Experimentální ověření 3D modelu GTEM cely

Bc. David Pazderka

Diplomová práce 2021

Univerzita Tomáše Bati ve Zlíně Fakulta aplikované informatiky Univerzita Tomáše Bati ve Zlíně Fakulta aplikované informatiky Ústav elektroniky a měření

Akademický rok: 2020/2021

ZADÁNÍ DIPLOMOVÉ PRÁCE

(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení:	Bc. David Pazderka
Osobní číslo:	A19405
Studijní program:	N3902 Inženýrská informatika
Studijní obor:	Bezpečnostní technologie, systémy a management
Forma studia:	Prezenční
Téma práce:	Experimentální ověření 3D modelu GTEM cely
Téma práce anglicky:	The Experimental Verification of a 3D Model of a GTEM Cell

Zásady pro vypracování

^{1.} Vypracujte literární rešerši na téma elektromagnetické kompatibility.

^{2.} Vytvořte model GTEM cely v simulačním nástroji CST Studio Suite.

^{3.} Navrhněte praktický experiment s GTEM celou a srovnejte výsledky se simulací.

^{4.} Optimalizujte experiment a model.

^{5.} Vyhodnotte výsledky simulaci a experimentu.

Forma zpracování diplomové práce: Tištěná/elektronická

Seznam doporučené literatury:

SVAČINA, Jiří. Elektromagnetická kompatibilita: principy a poznámky. Brno: Vysoké učení technické, 2001. Připojujeme se k Evropské unii. ISBN 8021418737.

 PAUL, Clayton R. Introduction to electromagnetic compatibility. 2nd ed. Hoboken: John Wiley & Sons, 2006. ISBN 0471755001.
 KOTWAL, Prachi, Gyanendra VERMA a P. K. KATTI. Modelling and Analysis of Gigahertz Transverse Electromagnetic Mode (GTEM) Cell. In: 2019 International Conference on Communication and Electronics Systems (ICCES) [online]. IEEE, 2019, 2019, s. 1708-1712 [cit. 2020-07-16]. DOI: 10.1109/ICCES45898.2019.9002589. ISBN 978-1-7281-1261-9. Dostupné z: https://ieeexplore.ieee.org/document/9002589/

 PASAKAWEE, Sarinya a Vitawat SITTAKUL. Implementation and characterization of GTEM cell using ferrite tile absorber. In: 2017 IEEE Conference on Antenna Measurements & Applications (CAMA) [online]. IEEE, 2017, 2017, s. 65–68 [cit. 2020-07-16]. DOI: 10.1109/CAMA.2017.8273479. ISBN 978-1-5090-5028-4. Dostupné z: http://ieeexplore.ieee.org/document/8273479/

5. Polka, Oliver. Užití GTEM cely pro testy elektromagnetické kompatibility zabezpečovacích systémů. Zlín, 2015. bakalářská práce (Bc.). Univerzita Tomáše Bati ve Zlíně. Fakulta aplikované informatiky

Vedoucí diplomové práce:	Ing. Stanislav Kovář, PhD. Ústav bezpečnostního inženýrství	
Datum zadání diplomové práce:	15. ledna 2021	
Termín odevzdání diplomové práce:	17. května 2021	

doc. Mgr. Milan Adámek, Ph.D. v.r. děkan

Ing. Milan Navrátil, Ph.D. v.r. ředitel ústavu

Ve Zlíně dne 15. ledna 2021

Prohlašuji, že

- beru na vědomí, že odevzdáním diplomové práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, bez ohledu na výsledek obhajoby;
- beru na vědomí, že diplomová práce bude uložena v elektronické podobě v univerzitním informačním systému dostupná k prezenčnímu nahlédnutí, že jeden výtisk diplomové/bakalářské práce bude uložen v příruční knihovně Fakulty aplikované informatiky Univerzity Tomáše Bati ve Zlíně a jeden výtisk bude uložen u vedoucího práce;
- byl/a jsem seznámen/a s tím, že na moji diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3;
- beru na vědomí, že podle § 60 odst. 1 autorského zákona má UTB ve Zlíně právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;
- beru na vědomí, že podle § 60 odst. 2 a 3 autorského zákona mohu užít své dílo diplomovou práci nebo poskytnout licenci k jejímu využití jen připouští-li tak licenční smlouva uzavřená mezi mnou a Univerzitou Tomáše Bati ve Zlíně s tím, že vyrovnání případného přiměřeného příspěvku na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše) bude rovněž předmětem této licenční smlouvy;
- beru na vědomí, že pokud bylo k vypracování diplomové práce využito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tedy pouze k nekomerčnímu využití), nelze výsledky diplomové/bakalářské práce využít ke komerčním účelům;
- beru na vědomí, že pokud je výstupem diplomové práce jakýkoliv softwarový produkt, považují se za součást práce rovněž i zdrojové kódy, popř. soubory, ze kterých se projekt skládá. Neodevzdání této součásti může být důvodem k neobhájení práce.

Prohlašuji,

- že jsem na diplomové práci pracoval samostatně a použitou literaturu jsem citoval.
 V případě publikace výsledků budu uveden jako spoluautor.
- že odevzdaná verze diplomové práce a verze elektronická nahraná do IS/STAG jsou totožné.

Ve Zlíně, dne 15.5.2021

David Pazderka v.r. podpis diplomanta

ABSTRAKT

Diplomová práce je zaměřena na experimentální ověření 3D modelu GTEM cely. V práci je popsána elektromagnetická kompatibilita a dále oblasti související s tématem této práce, konkrétně normalizace a standardizace v oblasti EMC, metody měření EMC a také popis GTEM cely.

Praktická část je věnována modelování GTEM cely podle parametrů skutečné předlohy v simulačním software CST Microwave Studio, následované ověřením funkčnosti modelu. Dále je uveden praktický experiment a popis použitých zařízení, včetně srovnání výsledků simulací a praktického měření. Na základě výsledků byla provedena optimalizace modelu a měření, následované dalšími testy a vyhodnocením výsledků. Příspěvek práce byl shrnut v závěru.

Klíčová slova: GTEM cela, Elektromagnetická kompatibilita, Elektrické pole, CST Studio Suite, Simulace

ABSTRACT

The diploma thesis is focused on experimental verification of the 3D GTEM cell model. The thesis describes the electromagnetic compatibility and further areas related to the topics of this thesis, specifically normalization and standardization in the field of EMC, methods of measuring EMC and also a description of the GTEM cell.

The practical part is devoted to modeling of the GTEM cell according to the real GTEM cell. Model was made using CST Microwave Studio software, followed by verification of the functionality of the model. Practical experiment followed and a description of the equipment used, including a comparison of simulation results and practical measurements. Based on the results, the model and measurements were optimized, followed by further tests and evaluation of the results. The contribution of the work was summarized in the conclusion.

Keywords: GTEM cell, Electromagnetic compatibility, E-field, CST Studio Suite, Simulation Rád bych tímto poděkoval panu Ing. Stanislavu Koláčovi, Ph.D. za jeho ochotu, vynaložený čas a cenné rady při konzultacích ohledně této práce. Dále bych chtěl poděkovat své rodině a přátelům za podporu a pomoc během mého studia.

Prohlašuji, že odevzdaná verze diplomové práce a verze elektronická nahraná do IS/STAG jsou totožné.

OBSAH

Ú	VOD.		9
I	TEOF	RETICKÁ ČÁST	11
1	E	LEKTROMAGNETICKÁ KOMPATIBILITA	12
	1.1	ZÁKLADNÍ POJMY EMC	12
	1.2	EMC BIOLOGICKÝCH SYSTÉMŮ	14
	1.3	EMC TECHNICKÝCH SYSTÉMŮ	16
2	N	ORMALIZACE A STANDARDIZACE V OBLASTI	
	El	LEKTROMAGNETICKÉ KOMPATIBILITY	20
	2.1	NORMALIZAČNÍ GRÉMIA, ORGANIZACE A DRUHY NOREM EMC	22
	2.2	Druhy civilních EMC norem	23
	2.3	VOJENSKÉ NORMY EMC	24
	2.4	ČESKÉ NORMY	25
3	Μ	ETODY MĚŘENÍ EMC	
	3.1	Testovací pracoviště na otevřeném prostranství	26
	3.2	ČÁSTEČNĚ BEZODRAZOVÁ KOMORA	27
	3.3	Plně bezodrazová komora	
	3.4	GTEM CELA	29
	3.4	4.1 Historie vývoje zkušebních komor	
	3.4	4.2 Princip GTEM cely	31
	3.4	4.3 Legislativa GTEM cel	35
II	PRAF	XTICKA CAST	
4	Μ	ODELOVÁNÍ GTEM CELY	
	4.1	Modelování stěn GTEM cely	
	4.2	Modelování septa GTEM cely	40
	4.3	Modelování absorbérů	42
5	PO	DPIS JEDNOTLIVÝCH KOMPONENT PRO POSUZOVÁNÍ	
	El	LEKTROMAGNETICKE KOMPATIBILITY	
	5.1	GTEM CELA FRANKONIA EMC-GTEM-250	45
	5.2	Sonda měření intenzity elektrického pole Frankonia EFS-10	46
	5.3	Zesilovače	47
	5.4	RELÉOVÝ SPÍNACÍ PANEL ZESILOVAČŮ FRANKONIA RSU	47
	5.5	GENERÁTOR MIKROVLNNÝCH A RF SIGNÁLŮ SMB100A	48
6	F	ZICKÉ MĚŘENÍ INTENZITY ELEKTRICKÉHO POLE V GTEM	40
_	C		
7	PO	DPIS SIMULACE V SIMULACNIM NASTROJI CST STUDIO	53
8	0	PTIMALIZACE MODELU GTEM CELY	
9	SI	ROVNANI KONECNYCH VYSLEDKU EXPERIMENTU SE	7 4
	21		

9.1	Pozice 1	66
9.2	Pozice 2	67
9.3	Pozice 3	
9.4	Pozice 4	
9.5	Pozice 5	69
9.6	Pozice 6	
ZÁVĚF	R	
SEZNA	M POUŽITÉ LITERATURY	
SEZNA	AM POUŽITÝCH SYMBOLŮ A ZKRATEK	
SEZNA	M OBRÁZKŮ	
SEZNA	M PŘÍLOH	

ÚVOD

Elektromagnetická kompatibilita je v současnosti důležitým faktorem zajišťujícím komplexní funkčnost elektrických a elektronických zařízení. Tato zařízení a přístroje svou činnost vykonávají v blízkosti dalších elektronických prvků, které na jejich funkci mohou mít negativní vliv. Množství těchto zařízení a přístrojů v současnosti roste, na což má vliv také současný rychlý technologický pokrok. S tímto nárustem souvisí také úměrně se zvyšující požadavky, které jsou na funkčnost těchto zařízení v reálném prostředí kladeny. Podstatou elektromagnetické kompatibility je především zkoumání vzniku, šíření a příjmu nežádoucích druhů rušivých elektromagnetických (EM) signálů, jejichž množství se neustále zvyšuje. Odolnost zařízení nebo přístrojů musí být úměrná tomu, aby tyto byly schopny odolat vnějším EM signálům, které na ně působí. Ruku v ruce s tím jde také to, že tato zařízení nebo přístroje naopak svým působením nesmí negativním způsobem ovlivňovat své vlastní okolí. Tyto požadavky nabývají na důležitosti ve všech odvětvích průmyslu, jelikož následkem takového ovlivnění daného zařízení může být funkčnost tohoto značně narušena. Ve skutečných situacích díky tomu může dojít až k celkové nefunkčnosti elektronických zařízení.

Vzhledem k nárokům na měření elektromagnetického vyzařování elektrických a elektronických zařízení a na testování jejich odolnosti, bylo třeba vyvinout takové prostory, které jsou bezpečné a neovlivňují okolí. Pod pojmem bezpečný prostor se rozumí prostor, ze kterého nebude elektromagnetické záření unikat vně tento prostor, a nemůže dojít k ovlivnění strojů, systémů, zařízení, tak i člověka. Právě k tomuto účelu vznikly tzv. bezodrazové komory. Bezodrazové komory mohou mít různé velikosti v závislosti na rozměrech zkoumaných zařízení. Mohou to být pouze malé zkušební cely, kde se zkoumají jednotlivé součástky, zařízení nebo přístroje, nebo to mohou být celé místnosti, kde se již zkoumají větší soustavy, měřící systémy a další větší zařízení. Nakonec to mohou být velké haly, které slouží pro testování např. nákladních automobilů, elektrických generátorů anebo vojenské techniky. Do první skupiny, tedy do malých zkušebních cel, spadají tzv. Transverse Electromagnetic (TEM) cely. V závislosti na druhu měření potom byly z těchto TEM cel odvozeny další druhy, jako např. WTEM, EUROTEM nebo právě GTEM, které jsou pro tuto práci podstatné

Cílem práce je vytvořit model GTEM cely dle skutečné předlohy v simulačním prostředí CST Studio Suite a následně srovnat výsledky simulací s výsledky experimentu provedeného v GTEM cele v laboratoři elektromagnetické kompatibility na Fakultě aplikované informatiky. Součástí práce je literární rešerše na téma EMC a souvisejících témat nezbytných pro porozumění problematiky. Praktická část je popisuje proces tvorby modelu, simulace a optimalizace, a nakonec srovnání výsledků simulací a praktického měření.

I. TEORETICKÁ ČÁST

1 ELEKTROMAGNETICKÁ KOMPATIBILITA

Pod pojmem elektromagnetická kompatibilita, z anglického "electromagnetic compatibility" (EMC), je myšlena schopnost elektrických zařízení, přístrojů nebo systémů fungovat tak, jak je navrhl jejich výrobce, přičemž tato funkčnost je zachována i v prostředí, ve kterém působí i jiné zdroje elektromagnetických signálů. Jednat se může jak o signály přírodní, tak o signály umělého charakteru. Tato zařízení by zároveň neměla generovat nežádoucí elektromagnetických zanetické záření, jež by mohlo ovlivňovat funkčnost jiných elektrických či elektronických zařízení, přístrojů či systémů nacházejících se v elektromagnetickém prostředí. [1]

První významný nárust problémů s elektromagnetickou interferencí, a tím také významnější povšimnutí si této oblasti, nastal s vynálezem součástek jako bipolární tranzistor v 50. letech, integrovaný obvod v 60. letech a mikroprocesorový čip v 70. letech 20. století. Samotná vědeckotechnická disciplína, elektromagnetická kompatibilita, vznikla jako samostatná disciplína v 60. letech 20. století v USA. Nejprve byla tato oblast zkoumána pouze malým počtem odborníků, teprve zmíněny vývoj v elektronice vedl k rozmachu vnímání EMC ve vědecké a technické komunitě. [1], [2]

Průkopníci oboru predikovali problémy s elektromagnetickou kompatibilitou ve spojení s postupným nárustem elektrických a elektronických zařízení, a jejich následnou komplikovanou koexistencí. [1]

1.1 Základní pojmy EMC

V současnosti může být stále spousta elektronických zařízení jak zdrojem elektromagnetického rušení, tak přijímačem tohoto rušení. Pro všechna tato zařízení jsou definovány normou ČSN 60050-692 v kapitole 161 základní pojmy, vztah těchto pojmů je znázorněn na Obr. 1. [1], [3]

Obrázek 1 – Definice úrovní a mezí vyzařování a odolnosti. [1]

Úroveň vyzařování – tímto pojmem se rozumí rušení, které je generované konkrétním spotřebičem, a které je měřeno předepsaným způsobem a následně vyjádřeno např. v závislosti na kmitočtu. [1]

Mez vyzařování – jedná se o maximální přípustnou, tedy dle normy povolenou, úroveň vyzařování daného zařízení. [1]

Rozdíl mezi těmito dvěma úrovněmi vyjadřuje rezervu návrhu daného elektrického zařízení z hlediska EMI. [1]

Úroveň odolnosti – tento parametr představuje maximální úroveň rušení, které působí na zvolené zařízení, při kterém ještě nenastane zhoršení provozu tohoto zařízení. [1]

Mez odolnosti – jde o nejnižší úroveň odolnosti daného elektronického zařízení, která je stanovena danou normou. [1]

Rozdíl mezi úrovní odolnosti a mezí odolnosti udává rezervu návrhu zařízení z hlediska EMS. [1]

Rozdíl mezi mezí odolnosti a mezí vyzařování stanovuje tzv. rezervu EMC pro dané zařízení. Dále ještě tato norma zavádí další pojem, kompatibilní úroveň, jedná se o předepsanou maximální úroveň elektromagnetického rušení, při kterém se již předpokládá, že bude ovlivňovat přístroje nebo zařízení v určitých podmínkách. [1]

Rezerva vyzařování – tato hodnota je stanovena rozdílem mezi kompatibilní úrovní a mezí vyzařování. [1]

Rezerva odolnosti – na rozdíl od rezervy vyzařování, tato hodnota je stanovena rozdílem mezi kompatibilní úrovní a mezí odolnosti. [1]

1.2 EMC biologických systémů

Jestliže se pojednává o oblasti EMC biologických systémů, nejdříve je nutno zmínit, o co se zde vůbec jedná. Toto odvětví EMC se zabývá celkovým vlivem elektromagnetického pole v rámci našeho životního prostředí, zejména pak vlivy na živé organismy. [4]

Přesto, že o vlivech elektromagnetického pole na tyto živé organismy se diskutuje již delší dobu, dosavadní výsledky různých biofyzikálních a biologických výzkumů v rámci této oblasti nejsou zcela jednoznačné. Elektromagnetické pole, konkrétně jeho biologické účinky, jsou totiž závislé na charakteru tohoto pole, době jeho působení na živý organismus, a také na specifických vlastnostech jednotlivých organismů. Nicméně vstupy elektromagnetického pole do organismu prozatím nejsou známy a biologické účinky se posuzují pouze podle nespecifických reakcích organismu. [4]

Reakce každého člověka na působení elektromagnetického pole je specifická, jelikož každé tělo má unikátní kompenzační, regenerační a také adaptační možnosti a schopnosti. I díky této specifičnosti je v rámci výzkumů těžké změny v organismu analyzovat a na základě výsledků dojít k závěrům, které by byly obecně platné pro velkou část populace. Také díky tomuto faktoru bylo prozatím ve světě uskutečněno pouze málo konkrétních klinických studií, přičemž ty se především zaměřují na vyšší vystavování elektromagnetickým polem v pracovním procesu. Kromě pracovních prostředí, může být pro organismus problematický také dlouhodobý pobyt v elektromagnetických prostředích. (např. působení bezdrátových sítí Wi-Fi nebo GSM). [4]

Výzkumná lékařská pracoviště se v rámci problematiky EMC biologických systémů zabývají především vidinou toho, že se jim podaří posoudit, jaká je odolnost lidského organismu vůči elektromagnetickým vlivům. Dalším cílem těchto pracovišť je např. odhalit, jaké jsou mechanismy působení těchto vlivů. Co se týče mikrovlnných a vysokofrekvenčních polí, tak zde se prozatím podařilo objasnit tepelné účinky. Tyto účinky se dostaví jako důsledek ohřívání tkání, jelikož tyto jsou vystaveny vysokým úrovním těchto polí. Účinky elektromagnetického pole na cévy srdce, centrální nervový systém, imunitní systém a kardiovaskulární systém jsou netepelného charakteru. Netepelnými účinky se rozumí déle působící vystavení polím, které mají relativně nízkou výkonovou úroveň. Nicméně netepelné, genetické ani karcinogenní účinky nebyly prozatím jednoznačně prokázány, což podtrhuje komplikovanost procesu posuzování EMC biologických systémů. Důsledkem jsou rozdílnosti různých parametrů v hygienických normách po celém světě. [4]

Touto problematikou se v ČR zabývá Nařízení vlády 291/2015 Sb., o ochraně zdraví před neionizujícím zářením, které s účinností od 18.11.2015 stanovuje požadavky pro práci a pobyt osob v elektromagnetickém poli v kmitočtovém rozsahu 0 Hz až 1,7 PHz, příp. pro optické a laserové zařízení i do vyšších kmitočtů. [5]

Tabulka 1 - Nejvyšší přípustné hodnoty pro modifikovanou indukovanou proudovou hustotu. [6]

Modifikovaná indukovaná proudová hustota Jmod*- nejvyšší přípustné hodnoty			
Zaměstnanci Ostatní osoby			Ostatní osoby
frekvence <i>f</i> [Hz]	Jmod [A.m ⁻²]	frekvence <i>f</i> [Hz]	Jmod [A.m ⁻²]
$300 - 10^7$	√2 ∗ 0,01	$0 - 10^{7}$	pětkrát nižší než nejvyšší pří- pustná hodnota pro zaměstnance

* Modifikovaná proudová hustota Jmod je definována jako proudová hustota, tj. proud tekoucí kolmo k rovinné ploše s obsahem 100 mm² dělený obsahem této plochy, která je modifikována filtrem s frekvenční charakteristikou:

$$\frac{\sqrt{2}}{2} \cdot \frac{\beta + j2\pi f}{4\beta + j2\pi f} \cdot \frac{\alpha}{\alpha + j2\pi f} \tag{1}$$

kde $\alpha = 2000\pi \text{ s}^{-1}$, $\beta = 7 \text{ s}^{-1}$ a j je imaginární jednotka, tedy j = $\sqrt{-1}$. [6]

Měrný absorbovaný výkon (SAR) - nejvyšší přípustné hodnoty				
Platí pro frekvence 10 ⁵ – 10 ¹⁰ Hz	Měrný absorbo- vaný výkon - SAR – průměrovaný přes kterýkoli šes- timinutový inter- val a celé tělo	SAR průměrovaný přes kterýkoli šes- timinutový inter- val a pro kterých- koli 10 g tkáně s výjimkou rukou, zápěstí, chodidel a kotníků	SAR průměrovaný přes kterýkoli šes- timinutový inter- val a pro kterých- koli 10 g tkáně, zá- pěstí, chodidel a kotníků	
zaměstnanci	0,4 W/kg	10 W/kg	20 W/kg	
ostatní osoby	0,08 W/kg	2 W/kg	4 W/kg	

Tabulka 2 - Nejvyšší přípustné hodnoty měrného absorbovaného výkonu (SAR). [7]

Tabulka 3 - Nejvyšší přípustné hodnoty pro hustotu zářivého toku. [8]

Hustota zářivého toku S* - nejvyšší přípustné hodnoty			
Zaměstnanci		Ostatní osoby	
frekvence f [Hz]	S [W•m ⁻²]	frekvence f [Hz]	S [W•m ⁻²]
$> 10^{10} - 3 \cdot 10^{11}$	50	$> 10^{10} - 3 \cdot 10^{11}$	10

* S je průměrná hodnota hustoty zářivého toku dopadajícího na plochu rovnou 20 cm² kterékoli části těla exponované fyzické osoby. Maximální průměrná hodnota S vztažená na 1 cm2 exponovaného povrchu nesmí při tom překročit dvacetinásobek hodnot uvedených v Tabulce č. 3. [8]

1.3 EMC technických systémů

Druhou základní oblastí v rámci EMC je EMC technických systémů. Tato oblast se zaobírá problémem koexistence a vzájemného působení elektronických a elektrotechnických zařízení. V rámci zkoumání těchto zařízení nebo systémů se zpravidla vychází ze základního řetězce EMC, ilustrovaném na Obr. 2. [4]

Obrázek 2 – Základní řetězec EMC. [4]

Do první části řetězce (zdroj elektromagnetického rušení) je zahrnuto zkoumání vzniku rušení, jeho intenzity a charakteru. Patří sem přírodní zdroje rušivých signálů neboli přirozené a umělé zdroje rušení neboli člověkem vyrobené zdroje. Mezi přírodní zdroje patří např. elektronické procesy v atmosféře, slunce, kosmos a další. Mezi zdroje umělé spadají např. zapalovací systémy, přenos a distribuce elektrické energie, elektronické sdělovací prostředky nebo elektrické motory. [4]

Druhá část řetězce EMC (přenosové prostředí, elektromagnetická vazba) se zaobírá elektromagnetickým přenosovým prostředím a vazbami. Jinými slovy, zabývá se způsoby a cestami, pomocí kterých se energie dostane z jejího zdroje až do objektu, tedy přijímače rušení. Spadat sem mohou např. datové/signálové vodiče, napájecí vedení, vzdušný prostor a další. [4]

Třetí část (rušený objekt, přijímač rušení) popisuje podrobné specifikace rušivých účinků a klasifikaci jejich typu. Mezi rušené objekty nebo přijímače rušení můžeme zařadit např. televizní přijímače, počítače, telekomunikační systémy, číslicová technika, rozhlasové systémy a další podobná zařízení. [4]

Toto vyobrazení základního řetězce EMC je ale poněkud zjednodušené. Ve skutečnosti totiž může být každé zařízení, systém nebo pouze jejich část (element) současně vysílačem i přijímačem elektromagnetického rušení. I přes tuto skutečnost se ale můžeme dle zdroje [4] setkat s tím, že jako přijímač rušivých signálů bývá označován element, který je citlivější a má menší úroveň generovaného rušení. Naopak jako zdroj rušícího signálu bývá zase označován element, který je méně citlivý na rušení a který generuje vyšší úroveň rušení. Přitom jsou ale přijímač a zdroj v obou směrech mezi sebou vázány parazitní elektromagnetickou vazbou. Dalším problémem je, že se nikdy nejedná o působení pouze jednoho zdroje rušení na jeden přijímač, nýbrž se vždy řeší vztahy více navzájem se ovlivňujících systémů. [4]

Zdroj [4] uvádí, že se obvykle postupuje tak, že se jeden systém označí nejdříve za ten, který ostatní ovlivňuje, je tedy zdrojem rušení, a všechny ostatní systémy jsou označeny jako

systémy ovlivňované, jsou to tedy přijímače rušení. V dalším kroku se role prohodí, tedy původně systém označený za ovlivňující je nyní označen za ovlivňovaný a jsou hodnoceny důsledky jeho možných ovlivnění všemi ostatními systémy, které nyní tvoří tzv. obklopující elektromagnetické prostředí. Vliv rušivých působení těchto ostatních systémů se může ve zkoumaném systému projevovat různě, např. může být zhoršena kvalita systémových parametrů, může být částečně nebo úplně omezena funkce systému nebo dokonce může nastat havarijní stav. [4]

Z tohoto popisu je tedy patrné, že vzájemné působení různých systémů je velice komplexní, přičemž základní řetězec zobrazený na Obr. 2 má zejména metodologický význam. Následně je nutné si uvědomit, že jestliže by se podařilo eliminovat kteroukoliv část základního řetězce, elektromagnetická kompatibilita by pozbyla svůj smysl, jelikož by každé zařízení bylo dokonale elektromagneticky kompatibilní. Publikace [1] uvádí, že prozatím není možné tohoto stavu dosáhnout. Proto, abychom se k tomuto stavu alespoň přiblížily, je pozornost zaměřována pouze na jednu ze tří oblastí řetězce, jejíž úpravou dosáhneme v rámci daného systému nejvyššího efektu EMC. Dále je nutné určit, jestli zařízením/systémem vyzařované zdroje rušení jsou jeho funkčními parametry (např. TV vysílač), či zda jsou to jeho rušivé produkty (např. jiskření na kontaktech). V návaznosti na tento krok následně určíme, zda bude lepší rušivé vlivy minimalizovat již u zdroje rušení, nebo až u rušeného objektu, případně na přenosové cestě mezi nimi. [1], [2]

Obrázek 3 – Základní členění problematiky EMC. [4]

Dle výše zobrazeného Obr. 3 lze vidět, že celou problematiku EMC lze rozdělit do dvou základních skupin.

První skupinou je **elektromagnetická interference (EMI)**, neboli elektromagnetické rušení. EMI je proces, při němž se zdrojem rušení generovaný signál přenáší skrze elektromagnetické vazby do rušených systémů. Předmětem EMI je především identifikace zdrojů rušení, popis a měření rušivých signálů ale také identifikace parazitních přenosových cest. Elektromagnetické kompatibility kompletního systému lze dosáhnout různými technickými opatřeními, které se uplatňují především na straně zdroje rušení, ale také omezováním vzájemných vazeb mezi zdrojem rušení a přijímačem rušení. Lze tedy říct, že EMI se týká identifikací příčin rušení a jejich odstraněním. [4]

Druhou skupinou EMC je **elektromagnetická susceptibilita (EMS)**, kterou lze označit jako odolnost, citlivost, nebo imunitu. Tento pojem popisuje schopnost systému a zařízení pracovat bezchybně, případně s přípustným vlivem prostředí, který je nicméně přesně definovaný. EMS se zaobírá opatřeními technického charakteru, která zvyšují odolnost přijímače vůči negativním vlivům. EMS řeší odstraňování důsledků rušení, nikoliv identifikaci jejich zdrojů. [4]

Proces EMI zahrnuje měření intenzity elektrických či magnetických signálů a identifikaci problematických frekvencí, které pomohou odhalit rušivé komponenty zkoumaného zařízení. Zahrnuje měřící postupy a metody kvantitativního hodnocení vybraných parametrů. Měření komplikuje skutečnost, že měřící vybavení může být také zdrojem rušení a musí na to být brán zřetel při volbě zkušební techniky. [4]

Kromě v předchozím odstavci zmíněném měření rušení je v poslední době rychle se rozvíjející oblastí taktéž ověření návrhu elektromagnetické odolnosti objektu za pomoci tzv. simulátorů rušení. Zde se tedy jedná v podstatě o praktické ověření daného stupně EMS konkrétního navrženého zařízení. Ověřovat se mohou nejen již hotová kompletní zařízení, ale taktéž zařízení ještě ve fázi jeho samotného vývoje, tedy ještě před tím, než je toto zařízení uvedeno na trh. Již na první pohled je patrné, že tento postup je ekonomických nákladů týče výhodnější než následné zvyšování odolnosti již vyvinutého zařízení. [4]

2 NORMALIZACE A STANDARDIZACE V OBLASTI ELEKTROMAGNETICKÉ KOMPATIBILITY

Tvorba příslušných předpisů a norem je nedílnou a také důležitou součástí veškerých oblastí elektromagnetické kompatibility. Tato tvorba bývá motivována různými cíli, tudíž se mohou normy ale taká další legislativa pro EMC lišit např.:

- Na základě důvodu, kvůli kterému byl příslušný dokument vytvořen (např. z důvodu poskytnutí modelového příkladu nebo pravidla, nebo také aby byla zajištěna konzistence zařízení kvůli jednotnosti nebo povinné bezpečnosti provozu, ...),
- cílem, ke kterému je daná norma/legislativa určena (např. pro přesné určení nebo popis vlastností daného zařízení nebo systému, jeho označování, designu, ...),
- vývojem toho, jak dokument vznikl (např. díky vzájemné dohodě, nebo jej mohl vytvořit zákazník, také mohl vzniknout jako formalizovaná procedura, ...),
- charakterem toho, jak jsou následně použity (mohou to být normy závazné, doporučené nebo také dobrovolné normy, ...),
- důsledky či dopadem, které svým použitím vyvolají (může jít o dopad prakticky nulový, nebo až závažný). [1]

Jistou úroveň elektromagnetického rušení čili emisi, produkují veškerá elektrotechnická zařízení, nicméně tato zařízení vykazují současně taktéž jistou úroveň odolnosti čili imunity, vůči těmto emisím. Z tohoto důvodu jsou zde základní normy a kritéria pro EMC, které předepisují, že určitý systém nebo zařízení nesmí překračovat určité mezní emisní hodnoty produkovaných rušivých signálů. Stejně tak tyto předepisují jistý stupeň imunity, kterou každé zařízení nebo systém musí disponovat právě vůči rušení. K tomu, aby byly oba tyto normou dané požadavky splněny, se používají patřičné odrušovací prostředky, metody a opatření. Právě z tohoto pohledu lze všechny normy týkající se EMC dělit do tří kategorií, kdy každá z nich může být rozdělena ještě na dvě další. Tyto kategorie jsou vyobrazeny na následujících třech Obr. 4 - 6 [9]

Obrázek 4 – Dělení norem týkajících se EMC – první kategorie. [9]

Obrázek 5 – Dělení norem týkajících se EMC – druhá kategorie. [9]

Obrázek 6 – Dělení norem týkajících se EMC – třetí kategorie. [9]

Normy pro EMI jsou nejstarší a tím pádem také dle publikace [9] nejpropracovanější, oproti tomu normy pro EMS jsou podstatně mladší, i díky tomu je jich prozatím oproti normám pro

EMI méně, a tak se neustále dopracovávají. Tyto typy norem jsou obvykle zakotveny ve státních legislativách a tím pádem jsou také závazné, oproti tomu normy pro odrušovací prostředky se týkají pouze vzájemného vztahu výrobce/dodavatel – zákazník/uživatel a tím pádem obvykle nejsou zakotveny v legislativách a mají tak pouze doporučující charakter. [9]

2.1 Normalizační grémia, organizace a druhy norem EMC

Pro celou elektrotechniku je zastřešující organizací na mezinárodní úrovni elektronická komise International Electrotechnical Commision (IEC). V rámci této komise vznikají všechny elektrotechnické předpisy a normy, tudíž také ty pro oblast EMC. IEC patří do celosvětového normalizačního procesu, který je řízen a koordinován mezinárodní organizací pro normalizaci, tzv. International Standard Organization (ISO). Otázkami EMC se v rámci organizace IEC zabývá převážně specializovaný výbor pro rádiovou interferenci, Comité International Spécial des Perturbations Radioélectriques (CISPR), ten byl založen kvůli ochraně televizního a rádiového vysílání. Tento výbor se vyvinul během let v jednu z nejvýznamnějších mezinárodních autorit v rámci celkové oblasti EMC. Dokumenty publikované CISPR jsou často brány jako základ pro národní/regionální normy. V současné době se hlavní pozorností CISPR orientuje na oblast EMI. [9]

IEC se oborově člení do tzv. technických komisí Technical Committee (TC), případně do subkomisí Sub-Committee (SC). Z těchto komisí přispívají k problematice EMC především tyto:

- TC 41 Measuring Relay and Protection Equipment,
- TC 57 Telecontrol,
- TC 65 Industrial Process Measurement and Control,
- TC 77 EMC between Electrical Equipment Industrial Networks. [9]

Nejvíce dění v oblasti EMC ovlivňuje komise TC 77, a to svými publikacemi, podrobnými specifikacemi rušivých emisí, druhů elektromagnetického prostředí, postupů zkoušek, odolnosti, měřící techniky EMC, atd. [9]

Ve snaze sjednotit a harmonizovat množství nejrůznějších předpisů a norem, taktéž v oblasti EMC, vzniká v rámci evropského prostoru nový systém jednotných evropských norem European Norms (EN). Technickou přípravou těchto norem se zabývají hlavně dvě komise v rámci Evropské unie, jedná se o Comité European de Normalisation (CEN) a Comité

Européen de Normalisation Électrotechnique (CENELEC). CEN, neboli Evropská komise pro normalizaci, byla vytvořena ze států Evropského sdružení volného obchodu European Free Target Association (EFTA) a dále z jednotlivých normalizačních organizací všech členských států Evropské unie. Na podobném základu je vytvořena taktéž Evropská komise pro normalizaci v elektrotechnice neboli CENELEC, tato komise je vytvořena z národních evropských normalizačních organizací zapojených států. Normy těchto dvou komisí jsou harmonizované v celé Evropě. [9]

Mimo již uvedené organizace existují i další speciální orgány, ty se problematice normalizace EMC věnují v jistých specifických oblastech. Např. Mezinárodní telekomunikační unie International Telecommunications Union (ITU) a její poradní výbory CCIT a CRIR se v rámci EMC zabývají oblastí radiokomunikačních a telekomunikačních systémů a zařízení. Pro oblast spojů vydává vlastní normy tzv. Evropský institut pro normalizaci v telekomunikacích European Telecommunications Standards Institute (ETSI). ETSI vydává své vlastní normy pod označením European Telecommunication Standard (ETS), ty mají základ v doporučeních ITU. [9]

2.2 Druhy civilních EMC norem

Otázkami EMC se v rámci komise CENELEC zabývá převážně technická komise TC 110. Tato komise na základě dohody o spolupráci přebírá již existující normy IEC CISPR a IEC beze změn od komise IEC, současně pak komisi IEC předkládá návrhy a požadavky na vypracování norem nových. Normy, které takto vznikají, nebo jsou přebírány, lze dělit dle jejich charakteru do následujících třech skupin:

- Základní normy tyto normy definují problematiku EMC a dále určují základní všeobecné podmínky, které jsou potřeba k dosažení EMC u jakéhokoliv technického produktu. Základní normy žádné konkrétní meze rušení nebo meze odolnosti nestanovují.
- Kmenové normy kmenové normy nám specifikují minimální soubor požadavků pro EMI i EMS a také testovacích metod EMC. Určeny jsou pro všechna technická zařízení, která pracující v daných typech elektromagnetických prostředích (průmyslová prostředí, obytná prostředí, speciální prostředí, ...).
- Předmětové normy Jedná se o normy výrobků nebo normy skupin výrobků. Tyto normy definují detailní požadavky a testovací metody EMC pro jednotlivé výrobky

a skupiny podobných výrobků a zařízení. Předmětové normy musí být v souladu jak se základními, tak i kmenovými normami. [9]

Podle stupně své legislativní podpory můžeme všechny typy norem rozdělit na normy se závazným nebo pouze doporučujícím charakterem. Normy závazné mají charakter zákona. Výrobky, které závazným normám nevyhovují, se nesmí vyrábět ani prodávat. V rámci Evropské unie je závaznou normou především Směrnice Evropské unie č. 89/336/EEC. Co se týče norem doporučených, tak ty mají pouze doporučující charakter a jsou pouze projevem určité dohody. Tyto normy vznikají nejčastěji jako jistý výsledek spolupráce normalizačních organizací a výrobců. Mohou sem patřit např. doporučené normy Institute of Electrical and Electronics Engineers (IEEE) nebo Electronic Industries Association (EIA). V rámci Evropy se koordinací jednotlivých normalizačních organizací zabývá především CENELEC a jeho komise. Přesto, že se jedná o pouze doporučené normy, mohou mít vliv prakticky jako normy závazné. [9]

2.3 Vojenské normy EMC

Historicky první předpisy a normy pro oblast EMC představují tzv. vojenské normy, které jsou používány v řadě světových armád. Právě z těchto norem se často vyvíjeli i příslušné civilní normy. V amerických ozbrojených silách US Navy, US Army a US Air Force vznikla velice propracovaná soustava norem týkajících se EMC, tato soustava bývá označována jako MIL-STD. Následně se tyto normy rozšířily do západní Evropy, především prostřednictvím aliance NATO, zde byly postupně přebírány jejími členskými armádami. [9]

Jelikož se jedná o jeden z klíčových sektorů státu, představují často vojenská zařízení pomyslnou špičku technických možností v rámci dané oblasti. Armády jednotlivých států pak tato zařízení užívají ve velice rozmanitých a těžce definovatelných pracovních podmínkách, z toho důvodu musí být tato zařízení testována v náročných, realitu připomínajících, podmínkách. Tyto normy se zabývají nejen oblastí EMI, ale taktéž oblastí EMS vojenských zařízení. Právě vojenské normy byly prvními a mnoho let taktéž jedinými normami, jež se zabývali testováním v oblasti EMS. Právě z toho důvodu byly dlouhou dobu a v širokém rozsahu tyto vojenské normy využívány taktéž v civilním sektoru jako doporučené normy. [9]

Hlavním rozdílem v oblasti EMC mezi civilními normami a vojenskými normami MIL-STD bylo především to, že u norem vojenských se pro vyhodnocování a měření EMI využívá

detekce špičkových hodnot neboli tzv. peak detection, kdežto u norem civilních, které jsou založeny na metodice CISPR, se využívá tzv. detekce kvazi-špičkových hodnot. Tato odlišnost je zde z toho důvodu, že CISPR se zaměřuje převážně na ochranu zvukového signálu a rádiového příjmu před rušením, kdežto pro vojenské účely je primárním cílem vyhodnotit špičkové hodnoty rušení a dále jeho vliv na vojenská zařízení. Mezi další rozdíly mezi těmato dvěma sektory patří např. jinak stanovené doporučené mezní hodnoty elektromagne-tického vyzařování a odlišný, obvykle širší, měřící kmitočtový rozsah. [9]

2.4 České normy

Již vytvořené ČSN normy v rámci České republiky dříve revidoval a harmonizoval je s IEC a EN Český normalizační institut. Nicméně na základě sdělení ministra průmyslu a obchodu č. 438/2008 Sb. byla tato organizace ke dni 31.12.2008 zrušena a tvorbu a vydávání českých technických norem na základě téhož rozhodnutí převzal od 1.1.2009 Úřad pro technickou normalizaci, metrologii a státní zkušebnictví. K další změně došlo k datu 1.1.2018, kdy všechny činnosti související s tvorbou, vydáváním a distribucí technických norem přechází na Českou agenturu pro standardizaci. Požadavky v oblasti EMC se zabývá taktéž Nařízení vlády č. 117/2016 Sb. o technických požadavcích na výrobky z hlediska jejich elektromagnetické kompatibility. Shoda přístroje se osvědčuje vydáním ES prohlášení o shodě a opatřením přístroje označením CE (jeho grafická podoba je stanovena zvláštním právním předpisem). [10], [11], [12]

Zde jsou uvedeny vybrané normy týkající se EMC:

- ČSN IEC 50 (161): Mezinárodní elektrotechnický slovník, kapitola 161: Elektromagnetická kompatibilita
- ČSN IEC 1000-1-1: Elektromagnetická kompatibilita (EMC). Část 1: Všeobecně.
 Díl 1: Použití a interpretace základních definic a terminů
- ČSN EN 61000-4-1 ED. 2: Elektromagnetická kompatibilita (EMC) Část 4-1: Zkušební a měřicí technika - Přehled o souboru IEC 61000-4
- ČSN EN 61000-4-3 ED. 3: Elektromagnetická kompatibilita (EMC) –Část 4-3: Zkušební a měřící technika –Vyzařované vysokofrekvenční elektromagnetické pole Zkouška odolnosti

3 METODY MĚŘENÍ EMC

Testování elektromagnetické kompatibility se dělí na dva typy – testování vyzařování a testování odolnosti. Vyzařováním je myšleno generování nežádoucích elektromagnetických signálů z testovaného zařízení. Citlivost elektronického zařízení je definována jako schopnost tohoto zařízení správně fungovat i v přítomnosti nežádoucího elektromagnetického vyzařování. Testování odolnosti a vyzařování je možno realizovat pomocí různých metod, záleží na různých faktorech, jako jsou např. velikost testovaného zařízení, frekvenční pásmo, jestli je zamýšleno měření elektrického nebo magnetického pole, elektrické vlastnosti testovacího signálu a další. Tato měření mohou probíhat např. na testovacích pracovištích na otevřeném prostranství, dále pak v tzv. TEM celách nebo bezodrazových komorách. [13]

3.1 Testovací pracoviště na otevřeném prostranství

Jednou z možností, kde je možno testovat elektronická zařízení v rámci EMC je testovací pracoviště na otevřeném prostranství. Dle normy ČSN EN 55016-1-1 ED. 3, by toto pracoviště mělo být půdorysného tvaru elipsy. [4], [13]

Obrázek 7 – Půdorysný pohled na testovací pracoviště na otevřeném prostranství. [14] Hlavní osa této elipsy je stanovena na dvojnásobek vzdálenosti mezi měřící anténou a zkoušeným objektem. Anténa a zkoumaný předmět se nachází v ohniscích této elipsy. Měřící vzdálenost D je dle normy ČSN EN 55016-1-1 ED. 3 předepsána na hodnoty 3 m, 10 m, 30 m, nebo 100 m. Z hlediska kvality je preferovanou hodnotou 100 m, nicméně tvorba měřícího místa takových rozměrů je obtížná, tudíž se většinou měří na vzdálenosti 30 m nebo 10 m. Testovací pracoviště musí být na rovném, plochém terénu, nesmí se zde nacházet žádné překážky, jako např. stromy, budovy, elektrická vedení, podzemní kabely a další. Dalším požadavkem je také tzv. okolní rušení, jeho hodnota by měla být alespoň o 20 dB nižší než měřené úrovně zařízení. [4]

Obrázek 8 – Boční pohled na testovací pracoviště na otevřeném prostranství. [4]

Největší nevýhodou je u tohoto typu měření přítomnost vnějších rušivých elektromagnetických polí. Jejich zdrojem mohou být okolní TV vysílače, rozhlasové vysílače, WiFi sítě a další. Publikace [4] uvádí, že se výrobci měřících zařízení snaží tento problém řešit tak, že před samotným měřením se proměří celkové elektromagnetické pozadí tohoto stanoviště v požadovaném kmitočtovém pásmu. Tyto naměřené hodnoty jsou poté uloženy do paměti měřícího zařízení, a poté odečteny od měřených hodnot aktuálního rušení. Nicméně pokud se vnější rušivé pozadí mění s časem příliš často, není toto opatření moc účinné. Naopak velkou výhodou testovacích pracovišť na otevřeném prostranství jsou nízké pořizovací náklady. [4]

3.2 Částečně bezodrazová komora

Výše zmíněné testovací pracoviště na otevřeném prostranství jsou vzhledem na vlivy elektromagnetického pozadí vhodné především na předcertifikační testy. Aby byly tyto vlivy při měření eliminovány, přesunula se měření z otevřených prostranství do uzavřených prostor, které mají přesně definované parametry. [4], [15] Částečně bezodrazová komora je místnost, která je elektromagneticky stíněna. Tato komora má vyjma podlahy všechny své stěny, tedy i včetně stropu, obloženy absorpčními materiály. Asorpční materiály silně omezují odrazy uvnitř komory v širokém pásmu kmitočtů. Stínící účinnost těchto komor se v praxi pohybuje kolem 80 – 100 dB. Podlaha testovacích komor bývá pokryta vhodným vodivým materiálem, mezi jehož vlastnosti by měla patřit dobrá odrazivost. Při měření se šíří přímá vlna ze zkoušeného objektu a odražená vlna od zemnící plochy. V místě měření je sčítána přímá vlna s vlnou odraženou o odlišné fázi, z toho důvodu se musí nastavovat výška antény od 1 m až do 4 m. Dělá se to z důvodu nalezení maxima intenzity, což je vlastně součet vln, které mají stejnou fázi. Částečně bezodrazová komora je stále preferována pro testování v kmitočtovém rozsahu od 30 MHz do 1 GHz. [4], [15]

Obrázek 9 – Částečně bezodrazová komora. [16]

3.3 Plně bezodrazová komora

V podstatě jediným rozdílem mezi plně bezodrazovými částečně bezodrazovými je pokrytí absorbéry, ty se kromě stěn a stropu umísťují i na podlahu komory. Toto opatření zajistí, že se elektromagnetická vlna neodráží od podlahy a tím pádem není nutné nastavovat výšku měřící antény. V těchto komorách se testuje v kmitočtovém pásmu nad 1 GHz, zde je právě nutné doplnění o přídavné absorbéry mezi měřící anténou a zkoumaným zařízením. V plně bezodrazových komorách lze testovat taktéž v kmitočtovém pásmu 30 MHz – 1 GHz, nicméně preferované pro zmíněné pásmo jsou částečně bezodrazové komory. [4], [15]

Obrázek 10 – Plně bezodrazová komora. [17]

3.4 GTEM cela

Vzhledem k nárokům na měření elektromagnetického vyzařování elektrických a elektronických zařízení a na testování jejich odolnosti, bylo třeba vyvinout takové prostory, které jsou bezpečné a neovlivňují okolí. Pod pojmem bezpečný prostor se rozumí prostor, ze kterého nebude elektromagnetické záření unikat vně tento prostor, a nemůže dojít k ovlivnění strojů, systémů, zařízení, tak i člověka. Právě k tomuto účelu vznikly tzv. bezodrazové komory. Bezodrazové komory mohou mít různé velikosti v závislosti na rozměrech zkoumaných zařízení. Mohou to být pouze malé zkušební cely, kde se zkoumají jednotlivé součástky, zařízení nebo přístroje, nebo to mohou být celé místnosti, kde se již zkoumají větší soustavy, měřící systémy a další větší zařízení. Nakonec to mohou být velké haly, které slouží pro testování např. nákladních automobilů, elektrických generátorů anebo vojenské techniky. Do první skupiny, tedy do malých zkušebních cel, spadají tzv. Transverse Electromagnetic (TEM) cely. V závislosti na druhu měření potom byly z těchto TEM cel odvozeny další druhy, jako např. WTEM, EUROTEM nebo právě GTEM, které jsou pro tuto práci podstatné. [18]

3.4.1 Historie vývoje zkušebních komor

Nejdříve byly používány k měření odolnosti elektrických zařízení vůči rušení elektromagnetickým polem speciální testovací antény. Antény byly vyrobeny z tzv. páskového vedení, složeny byly ze dvou paralelních vodivých desek, kdy na jedné straně byl zdroj napětí a na straně druhé požadovaná charakteristická impedance. Antény musely být z důvodu ochrany personálu a okolního prostředí používané pouze ve stíněných prostorech. [19]

Aby se předešlo nutnosti používat testovací zařízení ve stíněných prostorech, byly vyvinuty TEM cely. Klasické TEM cely jsou sestaveny jako tzv. "Crawfordova cela", tato cela byla poprvé představena již roku 1974. [18]

Obrázek 11 – TEM cela – tzv. Crawfordova cela. [21]

Hlavními částmi, ze kterých se TEM cela skládá, jsou centrální obdélníková část a dvě zúžené části zakončené vodiči. Základní faktor, který limituje TEM cely v oblasti velmi vysokých frekvencí je nedokonalé impedanční přizpůsobení. Toto frekvenční omezení je způsobeno přechody mezi obdélníkovou a zúženou částí, kde mohou vznikat nežádoucí rezonance, které znehodnocují výsledky měření a testování. Postupem času bylo zjištěno, že tyto jevy mohou být eliminovány obložením vnitřních stěn a krajních prostor absorpčním materiálem. [18]

V roce 1984 byla na tomto základě švýcarskou firmou Asea Brown Bovery Ltd. zkonstruována zcela nová cela. Tato cela je nazývána jako Gigahertz-TEM (GTEM), omezující faktory související s použitím velmi vysokých frekvencí řeší změnou svého konstrukčního řešení. Ukázku takovéto GTEM cely lze vidět na Obr. 12. [18]

Obrázek 12 – Ukázka GTEM cely. [22]

3.4.2 Princip GTEM cely

Měření pomocí GTEM cel je ve frekvenční oblasti nad 1 GHz možné změnou konstrukce. GTEM cela je tvořena uzavřeným prostorem, který je dlouhého, pyramidálně se rozšiřujícího tvaru a úsekem koaxiálního vedení, které má pravoúhlý průřez s nesymetricky umístěným vnitřním páskovým vodičem. [1], [13], [20]

Obrázek 13 – Boční řez GTEM celou. [4]

Obrázek 14 – Příčný průřez GTEM celou. [4]

Vnitřní páskový vodič má po celé své délce konstantní impedanci 50 Ω a vrcholový úhel vedení 15°. Širokopásmová impedanční přizpůsobivost GTEM cely je zajištěna jehlany z absorpčního materiálu, které jsou umístěny na čelní stěně GTEM cely. Oproti tomu bezodrazovost v oblastech nižších frekvencí je zajištěna pomocí vnitřní odporové sítě R=Z₀ na konci vnitřního páskového vodiče. [4], [13], [20]

Obrázek 15 – Konstrukce GTEM cely. [4]

Obrázek 16 – Ukázka absorbérů. [23]

GTEM celou se šíří postupná elektromagnetická vlna, jejíž vlnoplocha je mírně kulová. Zkušební harmonické pole lze v závislosti na typu budícího generátoru vytvářet s intenzitou v řádech stovek V/m v kmitočtovém pásmu do několika GHz. Impulzová pole lze vytvořit až o velikosti několika kV/m. [4]

Mezi hlavní výhody GTEM cel se řadí:

- vysoká prostorová homogenita simulovaného pole ve velmi širokém pásmu frekvencí,
- možnost využití nižších zesilovacích výkonů pro vygenerovaní pole s identickou intenzitou v porovnaní s bezodrazovými komorami,
- prakticky nulové vyzařování ze zkušebního prostoru do okolí,
- podpora modulárních systémů variabilita ve velikosti testovaných objektů,
- časová nenáročnost přípravy měření oproti měření na volném prostranství,
- nižší vstupní náklady na vytvoření pracoviště měření EMI a EMS oproti bezodrazovým komorám. [19]

Na trhu jsou GTEM cely dostupné v několika různých velikostech. Častým jevem také je, že název daného modelu GTEM cely symbolizuje také velikost GTEM cely. Např. GTEM cela od firmy Lindgren-Rayproof model GTEM 1250 má výšku septa 1250 mm, tato výška je měřena svisle od podlahy na konci cely. Co se vnějších rozměrů týká, tento model je 6 m dlouhý, 3 m široký a 2,5 m vysoký. Obecně vzato jsou na trhu k dispozici GTEM cely s maximální výškou septa od 250 mm do 2000 mm. Nicméně např. ve švýcarském Bernu se nachází speciálně postavená GTEM cela 3750, která má výšku septa 3,75 m. [18]

V následující tabulce je uveden přehled komerčně dostupných modelů GTEM cel od vybraných výrobců, konkrétně se jedná o výrobce Frankonia, Teseq a ETS-Lindgren.

Tabulka 4 – Přehled GTEM cel podle výrobců. [24], [25], [26]

			Maximální roz-
Výrobce	Model	Vnější rozměry (m)	měry testovaného
			předmětu (m)
	250	1,27 x 0,64 x 0,44	0,20 x 0,20 x 0,15
	400	2,20 x 1,22 x 0,83	0,35 x 0,40 x 0,25
	500	3,00 x 1,68 x 1,15	0,40 x 0,40 x 0,30
	750	4,00 x 2,20 x 1,50	0,60 x 0,60 x 0,50
Frankonia	1000	5,00 x 2,71 x 1,88	0,75 x 0,75 x 0,70
Tankoma	1250	6,10 x 3,20 x 2,15	0,95 x 0,95 x 0,85
	1500	7,10 x 3,81 x 2,50	1,20 x 1,20 x 1,00
	1750	8,10 x 4,30 x 2,80	1,40 x 1,40 x 1,15
	2000	9,10 x 4,84 x 3,14	1,75 x 1,75 x 1,30
	2500	11,10 x 5,86 x 3,83	2,15 x 2,15 x 1,60
	GTEM 250	1,25 x 0,65 x 0,45	0,20 x 0,20 x 0,15
	GTEM 500	2,95 x 1,48 x 1,61	0,41 x 0,41 x 0,31
	GTEM 750	3,95 x 2,02 x 1,95	0,62 x 0,62 x 0,49
Tesea	GTEM 1000	4,95 x 2,54 x 2,30	0,74 x 0,74 x 0,66
10504	GTEM 1250	5,95 x 3,06 x 2,52	0,93 x 0,93 x 0,83
	GTEM 1500	6,95 x 3,58 x 2,55	1,11 x 1,11 x 0,99
	GTEM 1750	7,95 x 4,10 x 2,90	1,32 x 1,32 x 1,16
	GTEM 2000	8,95 x 4,62 x 3,24	1,50 x 1,50 x 1,32

	5402 GTEM!	1,40 x 0,75 x 0,50	* 0,23 x 0,16
ETS-Lindgren	5405 GTEM!	3,00 x 1,60 x 1,70	* 0,46 x 0,39
Č	5407 GTEM!	4,00 x 2,20 x 2,10	* 0,69 x 0,75
	5411 GTEM!	5,40 x 2,80 x 2,30	* 0,93 x 0,69

* Výrobce neuvádí maximální rozměry testovaného předmětu, uvedené rozměry jsou rozměry dveří GTEM cely.

3.4.3 Legislativa GTEM cel

GTEM cely jsou navrženy a vyrobeny tak, aby byly v souladu s technickými požadavky normy IEC 61000-4-20, tato norma je v České republice vedena pod názvem ČSN EN 61000-4-20 ED. 2 - Elektromagnetická kompatibilita (EMC) - Část 4-20: Zkušební a měřicí technika - Zkoušky emise a odolnosti ve vlnovodech s příčným elektromagnetickým polem (TEM).

Měření vyzařování lze taktéž provádět dle norem ČSN EN 50561-1 (334293) - Zařízení pro komunikaci po vedení používaná v instalacích nízkého napětí - Charakteristiky vysokofrekvenčního rušení - Meze a metody měření - Část 1: Zařízení pro domácí použití a ČSN EN 55032 ED.2 (334232) - Elektromagnetická kompatibilita multimediálních zařízení - Požadavky na emisi. Toto měření nicméně není přímým ekvivalentem Open-area test site (OATS) testů, proto je nutno data korelovat. Korelace není potřeba, jestliže jsou s výsledky měření z GTEM cely porovnávána data naměřená z plně bezodrazové komory, v tomto případě je umožněno naměřená data srovnávat přímo. Tyto skutečnosti a technické parametry GTEM cely nabízí využití těchto cel taktéž při návrhu a vývoji nových součástek nebo zařízení. [19]

II. PRAKTICKÁ ČÁST
4 MODELOVÁNÍ GTEM CELY

Model GTEM cely byl vytvořen v simulačním nástroji CST Studio Suite. Jedná se o velice užitečný simulační nástroj, který je určen k modelování nejrůznějších komponentů, u kterých lze poté simulovat jejich fyzikální vlastnosti a chování.

Obrázek 17 – Moduly v simulačním nástroji CST Studio Suite (vlevo) a další dělení modulu EMC/EMI.

Při zahájení práce s tímto programem byl vybrán modul EMC/EMI. Z dalšího dělení modulu EMC/EMI byl pro modelování v rámci této práce zvolen blok "Radiated Emission", v následujících krocích byly zvoleny možnosti "High Speed Signals" a poté "Shielding Effectivness of Enclosures". Následně již byl zvolen pouze solver, konkrétně "Time Domain (TLM)" a byly zvoleny základní jednotky pro daný model.

Samotné modelování poté může probíhat například pomocí 5 základních tvarů, jimiž jsou čtyřhran, koule, kužel, kruh a válec. Dalším způsobem může být například modelování pomocí 3D polygonů a následné práci s nimi. Při modelování GTEM cely v rámci této práce byly využity oba zmíněné postupy.

Brick			×
Name:		_	ОК
30101			Cancel
Xmin:	Xmax:		
0	0		Preview
Ymin:	Ymax:		Help
0	0		
Zmin:	Zmax:		
0	0		
Component:			
component2		\sim	
Material:			
Taconic RF-41 (loss	y)	\sim	

Obrázek 18 – Ukázka tabulky k vytvoření čtyřhranu.

4.1 Modelování stěn GTEM cely

Ze všeho nejdříve byly změřeny rozměry stěn GTEM cely Frankonia EMC-GTEM 250. Vnitřní rozměry stěn jsou zobrazeny na následujících Obr. 19 a Obr. 20.

Obrázek 19 - Skutečné vnitřní rozměry stěn GTEM cely v mm - nárys.

Obrázek 20 – Skutečné vnitřní rozměry stěn GTEM cely v mm – půdorys.

K modelování stěn byly vytvořeny dva 3D polygony, které byly následně propojeny pomocí funkce "Loft Curves". Konkrétně se jedná o polygony, které zaujímají pozici stěn 600 x 400 mm a 18 x 13 mm. Souřadnice krajních bodů těchto polygonů jsou zobrazeny na Obr. 21. Hodnoty byly zadány klasicky pomocí čísel, jelikož se nepředpokládá jejich následná editace. Jako materiál stěn byl z knihovny materiálů zvolen Steel-1008.

me:			OK	Name:			OK
dpolygon 1			Consel	3dpolygon2			Cancel
rve:			Cancel	Curve:			Cancer
urve1		~	Help	curve1		~	Help
oints				Points			
Х	Y	Z	^	x	Y	Z	^
0	0	0		1060,81054	0	291	
0	0	600		1060,81054	0	309	
68,15259	394, 15127	600		1060,81054	13	309	
68,15259	394,15127	0		1060,81054	13	291	
-	0	0		1060,81054	0	291	~

Obrázek 21 – Souřadnice krajních bodů 3D polygonů 600 x 400 mm (vlevo) a 18 x 13 mm (vpravo).

Následně byly 3D polygony "propojeny" pomocí již zmíněné funkce "Loft Curves", čímž vznikne těleso, které má mnou požadované rozměry. V dalším kroku bylo těleso pomocí

funkce "Shell Solid or Thicken Sheet" převedeno na stěny tělesa o požadované tloušťce 1 mm a s požadovanými vnitřními rozměry. Hotový model stěn GTEM cely i s výslednými vnitřními rozměry je zobrazen na Obr. 22 a Obr. 23.

Obrázek 22 – Model stěn GTEM cely s vnitřními rozměry – pohled z boku.

Obrázek 23 – Model stěn GTEM cely s vnitřními rozměry – pohled ze shora.

4.2 Modelování septa GTEM cely

Septum je situováno do ³/₄ výšky GTEM cely. Také v tomto případě bylo využito dvou 3D polygonů, které byly následně spojeny pomocí funkce "Loft Curves". Při modelování

jednotlivých 3D polygonů bylo v tomto případě využito proměnných hodnot, které lze editovat v listu parametrů. Bylo tak rozhodnuto z důvodu snadnější editace modelu při následných optimalizačních krocích.

Pro první polygon byl využitý lokální souřadnicový systém, konkrétně byl vybrán jako počátek tohoto systému střed vnitřní stěny GTEM cely 600 x 400 mm. Následně byl vytvořen první 3D polygon pomocí proměnných. Pro druhý polygon byl využit lokální souřadnicový systém s počátkem ve středu vnitřní stěny GTEM cely 18 x 13 mm. Také zde byly hodnoty krajních bodů zadávány pomocí proměnných pro snadnější optimalizaci. Zadané hodnoty krajních bodů 3D polygonů jsou zobrazeny na Obr. 24. Ukázka hodnot v listu parametrů je zobrazena na Obr. 25. Následně byly oba polygony propojeny pomocí funkce "Loft Curves", jako materiál byl pro prvotní simulaci zvolen materiál PEC, neboli perfektní elektrický vodič. Tloušťka septa byla stanovena na 2 mm, stejně jako na reálné GTEM cele.

ame:		[OK	Name:			OK
apolygon 1		_	Cancel	3apolygon2			Cancel
urve:			Help	curve1	~		Help
Points				Points			
U	V	W	^	U	V	W	^
Sep_u_min	-Sep_v	Sep_w		Sep_u_min_s	Sep_v_s	Sep_w_s	
Sep_u_min	Sep_v	Sep_w		Sep_u_min_s	-Sep_v_s	Sep_w_s	
Sep_u_max	Sep_v	Sep_w		Sep_u_max_s	-Sep_v_s	Sep_w_s	
Sep_u_max	-Sep_v	Sep_w		Sep_u_max_s	Sep_v_s	Sep_w_s	
Con u min	-Sep v	Sep w	~	Sep u min s	Sep v s	Sep w s	

Obrázek 24 – Ukázka proměnných krajních bodů 3D polygonů na koncích septa.

Para	ameter List				×
∇	Name	Expression	Value	Description	*
-12	Sep_u_min_s	= 2,25	2.25	U min souřadnice septa - špica	
-10	Sep_u_max_s	= 4,25	4.25	U max souřadnice septa - špica	
-111	Sep_v_s	= 6	б	V souřadnice septa - špica	
-)13	Sep_w_s	= 21	21	W souřadnice septa - špica	
-34	Sep_u_min	= 99	99	U min souřadnice septa - zadek	
-10	Sep_u_max	= 101	101	U max souřadnice septa - zadek	-

Obrázek 25 – Ukázka proměnných v listu parametrů.

Na širším konci bylo ze septa "odebráno" 6 rovnoramenných trojúhelníků, aby na něm vznikly zuby. Tyto trojúhelníky jsou rovnoměrně rozmístěny na zadní straně septa, délka jejich ramen je zadána pomocí proměnných, aby jejich délka mohla být snadněji upravována.

Také tyto trojúhelníky byly vytvořeny pomocí 3D polygonů. Výsledná podoba septa je zobrazena na Obr. 26 a Obr. 27.

Obrázek 26 – Pohled na model septa GTEM cely - pohled z boku.

Obrázek 27 – Pohled na model septa GTEM cely – pohled ze shora.

4.3 Modelování absorbérů

Absorbéry jsou umístěny na zadní stěně GTEM cely 600 x 400 mm. Jsou tvořeny jedním velkým blokem, který vyplňuje prostor na stěně pod septem, na kterém jsou umístěny dvě řady po 5 kusech čtyřbokých jehlanů. Další blok je umístěn na téže stěně v prostoru nad septem, také na něm je umístěna jedna řada po 5 kusech čtyřbokých jehlanů.

Bloky byly vytvořeny s požadovanou hloubkou, přičemž ostatní rozměry byly záměrně vymodelovány o něco větší, než jsou vnitřní rozměry GTEM cely. Bylo tak učiněno z toho důvodu, aby po následném ořezání podle stěn GTEM cely absorbéry kompletně vyplňovali požadovaný prostor. Následně byly oba bloky zarovnány s vnitřní stěnou 600 x 400 mm a bylo upraveno jejich usazení. Dále byly oba bloky oříznuty pomocí stěn GTEM cely, přičemž horní blok byl oříznut také pomocí septa, nežádoucí části po ořezání byly následně odebrány, díky tomu oba bloky zabírají celou plochu stěny.

Posledním krokem bylo vytvoření čtyřbokých jehlanů, které byly umístěny vytvořené bloky, umístěny jsou tak, jak je popsáno v prvním odstavci této Podkapitoly 4.3. Parametry všech částí absorbérů je možno měnit pomocí listu parametrů. Také tyto jehlany byly oříznuty pomocí stěn, případně septa. Výslednou podobu absorbérů je možno vidět na Obr. 28 a Obr. 29. Absorbéry byly pro první simulaci vyrobeny z materiálu ECCOSORB MCS, ten je určen pro frekvenční rozsah 0,8 – 6 GHz. [29]

Obrázek 28 – Ukázka modelu absorbérů GTEM cely – pohled z boku.

Obrázek 29 – Ukázka modelu absorbérů GTEM cely.

5 POPIS JEDNOTLIVÝCH KOMPONENT PRO POSUZOVÁNÍ ELEKTROMAGNETICKÉ KOMPATIBILITY

V rámci této kapitoly jsou popsány jednotlivé komponenty, které byly použity k praktickému posuzování elektromagnetické kompatibility. Všechny komponenty se nachází ve Vědeckotechnickém parku Informační a komunikační technologie, který se nachází vedle Fakulty aplikované informatiky UTB ve Zlíně.

5.1 GTEM cela Frankonia EMC-GTEM-250

K měření EMC byla použita GTEM cela vyrobená firmou Frankonia. Model 250 je nejmenším modelem, který tato firma vyrábí. Číslovka 250 v názvu napovídá, že se jedná o celu s výškou septa 250 mm, ve které je možno testovat zařízení o maximálních rozměrech 0,20 x 0,20 x 0,15 m. Vnější rozměry této GTEM cely jsou 1,27 x 0,64 x 0,44 m, velikost dvířek sloužících k umístění testovaného zařízení je 0,30 x 0,23 m. Běžný frekvenční rozsah udává výrobce GTEM cely od 10 kHz do 20 GHz. [24]

Výrobce udává hodnotu nominální impedance cely 50 Ω . Maximální kontinuální vstupní výkon je stanoven na hodnotu 500 W, přičemž pulzně výrobce garantuje až 2 kW. K napájení zařízení testovaných v cele je možno využít stíněný zdroj střídavého napětí, ten je součástí GTEM cely. Maximální proudový odběr zařízení napájených tímto zdrojem je stanoven na 10 A. Také je možné napájecí kabel společně s jinými datovými kabely vést pomocí pene-tračního panelu umístěného ze strany GTEM cely. [24]

Obrázek 30 - GTEM cela Frankonia EMC-GTEM 250.

5.2 Sonda měření intenzity elektrického pole Frankonia EFS-10

Sonda slouží k měření intenzity elektrického pole, konkrétně intenzitu snímá ve třech osách, x, y a z. Při měření je sonda umístěna uvnitř GTEM cely. Díky měření ve třech osách je zajištěn okamžitý a přesný výstup aktuálních hodnot intenzity elektrického pole, které působí na testované zařízení. Přenos informace je zajištěn pomocí optického kabelu, data jsou následně přenášena do PC, na kterém je nainstalován vyhodnocovací software WinEP600.

Obrázek 31 - Sonda intenzity el. pole Frankonia EFS-10.

Výrobcem udávaný frekvenční rozsah pro měření sondou je od 10 kHz do 9,25 GHz. Hodnota intenzity el. pole které je možno měřit je od 0,5 do 500 V/m. Sonda je vybavena lithiovou nabíjecí baterií, která zajišťuje provoz sondy až po 80 hodin. Výrobcem udávaná odchylka měření je stanovena na hodnotu 0,01 V/m. [27]

5.3 Zesilovače

Zesilovače použité v rámci této práce jsou od firmy Frankonia. Zesilovače od této se odlišují zejména jejich určením a jejich frekvenčním rozsahem. V rámci této práce byly použity konkrétně tyto 3 modely zesilovačů:

- FLH-20B frekvenční rozsah 20 MHz 1 GHz,
- FLG-5A frekvenční rozsah 0,8 GHz 2,0 GHz,
- FLG-10F frekvenční rozsah 2,0 GHz 6,0 GHz.

5.4 Reléový spínací panel zesilovačů FRANKONIA RSU

K přepínání mezi jednotlivými zesilovači slouží panel od firmy Frankonia, konkrétně model RSU. Pomocí tohoto panelu lze jednoduše nastavit požadovaný frekvenční rozsah. V rámci této práce bylo k přepínání mezi jednotlivými relé využito manuálního ovládání.

Obrázek 32 – Zesilovače a reléový spínací panel od firmy Frankonia.

5.5 Generátor mikrovlnných a RF signálů SMB100A

Tento generátor mikrovlnných a RF signálů od firmy Rohde & Schwarz má frekvenční rozsah od 100 kHz do 40 GHz. Disponuje vynikajícími vlastnostmi signálu s nízkým singlesideband modulation (SSB) fázovým šumem typu -128 dBc (při 1 kHz, 20 kHz ofset). Taktéž má vysoký výkon až +27 dBm. Podporuje všechny důležité analogové modulace s AM, FM / ϕ M a pulsní modulace. [28]

6 FYZICKÉ MĚŘENÍ INTENZITY ELEKTRICKÉHO POLE V GTEM CELE

Všechny použité přístroje k tomuto měření jsou popsány v předchozí kapitole. Schéma zapojení jednotlivých komponent je zobrazeno na Obr. 33. Kabeláž k sondě Frankonia EFS-10 je vedena pomocí penetračního panelu.

Obrázek 33 - Schéma zapojení pro měření intenzity el. pole.

Postup měření byl následující:

- zapojení soustavy pro měření intenzity el. pole v GTEM cele,
- návrh pozic pro měření intenzity el. pole,
- umístění sondy na stanovenou pozici,
- stanovení frekvenčního rozsahu a kroku frekvencí pro měření,
- praktické měření intenzity el. pole na stanovených pozicích.

Grafické znázornění přibližných poloh jednotlivých pozic pro měření intenzity el. pole je znázorněno na Obr. 34, přibližné souřadnice skutečného umístění sondy v GTEM cele jsou vypsány v Tab. 5.

Obrázek 34 – Grafické znázornění přibližných poloh jednotlivých pozic pro měření intenzity el. pole při pohledu ze shora.

	Souřadnice x	Souřadnice y	Souřadnice z
Pozice 1	380	60	300
Pozice2	370	60	470
Pozice 3	550	60	420
Pozice 4	380	60	180
Pozice 5	600	60	230
Pozice 6	580	60	300

Tabulka 5 – Přibližné souřadnice skutečného umístění sondy v GTEM cele.

Na jednotlivých pozicích byly provedeny vždy 3 měření, při kterých byla poloha sondy vždy o malý kousek pozměněna. Měření probíhalo ve frekvenčním rozsahu 20 MHz – 3 GHz, přičemž krok byl stanoven mezi frekvencemi 20 MHz – 100 MHz po 20 MHz a mezi frekvencemi 100 MHz – 3 GHz po 50 MHz.

U praktického měření je možno očekávat jisté odchylky oproti simulaci, jelikož při praktickém měření se s velkou pravděpodobností nepodařilo sondu přesně nastavit v jednotlivých osách. Poloha sondy byla navíc limitována nastavitelností jejího podstavce a komunikačním kabelem, který kvůli své "tuhosti" a způsobu jeho vyvedení z GTEM cely neumožňoval sondu přesně umístit ve všech bodech tak, jak bylo zamýšleno. Ukázku umístění sondy v GTEM cele lze vidět na Obr. 35 a Obr. 36.

Obrázek 35 – Ukázka umístění sondy v GTEM cele.

Obrázek 36 – Ukázka umístění sondy v GTEM cele.

U každé pozice byla vždy zapsána celková hodnota intenzity el. pole na zkoumané frekvenci. Měření proběhlo ve zvolené pozici pro celý frekvenční rozsah a poté byla poloha sondy na dané pozici o malý kousek pozměněna a měření se opakovalo, vždy 3x po sobě na stejné pozici.

Po naměření všech hodnot byl u každé frekvence vypočítán průměr ze všech tří měření na dané pozici a dále vypočtena nejistota typu A podle následujícího vzorce:

$$u_A = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(2)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{3}$$

Následně byla tato nejistota nejprve od průměrné hodnoty odečtena a následně přičtena, tím vznikly v grafech v Podkapitolách 9.1 až 9.6 2 linie, mezi kterými se právě nachází průměrná hodnota ze všech tří měření.

7 POPIS SIMULACE V SIMULAČNÍM NÁSTROJI CST STUDIO

Model GTEM cely vyrobený v prostředí CST Microwave Studio byl upraven pro účely simulace přidáním tzv. feeding portu, který byl reprezentovaný "Discrete Edge Port", při jeho tvorbě byla zvolena volba "current" a hodnota byla nastavena na 100 A. Tento port vede od středu vnitřní stěny "špičky" GTEM cely a je připojen ke středu stěny septa nejblíže "špičce" GTEM cely, názorně je toto propojení vyobrazeno na Obr. 37.

Dalším krokem bylo připojení "Lumped Network" elementů, které vlastě představují jednoduché elektronické součástky, v tomto případě to jsou rezistory. Tyto elementy byly připojeny na "zuby" septa. Díky tomuto připojení elementů k septu je zajištěno to, že septum má konstantní impedanci 50 Ω po celé své délce. Tvorba těchto elementů byla konzultována s vedoucím práce, byla zvolena možnost "Lumped Element", pro něž byla stanovena vlastnost impedance s hodnotou 50 Ω . Ukázka připojení těchto elementů je zobrazena na Obr. 38.

Obrázek 38 – Ukázka připojení "Lumped Network" elementů k septu.

Dále byl nastaven frekvenční rozsah simulace, ten se nastavuje v záložce "Simulation" \rightarrow "Frequency". U tohoto modelu byla nastavena minimální frekvence na 20 MHz a maximální na 3 GHz, aby odpovídala testovanému frekvenčnímu rozsahu na skutečné GTEM cele.

Následně byl v rámci projektu v CST studiu vytvořen "Field Monitor", který umožňuje definovat monitory pole, které jsou potřeba k získání dalších informací o distribuci elektromagnetického pole uvnitř vytvořené struktury. Je možno definovat frekvenční i časové monitory. V našem případě byla vybrána možnost frekvenční.

Postup tvorby monitoru byl následující, nejprve byl vybrán typ monitoru, v tomto případě E-field, ten umožňuje ukládat vektory elektrického pole. Následně bylo zvoleno pouze frekvenční minimum a maximum. Hodnota "Frequency" byla nastavena na 1,5 GHz, tato hodnota je vztažena k 3D výsledkům, konkrétně pro výpočet intenzity pole stanovené frekvence s měnící se fází.

Poté už přišel čas na umístění sondy snímající intenzitu elektrického pole. Celkem bylo do modelu umístěno 6 sond, jejich souřadnice jsou uvedeny v předchozí kapitole v Tab. 5. Sondy se vytvářely následujícím postupem, nejdříve byla na záložce "Simulation" vybrána možnost "Field Probe". Dále byly pouze jednoduše zadány souřadnice místa, kam bylo za-mýšleno sondu umístit, a zvolena možnost E-field, jelikož bylo požadováno zkoumání intenzity elektrického pole. Reálné umístění sond v modelu je zobrazeno na následujícím Obr. 39. Jak je z obrázku patrné, pozice nejsou přesně shodné s pozicemi na Obr. 34, je to dáno především omezeními při praktickém měření (tuhost komunikačního kabelu, stojan sondy, atd.)

Obrázek 39 – Zobrazení pozic sond v modelu GTEM cely – pohled ze shora.

V dalším kroku byly nastaveny parametry "Mesh Properties", tato nastavení lze najít na záložce "Simulation" v sekci "Mesh" \rightarrow "Global Properties". Jelikož práce byla vypracována na "Teaching" licenci, byly jednotlivé parametry nastaveny na velice nízké hodnoty, aby bylo možné simulaci spustit vzhledem k omezeným možnostem licence.

lesh Properties - Hexahedral	TLM	;
Maximum cell		OK
	Near to model: Far from model:	
Cells per wavelength:		Cancel
	Use same setting as near to model	Apply
Cells per max model box edge	✓ 1 ▲ 1 ▲	Undate
	Use same setting as near to model	opuate
		Specials
Minimum cell		Simplify Model
Fraction of maximum cell near t	to model V 1	Simplify Model.
Use same setting in all three	directions	Help
Statistics		
Smallest cell:	Nx:	
6.05833	78	
Largest cell:	Ny:	
49.8226	63	
Number of cells:	Nz:	

Obrázek 40 - Nastavení "Mesh Properties".

Samotné spuštění simulací se provádí volbou vhodného řešiče. Vzhledem k frekvenčnímu rozsahu měření musel být zvolen jeden solver z kategorie "High Frequency Simulation", z této skupiny byl tedy vybrán "Time Domain Solver". Na výběr jsou dva řešiče ("Transient solver" a "TLM solver") založené na hexahedrálních sítích. Oba solvery jsou velice efektivní u většiny vysokofrekvenčních aplikací, např. přenosová vedení, konektory, antény, filtry atd. Řešiče umožňují zjistit kompletní chování v širokopásmovém kmitočtu simulovaného zaří-zení z pouze jednoho jediného výpočtu. Z těchto dvou možností byl vybrán "TLM solver", jelikož je zvláště vhodný pro aplikace EMC / EMI.

Aby bylo možno pochopit význam "Meshcells", neboli buněk sítě, na výsledek simulace, je potřeba si tuto problematiku popsat. V metodách "Time Domain" je nejčastěji používaným typem sítě tzv. šestihranná/hexahedrální sít". V rámci hexahedrální sítě je simulační prostor obsahující náš model diskretizován pomocí obdélníkových kvádrů s proměnnou velikostí, přičemž obecně platí $\Delta x \neq \Delta y \neq \Delta z$. Každý jeden kvádr se označuje jako buňka sítě. [30]

V diskretizované formě představuje každá buňka sítě malý objem v prostoru, ve kterém se počítá elektrické a magnetické pole. Je zřejmé, že čím více buněk sítě použijeme pro diskretizaci, tím přesněji budou zachyceny jednotlivé gradienty pole. Celkový počet buněk sítě by se však neměl neuváženě zvyšovat, jelikož to bude mít přímý dopad na celkovou dobu simulace. Je tedy důležité použít síť, která je dobře vyvážená a nabízí dobrý kompromis mezi rychlostí a přesností simulace. [30]

V metodách "Time Domain" začíná simulace buzením výpočetního objemu obsahujícího daný model. Nejčastěji se buzení aplikuje pomocí diskrétního portu, portu vlnovodu nebo rovinné vlny. Samotné buzení je vlastně signál v "Time Domain", např. Gaussův puls. V CST MWS se šířka budicího signálu automaticky upraví tak, aby obsahoval požadovaný spektrální obsah daný frekvenčním rozsahem, který si uživatel specifikuje. [30]

Poté, co proběhne buzení, se signál v metodě "Time Domain" numericky šíří po celém výpočetním objemu. Při tomto šíření se energie signálu snižuje v důsledku různých mechanismů ztrát. Část energie je vyzařována, část rozptýlena ztrátovými materiály, část absorbována porty atd. Simulace se zastaví ve chvíli, kdy energie poklesne na uživatelem definovanou úroveň. Rychlost, s jakou se bude energie snižovat, závisí na různých mechanismech, z nichž většina závisí na samotnému modelu. Je však pravdou, že čím rychleji se signál šíří, tím rychleji vyplní prostor a tím dříve přichází do kontaktu se ztrátovými komponentami, díky čemuž je simulace rychleji ukončena. Rychlost, kterou se signál šíří ve výpočetním objemu, je určena tzv. časovým krokem (pole jsou v každé iteraci posunuta v čase o jeden časový krok). Z tohoto popisu je zřejmé, že mít velký časový krok by bylo výhodné, nicméně časový krok nelze libovolně zvětšit, protože musí být dostatečně malý, aby splňoval tzv. podmínku Courantovy stability:

$$\Delta t_{\max} \le \frac{1}{u_{\max}} \left[\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2} \right]^{-1/2}$$
(3)

kde u_{max} je maximální rychlost fázové vlny uvnitř modelu (určená vlastnostmi materiálu). Analýza této rovnice pro jednotnou síť ($\Delta l = \Delta x = \Delta y = \Delta z$ pro všechny kvádry) ukazuje, že maximální povolený časový krok je určen velikostí sítě. Čím menší je velikost sítě, tím menší musí být časový krok:

$$\Delta t_{\max} \le \Delta l / \left(u_{\max} \sqrt{3} \right) \tag{4}$$

Pro síť s proměnnou velikostí analýza rovnice odhalí, že maximální povolený časový krok je obecně určen buňkou sítě s nejmenší dimenzí ve výpočetním modelu, tzn. kvádrem s nejkratší hranou (min (Δx , Δy , Δz), pro všechny kvádry). V následujícím textu je takový kvádr označován jako nejmenší buňka sítě. [30]

Proto, aby se časový krok maximalizoval, musí být nejmenší buňka sítě, pokud možno, co největší. Obecně platí, že omezující faktor, který stanovuje velikost nejmenší buňky sítě, je potřeba věrně reprezentovat simulované pole na důležitých částech modelu. Nejmenší buňka sítě je tedy omezena minimální velikostí relevantního prvku v modelu, který je potřeba pro simulaci věrně reprezentovat. [30]

Kromě velikosti nejmenší buňky sítě je pro rychlost a přesnost simulace také důležitá velikost největší buňky sítě. Z předchozího popisu je zřejmé, že z hlediska rychlosti simulace platí, že čím větší jsou buňky sítě, tím lépe. Velikost sítě bohužel nelze libovolně zvětšit, jelikož je omezena numerickým rozptylem (v důsledku prostorové diskretizace se každá frekvenční složka šíří v síti mírně odlišnou rychlostí). Aby se tento efekt minimalizoval a zajistilo se, že síť je stejně vhodná pro všechny frekvence, musí být nejkratší vlnové délky prostorově vzorkovány (nejméně 10 buněk sítě na vlnovou délku). To je znázorněno na Obr. 41. Z toho důvodu je největší velikost buňky omezena nejkratší vlnovou délkou, která samozřejmě odpovídá nejvyšší frekvenci. [30]

Obrázek 41 – Maximální velikost buňky sítě je omezena nejkratší vlnovou délkou. [30]

Z toho všeho vyplývá, že celkový počet "Meshcells" je důležitý pro rychlost a přesnost simulace. Tento celkový počet nelze přímo ovládat, záleží totiž na minimální/maximální velikosti buňky, právě tento parametr určuje, kolik buněk sítě je zapotřebí k diskretizaci výpočetního objemu. Obecně se celkový počet buněk sítě zvýší s elektricky většími modely a vyššími simulačními frekvencemi. [30]

8 OPTIMALIZACE MODELU GTEM CELY

Jelikož prvotní výsledky simulace nebyly příliš uspokojivé a výsledkům z praktického měření na reálné GTEM cele se neblížily, bylo nutno přistoupit k optimalizaci modelu.

Nejdříve se uvažovalo nad změnou materiálů jednotlivých komponent, jmenovitě septa a absorbérů, jelikož simulace odhalily významný vliv na výsledky. Bohužel, vzhledem k tomu, že k modelování byla využita pouze Teaching licence, byly možnosti optimalizace modelu GTEM cely částečně omezené. Konkrétně především maximální možný počet 1 milion "Meshcells" byl velice limitující. Z toho důvodu nebylo možno při simulaci vyzkoušet všechny materiály v knihovně CST Studia, které by pravděpodobně mohly vést k lepším výstupům simulace (např. jiné materiály ze skupiny ECCOSORB jako třeba NS-1000, atd., které jsou více vhodné pro zkoumané frekvence).

Jako materiál pro septum byla nakonec zvolena, na základě srovnání výsledků simulací s různými materiály, měď. Pro absorbéry, které měly na konečnou podobu výsledků největší vliv, bylo testováno několik materiálů. Nejdříve byly testovány různé materiály z knihovny CST Studia z řady ECCOSORB, nicméně se ukázalo, že z těch, které bylo možno otestovat, vychází vzhledem k výsledkům praktického měření v laboratoři stále nejlépe materiál ECCOSORB MCS. Jiné vhodnější materiály z řady ECCOSORB, např. NS-1000, nebylo možné spustit, navzdory minimalizaci hodnot parametrů "Mesh Properties". Jelikož se výsledky simulace od výsledků praktického měření stále hodně lišily, bylo přistoupeno k tvorbě nového materiálu pro absorbéry.

New Mat	erial:							\times
Problem	type:	Defau	lt		\sim			
General	Condu	ctivity	Dispersion	Themal	Mechanics	Density		
- Gener Mate	ral prope rial name	erties — e:						
Mate	erial_abs	orber						
Mate	rial folde	r:						
			\sim					
Туре	¢							
Norr	nal		\sim					
Epsilo	on:			Mu:				
1				1				
Color								
				0%	Transpa	rency	100%	
D	raw as v	virefram	ne [Allow ou	tline display			
D	raw refle	ective s	urface [Draw ou	tline for trans	parent sh	apes	
Add	to mate	rial libra	ry					

Obrázek 42 – Okno pro tvorbu nového materiálu.

Nejdříve byl v okně pro tvorbu nového materiálu zvolen jeho název, dále byl zvolen typ materiálu "Normal", následně byla nastavena hodnota relativní permitivity ε na hodnotu 1 stejně jako relativní permeabilita μ. V dalším kroku byla nastavena konduktivita na hodnotu 90 S/m a permeabilita taktéž na hodnotu 90 1/Sm. Tyto hodnoty byly optimalizovány na základě publikací a reálných predikcí.

Na Obr. 43 jsou zobrazeny výsledky simulace se dvěma různými materiály pro absorbéry se sondou na pozici 1, konkrétně se jedná o materiál ECCOSORB MCS a nový materiál vytvořený pro tuto simulaci.

Obrázek 43 – Výsledky simulace při použití dvou různých materiálů absorbérů.

Při další snaze o přiblížení se výsledkům praktického měření v laboratoři bylo uvažováno nad úpravou vybraných parametrů jednotlivých komponent modelu GTEM cely. K tomuto postupu se výborně hodí funkce CST Studia s názvem "Parameter Sweep". Tuto funkci lze najít na záložce "Simulation" v sekci "Solver" \rightarrow "Par. Sweep". V dialogovém okně již stačí jen zvolit typ simulace, v tomto případě "Time Domain Solver", dále přidat novou sekvenci a poté je nutné přidat jednotlivé parametry a rozsahy, ve kterých se má simulace provést. Tato nastavení jsou zobrazena na Obr. 44 a Obr. 45. Poté již stačí spustit simulaci a program po jejím dokončení ukáže výsledky s jednotlivými parametry. Ukázka tohoto výstupu, kde lze vidět tři průběhy s různými parametry vybraných komponent z pozice sondy číslo 1, je na Obr. 46.

Parameter Sweep	×
Simulation type: Time Domain Solver	Check
Sequences	Start
Sequence 1 Sep_v = 195, 196,, 205 (11, Linear) Sep_v = 17, 18,, 25 (9, Linear)	Close
Sep_w_s = 17, 10,, 25 (5, Linear)	Import
	Result Template
	Options
	Acceleration
	View Logfile
	Help
New Seq. New Par Edit Delete	

Obrázek 44 – Dialogové okno funkce "Parameter Sweep".

Parameter Sw	eep Parameter		×
Name:	Sep_v	\sim	OK
Туре:	Linear sweep	\sim	Cancel
From:	195		Help
To:	205		
Define using:	Number of samples	\sim	
Samples:	11		

Obrázek 45 – Přidání parametrů do funkce "Parameter Sweep".

Obrázek 46 – Výstup funkce "Parameter Sweep" – 3 průběhy s různými parametry vybraných komponent.

K úpravě byly vybrány parametry jednotlivých komponent, jako např. délka septa, šířka septa, velikost zubů na septu, výška absorbérů... Z výsledků byla nakonec vybrána ta kombinace, která se na všech šesti vybraných pozicích sondy nejvíce blížila průběhu z praktického měření na GTEM cele v laboratoři.

Ukázku průběhu závislosti intenzity elektrického pole na frekvenci před optimalizací a po ní lze vidět na následujícím Obr. 47.

Obrázek 47 – Ukázka závislosti intenzity elektrického pole na frekvenci před optimalizací a po optimalizaci vzhledem k naměřeným hodnotám v reálné GTEM cele na pozici 1.

9 SROVNÁNÍ KONEČNÝCH VÝSLEDKŮ EXPERIMENTU SE SIMULACÍ

Po ukončení optimalizace modelu GTEM cely v programu CST Studio Suite bylo provedeno srovnání výsledků hodnot intenzity elektrického pole praktického měření v laboratoři a simulace v tomto programu.

Jak již bylo zmíněno dříve v této práci, v rámci praktického měření byla sonda v GTEM cele umístěna na šest předem stanovených pozic, přičemž tato pozice byla při měření pokaždé trochu poupravena, vždy po doměření celého zkoumaného frekvenčního pásma, celkem 3x. Byla vynaložena snaha o zarovnání v rámci pomyslného 3D souřadnicového systému, nicméně je velice pravděpodobné, že se nikdy nepodařilo jednotlivé osy přesně zarovnat. Dalším kritériem bylo umístění na danou pozici v GTEM cele, jelikož umístění sondy bylo na danou pozici vždy pouze takzvaně "od oka" za pomocí vysunovacího metru. Také zde lze předpokládat, že pozice sondy nebyla nikdy stejná jako v simulaci.

Co se týče modelu v programu CST Studio Suite, tam byla sonda umístěna vždy na přesně stanovené pozici, jak uvádí Tab. 5. Osy u této sondy jsou přesně zarovnány se souřadnicovým systémem, což na dané výsledky má určitě také vliv. Tento vliv byl pozorován při praktickém měření, kde, pokud byla sonda po testování z GTEM cely vyjmuta a následně byla ručně umístěna na přibližně stejné místo, se hodnoty na určitých frekvencích při pokusu lišily až o 10 dBuV/m.

Konečné výsledky jsou také jistě ovlivněny tím, že celá GTEM cela byla naměřena pouze ručně za pomocí vysunovacího metru, a mohly vzniknout nepřesnosti měření. Dalším problémem byl špatný přístup do vnitřního prostoru GTEM cely, odkud byly rozměry jednotlivých komponent zaznamenávány poměrně obtížně.

Na výsledek simulace má dozajista vliv omezení počtu "Meshcells" na 1 milion v rámci "Teaching" licence CST Studia. Vliv "Meshcells" na výsledky simulace je popsán v Kapitole 8. Je pravděpodobné, že s plnou licencí programu CST Studio Suite by bylo možno dosáhnout daleko lepších výsledků simulace s ohledem na výsledky praktického měření. Jednotlivé buňky "Meshcells" by mohly být menší a bylo by jich více, čímž by mohlo být s pomocí "Time Domain Solver" dosaženo o něco podrobnějších výsledků. Tento program je nicméně velice užitečný, což dokládají výsledky prezentované v rámci této práce. Taktéž by mohlo být otestováno více materiálů pro jednotlivé komponenty a mohly by taktéž být vymodelovány další prvky GTEM cely, které v modelu v rámci této práce chybí (např. dveře GTEM cely, penetrační panel, atd.).

V následujících podkapitolách jsou vždy popsány výsledky na jednotlivých pozicích sondy. V grafech je vždy vynesena závislost intenzity elektrického pole na frekvenci. Taktéž je vynesena nejistota praktického měření, která je vypočítána podle vzorce (2).

Výsledné hodnoty jak měření, tak simulace, jsou přiloženy na konci této práce v přílohách. Z výstupních hodnot intenzity elektrického pole z programu CST Studio byly vybrány pouze hodnoty se stejnými frekvenčními hodnotami jako u praktického měření pro větší přehlednost grafu.

Bohužel, při zpracování výsledků praktického měření byl nalezen problém při měření s pomocí zesilovače 2 (0,8 – 2 GHz). Jednotlivé výsledky intenzity elektrického pole byly při použití tohoto zesilovače (1,0 – 2,0 GHz) podezřele nízké, přičemž když bylo provedeno měření na frekvenčním překryvu zesilovačů 1 a 2 (0,8 – 1 GHz), byly jednotlivé výsledky z obou zesilovačů velice odlišné. Tento pokles je znázorněn na Obr. 48.

Obrázek 48 – Pokles intenzity elektrického pole v pásmu 1,0 – 2,0 GHz při použití zesilovače 2.

Při kontrole funkčnosti tohoto zesilovače bylo použito těchto postupů, nejdříve byla měněna úroveň signálu z generátoru při použití zesilovače. Výstupní hodnota nicméně reagovala na změnu vstupní úrovně očekávaným způsobem, tím bylo ověřeno, že zesilovač reaguje a funguje, i když není garance, že funguje správně. Dále bylo provedeno měření v pásmu do 1 GHz a v pásmu 1,0 – 2,0 GHz s vypnutým zesilovačem. Tím bylo ověřeno, kde je šumová

úroveň při snímání elektrického pole sondou. Tento postup byl zvolen, aby se odhalilo, zda výstupní hodnota není pouze šumová úroveň, tudíž na výstupu druhého zesilovače není vůbec signál. To by mohlo být způsobeno např. problémem s kabeláží. Nicméně výsledné hodnoty byly ještě nižší než hodnoty se zapnutým zesilovačem.

Z toho důvodu bylo přistoupeno k poněkud provizornímu řešení. Bylo provedeno komparační měření na zesilovačích 1 (0,02 – 1 GHz) a 2 (0,8 – 2 GHz) na frekvenčním rozsahu 0,8 – 1 GHz. Měření bylo provedeno na 4 různých pozicích, přičemž frekvenční krok byl 20 MHz, nejdříve se zapnutým zesilovačem 1 a poté zesilovačem 2. Po naměření všech hodnot bylo postupováno následovně, na každé pozici byl pro každou frekvenci vypočítán procentuální rozdíl mezi výstupní hodnotou se zapnutým zesilovačem 1 a 2, dále byl vypočítán průměrný procentuální rozdíl těchto hodnot na celé pozici. Nakonec bylo vypočteno, že hodnota na zesilovači 1 je průměrně 2,8996x vyšší než na zesilovači 2. Následně byly tedy hodnoty naměřené při praktickém měření z frekvenčního rozsahu 1,0 – 2,0 GHz vynásobeny koeficientem 2,8996.

U všech průběhů je možno setkat se s tím, že na začátku měřeného frekvenčního rozsahu dochází k nižší oscilaci průběhu, než je tomu u praktického měření. Tento jev může být způsoben např. tím, že na nižších frekvencích je vlna větší a rychleji se utlumí. Naopak u vyšších frekvencí je tato vlna nižší a vzniká zde více odrazů.

Jak již bylo zmíněno, velký vliv na rozdílné výsledky na jednotlivých frekvencích má umístění sondy, resp. přiblížení se stanoveným pozicím při praktickém měření. Dalším faktorem jsou rušení vnikající do GTEM cely, které model nebere v potaz, jelikož reálná GTEM cela toto rušení netlumí na 100 %.

9.1 Pozice 1

Na pozici 1 bylo dosaženo relativně uspokojivých výsledků. Největších rozdílů v hodnotách, ostatně stejně jako u všech ostatních pozic, bylo dosaženo ve frekvenčním pásmu přibližně 2,75 – 3,0 GHz, v tomto frekvenčním rozsahu by bylo vhodno ještě model dále optimalizovat. Průměrný rozdíl mezi výsledky praktického měření a simulací je zde 14,1965 dBuV/m, přičemž maximální rozdíl je 53,7619 dBuV/m na frekvenci 2,85 GHz.

Obrázek 49 – Porovnání praktického měření a simulace – pozice 1.

9.2 Pozice 2

Průměrný rozdíl simulace a praktického měření je 20,2744 dBuV/m, největší rozdíl intenzit elektrického pole je 56,4579 dBuV/m, taktéž na frekvenci 2,85 GHz. Na této pozici bylo dosaženo nejhorších výsledků ze všech pozic. Je tomu pravděpodobně z toho důvodu, že tato pozice se nachází hned vedle dveří GTEM cely, které mají skleněnou výplň, nicméně v modelu se tyto dveře nenachází. Na jejich místě je pouze souvislá vrstva stěny z materiálu Steel-1008.

Obrázek 50 – Porovnání praktického měření a simulace – pozice 2.

9.3 Pozice 3

Na pozici 3 je průměrný rozdíl obou průběhů 16,9202 dBuV/m a největší rozdíl je taktéž na frekvenci 2,85 GHz a to 47,2895 dBuV/m. Sonda se na této pozici při měření v laboratoři nacházela poblíž okraje dveří GTEM cely, nicméně i toto mírné posunutí ode dveří již má oproti předchozí poloze na výsledky pozitivní vliv.

Obrázek 51 – Porovnání praktického měření a simulace – pozice 3.

9.4 Pozice 4

Průměrný rozdíl praktického měření od simulace je 14,3686 dBuV/m a stejně jako u všech předešlých pozic, i zde je největší rozdíl na frekvenci 2,85 GHz a to konkrétně 40,5026 dBuV/m. Na této pozici je možno diskutovat o vlivu penetračního panelu na konečné výsledky srovnání, nicméně je patrné, že zde vliv není tak velký jako u dveří GTEM cely.

Obrázek 52 – Porovnání praktického měření a simulace – pozice 4.

9.5 Pozice 5

Na této pozici bylo dosaženo hned po pozici 6 nejlepší shody výsledků simulace k praktickému měření. Je to patrně způsobeno tím, že na této pozici bylo dosaženo, jak v modelu, tak při reálném měření podobných podmínek. V blízkém okolí sondy se nachází pouze plná stěna GTEM cely a žádné otvory, které by měly zásadní vliv. Průměrný rozdíl obou průběhů má hodnotu 13,4775 dBuV/m a maximální rozdíl je 38,8887 dBuV/m na frekvenci 3,0 GHz.

Obrázek 53 – Porovnání praktického měření a simulace – pozice 5.

9.6 Pozice 6

Na této pozici bylo dosaženo nejlepších výsledků ze všech pozic, se zarovnáním os při praktickém měření byl na této pozici nejmenší problém, jelikož komunikační kabel neměl kolem sebe žádné překážky (např. absorbéry, blízkost stěny), kvůli kterým by bylo nutné upravit pozici sondy a ani stojan sondy nebyl limitován přítomností těchto komponent. Průměrný rozdíl hodnot průběhů simulace a praktického měření činí 11,5711 dBuV/m a maximální rozdíl je stejně jako u pozice 5 na frekvenci 3,0 GHz, konkrétně 35,9615 dBuV/m.

Obrázek 54 – Porovnání praktického měření a simulace – pozice 6.

ZÁVĚR

V této práci byly vysvětleny základní pojmy nutné k pochopení probírané problematiky EMC. Zejména byly vysvětleny základní informace týkající se elektromagnetické kompatibility, normalizace a standardizace v oblasti EMC, metod měření EMC a popis základních témat vztahujících se ke GTEM cele. Také bylo stručně popsáno simulační prostředí CST Microwave Studio, ve kterém byl experiment realizovaný.

Byly popsány vybrané funkce a nástroje simulačního prostředí, které byly následně využity v rámci praktické části k vytvoření modelu GTEM cely, simulaci experimentu a optimalizaci modelu. V závěru práce byly srovnány výsledky experimentu získané ze simulací a praktického měření v GTEM cele.

Srovnání výsledků ukázalo, že se podařilo dosáhnout částečně uspokojivého návrhu modelu GTEM cely. Jednotlivé průběhy simulace a praktického měření se průměrně na všech pozicích lišily o 15,1249 dBuV/m, což je vzhledem k tomu, že simulace byla provedena se značným omezením a u praktického měření bylo složité dosáhnout odpovídající pozice a polarizace a dalších ovlivňujících faktorů, relativně přijatelná hodnota. Nicméně jednotlivé hodnoty intenzity elektrického pole byly i po optimalizaci na některých frekvencích stále příliš rozdílné, zejména ve frekvenčním pásmu 2,75 – 3,0 GHz nebylo dosaženo uspokojivých výsledků. Důvody mohou být např. omezení počtu "meshcells", pravděpodobná odchylka pozice a polarizace sondy u měření a simulace atd., a jsou detailně popsány v Kapitole 9.

I přes dosažení pouze uspokojivých výsledků, lze potvrdit, že simulační software CST Studio Suite je užitečný nástroj pro predikci chování elektromagnetických polí. Při další optimalizaci různých parametrů a ideálně s plnou verzí programu je pravděpodobné, že by se podařilo dosáhnout lepších výsledků. K předběžnému testování je využití podobných simulací nepochybně velice vhodné, mimo jiné kvůli nižším finančním nákladům oproti praktickému testování.

Přínosem této práce je navržení modelu, který se v určitých frekvencích relativně podobá skutečnosti. Dle výsledků shrnutých v Kapitole 9 je zřejmé, že simulace a měření se nejvíce podobají ve frekvenčním pásmu 500 – 1750 MHz. Právě pro toto frekvenční pásmo je model nejvhodnější pro predikci chování EM polí s testovacím vzorkem, pro další část frekvenčního pásma by se musel model dále optimalizovat. Zprůměrované hodnoty intenzity elektrického pole simulací a praktického měření ze všech šesti pozic na frekvenčním rozsahu 500 – 1750 MHz jsou zobrazeny na Obr. 55. Na tomto frekvenčním rozsahu je průměrná odchylka 5,6496 dBuV/m a maximální odchylka 13,9802 dBuV/m na frekvenci 1200 MHz.

Obrázek 55 – Průměrné hodnoty intenzity elektrického pole ze všech pozic na frekvenčním rozsahu 500 – 1750 MHz.
SEZNAM POUŽITÉ LITERATURY

- SVAČINA, Jiří. Elektromagnetická kompatibilita: principy a poznámky. Brno: Vysoké učení technické, 2001. Připojujeme se k Evropské unii. ISBN 8021418737
- [2] PAUL, Clayton R. Introduction to electromagnetic compatibility. 2nd ed. Hoboken: John Wiley & Sons, 2006. ISBN 0471755001
- [3] Náhled normy ČSN IEC 60050 692. Technické normy ČSN: informace o normách, prodej norem [online]. Hradec Králové: Technor [cit. 2021-03-12]. Dostupné z: http://www.technicke-normy-csn.cz/inc/nahled_normy.php?norma=330050-csniec-60050-692&kat=506736
- [4] DŘÍNOVSKÝ, Jiří, Tomáš FRÝZA, Václav RŮŽEK a Jiří ZACHAR. Elektromagnetická kompatibilita - přednášky [online]. 2017/10/06. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav radioelektroniky, 2017 [cit. 2021-01-04]. Dostupné z: http://www.urel.feec.vutbr.cz/~drinovsky/
- [5] ČESKO. Nařízení vlády č. 291/2015 Sb., o ochraně zdraví před neionizujícím zářením. In: Zákony pro lidi.cz [online]. © AION CS 2010-2021 [cit. 4. 4. 2021]. Dostupné z: https://www.zakonyprolidi.cz/cs/2015-291
- [6] ČESKO. fragment #f3831376 nařízení vlády č. 1/2008 Sb., o ochraně zdraví před neionizujícím zářením. In: *Zákony pro lidi.cz* [online]. © AION CS 2010-2021 [cit. 19. 1. 2021]. Dostupné z: https://www.zakonyprolidi.cz/cs/2008-1#f3831376
- [7] ČESKO. fragment #f3831382 nařízení vlády č. 1/2008 Sb., o ochraně zdraví před neionizujícím zářením. In: *Zákony pro lidi.cz* [online]. © AION CS 2010-2021 [cit. 19. 1. 2021]. Dostupné z: https://www.zakonyprolidi.cz/cs/2008-1#f3831382
- [8] ČESKO. fragment #f3831392 nařízení vlády č. 1/2008 Sb., o ochraně zdraví před neionizujícím zářením. In: *Zákony pro lidi.cz* [online]. © AION CS 2010-2021 [cit. 19. 1. 2021]. Dostupné z: https://www.zakonyprolidi.cz/cs/2008-1#f3831392
- [9] Základy elektromagnetické kompatibility: Normalizace v oblasti EMC. Elektrorevue [online]. Brno: ISES, c2013 [cit. 2021-03-15]. Dostupné z: http://www.elektrorevue.cz/clanky/01036/index.html
- [10] ČESKO. Sdělení č. 438/2008 Sb., Ministerstva průmyslu a obchodu o zrušení pověření Českého normalizačního institutu, příspěvkové organizace, zabezpečováním tvorby a vydávání českých technických norem. In: *Zákony pro lidi.cz* [online]. ©

AION CS 2010-2021 [cit. 4. 4. 2021]. Dostupné z: https://www.zakonyprolidi.cz/cs/2008-438

- [11] O Úřadu. Úřad pro technickou normalizaci, metrologii a státní zkušebnictví [online]. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví [cit. 2021-04-04]. Dostupné z: https://www.unmz.cz/obecne/o-uradu/
- [12] KOCMAN, Stanislav. ZÁKLADNÍ POJMY A NORMALIZACE V EMC. VŠB -TU Ostrava [online]. Ostrava: Fakulta elektrotechniky a informatiky, 2017, 1.5.2017 [cit. 2021-04-04]. Dostupné z: http://fei1.vsb.cz/kat420/vyuka/FEI/EMC/sylaby/1_Zakladni_pojmy_normalizace .pdf
- [13] KOTWAL, Prachi, Gyanendra VERMA a P. K. KATTI. Modelling and Analysis of Gigahertz Transverse Electromagnetic Mode (GTEM) Cell. In: 2019 International Conference on Communication and Electronics Systems (ICCES) [online]. IEEE, 2019, 2019, s. 1708-1712 [cit. 2021-02-4]. DOI: 10.1109/ICCES45898.2019.9002589. ISBN 978-1-7281-1261-9. Dostupné z: https://ieeexplore.ieee.org/document/9002589/
- [14] VÍDENKA, R. Některé otázky předcertifikačních testů EMC. Dizertační práce.Brno: FEKT VUT v Brně, 2009. 86 stran.
- [15] DENEŠ, Roman Měření elektromagnetického vyzařování v částečně a plně bezodrazových komorách: diplomová práce. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav radioelektroniky, 2015. 79 s.
- [16] SAC-5 Square. Frankonia [online]. Forchheim: Frankonia Group, c2020 [cit. 2021-02-01]. Dostupné z: https://frankonia-solutions.com/portfolio/sac-5-square/
- [17] FAC-3. Frankonia [online]. Forchheim: Frankonia Group, c2020 [cit. 2021-02-01].
 Dostupné z: https://frankonia-solutions.com/portfolio/fac-3/
- [18] NOTHOFER, A., BOZEC D., McCORMACK L. and ALEXANDER M. Measurement Good Practice Guide - The Use of GTEM Cells for EMC Measurements, GPG (65), National Physical Laboratory, July 2003. ISSN 1368-6550.
- [19] POLKA, Oliver. Užití GTEM cely pro testy elektromagnetické kompatibility zabezpečovacích systémů. Zlín: Univerzita Tomáše Bati ve Zlíně, 2015, 63 s. Dostupné také z: http://hdl.handle.net/10563/34052. Univerzita Tomáše Bati ve Zlíně.

Fakulta aplikované informatiky, Ústav bezpečnostního inženýrství. Vedoucí práce Křesálek, Vojtěch.

- [20] PASAKAWEE, Sarinya a Vitawat SITTAKUL. Implementation and characterization of GTEM cell using ferrite tile absorber. In: 2017 IEEE Conference on Antenna Measurements & Applications (CAMA) [online]. IEEE, 2017, 2017, s. 65-68 [cit. 2020-07-16]. DOI: 10.1109/CAMA.2017.8273479. ISBN 978-1-5090-5028-4. Dostupné z: http://ieeexplore.ieee.org/document/8273479/
- [21] TEM Cells. Www.gtemcell.com [online]. Bombinhas (Santa Catarina): GTEM of E. S. Benites, C2021 [cit. 2021-01-14]. Dostupné z: https://www.gtemcell.com/products/tem/?lang=en
- [22] GTEM 250: GTEM Cell for Emissions and Immunity Testing. Teseq [online]. Reinach: AMETEK CTS, [2021] [cit. 2021-01-15]. Dostupné z: https://www.teseq.com/products/GTEM-250.php
- [23] ETS-EMC-24PCL Ultra Broadband Microwave Absorber. Altoo [online]. Hørsholm: Altoo Measurement Science Aps [cit. 2021-01-15]. Dostupné z: https://www.altoo.dk/ETS-EMC-24PCL+Ultra+Broadband+Microwave+Absorber.htm
- [24] GTEM Cells. In: Frankonia [online]. Forchheim: Frankonia EMC Test-Systems, c2017 [cit. 2021-01-16]. Dostupné z: http://frankonia-solutions.com/wp-content/uploads/2017/10/GTEM.pdf
- [25] Teseq [online]. Reinach: AMETEK CTS [cit. 2021-01-16]. Dostupné z: https://www.teseq.com/product-categories/gtem-cells-tem-cells.php
- [26] ETS-Lindgren [online]. Cedar Park: ETS-Lindgren, c2019 [cit. 2021-01-16]. Dostupné z: http://www.ets-lindgren.com/products/tem-devices/gtem-test-cells
- [27] Field Strength Meter: EFS-10 and EFS-100. Frankonia [online]. Forchheim: Frankonia Group, c2021 [cit. 2021-04-19]. Dostupné z: https://frankonia-solutions.com/test-systems/immunity-test-systems-2/radiated-immunity/efs/
- [28] R&S®SMB100A Microwave Signal Generator. Rohde & Schwarz [online]. Munich: Rohde & Schwarz, c2020 [cit. 2021-04-19]. Dostupné z: https://www.rohdeschwarz.com/pl/product/smb100a-productstartpage_63493-9379.html

- [29] RF MICROWAVE Absorbers. Laird [online]. Rosenheim: Laird Technologies, c2019-2020 [cit. 2021-4-29]. Dostupné z: https://www.laird.com/sites/default/files/2020-05/Absorber%20Infosheet_Military_Aerospace.pdf
- [30] Understanding Time Domain Meshing in CST MICROWAVE STUDIO®. Computer Simulation Technology [online]. 2010, July, 2010, 1-3 [cit. 2021-5-4]. Dostupné z: https://www.scribd.com/document/375197346/white-paper-meshing-intd-pdf

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

EM	Elektromagnetický
CEN	Comité European de Normalisation
CENELEC	Comité Européen de Normalisation Électrotechnique
CISPR	Comité International Spécial des Perturbations Radioélectriques
ČNI	Český normalizační institut
EFTA	European Free Target Association
EIA	Electronic Industries Association
EMC	Elektromagnetická kompatibilita
EMI	Elektromagnetická interference
EMS	Elektromagnetická susceptibilita
EN	European Norms
ETS	European Telecommunication Standard
ETSI	European Telecommunications Standards Institute
GTEM	Gigahertz Transverse Electromagnetic
IEC	International Electrotechnical Commision
IEEE	Institute of Electrical and Electronics Engineers
ISO	International Standard Organization
ITU	International Telecommunications Union
SC	Sub-Committee
TC	Technical Committee
TEM	Transverse Electromagnetic
OATS	Open-Area Test Site

SEZNAM OBRÁZKŮ

Obrázek 1 – Definice úrovní a mezí vyzařování a odolnosti. [1]13
Obrázek 2 – Základní řetězec EMC. [4]17
Obrázek 3 – Základní členění problematiky EMC. [4]18
Obrázek 4 – Dělení norem týkajících se EMC – první kategorie. [9]21
Obrázek 5 – Dělení norem týkajících se EMC – druhá kategorie. [9]21
Obrázek 6 – Dělení norem týkajících se EMC – třetí kategorie. [9]21
Obrázek 7 – Půdorysný pohled na testovací pracoviště na otevřeném prostranství. [14]
Obrázek 8 – Boční pohled na testovací pracoviště na otevřeném prostranství. [4]27
Obrázek 9 – Částečně bezodrazová komora. [16]28
Obrázek 10 – Plně bezodrazová komora. [17]29
Obrázek 11 – TEM cela – tzv. Crawfordova cela. [21]
Obrázek 12 – Ukázka GTEM cely. [22]
Obrázek 13 – Boční řez GTEM celou. [4]
Obrázek 14 – Příčný průřez GTEM celou. [4]32
Obrázek 15 – Konstrukce GTEM cely. [4]
Obrázek 16 – Ukázka absorbérů. [23]
Obrázek 17 – Moduly v simulačním nástroji CST Studio Suite (vlevo) a další dělení
modulu EMC/EMI37
Obrázek 18 – Ukázka tabulky k vytvoření čtyřhranu
Obrázek 19 – Skutečné vnitřní rozměry stěn GTEM cely v mm – nárys38
Obrázek 20 – Skutečné vnitřní rozměry stěn GTEM cely v mm – půdorys39
Obrázek 21 – Souřadnice krajních bodů 3D polygonů 600 x 400 mm (vlevo) a 18 x 13
mm (vpravo)
Obrázek 22 – Model stěn GTEM cely s vnitřními rozměry – pohled z boku40
Obrázek 23 – Model stěn GTEM cely s vnitřními rozměry – pohled ze shora40
Obrázek 24 – Ukázka proměnných krajních bodů 3D polygonů na koncích septa41
Obrázek 25 – Ukázka proměnných v listu parametrů41
Obrázek 26 – Pohled na model septa GTEM cely - pohled z boku42
Obrázek 27 – Pohled na model septa GTEM cely – pohled ze shora42
Obrázek 28 – Ukázka modelu absorbérů GTEM cely – pohled z boku43
Obrázek 29 – Ukázka modelu absorbérů GTEM cely44

Obrázek 30 – GTEM cela Frankonia EMC-GTEM 25046
Obrázek 31 – Sonda intenzity el. pole Frankonia EFS-1046
Obrázek 32 – Zesilovače a reléový spínací panel od firmy Frankonia48
Obrázek 33 – Schéma zapojení pro měření intenzity el. pole
Obrázek 34 – Grafické znázornění přibližných poloh jednotlivých pozic pro měření
intenzity el. pole při pohledu ze shora50
Obrázek 35 – Ukázka umístění sondy v GTEM cele51
Obrázek 36 – Ukázka umístění sondy v GTEM cele52
Obrázek 37 – Napájecí port53
Obrázek 38 – Ukázka připojení "Lumped Network" elementů k septu54
Obrázek 39 – Zobrazení pozic sond v modelu GTEM cely – pohled ze shora55
Obrázek 40 – Nastavení "Mesh Properties"
Obrázek 41 – Maximální velikost buňky sítě je omezena nejkratší vlnovou délkou.
[30]
Obrázek 42 – Okno pro tvorbu nového materiálu60
Obrázek 43 – Výsledky simulace při použití dvou různých materiálů absorbérů61
Obrázek 44 – Dialogové okno funkce "Parameter Sweep"62
Obrázek 45 – Přidání parametrů do funkce "Parameter Sweep"62
Obrázek 46 – Výstup funkce "Parameter Sweep" – 3 průběhy s různými parametry
vybraných komponent63
Obrázek 47 – Ukázka závislosti intenzity elektrického pole na frekvenci před
optimalizací a po optimalizaci vzhledem k naměřeným hodnotám v reálné
GTEM cele na pozici 163
Obrázek 48 – Pokles intenzity elektrického pole v pásmu 1,0 – 2,0 GHz při použití
zesilovače 265
Obrázek 49 – Porovnání praktického měření a simulace – pozice 167
Obrázek 50 – Porovnání praktického měření a simulace – pozice 267
Obrázek 51 – Porovnání praktického měření a simulace – pozice 368
Obrázek 52 – Porovnání praktického měření a simulace – pozice 469
Obrázek 53 – Porovnání praktického měření a simulace – pozice 569
Obrázek 54 – Porovnání praktického měření a simulace – pozice 670
Obrázek 55 – Průměrné hodnoty intenzity elektrického pole ze všech pozic na
frekvenčním rozsahu 500 – 1750 MHz

SEZNAM TABULEK

Tabulka 1 - Nejvyšší přípustné hodnoty pro modifikovanou indukovanou proudovo	JU
hustotu. [6]	15
Tabulka 2 - Nejvyšší přípustné hodnoty měrného absorbovaného výkonu (SAR). [7]
	16
Tabulka 3 - Nejvyšší přípustné hodnoty pro hustotu zářivého toku. [8]	16
Tabulka 4 – Přehled GTEM cel podle výrobců. [24], [25], [26]	34
Tabulka 5 – Přibližné souřadnice skutečného umístění sondy v GTEM cele	50

SEZNAM PŘÍLOH

Příloha P I: Výsledné hodnoty intenzity el. pole z praktického měření – pozice 1 Příloha P II: Výsledné hodnoty intenzity el. pole z praktického měření – pozice 2 Příloha P III: Výsledné hodnoty intenzity el. pole z praktického měření – pozice 3 Příloha P IV: Výsledné hodnoty intenzity el. pole z praktického měření – pozice 4 Příloha P V: Výsledné hodnoty intenzity el. pole z praktického měření – pozice 5 Příloha P VI: Výsledné hodnoty intenzity el. pole z praktického měření – pozice 6 Příloha P VII: Výsledné hodnoty intenzity el. pole z praktického měření – pozice 6 Příloha P VII: Výsledné hodnoty intenzity el. pole ze simulace - pozice 1 Příloha P VIII: Výsledné hodnoty intenzity el. pole ze simulace – pozice 2 Příloha P IX: Výsledné hodnoty intenzity el. pole ze simulace – pozice 3 Příloha P XI: Výsledné hodnoty intenzity el. pole ze simulace – pozice 4 Příloha P XI: Výsledné hodnoty intenzity el. pole ze simulace – pozice 5

PŘÍLOHA P I: VÝSLEDNÉ HODNOTY INTENZITY EL. POLE Z PRAKTICKÉHO MĚŘENÍ - POZICE 1

Pozice 1			
	Měření 1	Měření 2	Měření 3
f (MHz)	dBuV/m	dBuV/m	dBuV/m
20	41,352	41,811	40,143
40	30,002	30,811	29,65
60	28,543	29,486	28,443
80	29,778	30,302	29,158
100	29,426	29,632	28,456
150	40,824	41,322	39,825
200	37,999	38,703	37,646
250	33,462	33,891	32,427
300	51,68	52,732	50,825
350	47,161	47,444	46,769
400	29,782	29,859	30,368
450	14,385	15,344	13,211
500	33,759	35,086	32,782
550	36,841	36,788	35,476
600	35,495	36,219	35,449
650	28,152	28,473	28,211
700	30,046	29,563	29,222
750	28,214	29,008	28,091
800	23,748	24,375	22,999
850	33,759	33,853	31,647
900	38,767	38,708	37,411
950	28,503	28,518	27,867
1000	42,848	43,892	41,963
1050	34,688	36,176	33,746
1100	38,443	40,432	36,759
1150	45,716	49,152	45,101
1200	37,205	36,947	35,074
1250	40,511	41,183	38,832
1300	44,730	44,976	43,700
1350	32,919	33,427	32,290
1400	37,875	39,705	36,944
1450	39,316	42,224	38,194
1500	36,031	37,220	34,250

Pozice 1				
	Měření 1	Měření 2	Měření 3	
f (MHz)	dBuV/m	dBuV/m	dBuV/m	
1550	45,950	47,415	45,092	
1600	51,216	52,109	49,703	
1650	52,196	52,399	50,332	
1700	43,367	43,280	42,355	
1750	55,090	55,360	54,530	
1800	54,342	54,719	52,208	
1850	42,300	44,025	39,273	
1900	53,553	56,404	50,419	
1950	46,751	47,966	43,642	
2000	40,577	42,224	39,977	
2050	41,035	41,298	41,223	
2100	35,121	36,588	32,771	
2150	55,006	55,58	58,882	
2200	48,967	50,956	54,292	
2250	60,142	61,892	63,163	
2300	54,369	57,575	57,407	
2350	62,88	66,595	61,523	
2400	71,455	73,759	68,312	
2450	65,213	65,506	66,867	
2500	62,744	62,699	60,333	
2550	57,286	58,849	55,595	
2600	51,689	52,871	50,143	
2650	57,521	57,717	55,498	
2700	67,333	68,147	65,944	
2750	51,832	54,181	51,282	
2800	45,346	47,249	44,639	
2850	38,895	39,543	37,862	
2900	37,534	37,486	37,412	
2950	90,909	91,508	90,895	
3000	103,403	100,128	103,909	

PŘÍLOHA P II: VÝSLEDNÉ HODNOTY INTENZITY EL. POLE Z PRAKTICKÉHO MĚŘENÍ - POZICE 2

Pozice 2			
	Měření 1	Měření 2	Měření 3
f (MHz)	dBuV/m	dBuV/m	dBuV/m
20	32,687	31,709	32,158
40	26,962	26,341	26,651
60	26,222	26,018	26,145
80	27,058	26,581	26,742
100	26,537	26,195	26,262
150	33,961	32,908	33,255
200	33,421	32,641	32,859
250	28,915	28,175	28,387
300	38,773	38,173	38,574
350	38,465	38,266	38,446
400	32,397	32,428	32,155
450	25,889	25,326	25,354
500	26,501	26,193	26,409
550	28,594	28,293	28,643
600	31,952	31,731	31,856
650	28,468	28,392	28,347
700	27,956	28,032	27,843
750	25,246	25,187	25,089
800	23,821	23,357	23,714
850	30,204	29,117	29,702
900	31,697	30,789	31,346
950	26,493	26,173	26,507
1000	28,974	28,053	28,328
1050	34,163	33,687	34,012
1100	40,983	40,762	40,458
1150	31,008	30,260	30,460
1200	24,542	23,434	24,153
1250	34,830	33,183	34,464
1300	39,834	37,642	39,019
1350	32,403	30,341	31,048
1400	41,864	41,765	42,168
1450	47,678	46,666	46,744
1500	36,392	36,874	36,059

	Pozi	ice 2			
	Měření 1	Měření 2	Měření 3		
f (MHz)	dBuV/m	dBuV/m	dBuV/m		
1550	39,156	38,979	38,460		
1600	42,670	42,383	41,989		
1650	34,954	34,128	34,751		
1700	25,380	24,716	25,319		
1750	28,676	27,009	29,062		
1800	21,425	22,251	20,482		
1850	22,141	22,564	20,914		
1900	25,852	26,003	25,087		
1950	27,720	27,760	27,549		
2000	27,627	26,757	26,911		
2050	28,354	27,706	27,988		
2100	28,942	27,972	28,483		
2150	43,741	42,979	43,243		
2200	35,411	34,855	34,898		
2250	38,163	37,396	37,562		
2300	36,999	36,324	36,483		
2350	41,952	41,826	40,996		
2400	41,478	42,616	40,894		
2450	47,082	46,954	46,625		
2500	43,323	42,303	43,213		
2550	43,507	41,642	43,335		
2600	43,998	42,867	44,514		
2650	44,961	43,988	45,582		
2700	53,856	52,011	54,623		
2750	48,412	47,219	48,352		
2800	35,451	35,803	34,466		
2850	37,129	37,438	36,348		
2900	34,421	34,491	33,876		
2950	57,765	56,495	58,613		
3000	43,112	43,009	43,119		

PŘÍLOHA P III: VÝSLEDNÉ HODNOTY INTENZITY EL. POLE Z PRAKTICKÉHO MĚŘENÍ - POZICE 3

	Měření 1	Měření 2	Měření 3
f (MHz)	dBuV/m	dBuV/m	dBuV/m
20	44,505	44,806	46,032
40	32,212	32,259	33,279
60	31,421	31,696	32,666
80	35,496	35,635	36,709
100	36,826	36,899	38,016
150	47,267	47,338	48,567
200	36,899	37,096	37,926
250	36,641	36,688	37,629
300	45,972	45,979	46,683
350	30,703	30,913	31,556
400	31,108	31,219	32,475
450	41,932	41,976	43,654
500	37,482	37,652	38,903
550	30,997	31,176	31,733
600	36,175	36,394	37,375
650	37,006	37,134	38,149
700	41,358	41,453	41,992
750	35,075	35,145	35,345
800	26,084	26,317	26,835
850	34,309	34,529	35,961
900	40,928	40,832	42,382
950	34,804	34,789	35,428
1000	40,356	40,277	40,254
1050	41,905	42,297	41,876
1100	40,615	41,099	41,760
1150	37,370	37,518	39,525
1200	33,441	33,523	34,746
1250	46,820	47,299	47,751
1300	39,139	39,420	39,966
1350	25,995	26,549	27,468
1400	38,588	39,072	39,763
1450	39,017	39,235	41,314
1500	35,309	33,673	37,747

Pozice 3				
	Měření 1	Měření 2	Měření 3	
f (MHz)	dBuV/m	dBuV/m	dBuV/m	
1550	47,867	48,435	50,320	
1600	44,689	44,970	46,406	
1650	28,990	28,906	32,377	
1700	34,433	34,021	37,747	
1750	43,825	43,636	47,754	
1800	36,105	36,442	37,471	
1850	34,212	34,780	33,783	
1900	39,188	39,817	40,020	
1950	41,362	41,661	43,383	
2000	39,333	39,994	41,626	
2050	34,309	34,551	35,913	
2100	30,201	30,521	31,464	
2150	50,469	50,304	52,607	
2200	37,528	37,338	41,344	
2250	52,268	51,286	55,361	
2300	53,987	52,568	56,082	
2350	65,876	65,803	68,615	
2400	70,684	70,847	72,477	
2450	75,001	75,231	76,218	
2500	62,047	62,191	64,517	
2550	58,777	58,922	59,158	
2600	56,934	57,039	57,301	
2650	59,295	59,396	59,315	
2700	65,813	66,136	68,443	
2750	61,399	61,438	65,156	
2800	62,475	62,594	65,291	
2850	54,721	54,788	57,744	
2900	59,003	58,999	62,288	
2950	100,629	101,811	99,312	
3000	89,474	90,087	89,061	

PŘÍLOHA P IV: VÝSLEDNÉ HODNOTY INTENZITY EL. POLE Z PRAKTICKÉHO MĚŘENÍ - POZICE 4

Pozice 4			
	Měření 1	Měření 2	Měření 3
f (MHz)	dBuV/m	dBuV/m	dBuV/m
20	33,885	32,751	33,266
40	25,146	24,348	24,631
60	24,769	23,313	23,749
80	24,621	23,996	24,285
100	24,287	23,346	23,744
150	33,976	33,019	33,403
200	32,841	31,547	31,755
250	27,309	26,759	27,156
300	42,583	41,508	42,034
350	39,045	38,366	38,589
400	27,799	27,692	27,489
450	18,034	17,827	17,763
500	24,488	23,715	24,211
550	27,603	26,767	27,206
600	30,307	30,006	30,231
650	23,976	23,763	23,796
700	21,955	21,612	21,772
750	22,914	21,946	22,465
800	23,977	22,547	23,068
850	30,935	29,887	30,468
900	33,112	32,443	32,784
950	24,571	24,212	24,178
1000	23,682	23,565	23,437
1050	26,981	26,703	26,900
1100	31,023	31,041	29,625
1150	31,310	30,463	30,907
1200	41,461	41,310	40,936
1250	34,372	33,233	33,499
1300	35,941	34,079	34,746
1350	29,828	26,932	28,457
1400	37,869	35,341	36,773
1450	43,816	40,215	43,509
1500	37,388	35,181	37,515

Pozice 4				
	Měření 1	Měření 2	Měření 3	
f (MHz)	dBuV/m	dBuV/m	dBuV/m	
1550	46,932	43,533	46,615	
1600	54,730	47,821	54,229	
1650	47,512	44,830	46,454	
1700	41,510	38,854	40,974	
1750	39,640	37,407	38,828	
1800	39,596	38,398	39,378	
1850	34,913	34,260	34,281	
1900	34,565	34,336	33,895	
1950	38,868	38,285	38,807	
2000	36,844	36,638	36,719	
2050	35,317	35,711	34,838	
2100	28,617	28,556	28,393	
2150	47,992	48,352	47,508	
2200	37,967	38,033	37,415	
2250	47,297	45,981	47,223	
2300	46,788	45,733	46,676	
2350	47,999	46,873	47,923	
2400	44,848	44,401	44,501	
2450	62,563	61,758	62,347	
2500	53,304	53,252	52,982	
2550	43,248	41,805	43,257	
2600	46,977	46,332	46,842	
2650	48,047	46,937	48,085	
2700	61,758	59,873	61,809	
2750	65,769	63,838	66,178	
2800	68,679	66,552	69,148	
2850	50,903	49,818	50,984	
2900	55,322	55,599	55,242	
2950	65,807	65,121	65,736	
3000	69,078	67,784	69,144	

PŘÍLOHA P V: VÝSLEDNÉ HODNOTY INTENZITY EL. POLE Z PRAKTICKÉHO MĚŘENÍ - POZICE 5

Pozice 5					
Měření 1 Měření 2 Měření					
f (MHz)	dBuV/m	dBuV/m	dBuV/m		
20	60,774	60,663	60,849		
40	43,956	43,868	44,073		
60	44,093	44,023	44,369		
80	51,107	50,893	51,475		
100	53,455	53,089	53,688		
150	64,168	64,013	64,574		
200	47,385	47,396	47,634		
250	48,695	48,572	48,983		
300	54,106	54,245	54,242		
350	43,856	43,296	44,137		
400	52,891	52,133	53,277		
450	61,276	60,968	61,508		
500	46,428	46,559	46,56		
550	40,31	40,277	40,759		
600	54,978	54,805	55,797		
650	49,334	49,052	49,523		
700	47,795	47,724	47,936		
750	45,061	44,421	45,205		
800	44,246	43,59	44,755		
850	59,942	59,581	60,48		
900	59,307	59,057	59,267		
950	42,784	42,599	42,613		
1000	45,968	45,564	45,847		
1050	50,065	49,270	50,181		
1100	58,303	57,816	58,836		
1150	64,206	64,001	64,798		
1200	45,875	46,049	46,446		
1250	59,077	59,300	59,309		
1300	56,009	56,218	56,609		
1350	48,450	48,137	49,418		
1400	74,622	74,465	75,625		
1450	79,502	79,169	79,969		
1500	68,646	67,982	69,313		

	Dozico 5				
POZICE 5 Měření 1. Měření 2. Měření 2.					
f (MHz)	dBuV/m	dBuV/m	dBuV/m		
1550	69.687	68,788	70,310		
1600	71,580	69,762	72,299		
1650	55,806	54,652	56.064		
1700	67,556	67,263	67.373		
1750	61,214	60,660	61,072		
1800	35,262	34,047	36,083		
1850	35,880	34,001	36,089		
1900	38,638	38,058	36,315		
1950	40,270	38,635	43,280		
2000	36,016	35,863	35,251		
2050	43,686	43,411	44,377		
2100	43,105	44,957	43,985		
2150	86,555	85,159	88,295		
2200	64,985	64,893	65,463		
2250	73,629	73,007	74,333		
2300	83,371	83,113	83,822		
2350	94,482	94,465	94,454		
2400	91,258	90,844	95,472		
2450	77,303	77,101	77,801		
2500	76,564	76,018	76,898		
2550	66,217	66,095	66,534		
2600	68,742	69,053	68,739		
2650	80,099	80,638	80,117		
2700	81,487	81,585	87,633		
2750	61,702	61,775	61,622		
2800	58,562	58,173	59,699		
2850	64,401	64,689	64,569		
2900	67,227	68,032	67,133		
2950	125,436	126,789	132,057		
3000	121,884	122,251	127,865		

PŘÍLOHA P VI: VÝSLEDNÉ HODNOTY INTENZITY EL. POLE Z PRAKTICKÉHO MĚŘENÍ - POZICE 6

	Pozice 6				
	Měření 1	Měření 2	Měření 3		
f (MHz)	dBuV/m	dBuV/m	dBuV/m		
20	57,102	58,453	56,781		
40	42,444	42,797	41,284		
60	41,865	42,31	40,866		
80	48,287	48,672	47,113		
100	49,722	50,307	48,894		
150	61,023	61,526	60,014		
200	47,429	47,907	46,314		
250	47,26	47,977	46,612		
300	55,887	56,091	54,509		
350	38,195	38,556	37,399		
400	42,119	42,789	41,673		
450	58,394	58,743	57,579		
500	50,464	50,838	49,959		
550	36,852	37,228	36,001		
600	46,001	46,919	45,534		
650	47,224	48,197	46,59		
700	50,196	50,548	49,547		
750	42,975	43,618	42,376		
800	35,743	36,436	35,112		
850	51,395	51,644	50,864		
900	57,111	57,467	56,464		
950	43,443	43,837	43,112		
1000	44,197	44,469	43,427		
1050	46,554	47,745	45,486		
1100	62,261	64,296	61,814		
1150	70,464	73,143	70,371		
1200	49,012	50,659	48,746		
1250	57,555	59,773	57,262		
1300	60,733	63,255	60,327		
1350	52,480	53,516	51,361		
1400	69,159	70,499	67,747		
1450	79,886	80,570	77,111		
1500	78,539	79,601	75,396		
1500	78,539	79,601	75,396		

Pozice 6					
Měření 1 Měření 2 Měřer					
f (MHz)	dBuV/m	dBuV/m	dBuV/m		
1550	70,043	72,009	68,272		
1600	81,210	81,297	77,321		
1650	57,636	58,236	54,133		
1700	58,187	58,543	54,458		
1750	58,042	58,926	50,900		
1800	37,330	38,052	34,227		
1850	32,438	32,653	34,848		
1900	45,449	39,580	42,584		
1950	48,299	48,409	47,334		
2000	44,590	45,510	43,578		
2050	51,474	51,681	49,134		
2100	44,038	44,297	43,024		
2150	84,152	84,547	82,101		
2200	77,967	78,313	76,385		
2250	89,444	89,867	88,466		
2300	73,856	74,014	72,681		
2350	89,472	90,129	87,401		
2400	90,993	91,789	88,774		
2450	98,575	99,401	96,498		
2500	91,627	91,786	90,293		
2550	82,888	83,007	82,012		
2600	69,136	69,681	67,65		
2650	78,007	78,421	78,257		
2700	91,785	92,189	92,124		
2750	79,362	80,448	78,742		
2800	68,419	69,095	67,707		
2850	70,689	71,534	69,101		
2900	58,705	59,378	56,734		
2950	104,005	104,704	100,773		
3000	124,21	127,669	119,089		

PŘÍLOHA P VII: VÝSLEDNÉ HODNOTY INTENZITY EL. POLE ZE SIMULACE - POZICE 1

Poz	ice 1	Pozi	ice 1
	Simulace		Simulace
f (MHz)	dBuV/m	f (MHz)	dBuV/m
20	25,392	1550	50,862
40	25,382	1600	59,414
60	25,393	1650	53,792
80	25,387	1700	61,804
100	25,363	1750	59,592
150	25,344	1800	66,298
200	25,326	1850	57,024
250	25,614	1900	44,607
300	28,345	1950	51,585
350	25,121	2000	69,102
400	26,668	2050	55,375
450	46,952	2100	60,438
500	30,307	2150	66,412
550	37,837	2200	65,889
600	33,240	2250	76,776
650	36,674	2300	76,376
700	35,758	2350	69,664
750	39,986	2400	87,970
800	35,536	2450	77,659
850	44,505	2500	64,929
900	47,474	2550	70,642
950	37,835	2600	75,644
1000	47,612	2650	83,289
1050	59,898	2700	80,378
1100	42,877	2750	80.517
1150	59,052	2800	85.271
1200	58,297	2850	92.529
1250	61,909	2900	76,779
1300	55,235	2950	84,442
1350	50,532	3000	83,679
1400	46,736		
1450	61,183		
1500	48,234		

PŘÍLOHA P VIII: VÝSLEDNÉ HODNOTY INTENZITY EL. POLE ZE SIMULACE - POZICE 2

Poz	ice 2	Pozi	ce 2
	Simulace		Simulace
f (MHz)	dBuV/m	f (MHz)	dBuV/m
20	38,966	1550	45,412
40	38,971	1600	57,833
60	38,975	1650	50,853
80	38,979	1700	49,599
100	38,983	1750	55,011
150	39,003	1800	58,694
200	39,012	1850	55,120
250	39,073	1900	52,112
300	38,994	1950	46,739
350	39,039	2000	56,339
400	39,118	2050	54,483
450	37,180	2100	53,361
500	39,247	2150	61,071
550	39,952	2200	66,420
600	38,583	2250	71,725
650	38,112	2300	72,272
700	38,930	2350	74,122
750	40,584	2400	85,002
800	39,768	2450	77,072
850	40,150	2500	76,346
900	40,793	2550	73,271
950	40,329	2600	77,137
1000	43,464	2650	83,086
1050	54,120	2700	88,973
1100	45,622	2750	75,199
1150	55,628	2800	76,250
1200	43,980	2850	93,430
1250	54,555	2900	76,490
1300	47,242	2950	86,058
1350	44,637	3000	83,967
1400	48,723		
1450	47,678		
1500	45,041		

PŘÍLOHA P IX: VÝSLEDNÉ HODNOTY INTENZITY EL. POLE ZE SIMULACE - POZICE 3

-		i		
Poz	ice 3		Poz	ice 3
	Simulace			Simulace
f (MHz)	dBuV/m		f (MHz)	dBuV/m
20	46,873		1550	51,480
40	46,886		1600	63,005
60	46,889		1650	57,527
80	46,894		1700	62,613
100	46,883		1750	50,492
150	46,804		1800	66,194
200	46,946		1850	62,671
250	46,830		1900	57,943
300	46,865		1950	55,833
350	47,147		2000	69,687
400	47,211		2050	61,831
450	46,765		2100	61,424
500	46,981		2150	66,931
550	47,240		2200	75,710
600	48,091		2250	84,212
650	48,689		2300	81,081
700	44,234		2350	84,707
750	47,362		2400	88,294
800	47,426		2450	80,640
850	47,591		2500	91,205
900	50,129		2550	79,393
950	47,344		2600	91,015
1000	48,705		2650	86,880
1050	53,095		2700	94,374
1100	52,909		2750	87,652
1150	48,012		2800	94,069
1200	51,222		2850	103,040
1250	60,833		2900	91,081
1300	55,290		2950	96,776
1350	45,788		3000	98,893
1400	50,239			
1450	54,449			
1500	50,267			

PŘÍLOHA P X: VÝSLEDNÉ HODNOTY INTENZITY EL. POLE ZE SIMULACE - POZICE 4

Poz	ice 4	Poz	ice 4
	Simulace		Simulace
f (MHz)	dBuV/m	f (MHz)	dBuV/m
20	30,547	1550	50,11
40	30,539	1600	53,82
60	30,533	1650	45,12
80	30,532	1700	54,03
100	30,552	1750	53,92
150	30,653	1800	59,26
200	30,544	1850	52,41
250	30,855	1900	44,55
300	30,314	1950	49,27
350	30,612	2000	64,82
400	30,401	2050	52,71
450	36,024	2100	56,67
500	32,487	2150	61,79
550	37,794	2200	63,49
600	33,902	2250	62,38
650	29,971	2300	68,27
700	33,604	2350	68,76
750	41,674	2400	80,06
800	28,824	2450	72,79
850	42,541	2500	80,63
900	41,140	2550	76,88
950	34,972	2600	77,43
1000	36,926	2650	78,96
1050	52,356	2700	82,59
1100	41,176	2750	75,65
1150	48,715	2800	81,00
1200	52,471	2850	91,07
1250	60,426	2900	80,00
1300	43,867	2950	85,54
1350	44,494	3000	85,90
1400	38,668		
1450	48,874		
1500	46,269		

PŘÍLOHA P XI: VÝSLEDNÉ HODNOTY INTENZITY EL. POLE ZE SIMULACE - POZICE 5

Poz	ice 5		Pozi	ice 5
	Simulace			Simulace
f (MHz)	dBuV/m	ļ	f (MHz)	dBuV/m
20	36,413		1550	55,291
40	36,311		1600	65,351
60	36,253		1650	59,095
80	36,257		1700	47,623
100	36,428		1750	58,493
150	37,078		1800	65,826
200	36,451		1850	58,608
250	36,216		1900	45,704
300	36,535		1950	54,123
350	36,428		2000	71,038
400	36,405		2050	53,680
450	45,723		2100	64,071
500	34,495		2150	60,903
550	55,078		2200	62,767
600	40,942		2250	77,462
650	39,334		2300	75,039
700	44,446		2350	75,860
750	45,167		2400	82,122
800	43,416		2450	77,934
850	42,306		2500	80,406
900	48,906		2550	72,227
950	41,378		2600	87,607
1000	45,510		2650	77,295
1050	44,949		2700	89,597
1100	45,720		2750	88,013
1150	53,686		2800	91,858
1200	55,139		2850	93,239
1250	57,261		2900	85,964
1300	50,568		2950	95,313
1350	42,777		3000	85,111
1400	46,283			
1450	62,032			
1500	53,075			

PŘÍLOHA P XII: VÝSLEDNÉ HODNOTY INTENZITY EL. POLE ZE SIMULACE - POZICE 6

Poz	ozice 6 Pozice 6		ice 6	
	Simulace			Simulace
f (MHz)	dBuV/m		f (MHz)	dBuV/m
20	39,353		1550	54,312
40	39,350		1600	66,406
60	39,340		1650	51,608
80	39,339		1700	56,802
100	39,364		1750	56,203
150	39,498		1800	67,984
200	39,377		1850	56,554
250	39,494		1900	45,080
300	39,536		1950	47,218
350	39,351		2000	63,011
400	39,360		2050	52,230
450	40,762		2100	58,467
500	39,986		2150	60,537
550	39,414		2200	56,076
600	42,301		2250	72,045
650	41,307		2300	78,168
700	38,849		2350	73,191
750	47,452		2400	85,862
800	41,512		2450	78,070
850	39,441		2500	84,886
900	39,919		2550	76,185
950	40,658		2600	87,147
1000	43,932		2650	83,662
1050	39,506		2700	85,869
1100	42,426		2750	81,334
1150	55,586		2800	79,096
1200	53,959		2850	85,224
1250	44,550		2900	78,300
1300	42,204		2950	84,194
1350	49,976		3000	87,695
1400	49,612			
1450	54,120			
1500	49,074			