact of the dif-
ferent model architecture choices. Moreover, assembly results from the respective
full and low-resolution models were provided. The soft-max output maps from
the full and the low-resolution model variant were averaged, and only then the
final segmentation map is created.

The proposed network architecture is benchmarked against the winning submis-
sion of the Medical Decathlon Challenge (MDC), namely nnUnet [42]. Table 5.2
shows the mean Dice scores from five-fold cross-validation for the low and the
full-resolution variants of models as well as the best model presented in either
work. The winning results from nnUnet consist of the combined prediction from
three different models (2D Unet, 3D Unet, and 3D Unet cascade) assembled
together. Therefore, the results from the 3D Unet model, whose model architec-
ture is close to our network, are compared to highlight the difference gained by
the network architecture changes, namely attention gates and deep supervision.

The full- and low-resolution models with attention gates (VNet-AG-DSV) achieve
higher Dice scores for both labels on the pancreas dataset. Of particular inter-

http://medicaldecathlon.com/
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Tab. 5.3 Performance comparison.
VNet [42] VNet-AG-DSV

num. parameters [M] 29.6873 29.7383
train iteration* [ms] 297.2699 338.3336
eval iteration* [ms] 268.6558 299.3836

* measured as mean from 100 runs on GeForce GTX 1080 Ti

est is that the tumor Dice scores are substantially increased by three and seven
points in low and full-resolution, respectively. In the case of the liver dataset,
there is a significant improvement in the low-resolution case. Attention gates
improve the liver-tumor Dice score by seven points while the liver segmentation
precision is comparable. Any noticeable decrease in Dice score happens only
in the liver-tumor class in the full-resolution case. Finally, if the best models
presented in original paper [42] were compared with the best solution proposed
in this work - i.e., assembly of full- and low-resolution models in this work and
assembly from 2D Unet, 3D Unet, and 3D Unet cascade in case of nnUnet paper
[42], our model with attention gates and deep supervision (VNet-AG-DSV) wins
on both datasets, adding nearly three score points on the liver-tumor class and
two points in pancreas label.

The performance of the model with and without the attention gates is quantita-
tively compared in Table 5.3. Both the number of parameters and the training
and evaluation time increased just slightly, while the performance improvement
was considerable. It should be mentioned that the decrease in the number of
parameters in the work of [42] was compensated by training the network with
larger patch size: 128 × 128 × 128 versus 96 × 128 × 128 for the Liver dataset
and 96× 160× 128 versus 64× 128× 128 for the Pancreas dataset.
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Fig. 5.5 Examples of attention maps (AM) obtained from attention gates in the
three topmost levels of the low-resolution VNet (from left to right: full spatial
resolution, downsampling of two and four).

5.2.3 Visualization of the Attentional Maps

The network design allows us to visualize meaningful activation maps and thus
enables an exciting insight into the functionality of the convolutional network.
The low-resolution VNet was chosen to study the attention coefficients gener-
ated at different levels of a network trained on the Medical Decathlon Pancreas
dataset. Fig. 5.5 shows the attention coefficients obtained from three top net-
work levels (working with full spatial resolution and downsampled two and four
times). The attention gates provide a rough outline of the organs in the top
two network levels but not in the lower spatial resolution cases. For this reason,
in realized experiments, the AG was implemented only in two topmost levels to
save the computation memory and handle larger image patches.

The attention coefficients obtained from two randomly chosen validation images
from each dataset are visualized in Fig. 5.6. All visualized attention maps cor-
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Fig. 5.6 Visualization of attention maps (AM) in low-resolution for VNet and
two randomly chosen patient images from the validation set of each dataset. For
each patient, the left picture shows the attention from the topmost layer (with
the highest spatial resolution), and the right picture shows the attention from
the second topmost layer.

relate with the organ of interest, which indicates that the attention mechanism
is focusing on the areas of interest, i.e., it emphasizes the salient image regions
and significant features relevant to organ segmentation. In the case of liver seg-
mentation, the attention map correlates accurately with the organ on the second
level while in the top-level, the attention seems to focus on the organ borders.
In kidney and pancreas datasets, exactly the opposite behavior can be observed.
The attention map from the top-level covers the organ, and the second-level
attention map focuses on the borders and the close organ surroundings. This
difference is possibly associated with the different target sizes as the liver is
taking a substantially larger part of the image than the kidney or pancreas.



72 TBU in Zlín, Faculty of Applied Informatics

5.3 Spatial Attention for Tomato detection

This section brings the analysis of spatial attention mechanisms [100] incorpo-
rated into three common CNN models for object detection: Faster-RCNN [67],
Tood [24] and RetinaNet [52]. It aims to explore the effectiveness of these at-
tention mechanisms on the custom-made dataset Tomato360 which encompasses
high-resolution images with relatively small tomato fruits to be detected. The as-
sumption is that the attention mechanism might be able to incorporate effective
contextual information from the image and level up the model’s performance.
The attention mechanism is incorporated into the feature extraction part of the
network, extending a classical residual block common to all three object detec-
tion networks. For more details about the spatial attention mechanism, please
refer to section 3.4.2.

The composed panorama images from the Tomato360 dataset have too high
resolution to be processed at one pass on available hardware. Concurrently, the
image can not be simply downsampled because the tomato fruit objects are tiny
and would not be distinguishable in lower resolution. To overcome this issue, the
images are sliced into several overlapping smaller patches, which are evaluated
separately by the model; for more information, refer to methodology, section
4.3.2. The influence of the attention mechanism was evaluated on those patches.
The final detection results in the original image after stitching are discussed
in the next section 5.4. The following sections first describe the methodology
aimed to bring a fair comparison of the different architectures and then bring an
extended results comparison with discussion.

5.3.1 Methodology

Here, a brief outline of the methodology employed is presented. The implemen-
tation is written in Python, using PyTorch as a backend framework for building
deep learning models. MMDetection [9], an open-source object detection tool-
box, was employed for a consistent and fair comparison across all experiments.
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Following paragraphs shortly describe the practicalities of data preprocessing,
model training, inference setup, and evaluation.

First, the original wide images were randomly split into a train, validation,
and test part, containing 38, 9, and 12 images, respectively. Two image-slicing
pipelines were tested, first using fixed-size patches (marked as SAHI) and sec-
ond utilizing artificial size slicing (marked as ASSAHI) as described in the
methodology, section 4.3.2. The first conventional slicing (SAHI) follows the
conclusion of paper [A1] by the author of this thesis and all the images were cut
into patches of size 2042x2042 pixels. During the cutting, the patches overlap
by 0.2 times the patch size. This results in 447, 59, and 136 number of images
in a train, validation, and test set respectively. The artificial size slicing cuts the
input image according to object position and the final image counts produced
in this setup were the following: 563, 280, and 562 for train, validation, and test
set. After loading, the image was further resized to size 1024x1024, normalized,
and randomly flipped over the vertical axis; only then it is passed into the model.

Three common object detection models were studied: Faster-RCNN [67], Tood
[24] and RetinaNet [52]. The MMDetection implementation of those models was
utilized in this examination. Two variants of spatial attention mechanisms were
tested. First, attention incorporating query content and relative position since
this variant was recommended for the best cost/performance ratio in the orig-
inal paper [100]. Secondly, the attention incorporating all four attention terms
available was tested since it achieved the best performance in the original paper
[100]. Aside from this, the original architectures were extended by deformable
convolutions.

All the models use ResNet-50 [34] as a backbone and are initialized by pre-
trained weights available in TorchVision, a library available in PyTorch. Stan-
dard MMDetection schedule_1x was applied for the training of all Faster-RCNN
and Tood models. It utilizes 12 epochs, while epoch is meant as one run through
all the training data. Stochastic Gradient Descent was used as an optimizer.
The learning rate varies for different models but is always based on the original
implementation taking into account the changing batch size. The batch size of
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4 was preferred, but the GPU memory available was not sufficient for models
implementing all attention terms; in those cases, the batch size of 2 was used in-
stead. After each training epoch, a validation part of the dataset was evaluated.
The learning rate was decreased by 10 on 8 and 11 epochs. The RetinaNet model
was trained with a longer MMDetection schedule_2x with 24 epochs; since it
was not able to train properly in 12 epochs due to its specific loss function, other
parameters of the training stayed the same.

The inference was made on the same image patches as the training and the
data preprocessing followed the pipeline applied during training except for the
random flip which was omitted in the testing phase.

5.3.2 Experimental Evaluation and Discussion

This ablation study aims to show the impact of attention mechanism incorpo-
rated into three common object detection models: Faster-RCNN [67], Tood [24],
and RetinaNet [52]. The mean average precision averaged over a series of differ-
ent IOU (intersection over union) ratios from the COCO Detection challenge was
utilized as a metric encompassing the overall model performance. As a second
metric, a mean average precision using 0.5 IOU was displayed, too. The results
were evaluated on image slices, to emphasize the model architecture choice in-
fluence that might be obscured during the final stitching and post-processing
phase.

The Table 5.4 presents the results. In contrast to the result given in the original
spatial attention paper [100], where authors achieved an increment of 5 points
on a COCO test-dev, no substantial improvement caused by any of the attention
mechanisms is present on the custom Tomato360 dataset. The only noticeable
boost can be noted in the case of all four attention terms applied in the Tood
model (in the table marked as ’Tood DCN att 1111’), but the training instability
of this model variant and the fact that on the dataset with artificial-sized slices
this model fails discourages any practical usability of this model variant. On
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the other hand, a steady increase can be associated with the use of deformable
convolutions across all tested models and both dataset slicing variants.

Tab. 5.4 Architecture comparison (test on slices) - tomato one class
SAHI ASSAHI

model mAP mAP50 mAP mAP50
Faster-RCNN 0.441 0.818 0.491 0.869
Faster-RCNN DCN 0.445 0.819 0.499 0.873
Faster-RCNN att 0010 0.443 0.817 0.496 0.871
Faster-RCNN DCN att 0010 0.445 0.818 0.469 0.848
Faster-RCNN att 1111 0.441 0.820 0.494 0.872
Faster-RCNN DCN att 1111 0.441 0.819 0.493 0.872
Tood 0.429 0.828 0.509 0.887
Tood DCN 0.431 0.832 0.511 0.889
Tood DCN att 0010 0.431 0.831 0.501 0.881
Tood DCN att 1111 0.440 0.840 0.295 0.633
retinanet 0.305 0.664 0.383 0.749
retinanet DCN 0.312 0.667 0.446 0.812
retinanet att 0010 0.305 0.670 0.380 0.747
retinanet DCN att 0010 0.308 0.669 0.431 0.803
retinanet att 1111 0.307 0.670 0.390 0.755
retinanet DCN att 1111 0.306 0.656 0.389 0.753

Table 5.5 presents the computational complexity and model size, quantified as
the number of FLoating point OPerations (FLOP) and the number of model
parameters, respectively, for each evaluated architecture. For the Faster-RCNN
model, the incorporation of Deformable Convolutional Networks (DCN) slightly
decreases the FLOPs while marginally increasing the number of parameters. The
addition of an attention mechanism increases both metrics. This pattern is also
evident for the Tood and RetinaNet model, where the use of DCN and attention
mechanisms elevates the complexity and model size. Overall, it is evident that
advanced features like DCN and attention mechanisms add computational cost
and complexity to the models, so it is crucial to evaluate their trade-offs carefully.

This is especially true in the Tomato360 dataset results, where the observed per-
formance improvements of the attention mechanism are not particularly better.
Therefore, the benefits may not justify the added complexities. Consequen-
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tially, the Faster-RCNN and Tood architectures, both equipped with deformable
convolutions, were selected as the representative models for the subsequent in-
vestigations.

Tab. 5.5 FLOP in trillions (tera, 1012) and number of parameters in millions
(mega 106) for each of tested architecture, tested on the input image of size
1024x1024pixels.

model FLOP [T] Params [M]
Faster-RCNN 0.210 41.348
Faster-RCNN DCN 0.182 41.929
Faster-RCNN att 0010 0.211 44.312
Faster-RCNN DCN att 0010 0.211 44.893
Faster-RCNN att 1111 0.232 46.665
Faster-RCNN DCN att 1111 0.232 47.256
Tood 0.201 32.023
Tood DCN 0.172 32.599
Tood DCN att 0010 0.174 36.144
Tood DCN att 1111 0.194 38.507
retinanet 0.209 36.371
retinanet DCN 0.180 36.952
retinanet att 0010 0.209 39.875
retinanet DCN att 0010 0.209 40.456
retinanet att 1111 0.229 41.656
retinanet DCN att 1111 0.229 42.237

5.4 ASSAFT and ASSAHI in Tomato Detection

This section focuses on the evaluation of the newly proposed methodology named
Artificial Size Slicing Aided Fine-tuning (ASSAFT) and Artificial Size Slicing
Hyper Inference (ASSAHI), which extend upon the Slicing Aided Fine Tun-
ing (SAFT) and Slicing Aided Hyper Inference (SAHI) concepts presented in
[2]. Both novel principles are described in the methodology part of this work,
namely sections 4.1.4 and 4.3.2. The methodology is evaluated on the custom
Tomato360 dataset introduced in this work. This dataset is aptly suited for the
successful implementation of ASSAFT and ASSAHI. First, the input data has
a super high image resolution, effectively disabling any possibility of direct pro-
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cessing. Second, the tomatoes are growing in trusses, forming a distinct group of
objects positioned relatively sparsely in the input image. A larger context is nec-
essary to accurately locate these tomato trusses, particularly in the Tomato360
dataset, where the model is expected to differentiate between front and back-
row tomatoes. Tomatoes in the back row come from a different row and should
therefore not be included in the fruit count. For a comprehensive understanding
of the properties of the Tomato360 dataset, please refer to section 5.1, or Fig.
5.3.

The needed larger context becomes available at two stages during the process-
ing pipeline: initially when relatively large image patches are sampled and pre-
dicted by the object detection model, and again when the segmentation network,
trained on these large patches, helps localize the tomato trusses. On the other
hand, to be able to distinguish individual tomato fruits precisely, the model can
benefit from the high details available in full resolution. The ASSAHI allows
sampling such high-resolution image patches centered around each tomato truss
localized by a semantic segmentation network. This results in more accurate
detection, even when objects overlap or are hidden, for instance, by leaves.

This section presents results demonstrating the beneficial impact of the newly
introduced Artificial Size Slicing Aided Fine-tuning (ASSAFT) and Artificial
Size Slicing Hyper Inference (ASSAHI) techniques. These results are contrasted
with those acquired from the Slicing Aided Fine Tuning (SAFT) and Slicing
Aided Hyper Inference (SAHI) methods introduced in [2].

5.4.1 Methodology

Presented here is a brief outline of the employed methodology. The implemen-
tation is written in Python, using PyTorch as a backend framework for building
deep learning models. MMDetection [9], an open-source object detection tool-
box, was employed for a consistent and fair comparison across all experiments.
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Following paragraphs shortly describe the practicalities of data preprocessing,
model training, inference setup, and evaluation.

First, the original wide images were randomly split into a train, validation,
and test part, containing 38, 9, and 12 images, respectively. Two image-slicing
pipelines were tested, first using fixed-size patches (marked as SAFT) and sec-
ond utilizing artificial size slicing (marked as ASSAFT) as described in the
methodology, section 4.3.2. The first conventional slicing (SAFT) follows the
conclusion of paper [A1] by the author of this thesis, and all the images were cut
into patches of size 2042x2042 pixels. During the cutting, the patches overlap
by 0.2 times the patch size. This results in 447, 59, and 136 images in a train,
validation, and test set, respectively. The artificial size slicing (ASSAFT) cuts
the input image according to object position and the final image counts pro-
duced in this setup were the following: 563, 280, and 562 for train, validation,
and test set. After loading, the image was further resized to size 1024x1024,
normalized, and randomly flipped over the vertical axis; only then it is passed
into the model.

Two object detection models were studied: Faster-RCNN [67], Tood [24], both
extended by deformable convolution. Those architecture choices were chosen in
the ablation study presented in 5.3. The MMDetection [9] implementation of
those models was utilized in this examination.

Both the models use ResNet-50 [34] as a backbone and are initialized by pre-
trained weights available in TorchVision, a library available in PyTorch. Stan-
dard MMDetection schedule_1x with 12 epochs and longer MDetection sched-
ule_2x with 24 epochs was applied for the training of all Faster-RCNN and Tood
models. The epoch is meant as one run through all the training data. Stochastic
Gradient Descent was used as an optimizer. The learning rate varies for different
models but is always based on the original implementation taking into account
the changing batch size. The batch size of 4 was applied during training. After
each training epoch, a validation part of the dataset was evaluated. The learning
rate was decreased by 10 on the 8 and 11 epochs or on the 16 and 22 epochs for
the longer training schema.
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In order to determine the placement of artificially-sized patches in a test set
of images, a mask identifying the positions of object groups within the origi-
nal image is needed. To accomplish this, a basic FCN-Unet architecture [71]
was trained using the MMSegmentation toolbox [17]. The process involved slic-
ing images from the Tomato360 dataset into patches of size 2042x2042 pixels
and subsequently creating input segmentation maps from the object’s instance
masks, yielding 447, 59, and 136 images for the training, validation, and test
sets, respectively. During the data loading phase, input images were normalized
and downsampled to a resolution of 512x512 pixels. The network training uti-
lized the Cross-Entropy Loss criterion over 160000 epochs with the Stochastic
Gradient Descent optimizer and an initial learning rate of 0.01, which polyno-
mially decreased to 0.0001 during the training. Test set predictions were made
patch-wise, consistent with the 2042x2042 pixel patch size used in training.

The inference was made employing Slicing Aided Hyper Inference (SAHI) and
Artificial Slicing Aided Hyper Inference (ASSAHI). The data loading pipeline
was kept the same as was during the training phase, with the exclusion of the
random flip, which was not included in the testing stage. Test set masks essential
for artificial size slicing were generated using the trained FCN-Unet segmentation
network. Predictions were also made using ground truth labels to generate a
segmentation mask, eliminating an error included by the segmentation network
and fully showcasing the capabilities of the ASSAHI technique.

5.4.2 Experimental Evaluation and Discussion

In this evaluation, the influence of newly proposed methodologies named Artifi-
cial Size Slicing Aided Fine-tuning (ASSAFT) and Artificial Size Slicing Hyper
Inference (ASSAHI) is explored in the context of the Tomato360 dataset. The
results are compared with the Slicing Aided Fine Tuning (SAFT) and Slicing
Aided Hyper Inference (SAHI) concepts presented in [2].
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Tab. 5.6 Foreground segmentation mean accuracy (mACC) and mean Inter-
section over union (mIOU results) for semantic segmentation model trained to
obtain object groups positions needed for test image Artificial Size Slicing Aided
Hyper Inference (ASSAHI).

model mACC mIOU foreground ACC foreground IOU
FCN-Unet 79.69 77.28 59.52 55.58

The first table, Tab. 5.6, displays the results of the semantic segmentation
model, FCN-Unet [71], specifically tailored to obtain object groups’ positions
needed for ASSAHI. The model shows a mean accuracy (mACC) of 79.69%,
a mean Intersection over Union (mIOU) of 77.28%, a foreground accuracy of
59.52%, and a foreground IOU of 55.58%. Although the results would not be
very impressive in a standard semantic segmentation task, these results indicate
a sufficient ability to correctly segment and identify foreground objects from the
background.

The second table, Tab. 5.7, provides an extensive evaluation of the proposed
ASSAFT and ASSAHI methodologies on the Tomato360 dataset. The metrics
include mAP, mAP50, Precision, Recall, and F1-score. The results of two models
(Faster-RCNN and Tood) trained using classic and artificial size slicing fine-
tuning methodologies (SAFT versus ASSAFT) were compared. The test set
results are produced by classical or artificial size-aided hyper inference (SAHI
versus ASSAHI). It can be seen that the application of ASSAFT and ASSAHI
brings a substantial increase in all presented metrics in comparison to SAFT and
SAHI methodology. On the other hand, simple usage of ASSAHI with a model
fine-tuned by SAFT does not bring better model performance. Presumably, the
model was not prepared for the change in image resolution and therefore is not
able to profit from it. This property might be very specific in the Tomato360
dataset, where the size of the object is not very variable, encompassing the great
majority of small objects, less medium size objects, and zero large objects, as are
the categories defined by COCO detection challenge1). Therefore the model was

1)The COCO detection challenge (https://cocodataset.org/) divides the object into three
categories according to the bbox size: small < 32x32 pixels, medium > 32x32 pixels and
< 96x96 pixels and large > 96x96 pixels.

https://cocodataset.org/
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Tab. 5.7 Evaluation of proposed ASSAFT and ASSAHI methodologies on a
Tomato360 dataset from Faster-RCNN DCN and Tood DCN models. Each row
presents results from two different fine-tuning methods, SAFT and ASSAFT,
combined with different inference techniques. SAFT and ASSAFT results are
shown when combined with SAHI and ASSAHI inference methods respectively.
For ASSAHI, the segmentation input is from either an FCN-Unet or a ground
truth mask (gtmask).

model & method mAP mAP50 Prec. Recall F1-score
Faster-RCNN DCN

SAFT SAHI 0.398 0.674 0.67 0.75 0.71
ASSAHI FCN-Unet 0.397 0.669 0.67 0.75 0.71

ASSAFT ASSAHI FCN-Unet 0.431 0.713 0.71 0.80 0.75
ASSAHI gtmask 0.455 0.753 0.78 0.85 0.82

Tood DCN

SAFT SAHI 0.367 0.645 0.65 0.72 0.68
ASSAHI FCN-Unet 0.365 0.640 0.64 0.72 0.68

ASSAFT ASSAHI FCN-Unet 0.432 0.703 0.70 0.77 0.74
ASSAHI gtmask 0.461 0.747 0.75 0.82 0.78

SAFT - Slicing Aided Fine Tuning
ASSAFT - Artificial Size Slicing Aided Fine Tuning
SAHI - Slicing Aided Hyper Inference
ASSAHI - Artificial Size Slicing Aided Hyper Inference

not prepared to detect large objects present in high-resolution slices produced
by ASSAHI. The ASSAFT eliminates this problem.

On top of that, the ASSAHI methodology is combined either with FCN-Unet
segmentation mask prediction or with masks obtained from ground true anno-
tation (gtmask) to showcase the full potential of ASSAHI, i.e., how much the
results can be improved by utilizing a better semantic segmentation model. The
difference between ASSAHI with FCN-Unet and gtmasks is noticeable and al-
lows space for further improvement. The gap between FCN-Unet and gtmasks
variants keeps even with the usage of longer training schema with 24 epochs,
as presented in Tab. 5.8. From the data in the table, it can be concluded that
utilizing a longer training schema is overly beneficial in all experiments, while
the Tood architecture benefits from it more than the Faster-RCNN architecture.
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Tab. 5.8 Comparison of performance metrics between Faster-RCNN DCN and
Tood DCN model, using the ASSAHI method with FCN-Unet or ground truth
mask (gtmask) as segmentation input. For each model, results are shown for
two different training schemas (12 and 24 epochs).

model epochs mAP mAP50 Precision Recall F1-score
Faster-RCNN DCN

ASSAHI FCN-Unet 12 0.431 0.713 0.71 0.80 0.75
24 0.453 0.732 0.73 0.80 0.77

ASSAHI gtmask 12 0.455 0.753 0.78 0.85 0.82
24 0.455 0.753 0.78 0.85 0.82

Tood DCN

ASSAHI FCN-Unet 12 0.432 0.703 0.70 0.77 0.74
24 0.448 0.728 0.73 0.80 0.76

ASSAHI gtmask 12 0.461 0.747 0.75 0.82 0.78
24 0.475 0.766 0.77 0.83 0.80

The Tood beats the Faster-RCNN in mAP metrics, obviously producing more
precise bboxes. While the other metrics which utilize the 0.5 Intersection over
Union (IOU), show the comparable performance of both model architectures.

The computation resources needed for both pipelines should be taken into ac-
count too. The downside of ASSAFT and ASSAHI methodology is mainly in
the claims for resources, especially in the training phase. The usage of ASSAFT
methodology results in approximately 5x more training data samples, which ad-
equately lengthens the training process. Moreover, the semantic segmentation
model must be trained, too. On the other hand, during the inference phase, the
extra computing needs brought by ASSAHI in comparison to SAHI are not that
substantial. The final prediction time of the whole test set by ASSAHI versus
SAHI technique takes 60.9 seconds versus 128.2 seconds; the calculation time
was measured on GeForce GTX 1080 Ti GPU. This difference is not substan-
tial, especially if the extensive data preprocessing needed in Tomato360 image
data production is taken into account. Therefore the counting does not opt for
real-time processing, and consequently, one minute difference in processing 12
images would not make any substantial difference in a practical implementation
of this method.
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While evaluating the ASSAFT and ASSAHI methodologies, it is important also
to consider the computational resources required. These methods, despite their
advantages, do present a substantial demand for resources, particularly during
the training phase. The application of the ASSAFT method increases the num-
ber of training data samples by approximately five times, leading to a significant
extension of the training process. Additionally, the semantic segmentation model
must be trained, too.

During the inference phase, however, the additional computational needs of AS-
SAHI, when compared to SAHI, are relatively minimal. To illustrate, the total
prediction time for a complete test set using ASSAHI is 60.9 seconds, while SAHI
takes 128.2 seconds. These measurements were taken on a GeForce GTX 1080
Ti GPU. This difference in processing time is not particularly significant, par-
ticularly when one considers the extensive data preprocessing required for the
production of Tomato360 image data. Given that real-time processing is either
way not possible in this task, a one-minute difference in processing 12 images is
unlikely to have a major impact on the practical application of this method. The
increase in training time is paid for by the increased object detection precision.

In conclusion, these evaluations underscore the effectiveness of the proposed
ASSAFT and ASSAHI methodologies for object detection on the Tomato360
dataset. The results highlight the importance of appropriate segmentation mask
input for the correct ASSAHI function and show the benefits of increased training
time.

5.5 Practical Applications in Tomato Greenhouse

This section moves beyond theoretical concepts to focus on tangible, real-world
applications within a tomato farming environment. The first application ad-
dresses the critical task of detecting whiteflies on yellow sticky tags, which are
commonly employed for pest monitoring in greenhouses. The effectiveness of
the proposed solution in this context provides a meaningful evaluation of the
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technology’s practical use. The second application delves into tomato detection
and counting, utilizing the Tomato360 dataset and newly introduced techniques
ASSAFT and ASSAHI for a successful tomato yield prediction. Together, these
two core areas represent significant strides in addressing the unique challenges
of tomato farming, bridging the gap between theoretical research and on-the-
ground implementation.

5.5.1 Whitefly Detection

The primary objectives of this project focus on the automation and evaluation
of a system designed for scouting yellow sticky traps (YST) for whiteflies in a
tomato greenhouse. The main goal is to automate this process, replacing labor-
intensive manual scouting with a more efficient and automated system. The
comprehensive assessment of the system’s performance is performed in work
[A6] coauthored by the author of this thesis. This analysis is crucial to under-
standing its potential for practical use and real-world applicability. Here the
results showcase a successful practical application of Slicing Aided Fine Tuning
(SAFT) and Slicing Aided Hyper Inference (SAHI).

The pictures of yellow sticky traps (YST) were taken inside the tomato pro-
duction greenhouse. Used pictures were collected using a mobile device to be
easily replicable and suitable for future fast processing in a real environment.
The whiteflies (Aleyrodidae) were manually marked by bounding boxes and val-
idated by a professional phytopathologist. The created dataset was then used
to train a deep convolutional network model for object detection. The state-of-
the-art Tood architecture was utilized. The model training and inference were
enhanced by a slicing that utilizes cutting of the original image to maintain full
image resolution in the training (SAFT) and prediction process (SAHI). The
utilized patch size was 512x512 pixels; during the cutting, the patches overlap
by 0.2 times the patch size. More details can be found in the original paper [A6].
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Fig. 5.7 On the left side is the example of the full input image with bounding
box detections (red boxes) marking present whiteflies. On the right side, there
are the zoomed cutouts with bounding box detections marking class labels and
the model’s detection confidence.

The final model achieves the F1-score of 0.82. The F1-score is defined as the
harmonic mean of precision and recall. The key to a correct model function
is to minimize the glue reflection on the YST since the reflected spots might
be incorrectly classified as whitefly. If this precaution is complied with, the
model gives stable output. The counting results from the greenhouse employees
with the numbers from the phytopathologist (on a smaller dataset) were also
compared to observe the human error rate. Human labor achieves the F1-score
of 0.81.

This project has achieved its primary objectives, resulting in several significant
contributions. By implementing a deep convolutional network model for ob-
ject detection in scouting yellow sticky traps (YST) for whiteflies, a previously
labor-intensive task is successfully automated. This automated system replaces
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repetitive human work and operates 24/7 without any degradation in precision,
demonstrating the potential for wide-scale applicability in tomato greenhouses.
Notably, the model’s precision is competitive with human work, as evidenced by
the comparable F1-scores achieved. Moreover, the model is capable of providing
accurate counts even during high infestation periods, offering a dependable tool
for tracking and managing whitefly populations.

Hence, the study not only offers promising insights into the practical application
of Slicing Aided Fine Tuning (SAFT) and Slicing Aided Hyper Inference (SAHI)
but also presents a robust solution for real-world challenges in pest manage-
ment. These achievements underscore the relevance and potential of using Tood
architecture for practical applications, as detailed in the coauthored work [A6].

5.5.2 Tomato Detection and Counting

This section introduces the final solution proposed for tomato fruit detection in
wide high-resolution images captured within a tomato greenhouse environment.
The solution involves a multi-faceted approach that merges various cutting-edge
techniques. At its core, it leverages the Tood object detection model [24], which
is enhanced with deconvolution extensions for an extra layer of detail and precise
object localization.

Crucially, the training phase of this model incorporates a novel method Artificial
Size Slicing Fine Tuning (ASSAFT), which has been specifically developed by the
author of this thesis to maximize the model’s effectiveness. Further, the model’s
predictions are generated through an equally innovative technique: Artificial Size
Slicing Hyper Inference (ASSAHI).

This comprehensive framework, encompassing the processing pipeline, model
training, and architecture, has undergone a rigorous ablation study to test other
possible solutions. For a more detailed examination of these elements, please
refer to sections 5.3 and 5.4, where each choice was evaluated and discussed in
depth.
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Here, both qualitative and quantitative analyses are carried out to evaluate the
solution’s capability for practical applications. The primary metrics used for the
quantitative analysis are precision, recall, and the F1-score, which is defined as
a harmonic mean of precision and recall. All these metrics were calculated with
an Intersection over Union (IOU) threshold of 0.5 to determine true positive
detections.

To evaluate the system’s performance on the entire dataset, the data were divided
into five folds, with each fold having a unique model trained on it. Each model
then made predictions only on its testing portion of the dataset, and the final
results were aggregated from all these five models’ test predictions. The resulting
scores were solid, with a precision of 0.85, a recall of 0.93, and an F1-score
of 0.89.

The results were also examined qualitatively, revealing an increased error rate
in the top sections of the plants/images. The tomato fruits present in the top
parts of the plant are usually very small and immature/green. Detection of such
small, green objects among leaves is even more complicated by the fact that
the top part of the images tends to be overly bright and suffers from image
reconstruction artifacts. Additionally, the quality of the annotations in these
upper sections was inconsistent; some human annotators overlooked these small,
top-level detections, leading to some detections being incorrectly marked as false
positives during the evaluation process.

However, detecting fruit in the top section of the plant is less crucial in practical
terms, as greenhouse managers primarily aim to predict the crop yield for the
forthcoming one or two weeks. To assess accuracy in different sections of the
images, detections can be filtered based on their height percentile. As illustrated
in Fig. 5.8, detection accuracy increases notably in the top 20 percentile.

Regardless, the exclusion of the top 20 percentile of detections has an insignif-
icant impact on the overall precision, recall, and F1-score, only confirming the
unsubstantial role of those image parts. Nevertheless, this analysis reveals some
confusion originating from these upper image sections. As a result, a further
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Fig. 5.8 Precision, recall, and F1-score comparison for different percentiles of
tomato vertical position.

review of the input data could be beneficial, aiming to standardize annotations
in the top sections of the images and possibly improve the training process.

5.5.3 Estimating Yield of Tomato Crops

The Tomato360 dataset was specifically designed to aid in predicting future
yields of tomato crops. To demonstrate the real-world utility of the methodology
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Tab. 5.9 Comparison of crop estimates made by an agronomist and by the pro-
posed model.

harvest current day in 7 days
row number 27 29 27 29
actual crop yield [kg] 30.40 38.20 92.20 99.60
agronomist’s estimate [kg] 50.00 50.00 110.00 110.00
agronomist’s error [%] -64.50 -30.89 19.35 10.44
model’s estimate [kg] 29.07 30.45 90.19 98.20
model’s error [%] 4.38 20.29 2.18 1.41

proposed in this thesis, two rows of Belioso tomato species were captured in
October 2022 at Bezdinek greenhouse. An agronomist was asked to provide
an estimate of the crop yield for the day of imaging as well as for one week
thereafter. The actual crop yield in kilograms was then recorded both on the
day of the imaging and seven days later.

To convert the number of fruits into kilograms, an average tomato weight of 38.5g
was used. The model’s predictions for the current day’s yield were calculated
by multiplying the number of fully ripened tomatoes by this average weight.
The predictions for the following week incorporated semi-ripened and immature
tomatoes as well. The final results, as shown in Table 5.9, demonstrate that the
model consistently provided more accurate predictions than the agronomist.

Historical comparisons of estimated yields versus actual harvests in the Bezdinek
greenhouse have shown that the precision of the agronomist’s estimates can vary
considerably. Overestimations or underestimations by more than 20% have been
particularly economically damaging. Thus, the model’s F1-score of 0.89, coupled
with the specific example of real applicability presented here, indicates that the
detection model can serve as a reliable basis for predicting tomato crop yields in
a real-world setting.
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6 Discussion

The effectiveness of deep learning methodologies is fundamentally dependent
on a robust deep learning pipeline. Given that deep learning models offer data-
centric solutions, how data is processed critically determines the ultimate success
of the model’s implementation. This concept is echoed in a study on medical
image segmentation by [42] and further examined in a research paper authored
by this thesis’s author [A2]. This study delves into the extensive incorporation of
attention mechanisms into the basic model architecture and suggests a tangible
benefit to including attention mechanisms in the detection of abdominal tumors,
evidenced by a consistent increase in the Dice coefficient.

The research then extends to investigate the impact of attention mechanisms
on the custom-made, real-world Tomato360 dataset. In this study, a compre-
hensive examination of various architectural decisions was conducted, including
deconvolution techniques and different spatial attention mechanisms in object
detection. These variations were integrated into three well-established object
detection models and tested on the newly created Tomato360 dataset, produced
in collaboration with NWT, a tech-focused company, and Bezdinek, a tomato
farm. Surprisingly, these architectural choices did not significantly affect the
success of the final object detection.

In contrast, the influence of the deep learning pipeline was substantiated fur-
ther through the implementation of the newly proposed methods: Artificial Size
Slicing Aided Fine Tuning (ASSAFT) and Artificial Size Slicing Aided Hyper
Inference (ASSAHI). These methods are specifically designed to process high-
resolution images containing small objects targeted for detection. Tests of AS-
SAFT and ASSAHI on the Tomato360 dataset demonstrated a considerable
enhancement in the success of object detection, further affirming the pivotal role
of data handling in the practical deployment of deep learning techniques.

Importantly, the use of a custom, real-world dataset demonstrates the process
of transitioning deep learning techniques into practical applications. This work
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documents the intricate and non-linear process of creating a real-world dataset,
providing solutions to specific challenges encountered in new contexts. These
challenges, typically not found in the standard large-scale datasets used by the
computer vision community, necessitated a somewhat different approach. This
dissertation offers a comprehensive overview of such a procedure, providing in-
sight into the complexities that arise during the practical implementation of deep
learning techniques to solve real-world problems.

The applicability of the proposed solution was confirmed in two showcase studies
realized at Bezdinek greenhouse. The first focuses on whitefly detection at Yellow
sticky tags, commonly used for pest monitoring. The realized system achieves
a comparable F1-score as a human operator. Moreover, the model is capable
of providing accurate counts even during high infestation periods, offering a
dependable tool for tracking and managing whitefly populations.

The second application deals with large-scale tomato detection and counting.
The results demonstrate that the model consistently provided similar or more
accurate predictions than the agronomist. Historical comparisons of estimated
yields versus actual harvests in the Bezdinek greenhouse have shown that the
precision of the agronomist’s estimates can vary considerably. Especially eco-
nomically damaging are estimates with errors higher than +-20%. Thus, the
model’s F1-score of 0.89 indicates that the detection model can serve as a reli-
able basis for predicting tomato crop yields in a real-world setting.

6.1 Fulfillment of the Doctoral Thesis Aims

This section summarizes the efforts undertaken to achieve the objectives of this
dissertation, which were initially defined as follows:

1. Appraise the current state of the research area: Specifically, deep
learning methods applied in computer vision with a particular focus on
small object detection and segmentation in high-resolution images.
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The area of deep learning methods applied in computer vision is a rapidly
evolving research field marked by frequent incremental advancements rather
than groundbreaking discoveries. Despite this, diligent efforts were made
to stay abreast of the latest studies published in reputable journals and
conferences, with only the most relevant ones to the dissertation topic be-
ing selected. A thorough overview of these selected studies can be found
in the Literature Review, sections 3.1 - 3.6.

2. Develop and curate a custom dataset in a tomato greenhouse: The
creation of a custom, real-world dataset aims to demonstrate the transfer
of AI technologies from theory to practical implementation. This involves
acquiring, collecting, and labeling high-resolution images that capture the
challenges specific to this domain.

In partnership with NWT, a tech-oriented company, and Bezdinek, a tomato
farming enterprise, the Tomato360 dataset was created. The dataset is in-
troduced in the author’s paper [A1]. The process of data acquisition, image
production, and labeling is detailed in the result section 5.1. This section
also includes basic dataset statistics and identifies major challenges.

3. Investigate and compare the effectiveness of attention mecha-
nisms: Explore possibilities of incorporating attention mechanisms into
different convolutional neural network (CNN) architectures. Compare their
performance in terms of accuracy and computational efficiency.

Sections 5.2 and 5.3 present two case studies of attention mechanism inte-
gration into deep CNNs. The first study, published in the impacted journal
[A2], documents a successful implementation of attention gates in medical
image segmentation. In the second case, an ablation study of spatial at-
tention incorporated into different object detection models was conducted
and tested on the Tomato360 dataset.

4. Develop an enhanced deep learning pipeline: Design and develop a
novel processing pipeline tailored to handle the challenging task of small
object detection in high-resolution images.



TBU in Zlín, Faculty of Applied Informatics 93

The effectiveness of deep learning methodologies depends significantly on
a robust deep learning pipeline. All the fundamental components of such
a pipeline are outlined in the Methodology part, sections 4.1-4.4. The
practical knowledge needed to establish such a comprehensive methodology
overview was gathered over the whole doctoral studies of the author, and
its correctness is confirmed in a successful computer vision application in
different application fields published by the author of this thesis: [A1, A2,
A4, A5, A6, A7, A8, A9]. The novel techniques, Artificial Size Slicing Aided
Fine Tuning (ASSAFT) and Artificial Size Slicing Aided Hyper Inference
(ASSAHI), are introduced in sections 4.1.4 and 4.3.2, respectively. Those
techniques are specifically tailored to handle high-resolution images with
small objects within to be detected.

5. Evaluate the proposed pipeline on the custom dataset: Apply
and test the developed processing pipeline on the custom dataset from
the tomato greenhouse. Measure its performance against existing stan-
dard techniques used for small object detection. Assess and compare the
proposed pipeline’s accuracy, robustness, and efficiency.

The newly proposed methods of Artificial Size Slicing Aided Fine Tuning
(ASSAFT) and Artificial Size Slicing Aided Hyper Inference (ASSAHI) are
successfully applied to a custom-made Tomato360 dataset. The method-
ologies were tested using two different object detection model architectures.
The effects of each methodology component were analyzed in the results, in
section 5.4, along with the demands on time and computational resources.

6. Analyze the impact and practicality of the proposed methods:
Conduct a comprehensive analysis to understand the impact of incorpo-
rating attention mechanisms and the newly developed processing pipeline
on small object detection in high-resolution images. Evaluate their prac-
ticality in real-world scenarios, considering factors such as computational
requirements, scalability, and generalizability.

This dissertation thoroughly examines the implications and feasibility of
incorporating attention mechanisms and the newly developed processing
pipeline for small object detection in high-resolution images. Despite
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promising outcomes from the application of attention mechanisms in med-
ical image data (Section 5.2), a similar mechanism did not yield signifi-
cant improvements for the Tomato360 dataset as discussed in section 5.3.
In contrast, the novel image-slicing techniques - ASSAFT and ASSAHI,
showcased substantial improvements in the final tomato detection perfor-
mance (See the section 5.5.2). This reinforces the importance of a me-
thodically constructed deep learning pipeline as a critical determinant of
successful real-world applications of deep learning models. Moreover, the
final proposed solution proved to be a reliable basis for predicting tomato
crop yields in a real-world setting, as is documented in section 5.5.3.

7 Impact of Work on Science and Practice

Deep learning techniques, and especially deep convolutional neural networks,
occupy the field of computer vision nowadays, outperforming other techniques
substantially. Despite the success of deep CNN techniques, there are difficulties
inherent to their applicability. First, large datasets are needed for the suc-
cessful training of deep CNN models, which requires a considerable amount of
resources. Aside from problems due to the cost of acquisition, labeling, and data
anonymization techniques, the methodology of processing and dealing with the
data strongly influence the final method’s success rate. This work seeks to es-
tablish an overview of the current standard techniques and best practices to set
up the logical, consistent pipeline applicable to different computer vision tasks.

The practical knowledge needed to establish such a comprehensive methodology
overview was gathered over the whole doctoral studies, and its correctness is
confirmed in successful computer vision applications in different fields published
by the author of this thesis: [A1, A2, A4, A5, A6, A7, A8, A9]. This thesis,
moreover, documents the application of deep convolutional neural networks in a
practical, real-world application from a commercial farming environment. From
the first problem definition to a final solution.
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The assignment of tomato fruit counting appears repeatedly throughout this
work and creates the connection between theoretical research and practical ap-
plication. In this practical example, this work documents the complex and non-
linear process of creating a real-world dataset, shedding light on the unique
challenges that arise in specific application contexts and proposing solutions to
address them. Those challenges are not included in common large-scale datasets
utilized by the computer vision community and therefore needed a slightly dif-
ferent approach. By providing a detailed account of how these challenges were
identified and addressed, this dissertation underscores the need for flexibility and
innovation in the application of deep learning techniques to real-world problems.
Furthermore, it highlights the potential value that custom datasets can bring in
furthering our understanding of how deep learning techniques behave in varying
contexts and how they can be adapted and optimized for it.

A substantial effort is made to document the decision process of development and
employ extensive analysis to empower the decision with comprehensive informa-
tion. While the importance of architecture changes and extensions proved not
to be very significant in the problem of tomato fruit detection, the significance
of a well-structured deep learning pipeline was reinforced through the execution
of the newly proposed methodologies: Artificial Size Slicing Aided Fine Tuning
(ASSAFT) and Artificial Size Slicing Aided Hyper Inference (ASSAHI). These
methods provide an innovative approach to data processing, specifically aimed
at small object detection groups in high-resolution images. The results from the
application of ASSAFT and ASSAHI on the Tomato360 dataset yielded notable
enhancements in the success rates of object detection. These outcomes further
underline the crucial role that data management plays in effectively implement-
ing deep learning techniques into practice.

Finally, this doctoral thesis significantly contributes to both the scientific com-
munity and practical applications by highlighting the importance of a robust
deep learning pipeline, introducing innovative methodologies for enhancing ob-
ject detection in high-resolution images, and demonstrating the process and value
of creating and using custom, real-world datasets. It is a stepping stone that
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bridges the gap between theory and practice in the field of deep learning, shed-
ding light on the path for future research and applications.

7.1 Limitations and Future Directions

This dissertation offers significant advancements in the field of object detection
in high-resolution images, particularly for the application of crop yield estimation
in tomato greenhouses. However, there remain areas where improvements and
further research would yield beneficial results.

The Tomato360 dataset, while it facilitated the creation of a successful large-scale
tomato detection and counting system, still presents room for enhancements.
Image data production from the 360˚video could be improved to reduce low-level
noise and brightness issues that may hamper the precision of object detection
models. Furthermore, the dataset’s usability in practice could be increased by
including various tomato species, thus allowing the methodology to be robust
across different tomato varieties.

Evaluating yield predictions during a longer period of time could provide valuable
insights into the real-world applicability, stability, and efficiency of created mod-
els. Additionally, integrating a module for fruit ripeness determination would
improve the usefulness of the system, as it would provide more nuanced infor-
mation than the current one-class fruit detection system.

The proposed ASSAFT and ASSAHI methods have shown their value, yet there
is room for further investigation. Evaluating different semantic segmentation
models responsible for patch location could help optimize the system, as can
be seen from the evaluation using ground true data. Additionally, testing the
methodology on a variety of datasets, both within and outside the field of agri-
culture, could assess the general applicability of these methods.

Lastly, future research should aim to standardize the rules for patch production
from image masks, making the methodology generally applicable across diverse
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datasets and problem contexts. This would not only extend the scope of these
techniques but also provide a standard approach that could be replicated across
different problem domains in high-resolution image analysis.

8 Conclusion

This dissertation presents a thorough exploration of small object detection within
high-resolution images, focusing on applications across various domains. An
in-depth study on attention mechanisms was conducted, where the successful
implementation of a U-Net model with attention gates led to improved detection
of abdominal organs and tumors in CT images. This achievement shed new
light on the importance of attention in complex medical imaging. However, the
research also discovered that similar attention mechanisms did not prove to be
beneficial in the specific case of tomato detection, providing practical insights
into the domain-specific nature of these techniques.

In the agricultural context, the work introduced a comprehensive framework for
tomato fruit detection, demonstrating a multi-faceted approach that synergizes
various cutting-edge techniques. Leveraging the Tood object detection model,
novel methods: Artificial Size Slicing Fine Tuning (ASSFT), and Artificial Size
Slicing Hyper Inference (ASSAHI), were developed, resulting in a solid F1-score
of 0.89. These innovative techniques allowed for accurate yield predictions in a
real-world setting, outperforming common agronomist estimates and providing
an economically advantageous solution.

In conclusion, the research detailed in this dissertation contributes substantially
to both the field of computer vision and practical applications within the medical
and agricultural sectors. By advancing the understanding of attention mecha-
nisms, innovating in small object detection, and demonstrating real-world ap-
plicability in applications from Tomato greenhouse, this work establishes a ro-
bust and reliable approach to high-resolution image analysis. The insights and
methodologies developed throughout this research provide a robust foundation
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for future exploration, setting the stage for further refinement and expansion
into diverse applications and challenges within object detection and beyond.



TBU in Zlín, Faculty of Applied Informatics 99

REFERENCES

[1] Deep Image: Scaling up Image Recognition. CoRR. 2015, abs/1501.02876.
Dostupné z: <http://arxiv.org/abs/1501.02876>. Withdrawn.

[2] Akyon, F. C., Cengiz, C., Altinuc, S. O., Cavusoglu, D., Sahin, K.
and Eryuksel, O. SAHI: A lightweight vision library for performing large
scale object detection and instance segmentation, November 2021.

[3] Akyon, F. C., Altinuc, S. O. and Temizel, A. Slicing Aided Hyper
Inference and Fine-tuning for Small Object Detection, 2022.

[4] Badrinarayanan, V., Kendall, A. and Cipolla, R. Segnet: A deep
convolutional encoder-decoder architecture for image segmentation. IEEE
transactions on pattern analysis and machine intelligence. 2017, 39, 12,
pp. 2481–2495.

[5] Bilic, P. et al. The Liver Tumor Segmentation Bench-
mark (LiTS). CoRR. 2019, abs/1901.04056. Dostupné z:
<http://arxiv.org/abs/1901.04056>.

[6] Birkfellner, W. Applied medical image processing: a basic course. CRC
Press, 2016.

[7] Bodla, N., Singh, B., Chellappa, R. and Davis, L. S. Soft-NMS —
Improving Object Detection with One Line of Code. In 2017 IEEE Inter-
national Conference on Computer Vision (ICCV), pp. 5562–5570, 2017.
doi: 10.1109/ICCV.2017.593.

[8] Chen, I.-T. and Lin, H.-Y. Detection, Counting and Maturity Assessment
of Cherry Tomatoes using Multi-spectral Images and Machine Learning
Techniques. In VISIGRAPP (5: VISAPP), pp. 759–766, 2020.

[9] Chen, K. et al. MMDetection: Open MMLab Detection Toolbox and
Benchmark. arXiv preprint arXiv:1906.07155. 2019.

[10] Chen, L.-C., Yang, Y., Wang, J., Xu, W. and Yuille, A. L. Attention
to scale: Scale-aware semantic image segmentation. In Proceedings of the



100 TBU in Zlín, Faculty of Applied Informatics

IEEE conference on computer vision and pattern recognition, pp. 3640–
3649, 2016.

[11] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille,
A. L. Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence. 2017, 40, 4, pp. 834–848.

[12] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille,
A. L. Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence. 2017, 40, 4, pp. 834–848.

[13] Chen, L.-C., Papandreou, G., Schroff, F. and Adam, H. Rethink-
ing atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587. 2017.

[14] Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H.
Encoder-decoder with atrous separable convolution for semantic image seg-
mentation. In Proceedings of the European conference on computer vision
(ECCV), pp. 801–818, 2018.

[15] Chu, J., Zhang, Y., Li, S., Leng, L. and Miao, J. Syncretic-NMS: A
Merging Non-Maximum Suppression Algorithm for Instance Segmentation.
IEEE Access. 2020, 8, pp. 114705–114714. doi: 10.1109/ACCESS.2020.
3003917.

[16] Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M. and
Schmidhuber, J. Flexible, high performance convolutional neural net-
works for image classification. In Twenty-Second International Joint Con-
ference on Artificial Intelligence, 2011.

[17] Contributors, M. MMSegmentation: OpenMMLab Semantic Seg-
mentation Toolbox and Benchmark. https://github.com/open-mmlab/

mmsegmentation, 2020.

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation


TBU in Zlín, Faculty of Applied Informatics 101

[18] Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V. and Salakhut-

dinov, R. Transformer-xl: Attentive language models beyond a fixed-
length context. arXiv preprint arXiv:1901.02860. 2019.

[19] Dalal, N. and Triggs, B. Histograms of oriented gradients for human
detection. In 2005 IEEE computer society conference on computer vision
and pattern recognition (CVPR’05), 1, pp. 886–893. Ieee, 2005.

[20] Dechter, R. Learning While Searching in Constraint-Satisfaction-
Problems. pp. 178–185, 01 1986.

[21] Dice, L. R. Measures of the amount of ecologic association between
species. Ecology. 1945, 26, 3, pp. 297–302.

[22] Ding, J. et al. Object detection in aerial images: A large-scale bench-
mark and challenges. IEEE transactions on pattern analysis and machine
intelligence. 2021, 44, 11, pp. 7778–7796.

[23] Dominik, S. and Jacek, N. Computer vision in robotics and industrial
applications. 3. World Scientific, 2014.

[24] Feng, C., Zhong, Y., Gao, Y., Scott, M. R. and Huang, W. Tood:
Task-aligned one-stage object detection. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 3490–3499. IEEE Computer
Society, 2021.

[25] Forsyth, D. A. and Ponce, J. Computer vision: a modern approach.
Prentice Hall Professional Technical Reference, 2002.

[26] Fu, C., Liu, W., Ranga, A., Tyagi, A. and Berg, A. C. DSSD : Decon-
volutional Single Shot Detector. CoRR. 2017, abs/1701.06659. Dostupné z:
<http://arxiv.org/abs/1701.06659>.

[27] Fuglie, K. The growing role of the private sector in agricultural research
and development world-wide. Global Food Security. 2016, 10, pp. 29–38.
ISSN 2211-9124. doi: https://doi.org/10.1016/j.gfs.2016.07.005.

[28] Girshick, R. Fast r-cnn. In Proceedings of the IEEE international con-
ference on computer vision, pp. 1440–1448, 2015.



102 TBU in Zlín, Faculty of Applied Informatics

[29] Girshick, R., Donahue, J., Darrell, T. and Malik, J. Rich feature
hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 580–587, 2014.

[30] Girshick, R., Donahue, J., Darrell, T. and Malik, J. Region-based
convolutional networks for accurate object detection and segmentation.
IEEE transactions on pattern analysis and machine intelligence. 2015, 38,
1, pp. 142–158.

[31] Gongal, A., Amatya, S., Karkee, M., Zhang, Q. and Lewis, K. Sen-
sors and systems for fruit detection and localization: A review. Computers
and Electronics in Agriculture. 2015, 116, pp. 8–19.

[32] Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning. MIT
Press, 2016. Dostupné z: <http://www.deeplearningbook.org>.

[33] Grewal, M., Srivastava, M. M., Kumar, P. and Varadarajan, S.
Radnet: Radiologist level accuracy using deep learning for hemorrhage
detection in ct scans. In 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018), pp. 281–284. IEEE, 2018.

[34] He, K., Zhang, X., Ren, S. and Sun, J. Deep Residual Learn-
ing for Image Recognition. CoRR. 2015, abs/1512.03385. Dostupné z:
<http://arxiv.org/abs/1512.03385>.

[35] He, Z., Xie, L., Chen, X., Zhang, Y., Wang, Y. and Tian, Q. Data
Augmentation Revisited: Rethinking the Distribution Gap between Clean
and Augmented Data, 2019.

[36] Hoiem, D., Chodpathumwan, Y. and Dai, Q. Diagnosing error in ob-
ject detectors. In European conference on computer vision, pp. 340–353.
Springer, 2012.

[37] Hu, P., Wu, F., Peng, J., Bao, Y., Chen, F. and Kong, D. Auto-
matic abdominal multi-organ segmentation using deep convolutional neu-
ral network and time-implicit level sets. International journal of computer
assisted radiology and surgery. 2017, 12, 3, pp. 399–411.

http://www.deeplearningbook.org


TBU in Zlín, Faculty of Applied Informatics 103

[38] Huang, J. et al. Speed/Accuracy Trade-Offs for Modern Convolutional
Object Detectors. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3296–3297, July 2017. doi: 10.1109/
CVPR.2017.351.

[39] Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y. and Liu, W.
CCNet: Criss-Cross Attention for Semantic Segmentation. In The IEEE
International Conference on Computer Vision (ICCV), October 2019.

[40] Hubel, D. H. and Wiesel, T. N. Receptive fields and functional archi-
tecture of monkey striate cortex. The Journal of physiology. 1968, 195, 1,
pp. 215–243.

[41] Illingworth, J. and Kittler, J. A survey of the Hough transform.
Computer vision, graphics, and image processing. 1988, 44, 1, pp. 87–116.

[42] Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J. and Maier-

Hein, K. H. nnU-Net: a self-configuring method for deep learning-based
biomedical image segmentation. Nature methods. 2021, 18, 2, pp. 203–211.

[43] Kayalibay, B., Jensen, G. and Smagt, P. CNN-based Segmentation
of Medical Imaging Data. CoRR. 2017, abs/1701.03056. Dostupné z:
<http://arxiv.org/abs/1701.03056>.

[44] Kearney, V., Chan, J. W., Wang, T., Perry, A., Yom, S. S. and Sol-

berg, T. D. Attention-enabled 3D boosted convolutional neural networks
for semantic CT segmentation using deep supervision. Physics in Medicine
& Biology. jul 2019, 64, 13, pp. 135001. doi: 10.1088/1361-6560/ab2818.

[45] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980. 2014.

[46] Kirillov, A., He, K., Girshick, R., Rother, C. and Dollár, P.
Panoptic segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9404–9413, 2019.

[47] LeCun, Y., Bengio, Y. and Hinton, G. Deep learning. nature. 2015,
521, 7553, pp. 436–444.



104 TBU in Zlín, Faculty of Applied Informatics

[48] Lee, H., Hwang, S. J. and Shin, J. Rethinking Data Augmentation:
Self-Supervision and Self-Distillation, 2019.

[49] Li, C., Yang, T., Zhu, S., Chen, C. and Guan, S. Density map guided
object detection in aerial images. In proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition workshops, pp. 190–191,
2020.

[50] Lin, G., Adiga, U., Olson, K., Guzowski, J. F., Barnes, C. A. and
Roysam, B. A hybrid 3D watershed algorithm incorporating gradient
cues and object models for automatic segmentation of nuclei in confocal
image stacks. Cytometry Part A: the journal of the International Society
for Analytical Cytology. 2003, 56, 1, pp. 23–36.

[51] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollár, P. and Zitnick, C. L. Microsoft coco: Common objects in
context. In European conference on computer vision, pp. 740–755. Springer,
2014.

[52] Lin, T., Goyal, P., Girshick, R. B., He, K. and Dollár, P. Focal Loss
for Dense Object Detection. CoRR. 2017, abs/1708.02002. Dostupné z:
<http://arxiv.org/abs/1708.02002>.

[53] Liu, G., Nouaze, J. C., Touko Mbouembe, P. L. and Kim, J. H. YOLO-
Tomato: A Robust Algorithm for Tomato Detection Based on YOLOv3.
Sensors. 2020, 20, 7. ISSN 1424-8220. doi: 10.3390/s20072145.

[54] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu,
C. and Berg, A. C. SSD: Single Shot MultiBox Detector. CoRR. 2015,
abs/1512.02325. Dostupné z: <http://arxiv.org/abs/1512.02325>.

[55] Long, J., Shelhamer, E. and Darrell, T. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 3431–3440, 2015.

[56] Lowe, D. G. Distinctive image features from scale-invariant keypoints.
International journal of computer vision. 2004, 60, pp. 91–110.



TBU in Zlín, Faculty of Applied Informatics 105

[57] Mittal, S. and Vaishay, S. A Survey of Techniques for Optimizing Deep
Learning on GPUs. Journal of Systems Architecture. 2019, pp. 101635.

[58] Mnih, V., Heess, N., Graves, A. and others. Recurrent models of
visual attention. In Advances in neural information processing systems,
pp. 2204–2212, 2014.

[59] Mu, G., Lin, Z., Han, M., Yao, G. and Gao1, Y. Segmentation of
kidney tumor by multi-resolution VB-nets. Technical report, Shanghai
United Imaging Intelligence Inc., Shanghai, China, 2019.

[60] Mu, Y., Chen, T.-S., Ninomiya, S. and Guo, W. Intact Detection
of Highly Occluded Immature Tomatoes on Plants Using Deep Learn-
ing Techniques. Sensors. 2020, 20, 10. ISSN 1424-8220. doi: 10.3390/
s20102984.

[61] Mureşan, H. and Oltean, M. Fruit recognition from images using deep
learning. arXiv preprint arXiv:1712.00580. 2017.

[62] Oktay, O. et al. Attention U-Net: Learning Where to Look
for the Pancreas. CoRR. 2018, abs/1804.03999. Dostupné z:
<http://arxiv.org/abs/1804.03999>.

[63] Parico, A. I. B. and Ahamed, T. Real Time Pear Fruit Detection and
Counting Using YOLOv4 Models and Deep SORT. Sensors. 2021, 21, 14.
ISSN 1424-8220. doi: 10.3390/s21144803.

[64] Plaut, D. C. and others. Experiments on Learning by Back Propaga-
tion. 1986.

[65] Powers, D. Evaluation: From Precision, Recall and F-Factor to ROC,
Informedness, Markedness Correlation. Mach. Learn. Technol. 01 2008,
2.

[66] Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. You only look
once: Unified, real-time object detection. 2016, pp. 779–788.



106 TBU in Zlín, Faculty of Applied Informatics

[67] Ren, S., He, K., Girshick, R. B. and Sun, J. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks. CoRR. 2015,
abs/1506.01497. Dostupné z: <http://arxiv.org/abs/1506.01497>.

[68] Ren, S., He, K., Girshick, R. and Sun, J. Faster R-CNN: towards real-
time object detection with region proposal networks. IEEE transactions
on pattern analysis and machine intelligence. 2016, 39, 6, pp. 1137–1149.

[69] Robbins, H. and Monro, S. A stochastic approximation method. The
annals of mathematical statistics. 1951, pp. 400–407.

[70] Rodríguez-Sánchez, A., Oberleiter, S., Xiong, H. and Piater, J.
Learning V4 Curvature Cell Populations from Sparse Endstopped Cells.
In International Conference on Artificial Neural Networks, pp. 463–471.
Springer, 2016.

[71] Ronneberger, O., Fischer, P. and Brox, T. U-net: Convolutional
networks for biomedical image segmentation. In International Conference
on Medical image computing and computer-assisted intervention, pp. 234–
241. Springer, 2015.

[72] Rosenfeld, A. and Thurston, M. Edge and curve detection for visual
scene analysis. IEEE Transactions on computers. 1971, 100, 5, pp. 562–
569.

[73] Russell, B. C., Torralba, A., Murphy, K. P. and Freeman, W. T.
LabelMe: a database and web-based tool for image annotation. Interna-
tional journal of computer vision. 2008, 77, 1-3, pp. 157–173.

[74] Shamshiri, R. Measuring optimality degrees of microclimate param-
eters in protected cultivation of tomato under tropical climate condi-
tion. Measurement. 2017, 106, pp. 236–244. ISSN 0263-2241. doi:
https://doi.org/10.1016/j.measurement.2017.02.028.

[75] Shaw, P., Uszkoreit, J. and Vaswani, A. Self-attention with relative
position representations. arXiv preprint arXiv:1803.02155. 2018.



TBU in Zlín, Faculty of Applied Informatics 107

[76] Short, T., Draper, C. and Donnell, M. Web-based decision support
system for hydroponic vegetable production. In International Conference
on Sustainable Greenhouse Systems-Greensys2004 691, pp. 867–870, 2004.

[77] Simonyan, K. and Zisserman, A. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556. 2014.

[78] Simpson, A. L. et al. A large annotated medical image dataset for the
development and evaluation of segmentation algorithms. CoRR. 2019,
abs/1902.09063. Dostupné z: <http://arxiv.org/abs/1902.09063>.

[79] Taha, A. A. and Hanbury, A. Metrics for evaluating 3D medical image
segmentation: analysis, selection, and tool. BMC medical imaging. 2015,
15, 1, pp. 29.

[80] Taha, A. A. and Hanbury, A. Metrics for evaluating 3D medical image
segmentation: analysis, selection, and tool. BMC medical imaging. 2015,
15, 1, pp. 1–28.

[81] Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide the gradi-
ent by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning. 2012, 4, 2, pp. 26–31.

[82] Torralba, A., Efros, A. A. and others. Unbiased look at dataset bias.
In CVPR, 1, pp. 7. Citeseer, 2011.

[83] Uzkent, B., Yeh, C. and Ermon, S. Efficient object detection in large
images using deep reinforcement learning. In Proceedings of the IEEE/CVF
winter conference on applications of computer vision, pp. 1824–1833, 2020.

[84] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł. and Polosukhin, I. Attention is all you need.
Advances in neural information processing systems. 2017, 30.

[85] Viola, P. and Jones, M. Rapid object detection using a boosted cascade
of simple features. In Proceedings of the 2001 IEEE computer society con-
ference on computer vision and pattern recognition. CVPR 2001, 1, pp.
I–I. Ieee, 2001.



108 TBU in Zlín, Faculty of Applied Informatics

[86] Wan, S. and Goudos, S. Faster R-CNN for multi-class fruit detection
using a robotic vision system. Computer Networks. 2020, 168, pp. 107036.
ISSN 1389-1286. doi: https://doi.org/10.1016/j.comnet.2019.107036.

[87] Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X.
and Tang, X. Residual Attention Network for Image Classification. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[88] Wei, X., Jia, K., Lan, J., Li, Y., Zeng, Y. and Wang, C. Automatic
method of fruit object extraction under complex agricultural background
for vision system of fruit picking robot. Optik. 2014, 125, 19, pp. 5684–
5689.

[89] Wei, Z. and Duan, C. AMRNet: Chips Augmentation in Areial Im-
ages Object Detection. CoRR. 2020, abs/2009.07168. Dostupné z:
<https://arxiv.org/abs/2009.07168>.

[90] Wilson, A. C., Roelofs, R., Stern, M., Srebro, N. and Recht, B.
The marginal value of adaptive gradient methods in machine learning. In
Advances in Neural Information Processing Systems, pp. 4148–4158, 2017.

[91] Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y. and Zhang, Z. The
application of two-level attention models in deep convolutional neural net-
work for fine-grained image classification. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 842–850, 2015.

[92] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R.,
Zemel, R. and Bengio, Y. Show, attend and tell: Neural image caption
generation with visual attention. In International conference on machine
learning, pp. 2048–2057, 2015.

[93] Xu, Z.-F., Jia, R.-S., Liu, Y.-B., Zhao, C.-Y. and Sun, H.-M. Fast
Method of Detecting Tomatoes in a Complex Scene for Picking Robots.
IEEE Access. 2020, 8, pp. 55289–55299. doi: 10.1109/ACCESS.2020.
2981823.



TBU in Zlín, Faculty of Applied Informatics 109

[94] Yang, G. et al. Automatic Segmentation of Kidney and Renal Tumor in
CT Images Based on 3D Fully Convolutional Neural Network with Pyra-
mid Pooling Module. In 2018 24th International Conference on Pattern
Recognition (ICPR), pp. 3790–3795. IEEE, 2018.

[95] Ypsilantis, P.-P. and Montana, G. Learning what to look in
chest X-rays with a recurrent visual attention model. arXiv preprint
arXiv:1701.06452. 2017.

[96] Zhang, W., Itoh, K., Tanida, J. and Ichioka, Y. Parallel distributed
processing model with local space-invariant interconnections and its optical
architecture. Applied optics. 1990, 29, 32, pp. 4790–4797.

[97] Zhang, Y., Zhou, D., Chen, S., Gao, S. and Ma, Y. Single-image crowd
counting via multi-column convolutional neural network. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp.
589–597, 2016.

[98] Zhao, Y., Gong, L., Huang, Y. and Liu, C. A review of key techniques
of vision-based control for harvesting robot. Computers and Electronics
in Agriculture. 2016, 127, pp. 311–323. ISSN 0168-1699. doi: https://doi.
org/10.1016/j.compag.2016.06.022.

[99] Zhu, P., Wen, L., Du, D., Bian, X., Fan, H., Hu, Q. and Ling, H.
Detection and Tracking Meet Drones Challenge. IEEE Transactions on
Pattern Analysis and Machine Intelligence. 2021, pp. 1–1. doi: 10.1109/
TPAMI.2021.3119563.

[100] Zhu, X., Cheng, D., Zhang, Z., Lin, S. and Dai, J. An empirical study
of spatial attention mechanisms in deep networks. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 6688–6697,
2019.

[101] Zhu, X., Hu, H., Lin, S. and Dai, J. Deformable convnets v2: More
deformable, better results. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9308–9316, 2019.



110 TBU in Zlín, Faculty of Applied Informatics

PUBLICATIONS OF THE AUTHOR

Journal Publications with Impact Factor

[A1] Turečková, A., Tureček, T., Janků, P., Vařacha, P., Šenkeřík,
R., Jašek, R., Psota, V., Štěpánek, V., Komínková Oplatková, Z.,
Slicing aided large scale tomato fruit detection and counting in 360-degree
video data from a greenhouse. In Measurement, vol. 204, pp 111977, 2022,
Elsevier. ISSN 0263-2241. DOI: 10.1016/j.measurement.2022.111977

[A2] Tureckova, A., Turecek, T., Kominkova Oplatkova, Z.,
Rodríguez-Sánchez, A. J. Improving CT Image Tumor Segmenta-
tion Through Deep Supervision and Attentional Gates. In Frontiers in
Robotics and AI, vol. 7, pp 106, 2020, Frontiers. ISSN 2296-9144. DOI:
10.3389/frobt.2020.00106

[A3] Li, H., Zhang, H., Xu, Y., Tureckova, A.„ Zahradník, P., Chang,
H., Neuzil, P. Versatile digital polymerase chain reaction chip design,
fabrication, and image processing, In Sensors and Actuators B: Chemical,
vol. 283, pp. 677-684, 2019. Elsevier B.V. ISSN 0925-4005. DOI:
10.1016/j.snb.2018.12.072.

Journal Publications Indexed in Scopus

[A4] Tureckova, A., Holik, T. Kominkova Oplatkova, Z. Dog Face
Detection Using YOLO Network. In MENDEL, vol. 26, num. 2, pp 17-
22, 2020. DOI: 10.13164/mendel.2020.2.017

10.1016/j.measurement.2022.111977
10.3389/frobt.2020.00106
10.1016/j.snb.2018.12.072
10.13164/mendel.2020.2.017


TBU in Zlín, Faculty of Applied Informatics 111

Conference Proceedings

[A5] Tureckova, A., Turecek, T., Kominkova Oplatkova, Z. ICIP
2022 Challenge: PEDCMI, TOOD Enhanced by Slicing-Aided Fine-
Tuning and Inference, In 2022 IEEE International Conference on Im-
age Processing (ICIP), pp. 4292–4295, Bordeaux, France, 2022. DOI:
10.1109/ICIP46576.2022.9897826.

[A6] Tureček, T., Vařacha, P., Turečková, A., Psota, V., Janků, P.,
Štěpánek, V., Viktorin, A., Šenkeřík, R., Jašek, R., Chramcov,
B., Grivas, I., Komínková Oplatková, Z., Scouting of Whiteflies in
Tomato Greenhouse Environment Using Deep Learning. In Agriculture
Digitalization and Organic Production, pp. 323-335, Singapore, 2022.
Springer Singapore. ISBN 978-981-16-3349-2.

[A7] Tureckova, A., Turecek, T., Kominkova Oplatkova, Z.,
Rodríguez-Sánchez, A. J. KiTS challenge: VNet with at-
tention gates and deep supervision, In KiTS 2019 challenge,
preprint, 2020. URL http://results.kits-challenge.org/

miccai2019/manuscripts/tureckova_2.pdf.

[A8] Tureckova, A., and Rodríguez-Sánchez, A. J. ISLES Challenge:
U-Shaped Convolution Neural Network with Dilated Convolution for
3D Stroke Lesion Segmentation, In Brainlesion: Glioma, Multiple
Sclerosis, Stroke and Traumatic Brain Injuries, pp. 319-327, Cham,
2019. Springer International Publishing. ISBN 978-3-030-11723-8. DOI:
10.1007/978-3-030-11723-8_32.

[A9] Vlachynska, A., , Kominkova Oplatkova, Z. , Turecek, T. Dog-
face Detection and Localization of Dogface’s Landmarks, In Artificial
Intelligence and Algorithms in Intelligent Systems, pp. 465-476, Cham,
2019. Springer International Publishing. ISBN 978-3-319-91189-2. DOI:
10.1007/978-3-319-91189-2_46.

[A10] Vlachynska, A., Kominkova Oplatkova, Z., Sramka, M. The coor-
dinate system of the eye in cataract surgery: Performance comparison of

10.1109/ICIP46576.2022.9897826
http://results.kits-challenge.org/miccai2019/manuscripts/tureckova_2.pdf
http://results.kits-challenge.org/miccai2019/manuscripts/tureckova_2.pdf
10.1007/978-3-030-11723-8_32
10.1007/978-3-319-91189-2_46


112 TBU in Zlín, Faculty of Applied Informatics

the circle Hough transform and Daugman’s algorithm, In AIP Conference
Proceedings, vol. 1863. 2017. AIP Publishing. DOI: 10.1063/1.4992259.

[A11] Vlachynska, A., Cerveny, J., Cmiel, V., Turecek, T. Automatic
Image-Based Method for Quantitative Analysis of Photosynthetic Cell
Cultures, In Hybrid Artificial Intelligent Systems, pp. 402-413, Cham,
2016. Springer International Publishing. ISBN 978-3-319-32034-2. DOI:
10.1007/978-3-319-32034-2_34.

[A12] Vlachynska, A., Sramka, M. Artificial Neural Networks Application
in Intraocular Lens Power Calculation, In Conference: 9th EUROSIM
Congress on Modelling and SimulationAt: Oulu, Finland, 2016. DOI:
10.1109/EUROSIM.2016.45.

10.1063/1.4992259
10.1007/978-3-319-32034-2_34
10.1109/EUROSIM.2016.45


TBU in Zlín, Faculty of Applied Informatics 113

CURRICULUM VITAE

Personal Information

Name: Alžběta Turečková, maiden name Vlachynská
E-mail: tureckova@utb.cz
Birth: 27th May 1991
Nationality: Czech

Personal Skills and Competences

Mother tongue: Czech
Other languages: English (C1)
Computer skills and competences: Python, C++, Matlab, PyTorch, OpenCV
Social skills and competencies : Friendly and communicative, she is capable of
working independently and also thrives in team settings, including those with an in-
ternational composition. Her adaptability has been honed through multiple study in-
ternships and participation in project teams under the Technology Agency of the Czech
Republic (TACR). These experiences have fortified her interpersonal skills and ability
to adjust to diverse work environments.

Education and Training

2015 - now Engineering Informatics (Doctoral studies)
Tomas Bata University in Zlin, Faculty of Applied Informatics
Aim of dissertation: Soft Computing Methods in Computer Vision

• Researcher (application of research, grants, projects)
• Artificial Intelligence Laboratory member (ailab.fai.cz)
• Lecturer

2013 - 2015 Biomedical Engineering and Bioinformatics (Master’s degree)
Brno University of Technology, FEEC
Thesis: Photosynthetic cell suspension cultures quantitative image
data processing
Overall study results: passed with honor.

2010 - 2013 Biomedical Technology and Bioinformatics (Bachelor’s degree)
Brno University of Technology, FEEC
Thesis: Searching adenine and guanine-rich regions
Overall study results: passed with honor.



114 TBU in Zlín, Faculty of Applied Informatics

Study Internships

04 - 08/2018 University of Innsbruck, Austria
The deep learning models for image classification and segmentation
The internship focused on understanding and modifying CNN-based im-
age classification and segmentation models. A medical data segmen-
tation model was created for the ISLES 2019 challenge, published and
presented at MICCAI 2019.

05 - 07/2017 University of Oviedo, Oviedo, the Kingdom of Spain
Image-based analysis of root development in Arabidopsis
Developed a program for automatic measurement of root length and root
hair count in Arabidopsis.

01 - 04/2017 Northwestern Polytechnical University, Xi’an, P. R. China
Automatic image-based analysis of qPCR on the chip
Worked on quantifying DNA detection on a chip based on the detection
of positive/negative sub-reaction cells in fluorescent microscope images.
The research findings were later published in a journal.

Work Experience

10/2019-now Tomas Bata University in Zlin, Faculty of Applied Informatics
Lecturer of courses Software Project Development Tools, Computer Sci-
ence Basic, and Neural Networks. Consultant and tutor of bachelor and
diploma theses. Junior researcher in A. I. Lab (ailab.fai.cz). Team mem-
ber of projects from the Technology Agency of the Czech Republic. Her
main research interest and professional focus lie on artificial intelligence
methods applied in computer vision, deep learning, convolutional neural
networks, and medical image processing.

2015-2017 GEMINI oční klinika a.s.
Biomedical engineer (Biomedical engineering, Medical devices)
Manager of internal IS. She did requirements analysis of medical work-
flow and their implementation into the clinical system. Alpha/beta -
testing of the clinical system. Definition and management of clinical
reports.

Publication Activity

Orcid ID: 0000-0002-5566-7393
Nr. publications: 12 (3 IF journals, 1 Scopus journal, 8 conference proceedings)
Nr. citations: 84 (excluding self-citations), H-index: 5

https://orcid.org/0000-0002-5566-7393




TBU in Zlín, Faculty of Applied Informatics

Alžběta Turečková

Deep Learning Methods Applied in Computer Vision

Využití metod hlubokého učení v počítačovém vidění

Doctoral Thesis

Published by Tomas Bata University in Zlin

Nad Stráněmi 4511,760 05 Zlín, Czech Republic

First edition

Typography: Alžběta Turečková

This publication did not pass through a language nor an editorial revision.

The year of publication: 2023


	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	Introduction
	Basic Computer Vision Tasks
	Applying Computer Vision to Agriculture
	Small Object Detection in High-Resolution Images

	Aims of Doctoral Thesis
	Literature Review
	Deep Convolutional Neural Networks
	Artificial Neural Network Layers
	GPU Acceleration

	Object Detection
	Semantic Segmentation
	Attention Mechanism in CNN
	Attention Gates
	Spatial Attention Mechanisms in Deep Networks

	Applications of Deep Learning in Agriculture
	Processing High-Resolution Images
	Cropping Image Patches
	Multiple Detection Suppression


	Methodology
	Dataset Collection and Preprocessing
	Dataset Normalization
	Image Augmentation
	Slicing Aided Fine-tuning
	Artificial Size Slicing Aided Fine-tuning
	Dataset Splitting

	Model Training
	Loss Function
	Optimizers
	Learning Rate

	Model Inference
	Slicing Aided Hyper Inference
	Artificial Size Slicing Aided Hyper Inference
	Image stitching

	Validation metrics
	Metrics operating with the confusion matrix values
	Object detection evaluation according to COCO challenge
	Evaluation metrics for segmentation


	Results
	Creation of the Tomato360 Dataset
	Field Data Collection
	Video converting
	Data Annotation
	Dataset statistics
	Dataset challenges

	Attention Gates for Tumor Segmentation
	Methodology
	Experimental Evaluation and Discussion
	Visualization of the Attentional Maps

	Spatial Attention for Tomato detection
	Methodology
	Experimental Evaluation and Discussion

	ASSAFT and ASSAHI in Tomato Detection
	Methodology
	Experimental Evaluation and Discussion

	Practical Applications in Tomato Greenhouse
	Whitefly Detection
	Tomato Detection and Counting
	Estimating Yield of Tomato Crops


	Discussion
	Fulfillment of the Doctoral Thesis Aims

	Impact of Work on Science and Practice
	Limitations and Future Directions

	Conclusion
	REFERENCES 
	PUBLICATIONS OF THE AUTHOR 
	CURRICULUM VITAE

