
A Comparison of Detection Methods
for Vulnerabilities (CVE) on Linux

Systems

Bc. Jan Dobeš

Master’s thesis
2022

Prohlašuji, že

• beru na vědomí, že odevzdáním diplomové práce souhlasím se zveřejněním své
práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění
dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů,
bez ohledu na výsledek obhajoby;

• beru na vědomí, že diplomové práce bude uložena v elektronické podobě v uni-
verzitním informačním systému dostupná k prezenčnímu nahlédnutí, že jeden
výtisk diplomové práce bude uložen v příruční knihovně Fakulty aplikované infor-
matiky. Univerzity Tomáše Bati ve Zlíně a jeden výtisk bude uložen u vedoucího
práce;

• byl/a jsem seznámen/a s tím, že na moji diplomovou práci se plně vztahuje
zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem
autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších
právních předpisů, zejm. § 35 odst. 3;

• beru na vědomí, že podle § 60 odst. 1 autorského zákona má UTB ve Zlíně
právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4
autorského zákona;

• beru na vědomí, že podle § 60 odst. 2 a 3 autorského zákona mohu užít své
dílo – diplomovou práci nebo poskytnout licenci k jejímu využití jen připouští-li
tak licenční smlouva uzavřená mezi mnou a Univerzitou Tomáše Bati ve Zlíně
s tím, že vyrovnání případného přiměřeného příspěvku na úhradu nákladů, které
byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich
skutečné výše) bude rovněž předmětem této licenční smlouvy;

• beru na vědomí, že pokud bylo k vypracování diplomové práce využito soft-
waru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze
ke studijním a výzkumným účelům (tedy pouze k nekomerčnímu využití), nelze
výsledky diplomové práce využít ke komerčním účelům;

• beru na vědomí, že pokud je výstupem diplomové práce jakýkoliv softwarový
produkt, považují se za součást práce rovněž i zdrojové kódy, popř. soubory,
ze kterých se projekt skládá. Neodevzdání této součásti může být důvodem
k neobhájení práce.

Prohlašuji,

• že jsem na diplomové práci pracoval samostatně a použitou literaturu jsem citoval.
V případě publikace výsledků budu uveden jako spoluautor.

• že odevzdaná verze diplomové práce a verze elektronická nahraná do IS/STAG
jsou totožné.

Ve Zlíně Jan Dobeš, v. r.

podpis autora

ABSTRAKT

Tato práce porovnává metody detekce zranitelností (CVE) na linuxových systémech.
Zaměřuje se na využití Open Vulnerability and Assessment Language (OVAL®)
metadat a srovnání úspěšnosti detekce s metodou využívající pouze metadata
linuxových softwarových repozitářů v systému VMaaS. Cílem je určit, zda se obě dvě
metody navzájem doplňují, nebo zda jedna metoda může plně nahradit druhou.
Praktická část zpracovává OVAL® metadata a představuje samostatně fungující
aplikaci vyhodnocující zranitelnosti systémů za pomoci těchto metadat. Následně
jsou porovnány výsledky s výstupem z veřejně dostupného VMaaS API.

Klíčová slova: zranitelnost, CVE, RPM, OVAL, bezpečnost

ABSTRACT

This thesis compares methods of CVE vulnerability detection on Linux systems. It’s
focused on usage of Open Vulnerability and Assessment Language (OVAL®)
metadata and comparison with method using only Linux software repository
metadata in the VMaaS system. Goal of the thesis is to decide if both methods
complement each other or if one method superseeds the second. The practical part
processes OVAL® metadata and presents a standalone application capable
of evaluating system vulnerabilities using these metadata. Results are then compared
to the output of the publicly available VMaaS API.

Keywords: vulnerability, CVE, RPM, OVAL, security

Rád bych poděkoval vedoucímu mé diplomové práce doc. Ing. Martinovi Syslovi, Ph.D.
za vedení a cenné rady při tvorbě této práce.

TABLE OF CONTENTS

INTRODUCTION... 10

I THEORETICAL PART ... 11

1 VULNERABILITY ... 12

1.1 CVE ... 12
1.1.1 Severity ranking .. 13
1.1.2 Common Vulnerability Scoring System... 13
1.1.3 Databases ... 16

1.2 Exploit .. 16

2 PACKAGE.. 18

2.1 RPM ... 18
2.1.1 Versioning .. 19
2.1.2 Dependencies .. 19

2.2 RPM repository.. 20
2.2.1 Structure .. 20
2.2.2 Package managers.. 21

2.3 CPE .. 22

3 ADVISORY .. 23

3.1 Red Hat Enterprise Linux advisory ... 23
3.1.1 Types... 23
3.1.2 Attributes... 23

4 OVAL ... 25

4.1 Concepts ... 25
4.1.1 Definitions .. 25
4.1.2 Tests .. 27
4.1.3 Objects .. 28
4.1.4 States... 28
4.1.5 Other entities .. 28

4.2 Definition files and repositories ... 29

4.3 Existing OVAL tools.. 30
4.3.1 OpenSCAP ... 30
4.3.2 CoreOS Clair .. 32

II ANALYTICAL PART ... 32

5 VMAAS .. 34

5.1 Architecture .. 34

5.1.1 Reposcan .. 35
5.1.2 Webapp.. 35
5.1.3 Websocket .. 35

5.2 Public API endpoints ... 36
5.2.1 System profile format ... 37
5.2.2 API responses ... 38

5.3 Vulnerability detection ... 40

6 RED HAT OVAL .. 41

6.1 Repository structure .. 41

6.2 Definition specifics .. 42
6.2.1 Patch class.. 43
6.2.2 Vulnerability class ... 43

6.3 Object, state and test specifics ... 44

7 ADDING OVAL SUPPORT TO VMAAS .. 48

7.1 Benefits... 48

7.2 Problems ... 48

7.3 Scope of changes ... 48

III PRACTICAL PART .. 49

8 TECHNOLOGIES ... 52

8.1 Programming language and environment................................ 52

8.2 Python dependencies ... 52

8.3 Database.. 53

9 IMPLEMENTATION .. 54

9.1 Database schema... 54
9.1.1 Re-used VMaaS tables ... 54
9.1.2 New tables.. 55

9.2 Application architecture ... 59

9.3 Commands .. 60
9.3.1 Download metadata ... 60
9.3.2 Initialize and populate database .. 61
9.3.3 Run evaluator application (HTTP API) 63
9.3.4 Complete workflow example .. 65
9.3.5 Verbose mode ... 66

10 TESTING ... 67

10.1 Compare script ... 67

10.2 Scenarios... 68
10.2.1 RHEL 7 system, old kernel ... 68
10.2.2 RHEL 7 system, latest kernel .. 68
10.2.3 RHEL 8 system, postgresql 12, module enabled............................. 69
10.2.4 RHEL 8 system, postgresql 12, incorrect module 70
10.2.5 RHEL 7 system, dnsmasq, OVAL detects more 70
10.2.6 RHEL 7 system, java, repository-CPE mapping inconsistency 71

CONCLUSION ... 73

REFERENCES ... 75

LIST OF ABBREVIATIONS ... 78

LIST OF FIGURES... 79

LIST OF TABLES... 80

LIST OF APPENDICES ... 81

TBU in Zlín, Faculty of Applied Informatics 10

INTRODUCTION

Vulnerability detection and patching is a never-ending effort in today’s software world.
Everyone can be affected by security flaws in software which can be misused by various
third parties. Even though every individual can be targeted by computer criminals,
it’s more likely for bigger companies. To keep all software secure and stable should be
one of the biggest priorities for all businesses to avoid data leaks or financial loss.

But the task is not as easy as to make sure all software is installed in latest version,
this could make computer systems unstable as various types of updates for software are
released. This is why software providers need to triage all updates by type, severity,
etc. and correctly link them with fixed vulnerabilities. System administrators can then
update only necessary parts of a system to avoid regressions in system functionality.
Sometimes it’s only known that some software is vulnerable but there is no available
update for it. Full remediation of the vulnerability is not possible in this case but
the information is still valuable as system administrator can mitigate the vulnerability
(e.g. by changing configuration of the vulnerable application).

This thesis deals with vulnerability detection on Linux systems, specifically
on RPM-based systems. It attempts to extend existing VMaaS service to start using
OVAL metadata for better vulnerability detection. The goal is to compare efficiency
and other differences between the current VMaaS service implementation (based
on RPM repository metadata) and the new extension using OVAL metadata. The
assumption is that both methods of detection will complement with each other
and more possible vulnerabilities will be detected, if it’s true, then also advantages
and disadvantages of integrating this solution with VMaaS will be discussed.

TBU in Zlín, Faculty of Applied Informatics 11

I. THEORETICAL PART

TBU in Zlín, Faculty of Applied Informatics 12

1 Vulnerability

Vulnerability is a flaw in software, firmware, hardware or software component. It’s
a weakness that can be exploited (accidentally or intentionally) and this action can have
negative impact on confidentiality, integrity or availability of impacted components. [1]

This thesis deals with software vulnerabilities only, as they are considerably easier
detect and repair than firmware and hardware vulnerabilities (although these can be
sometimes mitigated on software level). The nature of open-source software also helps
with vulnerability detection and also with a process of creating patch.

Common software vulnerabilities:

• Unsafe memory access (e.g. buffer overflow)

• Input validation errors (e.g. code injection, SQL injection, cross-site scripting)

• Privilege escalation (software grants to the user more permissions than user
should have)

Software which is taking advantage of a vulnerability is called exploit. Often is linked
with criminal activity and allows attackers to access protected systems or install their
malicious code to affected systems. Even if some exploits aren’t used for criminal
activity, their use is always at least morally problematic, acting against the will
of original software authors or breaking license agreements.

With increasing number of new software, and thus new vulnerabilities discovered
in software, there was a need to have a common system to identify vulnerabilities across
various services, tools, and databases. The CVE is current standard to identify, define
and catalog publicly disclosed cybersecurity vulnerabilities, established by the MITRE
Corporation in 1999. [2]

1.1 CVE

Common Vulnerabilities and Exposures (CVE) is a system providing reference
and definition for publicly disclosed vulnerabilities. The CVE abbreviation is also
used in the sense of some single vulnerability itself. Today, each CVE is defined
by an identifier in format CVE-YEAR-IDENTIFIER (where YEAR stands for a year

TBU in Zlín, Faculty of Applied Informatics 13

and IDENTIFIER for incremental numeric identifier), brief description and references
to various services or databases. The CVE itself is not a database, it’s an unique
identifier for a vulnerability to link various CVE databases and other services
describing given vulnerability. [2]

1.1.1 Severity ranking

Depending how severe given vulnerability is, each CVE is categorized by it’s severity.
Red Hat CVE database defines following severity levels: [10]

• Critical Impact – given to vulnerabilities that could be easily exploited
by a remote unauthenticated attacker and lead to system compromise
(arbitrary code execution) without requiring user interaction

• Important Impact – given to vulnerabilities that can easily compromise
the confidentiality, integrity or availability of resources

• Moderate Impact – given to vulnerabilities that may be more difficult to exploit
but could still lead to some compromise of the confidentiality, integrity
or availability of resources under certain circumstances

• Low Impact – given to all other issues possibly having security consequences

1.1.2 Common Vulnerability Scoring System

Besides severity, Common Vulnerability Scoring System (CVSS) is used to specify
how severe the software vulnerability is. Previously, CVSS version 2 was used
for vulnerabilities in Red Hat database until 2016, and currently CVSS version 3.1 is
used. [10]

CVSS v3.1 provides a Base Score – numeric value from 0.0 (no risk) to 10.0 (highest
risk), which is based on sum of individual Base Metrics – providing more details about
constant aspects of a vulnerability. These Base Metrics are: [12]

• Attack Vector (AV) – Reflects the context by which vulnerability exploitation
is possible, based on the metric value. The Base Score will be higher the more
remote an attacker can be. Possible values are:

TBU in Zlín, Faculty of Applied Informatics 14

– Network (N) – The vulnerable component is bound to the network stack
and the number of possible attackers can be high (including entire internet).

– Adjacent (A) – The vulnerable component is bound to the network stack,
but the attack is limited at the protocol level to a logically adjacent topology.
The attack must be launched from the same shared physical or logical
network, or from within other secured/limited domain.

– Local (L) – The vulnerable component is not bound to the network stack,
the attack needs to use local read/write/execute capabilities. The attacker
either obtains an access to the system (physical or remote, e.g. using SSH),
or relies on user interaction by another person to do actions needed to exploit
the vulnerability.

– Physical (P) – The attack requires physical access to the system.

• Attack Complexity (AC) – Describes conditions beyond the attacker’s control
that must exist in order to exploit the vulnerability. The Base Score will be
higher the lower the complexity is. Possible values are:

– Low (L) – Specialized conditions or circumstances do not exist. The attacker
can exploit the vulnerable component repeatably.

– High (H) – Success of the attack depends on conditions beyond the attacker’s
control.

• Privileges Required (PR) – Describes the level of privileges the attacker must
possess to successfully exploit the vulnerability. The Base Score will be highest
if no privileges are required. Possible values are:

– None (N) – The attacker can do the attack unauthorized.

– Low (L) – The attacker requires basic user capabilities that could normally
affect only setting and files owned by the user.

– High (H) – The attacker requires significant permissions for the vulnerable
component.

• User Interaction (UI) – Captures requirement for a human user (other than
the attacker) to participate in the successful compromise of the vulnerable
component. It determines if the attacker is able to do the attack solely or if
an other separate user or a user-initiated process is needed. Possible values are:

– None (N) – The vulnerable component can be exploited without any
interaction from any separate user.

TBU in Zlín, Faculty of Applied Informatics 15

– Required (R) – Some action of a separate user is needed before exploiting
the vulnerable component. For example, the user needs to initialize
the installation of an application and the system is vulnerable only until it
finishes.

• Scope (S) – Captures whether a vulnerability in one vulnerable component
impacts resources in components beyond its security scope. The Base Score
will be highest if a scope change occurs. Possible values are:

– Unchanged (U) – The exploited vulnerability can only affect resources
managed by the same security authority.

– Changed (C) – The exploited vulnerability can also affect resources beyond
the security scope of the security authority.

• Confidentiality (C) – Measures impact to the confidentiality
of the information managed by the exploitable software component.
Confidentiality refers to limiting information access only to authorized users
and preventing access by unauthorized ones. The Base Score will be highest if
the loss of the confidentiality is high. Possible values are:

– High (H) – Total loss of confidentiality, all resources within an affected
component are exposed to the attacker. Or alternatively, only some
restricted information with serious impact is obtained by the attacker (e.g.
administrator password).

– Low (L) – Some loss of confidentiality, access to some restricted information
is obtained by the attacker, but the impact is limited.

– None (N) – No loss of confidentiality in the vulnerable component.

• Integrity (I) – Measures the impact to integrity of a successfully exploited
vulnerability. The Base Score will be highest if the consequence to the impacted
component is high. Possible values are:

– High (H) – Total loss of integrity or a complete loss of protection.
For example, the attacker can modify any (or at least some important)
files protected by the vulnerable component.

– Low (L) – Modification of data is possible, but the attacker doesn’t have
control over impact of the modification or the amount of modifications is
limited.

– None (N) – No loss of integrity in the vulnerable component.

TBU in Zlín, Faculty of Applied Informatics 16

• Availability (A) – Measures the impact to the availability of the impacted
component after the vulnerability was exploited. Refers to the loss of availability
of the impacted service itself (e.g. networked service) and managed resources.
The Base Score will be highest if the consequence to the impacted component is
high. Possible values are:

– High (H) – Total loss of availability. The attacker is able to fully deny access
to resources in the impacted component.

– Low (L) – Reduced performance or interruptions in resource availability.
The attacker is not able to completely deny access to legitimate users.

– None (N) – No impact to availability within the impacted component.

All Base Metrics for a given CVE can be written as a short string called Vector.
Example CVSS v3 Vector of CVE-2019-11043: [11]

CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H

1.1.3 Databases

Several organizations and institutions are maintaining their CVE databases. Even
though they often use same CVE identifiers and define same attributes to classify
CVEs – CVSS score, Attack vector, Published date, etc., these details may vary in each
database. Usually the difference is in how various CVE databases rank the CVE
severity and exploitability. For example, Red Hat evaluate how affected by given CVE
are their environments and products, while other CVE databases can use different
environment for their assessment.

These are examples of CVE databases:

• CVE Mitre

• NIST NVD

• Red Hat CVE Database

1.2 Exploit

Exploits are programs or code that are designed to leverage a software vulnerability
and cause unintended effects. There are already known exploits that have already

TBU in Zlín, Faculty of Applied Informatics 17

Fig. 1.1 Example: different ranking of CVE-2019-11043 in Red Hat
and NIST NVD CVE databases [11]

been discovered by cybersecurity researches. Software developers can patch these
exploits and release security updates to users. Then there are unknown or zero-day
exploits created by cybercriminals as soon as they discover a vulnerability. When
a zero-day exploit attack happens, the vulnerability is unknown to software developers
and cybersecurity researchers and they need to quickly figure out how the exploit works
and how to patch the vulnerability. [13]

TBU in Zlín, Faculty of Applied Informatics 18

2 Package

Software package is a distributable collection of files and their metadata. Every package
is usually used for single application, library or some collection of data with common
meaning. Probably biggest benefit of using software packages is more control over
installed software (knowledge which version is exactly installed on the system, easy
upgrades and downgrades, installed application integrity validation).

Also, there is a benefit of library code deduplication – all installed applications are
using same version of some installed library, however, this requires carefulness from
software maintainers and often makes releasing new versions of software difficult
because of impossibility to upgrade some library because some other applications
require an older version. For this reason some packaging systems are distributing
libraries as separate packages and some packaging systems are not, in this case they
are using libraries bundled in the same package as the application.1)

2.1 RPM

The RPM is a command line driven package format and management system capable
of installing, uninstalling, verifying, querying, and updating computer software
packages. Each software package consists of an archive of files along with information
about the package like its version, a description, and the like. RPM provides library
API, permitting advanced developers to manage such transactions from programming
languages such as C or Python. [3]

RPM package format is used by various Linux distributions, such as: [3]

• Red Hat Enterprise Linux (RHEL)

• Fedora Project

• CentOS

• SUSE Linux Enterprise (SLES)

• OpenSUSE

• Mageia
1)This is related issue to dynamic and static linking during compilation, but on software package

level.

TBU in Zlín, Faculty of Applied Informatics 19

• Tizen

2.1.1 Versioning

RPM package is identified by NEVRA string. It can be split into 5 components. Epoch
component can be omitted, then it’s by default considered as 0. [7] Example:

bash-0:4.2.46-21.el7_3.x86_64

• Name – name of the package (bash)

• Epoch – incremented when it’s needed to reset the version, it ensures that
the package can be upgraded to a lower version (0)

• Version – version of the package, in this case contains 3 version levels with most
significant version from the left (4.2.46)

• Release – number and string usually specifying number of additional patches
applied and specific operating system which is this package built for (21.el7_3)

• Architecture – architecture which is this package built for (x86_64)

There are special architecture types, e.g. noarch – used for architecure-independent
packages or src – used for packages containing only source code (these packages are
used as an input for the rpmbuild tool together with a SPEC file producing built
packages for specific architectures [7]).

2.1.2 Dependencies

RPM packages are defining their dependencies in their SPEC file and are categorizing
them and their directives by their type: [6]

• Build-time – dependency that is only installed during the RPM build, typically
these are requirements for library headers or build tools, which are not required
for running the compiled application.

– BuildRequires – directive to request a specific package to be available during
the build, it should be an arch-independent dependency to be able to build
the package for various architectures.

TBU in Zlín, Faculty of Applied Informatics 20

• Regular run-time – dependency that needs to be installed during the run-time
(when end-users install the package)

– Requires – directive to request a specific package to be installed

– Obsoletes – directive to mark a specific package to be removed, it’s often
used as a mechanism when some package changes it’s name to ensure that
the old one will be uninstalled

– Provides – directive to indicate that some arbitrary name will be provided
by installing the package, it can be used when some other package requires
such arbitrary name, for example a feature and there are multiple concurrent
packages providing this feature

– Conflicts – directive to mark a specific package as a not compatible with
this package, making sure that they can’t be installed on a system together,
again, it can be used if there are multiple concurrent packages providing
same feature to ensure only one of them can be installed at once

• Weak run-time – dependency that can be installed during the run-time, however
it’s not necessary for the package functionality, these directives are basically
variants of the regular Requires directive

– Recommends

– Supplements

– Suggests

– Enhances

Example to require a dependent package foo-lib for our package foo:

Requires: %{pkgname}-lib >= 0:1.2.3-7

Note that macros and specific version ranges can be used in directives.

2.2 RPM repository

2.2.1 Structure

RPM repository is a set of packages and their metadata. They can have various
directory structure, are hosted on a server and are usually accessed using HTTP or FTP
protocol. The key repository entrypoint is the repomd.xml file. This file contains

TBU in Zlín, Faculty of Applied Informatics 21

references where in the repository are located other metadata types. Repositories can
omit some metadata files, some metadata files also can be available in multiple data
representations (XML/SQLite) and can use different compression algorithm – BZip2,
Gzip, XZ, etc. These are few selected metadata file types: [8]

• primary.xml – used to store metadata about packages in the repository - names,
versions, descriptions, checksums, etc.

• primary_db.sqlite – used to store same information as the primary.xml but
in the SQLite format - allowing for example easier lookups

• updateinfo.xml – used to store information about advisories and list of packages
belonging to them, also can contain additional advisory details, references to bug
trackers, CVE list, etc. (not utilized by all RPM Linux distributions, some prefer
other ways of distributing advisory metadata and can omit this file)

• filelist.xml – used to store list of files contained in binary RPM packages,
using this file it’s for example possible to request installation of a specific file
and the package manager can quickly find in which package is the file contained

• modules.yaml – used to store modules, groups of packages that can be installed
or updated as a single unit, it’s a recent solution in RHEL 8 how to support
different software versions during long support cycles – prior to this feature it was
difficult to release new software versions into existing operating system, because
the operating system is using dynamically linked libraries and updating any
of such libraries for sake of one software could possibly break all other software,
this led to overall old software available in repositories

2.2.2 Package managers

RPM command line tooling itself focuses only on working with single packages, but
for working with repositories more complex package managers are needed. Tools like
YUM, DNF or Zypper allow to index repository content, resolve multi-level dependencies
between packages during installations, updates and removals and ensure atomicity
of transactions.

• YUM – Package manager used by RHEL (up to version 7), Fedora (up to version
21) and CentOS (up to version 7) in past. [4]

TBU in Zlín, Faculty of Applied Informatics 22

• DNF – Package manager used by RHEL2), Fedora and CentOS. It’s intended as
a replacement for YUM providing improved design and better performance. [4]

• Zypper – Package manager used by SLES and OpenSuse distributions. [5]

2.3 CPE

Common Platform Enumeration (CPE) is a standardized method of describing
and identifying classes of applications, operating systems, and hardware devices.

In Red Hat each CPE uniquely identifies the Red Hat platform/product and the version.
Example:

cpe:/a:redhat:advanced_virtualization:8.5::el8

It’s important to identify CPEs to accurately assess the impact of a CVE on a particular
package or module – for example one package can be vulnerable for one CPE (product
+ version) but not affected for different CPE. [9]

2)There is still "yum" command in RHEL 8 for compatibility reasons, it’s using DNF as a backend

TBU in Zlín, Faculty of Applied Informatics 23

3 Advisory

Advisory (erratum) is an unit for updates. Although software can be updated
by updating individual packages, advisories exists to group updates of similar
packages or updates fixing same security issue. System administrator can then apply
an advisory and all relevant packages will be updated. Advisories are created
and published by Linux distribution maintainers. Each advisory consists from
identifier, description, severity rankings, attached list of updated packages, list
of resolved CVEs and other metadata.

3.1 Red Hat Enterprise Linux advisory

The notation of RHEL advisory names (used as unique identifiers) is analogous
to CVE naming notation. First component is advisory type, second component is
year and the third component is incremental numeric identifier. The full advisory
name has a following format: [14]

TYPE-YEAR-IDENTIFIER

3.1.1 Types

• RHSA – Security advisory – contains updates fixing security bugs, e.g.
RHSA-2021-0001

• RHBA – Bug Fix advisory – contains updates fixing normal bugs, e.g.
RHBA-2021-0002

• RHEA – Enhancement advisory – contains other updates (not known if it fixes any
bugs), e.g. RHEA-2021-0003

Usually, security bugs are fixed by Security advisories but in general they can be
fixed by any advisory type. For example, if it’s discovered that some CVE is fixed
by the package version contained in the advisory, after RHBA or RHEA advisory is
released, the CVE can be linked to the advisory attributes and the type of the advisory
won’t change.

3.1.2 Attributes

• Issued – timestamp when the advisory was published

TBU in Zlín, Faculty of Applied Informatics 24

• Updated – timestamp when there was the last update of advisory attributes
(Updated >= Issued)

• Synopsis – short description of the advisory

• Severity – defined only for security advisories, most likely is derived from
severity of CVE(s) fixed by the advisory

• Topic – supportive text describing the context of the advisory

• Description – description of the content of the advisory, which packages it
updates and which issues it solves

• Solution – instructions how to apply the advisory, typically referencing some
knowledge base article

• Affected Products – list of products affected by the advisory

• Fixes – references to reported bugs fixed by the advisory

• CVEs – references to CVEs fixed by the advisory

• References – references to other related resources

• Updated Packages – content of the advisory, list of packages that will
by updated when the advisory is applied (it doesn’t install all packages
referenced by the advisory, only those that are already installed in some older
version)

TBU in Zlín, Faculty of Applied Informatics 25

4 OVAL

The Open Vulnerability and Assessment Language (OVAL) is an XML-based
community standard for representing and exchanging security content. Its purpose is
to enable the transfer of information across the entire spectrum of security tools
and services. [15]

Current version of OVAL specification is 5.11.2, but definitions in versions 5.11.1
and 5.10 are still available for download. [16]

4.1 Concepts

Each OVAL XML file contains several entities which are referenced between each other.
Each entity has an id and version attributes. [15]

Definition

Test

Object State

Criteria

Fig. 4.1 Relations between OVAL entities
[source: own]

4.1.1 Definitions

Definition is the main entity in OVAL files. Each definition belongs to one
of the classes : [15]

• Compliance – checking if the endpoint is compliant with specified policy

TBU in Zlín, Faculty of Applied Informatics 26

• Inventory – checking if specified software is installed on the endpoint

• Patch – checking if patch needs to be installed on the endpoint

• Vulnerability – checking if the endpoint is vulnerable

• Miscellaneous – definitions that do not fall into other classes

Security OVAL feed produced by Red Hat consists mostly from Patch definitions,
Red Hat maps each Patch definition one-to-one to published Red Hat Security
Advisory. There are also Vulnerability definitions in specific OVAL files with
"-including-unpatched" string in their name. [17] [18]

Example definition:
1 <definition id="oval:tutorial:def:123" version="1" class="

inventory">
2 <metadata >
3 <title>
4 CoolWare NET-Suite is installed on the endpoint
5 </title>
6 <affected family="windows">
7 <platform >Microsoft Windows 98</platform >
8 <platform >Microsoft Windows 2000</platform >
9 <platform >Microsoft Windows XP</platform >

10 <product >CoolWare Net-Suite </product >
11 </affected >
12 <description >CoolWare NET-Suite is installed </description >
13 </metadata >
14 <criteria >
15 <criterion comment="CoolWare iBrowse version 1.0 is

installed" test_ref="oval:tutorial:tst:1"/>
16 <criterion comment="CoolWare eMail version 1.5 is installed"

test_ref="oval:tutorial:tst:2"/>
17 </criteria >
18 </definition >

Inside a definition there is the metadata section – contains a definition title, operating
systems and platforms the definition applies to (can be in form of CPEs), a description
what is the definition checking, a list of advisories, a list of CVEs and other references
(availability of metadata depends on definition class).

The other section of a definition is the Criteria. It describes the logical expression
which is executed on the endpoint and results into a single boolean value – indicating
if the endpoint is compliant, unpatched, vulnerable, etc. Each Criteria may contain
zero or more Criterion or nested Criteria and represents a logical operator (AND –
default if not specified, ONE, OR, XOR). [20]

TBU in Zlín, Faculty of Applied Informatics 27

Criterion is referencing a Test and represents a term in logical expression defined
by Criteria.

4.1.2 Tests

Test defines relationship between and Object and zero or more States. It matches
the expected information with information collected on the endpoint. [15]

check_existence and check attributes of a test are used to guide the comparison
of collected values.

• check_existence – Defines how many distinct groupings of information, as
defined by the Object, must exist on the endpoint for the Test to evaluate as
true. Possible values: [20]

– all_exists – all objects defined by test exist on the endpoint

– any_exists – zero or more objects defined by test exist on the endpoint

– at_least_one_exists – at least one object defined by test exist
on the endpoint (default)

– none_exists – none of the objects defined by test exist on the endpoint

– only_one_exists – only one object defined by test exist on the endpoint

• check – Defines how many of the collected values must satisfy the requirements
given in the State for the Test to evaluate as true. Possible values: [20]

– all – all of the object states are evaluated as true

– at least one – at least one object state is evaluated as true

– none satisfy – none of the object states are evaluated as true

– only one – only one of the object states are evaluated as true

Example test:
1 <registry_test id="oval:tutorial:tst:1" version="4" comment="

CoolWare iBrowse version 1.0 is installed" check_existence="
at_least_one_exists" check="all" xmlns="http://oval.mitre.org/
XMLSchema/oval-definitions-5#windows">

2 <object object_ref="oval:tutorial:obj:1"/>
3 <state state_ref="oval:tutorial:ste:1"/>
4 </registry_test >

TBU in Zlín, Faculty of Applied Informatics 28

4.1.3 Objects

Object specifies which information should be collected from the endpoint for evaluation.
It needs to provide sufficient entities to uniquely identify the endpoint information. [15]

Example object:

1 <registry_object id="oval:tutorial:obj:1" version="3" comment="
The registry key which holds the version of CoolWare iBrowse"
xmlns="http: //oval.mitre.org/XMLSchema/oval-definitions-5#
windows">

2 <hive>HKEY_LOCAL_MACHINE </hive>
3 <key>SOFTWARE\CoolWare\iBrowse </key>
4 <name>Version </name>
5 </registry_object >

4.1.4 States

State specified the expected value for the Object, which is compared to the collected
value during Test evaluation. [15]

Example state:

1 <registry_state id="oval:tutorial:ste:1" version="2" comment="
The registry key matches with CoolWare iBrowse version 1.0
installed" xmlns="http://oval.mitre.org/XMLSchema/
oval-definitions-5#windows">

2 <value>1.0</value>
3 </registry_state >

4.1.5 Other entities

There are other smaller entities useful for effective and shorter specification of objects
and states. [15]

Variables

Entity providing a way to define a grouping of one or more values which can be
referenced from other OVAL entities. For example can be used as an enumeration
for State values.

TBU in Zlín, Faculty of Applied Informatics 29

Sets

This entity provides a way how to express more complex Objects which are result
of logically combining other Objects.

Filters

This allows the explicit inclusion or exclusion of specific Objects. The filter is a State
referenced from an Object.

Regular Expressions

OVAL Language supports a common subset of the regular expression character classes,
operations, expressions, and other lexical tokens defined in Perl 5’s regular expression
specification. For example, it can be used in a State to represent a pattern which
an Object should match.

4.2 Definition files and repositories

Example structure of a definition file: [15]

1 <?xml version="1.0" encoding="UTF-8"?>
2 <oval_definitions xmlns="http://oval.mitre.org/XMLSchema/

oval-definitions-5" xmlns:oval="http: //oval.mitre.org/
XMLSchema/oval-common-5">

3 <generator >
4 <oval:product_name >OVAL-office </oval:product_name >
5 <oval:schema_version >5.10.1 </oval:schema_version >
6 <oval:timestamp >
7 2014 -10-09T14:11:39 .105 -04:00
8 </oval:timestamp >
9 </generator >

10 <definitions >
11 ...
12 </definitions >
13 <tests>
14 ...
15 </tests>
16 <objects >
17 ...
18 </objects >
19 <states >
20 ...
21 </states >
22 </oval_definitions >

TBU in Zlín, Faculty of Applied Informatics 30

OVAL XML files with definitions and dependent entities are categorized by their
purpose and gathered in community repositories.

Except the current official repository from Center for Internet Security1), there is
a number of other repositories from various vendors, e.g.: [21]

• Cisco Systems, Inc.

• Debian Project

• IT Security Database

• NIST Computer Security Division

• Red Hat, Inc.

• SecPod Technologies

• SECURITY-DATABASE

• SUSE

This thesis further focuses only on OVAL data from Red Hat repository.

4.3 Existing OVAL tools

This section describes already existing tools using OVAL used in Red Hat environment
and argues about their compatibility with VMaaS application.

4.3.1 OpenSCAP

OpenSCAP is an ecosystem providing multiple tools to assist administrators
and auditors with assessment, measurement and enforcement of security baselines
and policies. The ecosystem consists from multiple layers where higher level tools
(GUI tools, daemons, third-party projects integration) depend on tools from lower
layers (command-line tools). [22]

1)https://oval.cisecurity.org/repository/download

https://oval.cisecurity.org/repository/download

TBU in Zlín, Faculty of Applied Informatics 31

On the base level OpenSCAP provides the oscap command-line tool which can check
security configuration settings of a system using rules based on various security
standards and specifications.

Mainly it’s using SCAP – line of specifications maintained by the NIST created
to provide standardized approach for maintaining system security.

oscap tool mainly processes XCCDF – standard way of expressing a checklist content,
and combines with other specifications like CPE, CCE and OVAL to create SCAP-
expressed checklist that can be processed by SCAP-validated products. [23]

Example usage

1 # yum install openscap -scanner bzip2
2 # wget -O - https ://www.redhat.com/security/data/oval/v2/RHEL8/
3 rhel -8. oval.xml.bz2 | bzip2 --decompress > rhel -8. oval.xml
4 # oscap oval eval --report vulnerability.html rhel -8. oval.xml
5 $ firefox vulnerability.html &

This RHEL 8 example first installs the OpenSCAP scanner on the system. Then
downloads the RHEL 8 OVAL specification file and runs the oscap command
to generate a HTML report. In the last step it checks the HTML report in a web
browser. [24]

VMaaS compatibility

There are several problems using this tool in VMaaS:

• It’s focused to run on a single running system, but VMaaS is a service processing
standardized subset of data already collected from a system.

• OVAL definition files contain also Tests (chapter 4.1.2) which are intended
to execute on running system (checking file contents, file permissions, package
signatures). VMaaS doesn’t have many of these information and even if it had,
it wouldn’t be able to say the oscap tool where to find these information.
Processing all these Tests also takes significant time, the run of the oscap tool
can take up to few minutes, which is not acceptable for VMaaS.

TBU in Zlín, Faculty of Applied Informatics 32

4.3.2 CoreOS Clair

Clair is an API-driven analysis engine to monitor the security of Docker containers
using a static analysis. It’s scanning each container layer and notifies about found
vulnerabilities. Vulnerability data in Clair are continuously updated from known
sources, it supports not only vulnerability detection from Red Hat packages, but also
from Ubuntu, Debian, Python and possibly other packages. [25]

VMaaS compatibility

Clair purpose for Docker containers is very similar to VMaaS purpose for RHEL
systems. Both are using static vulnerability analysis and are maintaining certain
vulnerability database. Even if it might make sense to re-use Clair engine for VMaaS,
Clair’s focus on Docker containers, container registries (Quay) and Red Hat OpenShift
Operators 2), and the fact it’s a whole completely different engine with own specifics,
would make it difficult to integrate.

2)https://www.redhat.com/en/blog/red-hat-quay-32-welcome-container-security-operator

TBU in Zlín, Faculty of Applied Informatics 33

II. ANALYTICAL PART

TBU in Zlín, Faculty of Applied Informatics 34

5 VMaaS

Vulnerability Metadata as a Service (VMaaS) is a micro-service connecting metadata
about RPMs, repositories, advisories and CVEs. Its main purpose is to detect
vulnerabilities, old installed packages and provide a hint what can or needs be
installed to correct these issues. It’s an unauthenticated read-only API service which
doesn’t provide any system inventory management. The API is intended to be
integrated with other services (for example those providing the system inventory
management), applications and scripts. The micro-service is written in Python. [26]

5.1 Architecture

DB

User/Application

reposcan

(data collector)

webapp (API)

Red Hat CDN
(repositories)

Red Hat CVE map
websocket (message bus)rsync cache

HTTP request

VMaaS

Fig. 5.1 VMaaS components and interactions [source: own]

TBU in Zlín, Faculty of Applied Informatics 35

5.1.1 Reposcan

Reposcan component acts as a data collector and aggregator from various sources:

• CDN – Directory tree containing all RPM (and also other) repositories published
by Red Hat. The directory structure is published on a HTTP server, but is not
public and can be accessed only using a client certificate. Reposcan doesn’t crawl
through the directory structure but have a repository list including all paths
configured in advance.

• CVE Map – Generated XML file containing metadata of all CVEs known to Red
Hat CVE database.

These sources complement each other. While the CDN provides information about
packages, repositories and advisories, for CVEs it only provides their identifiers.

The component also contains a non-public management API to set which repositories
should be synced, run the synchronization immediately, delete already synced data
and other basic maintenance functionality.

The collection of metadata is periodic and happens every few hours, all collected
metadata are stored in a PostgreSQL 12 database. After each metadata sync optimized
dump in SQLite format is generated, notification is sent to Websocket component
and the Webapp component (listening to this message) fetches the generated dump
using rsync protocol.

5.1.2 Webapp

The component is providing a publicly available API. It’s using the optimized dump
produced by the Reposcan component to operate API endpoints (some of them are
described in chapter 5.2). The manipulation with dumps adds certain overhead
to the component, but makes it independent on the Database and possibly more
scalable.

5.1.3 Websocket

The Websocket component acts as a message bus between Reposcan, Webapp and also
other external services that may be interested to synchronize with VMaaS. There are

TBU in Zlín, Faculty of Applied Informatics 36

2 main purposes of the Websocket :

• To inform Webapp component when the new optimized dump is prepared.

• To notify all interested services when all Webapp instances (in case more than one
is running to handle the load) pulled the new dump and updated their internal
data structures.

5.2 Public API endpoints

This is a simplified overview of the available endpoints, focusing on only those used
for the advisory and vulnerability detection:

• HTTP POST /api/v3/updates

• HTTP GET /api/v3/updates/{package_nevra}

• HTTP POST /api/v3/patches

• HTTP GET /api/v3/patches/{package_nevra}

• HTTP POST /api/v3/vulnerabilities

• HTTP GET /api/v3/vulnerabilities/{package_nevra}

Each of these endpoints has two variants:

• HTTP POST – Used to provide a list of installed packages, a list of enabled
repositories and a list of enabled modules (RHEL 8 systems only) on the system.

• HTTP GET – Used to provide a single installed package. It’s not possible
to provide a list of enabled repositories and a list of enabled modules using
these endpoints (the default behavior is to return all possible unfiltered
advisories and vulnerabilities for the given package).

And it is true that:

• All mentioned POST endpoints are using the same input format (system profile
JSON). Also all mentioned GET endpoints are using the same input (single
package NEVRA).

TBU in Zlín, Faculty of Applied Informatics 37

• For each of the POST and GET pairs (updates, patches, vulnerabilities) the output
format is the same.

5.2.1 System profile format

HTTP POST API endpoints are accepting a JSON string representing the system profile.

1 {
2 "package_list": [
3 "glibc -2.28 -127. el8_3 .2. x86_64"
4],
5 "repository_list": [
6 "rhel -8-for -x86_64 -baseos -rpms"
7],
8 "modules_list": []
9 "releasever": "8",

10 "basearch": "x86_64"
11 }

Parameters in this system profile represent:

• package_list – System has only one package installed. 1)

• repository_list, – System has only one repository enabled.

• modules_list – System has zero modules enabled.

• releasever – System is subscribed to 8 version of all repositories.

• basearch – Systems architecture is x86_64. This also helps to determine
the subscribed repositories. 2)

1)On real systems there are hundreds of packages at minimum.
2)Not needed in this example, because the used single repository is only for the x86_64 architecture,

and even has the architecture mentioned in its label. In general, one repository label can express
multiple repositories, combination of the repository label, releasever and basearch expresses always
a single one.

TBU in Zlín, Faculty of Applied Informatics 38

5.2.2 API responses

Using the system profile to call various endpoints will produce following results.

Updates endpoint

1 $ curl -H "Content -Type: application/json"
2 -X POST
3 -d "@./ profile.json"
4 https :// console.redhat.com/api/vmaas/v3/updates

1 {
2 "update_list": {
3 "glibc -2.28 -127. el8_3 .2. x86_64": {
4 "available_updates": [
5 {
6 "package": "glibc -2.28 -151. el8.x86_64",
7 "erratum": "RHSA -2021:1585" ,
8 "repository": "rhel -8-for -x86_64 -baseos -rpms",
9 "basearch": "x86_64",

10 "releasever": "8"
11 },
12 {
13 "package": "glibc -2.28 -164. el8.x86_64",
14 "erratum": "RHSA -2021:4358" ,
15 "repository": "rhel -8-for -x86_64 -baseos -rpms",
16 "basearch": "x86_64",
17 "releasever": "8"
18 },
19 {
20 "package": "glibc -2.28 -164. el8_5 .3. x86_64",
21 "erratum": "RHSA -2022:0896" ,
22 "repository": "rhel -8-for -x86_64 -baseos -rpms",
23 "basearch": "x86_64",
24 "releasever": "8"
25 }
26]
27 }
28 }
29 }

The response contains a list of available package updates, for each update the associated
advisory (erratum) and the repository where the newer package can be found – only
packages from repositories enabled on the system are returned.

TBU in Zlín, Faculty of Applied Informatics 39

Patches endpoint

1 $ curl -H "Content -Type: application/json"
2 -X POST
3 -d "@./ profile.json"
4 https :// console.redhat.com/api/vmaas/v3/patches

1 {
2 "errata_list": [
3 "RHSA -2022:0896",
4 "RHSA -2021:1585",
5 "RHSA -2021:4358"
6]
7 }

Compared to the Updates endpoint, this response contains only a list of advisories.

Vulnerabilities endpoint

1 $ curl -H "Content -Type: application/json"
2 -X POST
3 -d "@./ profile.json"
4 https :// console.redhat.com/api/vmaas/v3/vulnerabilities

1 {
2 "cve_list": [
3 "CVE -2016 -10228",
4 "CVE -2019 -25013",
5 "CVE -2019 -9169",
6 "CVE -2020 -27618",
7 "CVE -2021 -3326",
8 "CVE -2021 -27645",
9 "CVE -2021 -33574",

10 "CVE -2021 -35942",
11 "CVE -2021 -3999",
12 "CVE -2022 -23218",
13 "CVE -2022 -23219"
14],
15 }

The response contains only a list of vulnerabilities associated with advisories.

Mentioned examples are not specifying all parameters usable in the input system profile,
and also not all attributes returned in the response JSON. Complete specification of all
options can be found in the latest version 3 API documentation. [27]

TBU in Zlín, Faculty of Applied Informatics 40

5.3 Vulnerability detection

As shown in the previous section, all evaluation endpoints are executing the same
evaluation algorithm and the only difference is a slightly different view on resulting
data. Using the Vulnerabilities endpoint as an example, let’s examine the procedure:

1. Validate the input system profile. Filter out packages and repositories that do
not exist.

2. Find the list of updates for each package in the input list. The application
maintains a sorted list of all versions for each package name across all repositories.

3. Filter this list and keep only updates which are available in repositories enabled
on the system.

4. Find the list of advisories associated with each package in the filtered update list.

5. Find the list of CVEs associated with each advisory in the advisory list.

6. Aggregate the CVE list for all input packages, make the list unique and sorted,
and return.

This implies an important drawback of the current VMaaS vulnerability detection – it
can only detect vulnerabilities which are already patched.

TBU in Zlín, Faculty of Applied Informatics 41

6 Red Hat OVAL

6.1 Repository structure

OVAL definitions version 2 provided by Red Hat 1) are grouped into directories and files
by the product they are describing and the operating system version. [19]

root dir

RHEL8RHEL7RHEL6 feed.json

rhel-6.oval.xml.bz2 rhel-7.oval.xml.bz2 rhel-8.oval.xml.bz2

feed.xml

rhsso.oval.xml.bz2

satellite-5.8.oval.xml.bz2

...

rhsso.oval.xml.bz2

satellite-6.10.oval.xml.bz2

...

rhsso.oval.xml.bz2

openshift-4.9.oval.xml.bz2

...

Fig. 6.1 Red Hat OVAL repository directory structure [source: own]

File feed.json (respectively equivalent feed.xml) acts as the index of the repository.
It provides list of all OVAL definition files located in the repository, links to them, last
updated timestamp of them, information about their length and format.

Every definition file is currently compressed using Bzip2 compression and contains
custom Red Hat definitions, tests, objects and states. Documentation about mentioned
custom entities and their attributes is lacking or is obsolete, it’s needed to inspect
the content of these files directly – and due to the file size rather programmatically.

1)https://access.redhat.com/security/data/oval/v2/

TBU in Zlín, Faculty of Applied Informatics 42

Shortened example of the feed.json with single entry :

1 {
2 "feed": {
3 "id": "red -hat -vulnerabilities -oval",
4 "title": "Red Hat Vulnerabilities OVAL",
5 "updated": "2022 -04 -25 T20 :37:12.293039" ,
6 "entry": [
7 {
8 "id": "oval:/RHEL8/rhel -8. oval.xml.bz2",
9 "title": "OVAL Definitions",

10 "link": [
11 {
12 "href": "https :// access.redhat.com/security/data/

oval/v2/RHEL8/rhel -8. oval.xml.bz2",
13 "length": 613308
14 }
15],
16 "updated": "2022 -04 -25 T17 :23:09Z",
17 "content": {
18 "type": "application/x-bzip2",
19 "src": "https :// access.redhat.com/security/data/oval/

v2/RHEL8/rhel -8. oval.xml.bz2"
20 },
21 "format": {
22 "schema": "https :// oval.mitre.org/language/version5

.10/ index.html",
23 "version": "5.10"
24 }
25 }
26]
27 }
28 }

6.2 Definition specifics

There are only definitions of following classes:

• Patch – Most of the definitions in every definitions file. Each definition is mapped
one-to-one to the published advisory.

• Vulnerability – Definitions included only in files with the -including-unpatched
suffix. Each definition appears to be mapped one-to-one to a CVE.

• Miscellaneous – These definitions are located in otherwise empty definition files.
They are used as a placeholder until some Patch or Vulnerability definitions are
added and for purposes of this work are irrelevant.

TBU in Zlín, Faculty of Applied Informatics 43

Both Patch and Vulnerability definitions contain a list of affected CPEs – indicating
a list of operating systems and product versions for which the definition is intended.
Evaluating some definition on a different platform than mentioned in the list can
produce invalid results – system may appear as vulnerable even if it isn’t, or vice
versa.

6.2.1 Patch class

Patch definition contains one reference to an advisory and one or more references
to CVEs. The meaning is that if the definition evaluates it’s criteria as true, the system
is vulnerable to the list of referenced CVEs and can install the advisory to fix these
CVEs.

6.2.2 Vulnerability class

Vulnerability definition can represent following states: [28]

• Not affected – CVE is not affecting given operating system or product. This
definition always evaluates as false, because criteria are contradictory.
Example:

1 <criteria operator="AND">
2 <criterion comment="openssl is installed" test_ref="

oval:com.redhat.cve:tst:202123841001"/>
3 <criterion comment="openssl is not installed" test_ref="

oval:com.redhat.unaffected:tst:19990428002"/>
4 </criteria >

• Affected – CVE is affecting given operating system or product.

• Under investigation – CVE is currently under investigation if it affects given
operating system or product.

• Fix deferred – CVE is affecting given operating system or product and it may be
fixed in the future.

• Will not fix – CVE is affecting given operating system or product, but Red Hat
has decided to not fix this CVE for this operating system or product version.
Mostly CVEs of moderate and low severity are in this category.

TBU in Zlín, Faculty of Applied Informatics 44

Except the Not affected state, this information is contained in the definition body,
including the list of affected package names. Example:

1 <affected >
2 <resolution state="Will not fix">
3 <component >wireshark </component >
4 <component >wireshark-cli </component >
5 <component >wireshark-devel </component >
6 </resolution >
7 </affected >

6.3 Object, state and test specifics

Red Hat OVAL is using custom object, state and test types to detect vulnerabilities
from RPM packages installed on the system, defined in the Linux definitions schema:
[29]

• rpminfo_object – Defines a package name which is evaluated. The schema
specifies also optional behaviors and filter child elements, but they don’t seems
to be used for any package. Example:

1 <red-def:rpminfo_object id="oval:com.redhat.
rhsa:obj:20191259001" version="638">

2 <red-def:name >dotnet </red-def:name >
3 </red-def:rpminfo_object >

• rpminfo_state – Defines a package architecture, epoch and version. The schema
specifies other optional child elements, but only the signature_keyid is used
to check RPM signature. This will not be possible to check in VMaaS, because
there is not the information about package signature in the incoming package
profile. VMaaS will need to assume that all packages have correct signatures
(this matches with the current way of detection). Example:

1 <red-def:rpminfo_state id="oval:com.redhat.
rhsa:ste:20220496003" version="637">

2 <red-def:arch datatype="string" operation="pattern match">
aarch64|s390x|x86_64 </red-def:arch >

3 <red-def:evr datatype="evr_string" operation="less than">0
:6 .0.102 -1.el8_5</red-def:evr >

4 </red-def:rpminfo_state >
5

6 <red-def:rpminfo_state id="oval:com.redhat.
cve:ste:201620012001" version="636">

7 <red-def:signature_keyid operation="equals">199
e2f91fd431d51 </red-def:signature_keyid >

8 </red-def:rpminfo_state >

TBU in Zlín, Faculty of Applied Informatics 45

– The arch string is represented by either equals (single architecture)
or pattern match (a regular expression), but in practice the regular
expression is always OR relation similar to this.

– The evr string is bound to an operation which can be either equals or less
than (in practice representing that this exact version is vulnerable or all
previous versions are).

• rpminfo_test – Defines a relation between a single rpminfo_object and zero
or more instances of rpminfo_state. Most important attributes of the test are
check and check_existence (may not be present and using the default value),
described in chapter 4.1.2. Example:

1 <red-def:rpminfo_test check="at least one" comment="dotnet
is earlier than 0:6 .0.102 -1.el8_5" id="oval:com.redhat.
rhsa:tst:20220496005" version="637">

2 <red-def:object object_ref="oval:com.redhat.
rhsa:obj:20191259001"/>

3 <red-def:state state_ref="oval:com.redhat.
rhsa:ste:20220496003"/>

4 </red-def:rpminfo_test >

• rpmverifyfile_object – Defines files inside RPM to verify on the system.
Red Hat OVAL files are usually only checking only the /etc/redhat-release

to verify certain version of Red Hat operating system is installed.

• rpmverifyfile_state – Defines various information about files inside RPM like
package-related attributes to verify file is part of a RPM, or file attributes.

• rpmverifyfile_test – Defines a relation between a single
rpmverifyfile_object and zero or more instances of rpmverifyfile_state.
This test is an analogy to running rpm -V command on a system to verify
a RPM package. [29] This test will not be possible to evaluate in VMaaS as
there is no information about files installed on the system. However, as this test
is practically used only to validate the installed operating version, it doesn’t
affect the vulnerability detection – VMaaS evaluates vulnerabilities based
on the list of repositories in the incoming system profile (repositories are also
implying the operating system) and it doesn’t make sense to run the test in this
scenario.

Red Hat OVAL definition files also contain (less frequently) objects, states and tests
from other schemas:

TBU in Zlín, Faculty of Applied Informatics 46

• textfilecontent54_object – Defines a specific block in a text file to evaluate.
It is used to define a section in module files on RHEL 8 systems. Example:

1 <ind-def:textfilecontent54_object id="oval:com.redhat.
cve:obj:20177189044" version="636">

2 <ind-def:filepath datatype="string">/etc/dnf/modules.d/php
.module </ind-def:filepath >

3 <ind-def:pattern operation="pattern match">\[php \][\w\W]*<
/ind-def:pattern >

4 <ind-def:instance datatype="int">1</ind-def:instance >
5 </ind-def:textfilecontent54_object >

• textfilecontent54_state – Defines various file-related entities to check.
For example the regular expression of an expected text in the file section
specified by the object. Example:

1 <ind-def:textfilecontent54_state id="oval:com.redhat.
cve:ste:20177189002" version="636">

2 <ind-def:text operation="pattern match">\nstream\s*=\s
7\.2\b[\w\W]\ nstate\s*=\s*(enabled |1| true)|\ nstate\s*=\
s*(enabled |1| true)[\w\W]*\ nstream\s*=\s*7\.2\b</
ind-def:text >

3 </ind-def:textfilecontent54_state >

• textfilecontent54_test – Defines a relation between a single
textfilecontent54_object and zero or more instances
of textfilecontent54_state. Implementation of this test can be problematic
in VMaaS, file content information is not available. However, there is
an information about enabled modules in incoming RHEL 8 system profiles, but
it can’t be evaluated as a file content. The second usage of this test in Red Hat
OVAL is to check if a specific kernel version is set in the grub.cfg file to run
on the next boot.

1 <ind-def:textfilecontent54_test check="all" comment="Module
php:7.2 is enabled" id="oval:com.redhat.
cve:tst:20177189087" version="636">

2 <ind-def:object object_ref="oval:com.redhat.
cve:obj:20177189044"/>

3 <ind-def:state state_ref="oval:com.redhat.
cve:ste:20177189002"/>

4 </ind-def:textfilecontent54_test >

• uname_object – Defines an object for the uname_test, currently there is only
one object without any attributes and child elements, defining system as a whole.
[30]

• uname_state – Defines an information about machine where the test is running
on. It can specify attributes like machine hardware name, host name, operating
system name, release, version, or processor type.

TBU in Zlín, Faculty of Applied Informatics 47

• uname_test – Defines a relation between a single uname_object and zero or more
instances of uname_state. Evaluating this test is equivalent to parsing output
of uname -a command on a system. In Red Hat OVAL definition files this test is
supposed to validate currently running version of kernel (which can be different
than a version of the latest installed kernel package). Unfortunately, VMaaS
is currently doing only a static analysis based on installed packages and doesn’t
have an information about currently running kernel from incoming system profiles
– the system may be in fact vulnerable, if has only the newest kernel package
installed, but not running it (usually requires a system reboot).

Tab. 6.1 Overview of compatibility with VMaaS
[source: own]

Entity Supported by data in VMaaS
rpminfo_object yes
rpminfo_state partial, without the signature_keyid
rpminfo_test yes
rpmverifyfile_object no
rpmverifyfile_state no
rpmverifyfile_test no
textfilecontent54_object partial, only RHEL 8 module files
textfilecontent54_state partial, only RHEL 8 module files
textfilecontent54_test partial, only RHEL 8 module files
uname_object no
uname_state no
uname_test no

TBU in Zlín, Faculty of Applied Informatics 48

7 Adding OVAL support to VMaaS

7.1 Benefits

• OVAL could provide a higher detection coverage of fixed CVEs. In some cases
there are missing CVEs in advisory metadata.

• OVAL also supports detection of vulnerabilities which do not have a fix. And also
provides a reason why there is not a patch for a given known CVE.

• OVAL definition files represent a smaller amount of data than repositories
on the Red Hat CDN. This makes periodic pulling of latest data substantially
faster.

7.2 Problems

• VMaaS is using repository labels to filter the result advisory/CVE list to contain
only those affecting the system. But OVAL is using CPE labels to determine
which Definitions should be evaluated on the system.

However, there is a way how to map repository labels to CPE labels using
provided mapping file published on a Red Hat page. [31]

For example, for the rhel-7-server-rpms repository it can be found a following
mapping in the file:

1 {
2 "rhel -7-server -rpms": {
3 "cpes": [
4 "cpe:/o:redhat:enterprise_linux :7:: server"
5]
6 }
7 }

OVAL Definitions associated with any of the CPEs from the list then apply
for the evaluation.

• VMaaS is using SQL database and it may be difficult to store a logical Criteria
tree in there.

7.3 Scope of changes

• The OVAL integration into VMaaS should not change the overall application
workflow, it should be integrated into existing components, where it’s possible
(extending Reposcan and Webapp components, etc.).

TBU in Zlín, Faculty of Applied Informatics 49

• Format of the input system profile should preferably not change. The OVAL
evaluation should not require more data to be collected on systems, as it brings
requirements to other applications in the ecosystem to do that.

However, detection of small part of vulnerabilities may not be available because
of that, as described in chapter 6.3. For example, in future, the information about
currently running kernel version on the system could be easily added. This would
enable a support for uname_* entities.

TBU in Zlín, Faculty of Applied Informatics 50

III. PRACTICAL PART

TBU in Zlín, Faculty of Applied Informatics 51

VMaaS is a complicated system consisted from multiple interacting processes1).
For purposes of this thesis simplified standalone application will be implemented.
The application will be designed using same programming conventions as VMaaS is
using. This means the application will rely only on an OVAL evaluation, will be easy
to test, and at the same time will be ready for easy integration into the VMaaS –
either will require only minor code changes, or could be potentially also used as
an external library.

The practical part is describing an implementation of this application – used
technologies, application structure, database schema, examples of usage, etc. And is
also demonstrating the functionality on a set of testing system profiles.

1)Intended to run inside Docker containers.

TBU in Zlín, Faculty of Applied Informatics 52

8 Technologies

8.1 Programming language and environment

As VMaaS is written in the Python 3 and this application is a potential extension
for VMaaS, Python 3 was chosen as well. Python is an interpreted programming
language and doesn’t produce a binary. The application is tested with the Python 3.10
on Fedora 35 Linux distribution. However, it should be compatible also with Python
3.X versions and operating systems (potentially requiring minor changes).

8.2 Python dependencies

The application is using mostly modules included in the Python 3 standard library:
[32]

• argparse – Module implementing an interface to define and parse command line
arguments.

• array – Module implementing an array type of basic values (int, char, float),
which is more memory-efficient than a standard Python list.

• bz2 – Module providing a Bzip2 compression and decompression API. This is
used to decompress the downloaded OVAL definition files.

• datetime – Module providing functions for time and date parsing and formatting.

• json – Module implementing API for parsing and creating JSON data.

• logging – Module providing functions for logging, defining multiple logging
levels, etc.

• os – Module providing operating system dependent functionality.

• re – Module providing support for regular expressions.

• sqlite3 – Module providing API for working with SQLite databases.

• sys – Module providing functionality that interacts strongly with the interpreter.

• time – Module providing various time-related functions. For example the sleep
functionality.

TBU in Zlín, Faculty of Applied Informatics 53

• typing – Module providing support for Python type annotations.

• xml.etree.ElementTree – Module implementing API for parsing and creating
XML data.

And couple of modules installed from the Python Package Index (PyPi)1):

• aiohttp – Asynchronous HTTP client and server. In the application it is used
the server part to provide an API endpoint performing the evaluation. [33]

• requests – HTTP client library providing a simple interface. In the application
it is used to download all metadata files. [34]

8.3 Database

The application is using the SQLite database. SQLite is a small, fast, portable database
engine that doesn’t require a SQL server running, but it’s working as a library inside
an application instead. The whole database consists from a single file. [35]

Although VMaaS is using primarily a PostgreSQL database server, it’s using SQLite
as a format for cached data loaded in the API. This application simplified this and is
using only a SQLite database.

Foreign key enforcement is enabled for all database connections. This is not enabled
in SQLite by default and enabling this can help to detect some database errors early
and also makes the behavior more similar to PostgreSQL (where it’s enabled by default).

1 PRAGMA foreign_keys = ON

1)https://pypi.org/

TBU in Zlín, Faculty of Applied Informatics 54

9 Implementation

9.1 Database schema

9.1.1 Re-used VMaaS tables

The application is re-using some database tables from VMaaS, but with most of their
attributes stripped (for example, the cve table doesn’t contain CVE metadata, only
CVE identifiers).

• package_name – Table for storing unique package names. Columns:

– id (integer)

– name (text)

• evr – Table for storing unique epoch, version and release combinations. Columns:

– id (integer)

– epoch (text)

– version (text)

– release (text)

• arch – Table for storing unique architectures. This table contains a static list
of values populated during database initialization. No further inserts into this
table are done. Columns:

– id (integer)

– name (text)

• cve – Table for storing unique CVE identifiers. Columns:

– id (integer)

– name (text)

• content_set – Table for storing unique repository labels. Columns:

– id (integer)

– name (text)

• repo – Table for storing unique repository label, architecture and releasever
combinations. Columns:

TBU in Zlín, Faculty of Applied Informatics 55

– id (integer)

– name (text)

– basearch_id (integer, foreign key to arch)

– releasever (text)

Couple of notable tables from VMaaS are not a part of this application, because they
are not needed for OVAL evaluation:

• arch_compatibility – Table containing architecture pairs, which are compatible
to update between each other. It’s not usual to update a package to a different
architecture package, but it’s possible. OVAL can handle this directly in its
detection logic.

• package – Table containing mapping between package names and EVRs. OVAL
is evaluating these entities separately, thus this mapping table is not needed.

9.1.2 New tables

• cpe – Table for storing unique CPE identifiers. Columns:

– id (integer)

– name (text)

• cpe_content_set – Table for mapping CPEs and repository labels. Columns:

– cpe_id (integer, foreign key to cpe)

– content_set_id (integer, foreign key to content_set)

• cpe_repo – Table for mapping CPEs and repository label, architecture
and basearch combinations. Columns:

– cpe_id (integer, foreign key to cpe)

– repo_id (integer, foreign key to repo)

• oval_operation_evr – Table for storing supported EVR operations used during
the evaluation. Columns:

– id (integer)

– name (text)

TBU in Zlín, Faculty of Applied Informatics 56

This is a static table containing only these text values:

– "equals"

– "less than"

• oval_check_rpminfo – Table for storing supported check attributes of OVAL
test. Columns:

– id (integer)

– name (text)

This is a static table containing only these text values:

– "at least one"

• oval_check_existence_rpminfo – Table for storing supported
check_existence attributes of OVAL test. Columns:

– id (integer)

– name (text)

This is a static table containing only these text values:

– "at_least_one_exists"

– "none_exist"

• oval_definition_type – Table for storing supported definition types. Columns:

– id (integer)

– name (text)

This is a static table containing only these text values:

– "patch"

– "vulnerability"

• oval_criteria_operator – Table for storing supported operators used during
the criteria evaluation. Columns:

– id (integer)

– name (text)

This is a static table containing only these text values:

TBU in Zlín, Faculty of Applied Informatics 57

– "AND"

– "OR"

• oval_stream – Table used for storing records for individual OVAL definition
files, this includes a timestamp of a definition file last update, which can be used
for an optimization during a periodic synchronization. Columns:

– id (integer)

– oval_id (text)

– updated (timestamp)

• oval_rpminfo_object – Table used for storing rpminfo objects. Columns:

– id (integer)

– stream_id (integer, foreign key to oval_stream)

– oval_id (text)

– package_name_id (integer, foreign key to package_name)

– version (integer)

• oval_rpminfo_state – Table used for storing rpminfo states. Columns:

– id (integer)

– stream_id (integer, foreign key to oval_stream)

– oval_id (text)

– evr_id (integer, foreign key to evr)

– evr_operation_id (integer, foreign key to oval_operation_evr)

– version (integer)

• oval_rpminfo_state_arch – Table used for storing architecture requirements
of a rpminfo state. Columns:

– rpminfo_state_id (integer, foreign key to oval_rpminfo_state)

– arch_id (integer, foreign key to arch)

• oval_rpminfo_test – Table used for storing rpminfo tests. Columns:

– id (integer)

– stream_id (integer, foreign key to oval_stream)

– oval_id (text)

TBU in Zlín, Faculty of Applied Informatics 58

– rpminfo_object_id (integer, foreign key to oval_rpminfo_object)

– check_id (integer, foreign key to oval_check_rpminfo)

– check_existence_id (integer, foreign key
to oval_check_existence_rpminfo)

– version (integer)

• oval_rpminfo_test_state – Table used for storing states associated
to a rpminfo test. Columns:

– rpminfo_test_id (integer, foreign key to oval_rpminfo_test)

– rpminfo_state_id (integer, foreign key to oval_rpminfo_state)

• oval_module_test – Table used for storing modularity tests used to detect
enabled modules on RHEL 8 systems. Columns:

– id (integer)

– stream_id (integer, foreign key to oval_stream)

– oval_id (text)

– module_stream (text)

– version (integer)

• oval_criteria – Table used for storing criteria used to evaluate definitions:
Columns:

– id (integer)

– definition_id (integer, foreign key to oval_definition)

– operator_id (integer, foreign key to oval_criteria_operator)

• oval_criteria_dependency – Table used for representing a tree structure
of criteria dependencies. Combination of column values (NULL and NOT NULL)
describes if the child element is another criteria or a test. Columns:

– id (integer)

– parent_criteria_id (integer, foreign key to oval_criteria)

– dep_criteria_id (integer, foreign key to oval_criteria)

– dep_test_id (integer, foreign key to oval_rpminfo_test)

– dep_module_test_id (integer, foreign key to oval_module_test)

TBU in Zlín, Faculty of Applied Informatics 59

• oval_definition – Table used for representing a definition, the main evaluation
unit. Columns:

– id (integer)

– stream_id (integer, foreign key to oval_stream)

– oval_id (text)

– definition_type_id (integer, foreign key to oval_definition_type)

– criteria_id (integer, foreign key to oval_criteria)

– version (integer)

• oval_definition_test – Table used for storing a list of rpminfo tests used
by a definition. This is a redundant table, used only for an optimization
in the evaluator application. Columns:

– definition_id (integer, foreign key to oval_definition)

– rpminfo_test_id (integer, foreign key to oval_rpminfo_test)

• oval_definition_cve – Table used for storing a list of CVEs associated with
a definition. When a definition evaluates as true, the system is vulnerable
to these CVEs. Columns:

– definition_id (integer, foreign key to oval_definition)

– cve_id (integer, foreign key to cve)

• oval_definition_cpe – Table used for storing a list of CPEs associated with
a definition. This is used in the evaluator application to determine definitions
affecting an input system profile. Columns:

– definition_id (integer, foreign key to oval_definition)

– cpe_id (integer, foreign key to cpe)

The relationship diagram can be found in attachments (1.1).

9.2 Application architecture

The application is implemented as a Python module called vmaas_oval. It provides:

• 3 commands:

TBU in Zlín, Faculty of Applied Informatics 60

– Command to download all metadata files into a local directory.

– Command to extract all metadata files from local directory and to populate
the database with relevant data.

– Command to run an application (HTTP API) performing system profile
evaluations.

• Parsers for OVAL feed index, OVAL definition files and CPE to repository
mapping.

• Functions populating the database.

• Evaluator algorithm in form of a HTTP server, or a command evaluating a single
system profile.

• Infrastructure functions for downloading, decompressing, logging, etc.

vmaas_oval Python module

Red Hat OVAL

repository

SQLite

database

Local directory

Common utils

DatabaseParsers Evaluator

Download

metadata

Initialize and

sync database

Run evaluation

application

Commands

Admin User

sending system profiles

Cache
Evaluator engine

OVAL feed index
OVAL definition file

CPE-Repo map

Schema init
OVAL store

CPE-Repo store
Connection handler

Logging Downloader RPM utils Date utilsUnpacker

Fig. 9.1 Overview of the application architecture [source: own]

9.3 Commands

9.3.1 Download metadata

This command downloads all required metadata files into a local directory –
the directory can be specified by the --metadata-dir parameter (if not specified,
files are download into downloaded_metadata created in the current directory).

TBU in Zlín, Faculty of Applied Informatics 61

First, it downloads the CPE to repository mapping file, then it continues with
downloading the OVAL JSON feed file, where the location of all OVAL definition files
is found. In the local directory, directory structure from the source OVAL repository
is preserved.

Following features of the downloader are present:

• It currently downloads all metadata files every time the command is executed,
existing files are overwritten.

• The downloader supports a retry mechanism in case of download failure. There
are a maximum 3 attempts in total.

• Download progress is logged to the standard output.

Currently, around 300 OVAL definition files is downloaded, size of the local directory
with downloaded files is around 40 megabytes and the process takes couple of minutes
to complete.

Example run:

1 $ python3 -m vmaas_oval.download_metadata --help

9.3.2 Initialize and populate database

When all metadata files are downloaded into a local directory, initialization
and population of the database can take place.

Again, this command is also using the --metadata-dir parameter to specify the source
directory with downloaded files (if not specified, downloaded_metadata is used).

Database file can be specified by the --database parameter (if not specified, the default
database file is database.sqlite in the current directory). If the file doesn’t exist,
empty database is created.

First, the schema described in chapter 9.1 is initialized, in code it is defined
in the vmaas_oval/database/schema.py file. All table and static data definitions
are written in an idempotent way – the schema initialization can be executed
repeatedly, it doesn’t change the result.

TBU in Zlín, Faculty of Applied Informatics 62

Then, the CPE to repository mapping is populated – this populates cpe,
content_set, repo and respective relation tables. The mapping file contains both
content sets and repositories – content sets are a name for only repository labels
(majority of mappings), repositories are defined by a label and release version and/or
architecture (it’s using a specific syntax in the mapping file labels like double
under-scores).

And finally, each OVAL definition file is populated one by one.

1. OVAL definition XML file is decompressed.

2. XML is loaded into the parser class. The parser class explicitly mentions list
of supported and unsupported OVAL objects, states, tests, etc. If any unexpected
type or value occurs in the file, it’s logged as a warning to standard output. Parser
class keeps successfully parsed information as the class instance attributes.

• There is a certain simplification in the parsing of modularity tests. Instead
of parsing complex regular expressions describing a content of the module
file, the parser simply takes the module name from the test comment.

3. Parsed data are stored into the database.

• The database import code is idempotent, although it doesn’t use any ORM.

• Incremental updates are supported. The version field used by OVAL
entities is respected and affected rows are updated. Rows from older file
versions, which are not present in the latest definition file, are deleted.

• Insert, update and delete queries are changing many rows at once to achieve
a better performance.

• The application is caching various database ID mappings during
the population to decrease a number of performed queries and to achieve
a better performance.

• OVAL definition files, which haven’t changed from the last population run,
are skipped during the database import. This changed status is obtained
by comparing the OVAL definition file updated value in the database
and the value in metadata file. This behavior can be overridden by adding
the --force parameter to the command.

Currently, the complete initialization and population of empty database takes couple
of minutes.

TBU in Zlín, Faculty of Applied Informatics 63

Example run:

1 $ python3 -m vmaas_oval.initialize_db --help

9.3.3 Run evaluator application (HTTP API)

This is the final command to run once data are populated into the database. It loads
the database file, which can be specified again by the --database parameter (if not
specified, the default database file is database.sqlite in the current directory).

Running the command starts a Python HTTP server provided by the aiohttp

library. The server is running on port 8000 and is providing a single HTTP POST
API endpoint – /vulnerabilities. This endpoint accepts a system profile JSON
compatible with VMaaS format (described in chapter 5.2.1) and returns CVEs
affecting the system in two lists:

• cve_list – CVEs which have an available advisory to fix the vulnerability. This
field is also present in VMaaS.

• unpatched_cve_list – CVEs which don’t have an available advisory. This field
is not in VMaaS, because VMaaS doesn’t support unpatched CVE detection.

Whole structure of the response is a following JSON:

1 {
2 "cve_list": [string],
3 "unpatched_cve_list": [string]
4 }

When the application is started, it loads all data from the SQLite database into Python
dictionaries and lists, there is some delay until the application is ready to serve requests.
This is the same way how the VMaaS webapp works.

When some system profile is sent to the running HTTP server, the evaluation algorithm
is following:

1. Validation of the input, the application makes sure a valid JSON is received and is
prepared that some fields may be missing.

TBU in Zlín, Faculty of Applied Informatics 64

2. Initialization of two empty sets for resulting vulnerabilities – cve_list

and unpatched_cve_list.

3. Parsing the list of system packages, every package string is separated into
a package name, epoch, version, release and architecture. Package names not
covered by any OVAL definition are filtered out in this step.

4. Getting the list of candidate OVAL definitions affecting repositories from
the system profile. Definitions are obtained using the Repository to CPE
mapping and selecting definitions associated with given CPEs. Repositories are
defined by labels, and additionally can also be by the basearch and
releasever values in a given system profile (they might not be defined).

Note: If the input repository list is empty, OVAL can’t detect vulnerabilities
with certainty and the resulting list of CVEs is always empty. This is a same
behavior as in VMaaS.

5. Getting the list of enabled modules. They are used later in criteria evaluation
for module tests.

Note: Applies only to RHEL 8 system profiles, no other version is using modules
currently.

6. For each package, candidate OVAL definitions are found, they are obtained
by searching package name associated with rpminfo objects, which are linked
to tests, which are linked to definitions.

7. Two sets of definitions found in previous two steps are intersected and each
of the result set of definitions will be evaluated for a given package.

8. Criteria of all definitions are evaluated recursively.

9. If the result of criteria evaluation is true, CVEs associated with the definition
are added either to cve_list (if the definition type is patch) or to
unpatched_cve_list (if the definition type is vulnerability).

10. Result JSON with cve_list and unpatched_cve_list is returned.

The core of the evaluation is the rpminfo_test, which is in most cases comparing
the currently installed version (also epoch and release) of a package to the version
specified by the test. The package version and release can be basically any string,
but usually includes also numbers. To properly compare each pair of matching values
the version is parsed to a list of (number, string) pairs – number parts are compared

TBU in Zlín, Faculty of Applied Informatics 65

first and if they are equal, then string parts are compared. For example the version
1.0.3.beta is parsed as this list of pairs:

1 [
2 (1, ’’),
3 (0, ’’),
4 (3, ’’),
5 (0, ’beta ’),
6 (-2, ’’) # indicating end of the list
7]

Example run:
1 $ python3 -m vmaas_oval.app --help

9.3.4 Complete workflow example

1. Switch to the working directory.
1 $ cd src/

2. Install Python dependencies.
1 $ pip3 install -r requirements.txt

3. Download all metadata files.
1 $ python3 -m vmaas_oval.download_metadata

4. Initialize and populate the database.
1 $ python3 -m vmaas_oval.initialize_db

5. Run the HTTP API application in foreground.
1 $ python3 -m vmaas_oval.app

6. From a different terminal query the evaluation API and get a response.
1 $ curl -s -X POST -d "@./ profile.json" http :// localhost

:8000/ vulnerabilities
2 {
3 "cve_list ": [
4 "CVE -2018 -25011" ,
5 "CVE -2020 -36328" ,
6 "CVE -2020 -36329"
7],
8 "unpatched_cve_list ": []
9 }

TBU in Zlín, Faculty of Applied Informatics 66

9.3.5 Verbose mode

Each command contains the --verbose parameter, which provides additional logs
to the standard output. This can be useful for debugging.

TBU in Zlín, Faculty of Applied Informatics 67

10 Testing

This section describes testing of the HTTP application. Several simple system profiles
were prepared to tests specific conditions and compare the output to the VMaaS public
instance1).

Downloaded OVAL metadata from 2022-05-09 used for these tests are attached to this
thesis, but the public VMaaS instance can return more vulnerabilities for the same
package versions in the future.

10.1 Compare script

Script vmaas_compare.py accepts a single mandatory argument – path to the system
profile JSON file. When executed, the script sends the system profile to the local HTTP
evaluation server and to the public VMaaS instance. Then prints to the standard
output following information:

• Number of CVEs returned from the local server.

• Number of CVEs returned from the public VMaaS instance.

• Number of CVEs without a patch returned from the local server.

• List of CVEs returned from the local server but not from the public VMaaS
instance.

• List of CVEs returned from the public VMaaS instance but not from the local
server.

Usage:

1 $ python3 vmaas_compare.py ./ testing_profiles/profile.json

1)https://console.redhat.com/api/vmaas/v3/vulnerabilities

TBU in Zlín, Faculty of Applied Informatics 68

10.2 Scenarios

10.2.1 RHEL 7 system, old kernel

System profile

1 {
2 "package_list": [
3 "kernel -3.10.0 -1160.53.1. el7.x86_64"
4],
5 "repository_list": [
6 "rhel -7-server -rpms"
7]
8 }

Compare script output

1 Number of CVEs returned from localhost: 11
2 Number of CVEs returned from VMaaS: 11
3 Number of CVEs without a patch returned from localhost: 316
4 CVEs returned from localhost but not from VMaaS: []
5 CVEs returned from VMaaS but not from localhost: []

Result: Both this application and VMaaS returned exactly same fixable CVEs. These
is another 316 known CVEs for the RHEL 7 kernel without an advisory.

10.2.2 RHEL 7 system, latest kernel

System profile

1 {
2 "package_list": [
3 "kernel -3.10.0 -1160.62.1. el7.x86_64"
4],
5 "repository_list": [
6 "rhel -7-server -rpms"
7]
8 }

TBU in Zlín, Faculty of Applied Informatics 69

Compare script output

1 Number of CVEs returned from localhost: 0
2 Number of CVEs returned from VMaaS: 0
3 Number of CVEs without a patch returned from localhost: 316
4 CVEs returned from localhost but not from VMaaS: []
5 CVEs returned from VMaaS but not from localhost: []

Result: Both this application and VMaaS returned zero fixable CVEs. These is
another 316 known CVEs for the RHEL 7 kernel without an advisory.

10.2.3 RHEL 8 system, postgresql 12, module enabled

System profile

1 {
2 "package_list": [
3 "postgresql -12.7 -1. module+el8 .4.0+11288+ c193d6d7.x86_64"
4],
5 "repository_list": [
6 "rhel -8-for -x86_64 -appstream -rpms"
7],
8 "modules_list": [
9 {

10 "module_name": "postgresql",
11 "module_stream": "12"
12 }
13]
14 }

Compare script output

1 Number of CVEs returned from localhost: 2
2 Number of CVEs returned from VMaaS: 2
3 Number of CVEs without a patch returned from localhost: 0
4 CVEs returned from localhost but not from VMaaS: []
5 CVEs returned from VMaaS but not from localhost: []

Result: Both this application and VMaaS returned exactly same fixable CVEs.
Vulnerabilities only for PostgreSQL 12 were returned, not e.g. for PostgreSQL 13,
which would be returned if the modularity test didn’t work correctly.

TBU in Zlín, Faculty of Applied Informatics 70

10.2.4 RHEL 8 system, postgresql 12, incorrect module

System profile

1 {
2 "package_list": [
3 "postgresql -12.7 -1. module+el8 .4.0+11288+ c193d6d7.x86_64"
4],
5 "repository_list": [
6 "rhel -8-for -x86_64 -appstream -rpms"
7],
8 "modules_list": [
9 {

10 "module_name": "postgresql",
11 "module_stream": "999"
12 }
13]
14 }

Compare script output

1 Number of CVEs returned from localhost: 0
2 Number of CVEs returned from VMaaS: 0
3 Number of CVEs without a patch returned from localhost: 0
4 CVEs returned from localhost but not from VMaaS: []
5 CVEs returned from VMaaS but not from localhost: []

Result: Both this application and VMaaS returned zero fixable CVEs. This is correct,
because the package can’t be identified.

10.2.5 RHEL 7 system, dnsmasq, OVAL detects more

System profile

1 {
2 "package_list": [
3 "dnsmasq -2.76 -1. el7.x86_64.rpm"
4],
5 "repository_list": [
6 "rhel -7-server -rpms"
7]
8 }

TBU in Zlín, Faculty of Applied Informatics 71

Compare script output

1 Number of CVEs returned from localhost: 11
2 Number of CVEs returned from VMaaS: 10
3 Number of CVEs without a patch returned from localhost: 11
4 CVEs returned from localhost but not from VMaaS:
5 [’CVE -2019 -14513 ’]
6 CVEs returned from VMaaS but not from localhost: []

Result: This application returns one more CVE than VMaaS – CVE-2019-14513.
After examining Red Hat metadata it’s clear that the CVE is detected correctly.
VMaaS doesn’t detect the CVE, because it’s not linked from the advisory, probably due
to an error. This is a case when OVAL can provide a better detection than VMaaS.

Fig. 10.1 CVE page mentions the advisory [36]

Fig. 10.2 Advisory page doesn’t mention the CVE [37]

10.2.6 RHEL 7 system, java, repository-CPE mapping inconsistency

System profile

1 {
2 "package_list": [
3 "java -1.8.0 -ibm -1:1.8.0.7.0 -1 jpp.1.el7.x86_64"
4],
5 "repository_list": [
6 "rhel -7-server -rpms"
7]
8 }

TBU in Zlín, Faculty of Applied Informatics 72

Compare script output

1 Number of CVEs returned from localhost: 9
2 Number of CVEs returned from VMaaS: 0
3 Number of CVEs without a patch returned from localhost: 0
4 CVEs returned from localhost but not from VMaaS:
5 [’CVE -2021 -35550 ’ , ’CVE -2021 -35603 ’ , ’CVE -2022 -21248 ’ ,
6 ’CVE -2022 -21293 ’ , ’CVE -2022 -21294 ’ , ’CVE -2022 -21340 ’ ,
7 ’CVE -2022 -21341 ’ , ’CVE -2022 -21360 ’ , ’CVE -2022 -21365 ’]
8 CVEs returned from VMaaS but not from localhost: []

Result: In this case the java package update is not available from currently enabled
repository rhel-7-server-rpms, but it is available from rhel-7-server-supplementary-
rpms. However, both of these repositories are mapped to the same CPE label. As
a result, the application acts as the correct repository would be enabled.

This is a case only for a few repositories, which are distributed together, and to cause
any potential problems it requires unusual repository configuration on the system. But
it can be considered as a bug in the Repository to CPE mappings.

TBU in Zlín, Faculty of Applied Informatics 73

CONCLUSION

This thesis compares a vulnerability detection method using metadata of linux software
repositories in VMaaS to a detection method using OVAL metadata.

The theoretical and analytical part examined how the OVAL works, what are
the existing tools, and what are the differences to the currrent detection method. It
also designed how the potential VMaaS extension could look like and which OVAL
parts makes sense to implement and which not.

The practical part presented a standalone application capable of downloading metadata
from Red Hat public OVAL repository, parsing and importing them to a SQLite
database and exposing them in a form of the HTTP API. The implemented HTTP
API is capable of full system profile evaluation and accepts the same input format
as the VMaaS API. The API was tested using several sample input system profiles
and results were compared with the public VMaaS API. The goal was to prove the
functional parity, extra features provided by the OVAL metadata and test potentially
problematic parts. The implemented application is using a compatible architecture
to VMaaS and can be integrated to it with minor modifications.

The OVAL metadata are convenient for vulnerability detection. Their biggest
advantage is that they contain also rules for detecting vulnerabilities which do not
have an advisory – this is not possible to find out from repository metadata. Also,
in practice, they can detect some vulnerabilities which are not linked from repository
metadata due to an error.

In the end, OVAL vulnerability detection can fully replace the method using
repository metadata. OVAL metadata are represented by a lot smaller amount
of data and the application can populate all metadata in matter of minutes. This is
an improvement to populating all metadata from repositories, which takes hours.

However, repository metadata still provide some metadata, which OVAL doesn’t, e.g.
information about individual packages contained in the advisory or in the repository.
This is not relevant for the vulnerability detection itself, but can provide more
context to the application consumers (users, automated tools). Extra information
about the exact package version included in the advisory, or the information in which
repositories the advisory can be found, is useful during installation of the fixed
package for a given CVE.

TBU in Zlín, Faculty of Applied Informatics 74

Also, there are notable differences between repositories and CPEs, they do not always
map one to one, as a result, OVAL may report some extra vulnerabilities with
an advisory, but the advisory installation on the system needs additional repository
to be enabled on the system.

TBU in Zlín, Faculty of Applied Informatics 75

REFERENCES

[1] MITRE: Terminology [online]. [cit. 2021-02-18]. Available from: https://cve.

mitre.org/about/terminology.html

[2] MITRE: Frequently Asked Questions [online]. [cit. 2021-02-18]. Available from:
https://cve.mitre.org/about/faqs.html

[3] About RPM [online]. [cit. 2021-03-07]. Available from: https://rpm.org/about.
html

[4] Why Red Hat’s new dnf package manager is not "just another ’yum’" [online]. [cit.
2021-04-01]. Available from: https://developers.redhat.com/blog/2016/08/

30/why-red-hats-new-dnf-package-manager-is-not-just-another-yum-2/

[5] Zypper [online]. [cit. 2021-04-01]. Available from: https://en.opensuse.org/

Portal:Zypper

[6] RPM Packaging guidelines [online]. [cit. 2021-04-02]. Available from: https://

docs.fedoraproject.org/en-US/packaging-guidelines/

[7] RPM Packaging Guide [online]. [cit. 2021-04-08]. Available from: https://

rpm-packaging-guide.github.io/

[8] RPM Repositories [online]. [cit. 2022-03-04]. Available from: https://en.

opensuse.org/openSUSE:Standards_Rpm_Metadata

[9] Common Platform Enumeration (CPE) [online]. [cit.
2022-04-20]. Available from: https://redhat-connect.

gitbook.io/partner-guide-for-adopting-red-hat-oval-v2/

determining-common-platform-enumeration-cpe

[10] Understanding Red Hat security ratings [online]. [cit. 2022-03-04]. Available from:
https://access.redhat.com/security/updates/classification/

[11] Red Hat - CVE-2019-11043 [online]. [cit. 2022-03-04]. Available from: https:

//access.redhat.com/security/cve/cve-2019-11043

[12] Common Vulnerability Scoring System v3.1: Specification Document [online].
[cit. 2022-03-30]. Available from: https://www.first.org/cvss/v3.1/

specification-document

[13] Exploits: What You Need to Know [online]. [cit. 2022-04-19]. Available from:
https://www.avast.com/c-exploits

https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/about/faqs.html
https://rpm.org/about.html
https://rpm.org/about.html
https://developers.redhat.com/blog/2016/08/30/why-red-hats-new-dnf-package-manager-is-not-just-another-yum-2/
https://developers.redhat.com/blog/2016/08/30/why-red-hats-new-dnf-package-manager-is-not-just-another-yum-2/
https://en.opensuse.org/Portal:Zypper
https://en.opensuse.org/Portal:Zypper
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://rpm-packaging-guide.github.io/
https://rpm-packaging-guide.github.io/
https://en.opensuse.org/openSUSE:Standards_Rpm_Metadata
https://en.opensuse.org/openSUSE:Standards_Rpm_Metadata
https://redhat-connect.gitbook.io/partner-guide-for-adopting-red-hat-oval-v2/determining-common-platform-enumeration-cpe
https://redhat-connect.gitbook.io/partner-guide-for-adopting-red-hat-oval-v2/determining-common-platform-enumeration-cpe
https://redhat-connect.gitbook.io/partner-guide-for-adopting-red-hat-oval-v2/determining-common-platform-enumeration-cpe
https://access.redhat.com/security/updates/classification/
https://access.redhat.com/security/cve/cve-2019-11043
https://access.redhat.com/security/cve/cve-2019-11043
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www.avast.com/c-exploits

TBU in Zlín, Faculty of Applied Informatics 76

[14] Red Hat - Product Errata [online]. [cit. 2022-03-20]. Available from: https://

access.redhat.com/errata/#/

[15] OVAL Content Creation Tutorial [online]. [cit. 2022-03-21]. Available from:
https://ovalproject.github.io/getting-started/tutorial/

[16] Repository / Oval Repository [online]. [cit. 2022-03-23]. Available from: https:

//oval.cisecurity.org/repository/download

[17] Red Hat and OVAL compatibility [online]. [cit. 2022-03-25]. Available from: https:
//access.redhat.com/articles/221883

[18] Technical Guidance on adopting Red Hat OVAL v2 [online]. [cit.
2022-03-25]. Available from: https://redhat-connect.gitbook.io/

partner-guide-for-adopting-red-hat-oval-v2/faqs

[19] Red Hat OVAL v2 streams [online]. [cit. 2022-04-25].
Available from: https://redhat-connect.gitbook.io/

partner-guide-for-adopting-red-hat-oval-v2/red-hat-oval-v2-streams

[20] Open Vulnerability and Assessment Language - Element Dictionary [online]. [cit.
2022-03-26]. Available from: https://oval.mitre.org/language/version5.11/
ovaldefinition/documentation/oval-common-schema.html

[21] Other Repositories of OVAL Content [online]. [cit. 2022-03-28]. Available from:
https://oval.mitre.org/repository/about/other_repositories.html

[22] OpenSCAP - Tools [online]. [cit. 2022-04-12]. Available from: https://www.

open-scap.org/tools/

[23] OpenSCAP User Manual [online]. [cit. 2022-04-12]. Available from: https://

http://static.open-scap.org/openscap-1.2/oscap_user_manual.html

[24] Scanning the system for configuration compliance and vulnerabilities [online]. [cit.
2022-04-19]. Available from: https://access.redhat.com/documentation/

en-us/red_hat_enterprise_linux/8/html/security_hardening/

scanning-the-system-for-configuration-compliance-and-vulnerabilities_

security-hardening

[25] What is Clair? [online]. [cit. 2022-04-19]. Available from: https://www.redhat.
com/en/topics/containers/what-is-clair

[26] VMaaS [online]. [cit. 2022-04-30]. Available from: https://github.com/

RedHatInsights/vmaas/blob/master/README.md

https://access.redhat.com/errata/#/
https://access.redhat.com/errata/#/
https://ovalproject.github.io/getting-started/tutorial/
https://oval.cisecurity.org/repository/download
https://oval.cisecurity.org/repository/download
https://access.redhat.com/articles/221883
https://access.redhat.com/articles/221883
https://redhat-connect.gitbook.io/partner-guide-for-adopting-red-hat-oval-v2/faqs
https://redhat-connect.gitbook.io/partner-guide-for-adopting-red-hat-oval-v2/faqs
https://redhat-connect.gitbook.io/partner-guide-for-adopting-red-hat-oval-v2/red-hat-oval-v2-streams
https://redhat-connect.gitbook.io/partner-guide-for-adopting-red-hat-oval-v2/red-hat-oval-v2-streams
https://oval.mitre.org/language/version5.11/ovaldefinition/documentation/oval-common-schema.html
https://oval.mitre.org/language/version5.11/ovaldefinition/documentation/oval-common-schema.html
https://oval.mitre.org/repository/about/other_repositories.html
https://www.open-scap.org/tools/
https://www.open-scap.org/tools/
https://http://static.open-scap.org/openscap-1.2/oscap_user_manual.html
https://http://static.open-scap.org/openscap-1.2/oscap_user_manual.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening
https://www.redhat.com/en/topics/containers/what-is-clair
https://www.redhat.com/en/topics/containers/what-is-clair
https://github.com/RedHatInsights/vmaas/blob/master/README.md
https://github.com/RedHatInsights/vmaas/blob/master/README.md

TBU in Zlín, Faculty of Applied Informatics 77

[27] VMaaS Webapp - Swagger UI [online]. [cit. 2022-05-02]. Available from: https:

//console.redhat.com/api/vmaas/v3/ui/

[28] Red Hat CVE Database Revamp [online]. [cit. 2022-04-27]. Available from: https:
//access.redhat.com/blogs/product-security/posts/2066793

[29] Open Vulnerability and Assessment Language - Linux Definitions Schema
[online]. [cit. 2022-04-30]. Available from: https://oval.mitre.org/language/

version5.11/ovaldefinition/documentation/linux-definitions-schema.

html

[30] Open Vulnerability and Assessment Language - Unix Definitions Schema
[online]. [cit. 2022-04-30]. Available from: https://oval.mitre.org/language/

version5.10/ovaldefinition/documentation/unix-definitions-schema.

html

[31] How to accurately match OVAL security data to installed RPMs [online].
[cit. 2022-05-03]. Available from: https://www.redhat.com/en/blog/

how-accurately-match-oval-security-data-installed-rpms

[32] The Python Standard Library [online]. [cit. 2022-05-07]. Available from: https:

//docs.python.org/3/library/index.html

[33] Welcome to AIOHTTP [online]. [cit. 2022-05-07]. Available from: https://docs.
aiohttp.org/en/stable/

[34] Requests: HTTP for Humans™ [online]. [cit. 2022-05-07]. Available from: https:
//docs.python-requests.org/en/latest/

[35] About SQLite [online]. [cit. 2022-05-07]. Available from: https://www.sqlite.

org/about.html

[36] CVE-2019-14513 [online]. [cit. 2022-05-18]. Available from: https://access.

redhat.com/security/cve/cve-2019-14513

[37] RHBA-2017:2117 - Bug Fix Advisory [online]. [cit. 2022-05-18]. Available from:
https://access.redhat.com/errata/RHBA-2017:2117

https://console.redhat.com/api/vmaas/v3/ui/
https://console.redhat.com/api/vmaas/v3/ui/
https://access.redhat.com/blogs/product-security/posts/2066793
https://access.redhat.com/blogs/product-security/posts/2066793
https://oval.mitre.org/language/version5.11/ovaldefinition/documentation/linux-definitions-schema.html
https://oval.mitre.org/language/version5.11/ovaldefinition/documentation/linux-definitions-schema.html
https://oval.mitre.org/language/version5.11/ovaldefinition/documentation/linux-definitions-schema.html
https://oval.mitre.org/language/version5.10/ovaldefinition/documentation/unix-definitions-schema.html
https://oval.mitre.org/language/version5.10/ovaldefinition/documentation/unix-definitions-schema.html
https://oval.mitre.org/language/version5.10/ovaldefinition/documentation/unix-definitions-schema.html
https://www.redhat.com/en/blog/how-accurately-match-oval-security-data-installed-rpms
https://www.redhat.com/en/blog/how-accurately-match-oval-security-data-installed-rpms
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.aiohttp.org/en/stable/
https://docs.aiohttp.org/en/stable/
https://docs.python-requests.org/en/latest/
https://docs.python-requests.org/en/latest/
https://www.sqlite.org/about.html
https://www.sqlite.org/about.html
https://access.redhat.com/security/cve/cve-2019-14513
https://access.redhat.com/security/cve/cve-2019-14513
https://access.redhat.com/errata/RHBA-2017:2117

TBU in Zlín, Faculty of Applied Informatics 78

LIST OF ABBREVIATIONS

CCE Common Configuration Enumeration
CPE Common Platform Enumeration
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
NEVRA Name, Epoch, Version, Release, Architecture
NIST National Institute of Standards and Technology
NVD National Vulnerability Database
ORM Object–relational mapping
OVAL Open Vulnerability and Assessment Language
RHEL Red Hat Enterprise Linux
RPM Red Hat Package Manager
VMaaS Vulnerability Metadata as a Service

TBU in Zlín, Faculty of Applied Informatics 79

LIST OF FIGURES

1.1 Example: different ranking of CVE-2019-11043 in Red Hat and NIST
NVD CVE databases [11] . 17

4.1 Relations between OVAL entities [source: own] 25
5.1 VMaaS components and interactions [source: own] 34
6.1 Red Hat OVAL repository directory structure [source: own] 41
9.1 Overview of the application architecture [source: own] 60
10.1 CVE page mentions the advisory [36] 71
10.2 Advisory page doesn’t mention the CVE [37] 71
1.1 DB diagram generated by SchemaSpy 6.1.0 82

TBU in Zlín, Faculty of Applied Informatics 80

LIST OF TABLES

6.1 Overview of compatibility with VMaaS [source: own] 47

TBU in Zlín, Faculty of Applied Informatics 81

LIST OF APPENDICES

I. Database relationship diagram
II. Attached CD content

APPENDIX I. DATABASE RELATIONSHIP DIAGRAM

Generated by SchemaSpy

arch [table]

id

name

 32 rows 2 >

content_set[table]

id

name

 4 533 rows 1 >

cpe [table]

id

name

 871 rows 3 >

cpe_content_set[table]

cpe_id

content_set_id

< 2 7 268 rows

cpe_repo [table]

cpe_id

repo_id

< 2 1 527 rows

repo [table]

id

name

basearch_id

releasever

< 1 1 525 rows 1 >

cve [table]

id

name

 19 460 rows 1 >

evr [table]

id

epoch

version

release

 20 016 rows 1 >

oval_check_existence_rpminfo [table]

id

name

 2 rows 1 >

oval_check_rpminfo[table]

id

name

 1 row 1 >

oval_criteria [table]

id

definition_id

operator_id

< 2 1 160 493 rows 3 >

oval_criteria_operator[table]

id

name

 2 rows 1 >

oval_definition [table]

id

stream_id

oval_id

definition_type_id

criteria_id

version

< 3 90 227 rows 4 >

oval_criteria_dependency [table]

id

parent_criteria_id

dep_criteria_id

dep_test_id

dep_module_test_id

< 4 2 864 711 rows

oval_module_test[table]

id

stream_id

oval_id

module_stream

version

< 1 755 rows 1 >

oval_rpminfo_test [table]

id

stream_id

oval_id

rpminfo_object_id

check_id

check_existence_id

version

< 4 674 082 rows 3 >

oval_definition_type[table]

id

name

 2 rows 1 >

oval_stream[table]

id

oval_id

updated

 330 rows 5 >

oval_definition_cpe[table]

definition_id

cpe_id

< 2 505 099 rows

oval_definition_cve[table]

definition_id

cve_id

< 2 279 598 rows

oval_definition_test[table]

definition_id

rpminfo_test_id

< 2 1 733 698 rows

oval_operation_evr[table]

id

name

 2 rows 1 >

oval_rpminfo_object[table]

id

stream_id

oval_id

package_name_id

version

< 2 140 044 rows 1 >

package_name[table]

id

name

 13 225 rows 1 >

oval_rpminfo_state[table]

id

stream_id

oval_id

evr_id

evr_operation_id

version

< 3 153 937 rows 2 >

oval_rpminfo_state_arch[table]

rpminfo_state_id

arch_id

< 2 429 317 rows

oval_rpminfo_test_state[table]

rpminfo_test_id

rpminfo_state_id

< 2 647 609 rows

Fig. 1.1 DB diagram generated by SchemaSpy 6.1.0

APPENDIX II. ATTACHED CD CONTENT

1 $ tree -L 2
2 .
3 |---- database_documentation
4 | |---- anomalies.html
5 | |---- anomalies.js
6 | |---- bower
7 | |---- column.js
8 | |---- columns.html
9 | |---- constraint.js

10 | |---- constraints.html
11 | |---- database.sqlite.database.xml
12 | |---- deletionOrder.txt
13 | |---- diagrams
14 | |---- favicon.png
15 | |---- fonts
16 | |---- images
17 | |---- index.html
18 | |---- info -html.txt
19 | |---- insertionOrder.txt
20 | |---- main.js
21 | |---- orphans.html
22 | |---- relationships.html
23 | |---- relationships.js
24 | |---- routines
25 | |---- routines.html
26 | |---- routines.js
27 | |---- schemaSpy.css
28 | |---- schemaSpy.js
29 | +---- tables
30 |---- fulltext.pdf
31 |---- README.txt
32 |---- src
33 | |---- database.sqlite
34 | |---- downloaded_metadata
35 | |---- LICENSE
36 | |---- README.md
37 | |---- requirements.txt
38 | |---- testing_profiles
39 | |---- vmaas_compare.py
40 | +---- vmaas_oval
41 +---- thesis
42 |---- graphics
43 |---- latexmkrc
44 |---- prace.tex
45 |---- tex
46 +---- zadani.pdf

	Introduction
	I Theoretical part
	Vulnerability
	CVE
	Severity ranking
	Common Vulnerability Scoring System
	Databases

	Exploit

	Package
	RPM
	Versioning
	Dependencies

	RPM repository
	Structure
	Package managers

	CPE

	Advisory
	Red Hat Enterprise Linux advisory
	Types
	Attributes

	OVAL
	Concepts
	Definitions
	Tests
	Objects
	States
	Other entities

	Definition files and repositories
	Existing OVAL tools
	OpenSCAP
	CoreOS Clair

	II Analytical part
	VMaaS
	Architecture
	Reposcan
	Webapp
	Websocket

	Public API endpoints
	System profile format
	API responses

	Vulnerability detection

	Red Hat OVAL
	Repository structure
	Definition specifics
	Patch class
	Vulnerability class

	Object, state and test specifics

	Adding OVAL support to VMaaS
	Benefits
	Problems
	Scope of changes

	III Practical part
	Technologies
	Programming language and environment
	Python dependencies
	Database

	Implementation
	Database schema
	Re-used VMaaS tables
	New tables

	Application architecture
	Commands
	Download metadata
	Initialize and populate database
	Run evaluator application (HTTP API)
	Complete workflow example
	Verbose mode

	Testing
	Compare script
	Scenarios
	RHEL 7 system, old kernel
	RHEL 7 system, latest kernel
	RHEL 8 system, postgresql 12, module enabled
	RHEL 8 system, postgresql 12, incorrect module
	RHEL 7 system, dnsmasq, OVAL detects more
	RHEL 7 system, java, repository-CPE mapping inconsistency

	Conclusion
	References
	List of Abbreviations
	List of Figures
	List of Tables
	LIST OF APPENDICES

