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RESUMÉ 

Cílem disertační práce je návrh a ověření vhodné metody řízení některých typů 

chemických reaktorů. Chemické reaktory se obecně vyznačují nelineárními vlastnostmi, 

které jsou ve většině případů značně výrazné. Proto použití konvenčních metod jejich 

řízení PI resp. PID regulátory s pevně nastavenými parametry může být velmi nekvalitní 

nebo i nemožné. 

Nutným předpokladem úspěšného návrhu řízení procesů této třídy je představa o 

jejich statických a dynamických vlastnostech. Jednou z možností, jak znalosti o těchto 

vlastnostech získat je měření na reálném zařízení. Toto ovšem většinou není možné 

uskutečnit. Jako jediná schůdná cesta se pak jeví statická a dynamická analýza řízeného 

procesu pomocí simulací, tj. experimentů na jeho matematickém modelu. Simulační 

metody mají i další výhody oproti experimentům na reálném zařízení, jako jsou menší 

časové nároky, nižší náklady a hlavně bezpečnost.  

Statická analýza procesu ukazuje chování systému v ustáleném stavu což obvykle 

slouží jako výchozí bod pro volbu optimálního pracovního bodu, tzn. takové kombinace 

vstupních veličin, při které je produkce maximální s minimálními náklady. Dynamická 

analýza je dalším krokem po statické analýze a ukazuje chování systému po změně 

vstupních veličin. Toto chování nám posléze poslouží pro volbu vhodné řídící metody. 

V práci jsou použity dvě metody ze třídy tzv. moderních metod řízení.  

V prvním případě metoda spojitého adaptivního řízení, založená na volbě 

externího lineárního modelu (ELM) původně nelineárního systému a použití regulátoru s 

parametry přestavovanými v závislosti na průběžně identifikovaných parametrech ELM 

řízeného procesu. Při identifikaci je použita obecně známá metoda nejmenších čtverců 

spolu s jejími modifikacemi. Při syntéze je v tomto případě použita polynomiální metoda 

společně s metodou přiřazení pólů a technikou LQ (lineárního kvadatického) řízení. Řízení 

je uvažováno v konfiguraci s jedním (1DOF) i se dvěma (2DOF) stupni volnosti.  

Ve druhém případě je použita metoda založená na zobecněném prediktivním řízení, 

kde se posloupnost řídících signálů vypočítá na základě minimalizace odchylky výstupní 

veličiny a žádané veličiny v definovaném budoucím horizontu.  



Všechny metody jsou nejdříve ověřeny simulačně na matematických modelech 

průtočného reaktoru (CSTR) a trubkového reaktoru, ale také praktickým měřením na 

reálném modelu průtočného chemického reaktoru. Dosažené výsledky ukazují použitelnost 

navržených metod v reálných systémech. 

 

Klíčová slova:  Průtočný reaktor, trukový reaktor, modelování, simulace, statická analýza, 

dynamická analýza, adaptivní řízení, prediktivní řízení, polynomiální metody 

 

 

 

 

 

 

 

 



ABSTRACT 

Design and verification of suitable methods for control of two types of chemical 

reactors are the main aims of this work. Chemical reactors are often characterized by 

highly nonlinear behaviour. In such a case the use of the conventional control strategies 

that employ PI or PID controllers with fixed parameters can result in poor performance.  

Knowledge about the static and dynamic properties is a necessary condition for 

design of a controller. One possibility how to obtain such information about the system is 

the investigation of the real system. Unfortunately, measurements on the real system are 

not always feasible. The only way how to obtain static and dynamic behaviour of these 

systems is the use of simulation, i.e. experiments on their mathematical model. Simulations 

have several advantages over experiments on the real system. Among them are the lower 

costs, increased safety and less time consumption.   

Steady-state analysis is usually the first step in the investigation of the system. 

Steady-state analysis shows the behaviour of the system in the steady state which can help 

with the choice of the optimal working point, i.e. the appropriate combination of the input 

variables which results in maximal production with minimal cost. The next step after the 

steady-state analysis is the dynamic analysis which investigates the dynamic properties of 

the system. Based on dynamic analysis, the suitable control strategy can be chosen. 

Two modern control approaches are investigated in this work. The first approach is 

the adaptive control which is based on external linear model (ELM) of the originally 

nonlinear system. The parameters of the model are identified recursively and controller 

parameters are recomputed in each step. Model parameters are obtained via well-known 

recursive least-squares method and its modifications. Polynomial, pole-placement and 

Linear-Quadratic (LQ) approaches are employed for controller synthesis. Two control 

system configurations are considered during the controller design: one degree-of-freedom 

(1DOF) and two degrees-of-freedom (2DOF).   

The second approach used in this work is the Generalized Predictive Control (GPC) 

where the future control sequence is computed by the minimizing the error between 

reference and output signal on the prediction horizon.  



All methods were first examined by simulations on mathematical models of two 

types of chemical reactors – the Continuous Stirred Tank Reactor (CSTR) and the tubular 

chemical reactor and then verified by measurements on the laboratory model of the CSTR. 

Results have proved the applicability of the proposed methods on real systems.     

 

Keywords: CSTR, tubular chemical reactor, modelling, simulation, steady-state analysis, 

dynamic analysis, adaptive control, predictive control, polynomial methods   
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p(s),q(s),r(s) polynomials in the controller transfer functions Q(s) and R(s) 

d(s) optional stable polynomial on the right side of Diophantine equations 

( )p s%  modified polynomial p(s) 

f(s) least common divisor from fw(s) and fv(s) 

w(t) reference signal (wanted value) 
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t(s) auxiliary polynomial 

kd constant 

si roots of the polynomial d(s) 

αi real part of the root si 

ωi imaginary part of the root si 

m(s), n(s),g(s) parts of the polynomial d(s) 

a*(s),n*(s) spectral pairs of polynomials a(s) and n(s) 

μLQ,φLQ weighting factors in LQ 

( )u t&  difference of the input variable in LQ 

JLQ cost function in LQ 

JGPC const function in GPC 

Nu control horizon 

N1,N2 minimum and maximum costing horizons 

δu(j),λu(j) weighting sequences in GPC 

j discrete time step 

Ej(z-1), Fj(z-1) polynomials obtained by dividing of 1 by A(z-1) 

d dead time of the system 

ej,fj coefficients of polynomials Ej(z-1), Fj(z-1)  

Gj(z-1) additional polynomial 

gj coefficients of the polynomial Gj(z-1) 

G,F,y,u  vector forms of the polynomials Gj(z-1), Fj(z-1) and y(j), u(j) 

w vector of reference values 

H,b,f0 auxiliary matrixes and vectors 
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II. PRACTICAL PART 

cA concentration of the compound A [kmol.m-3] 

cB concentration of the compound B [kmol.m-3] 

Tr temperature of the reactant [K] 

Tc temperature of the cooling [K] 

qr volumetric flow rate of the reactant [m3.min-1] 

Vr volume or reactant [m3]  

k1,k 2,k 3 reaction rates [min-1,min-1.kmol-1] 

k01,k 02,k 03 pre-exponential factors [min-1,min-1.kmol-1] 

Tr0 input temperature of the reactant [K] 

hr reaction heat [kJ.min-1.m-3] 

Ar surface of the cooling jacket [m2] 

U,U1,U2 heat transfer coefficients [kJ.min-1.m-2.K-1] 

cpr specific heat capacity of the reactant [kJ.kg-1.K-1] 

cpc specific heat capacity of the coolant [kJ.kg-1.K-1] 

mc weight of the coolant [kg] 

Qc heat removal of the cooling liquid [kJ.min-1] 

E1,E2,E3 activation energies for reactions [kJ.kmol-1] 

h1, h2, h3 enthalpy of reactions [kJ.kmol-1] 

n1 number of pipes in tubular reactor 

(·)s steady-state values of the state variables 

(·)0 initial-state values of the state variables 

t time variable [s, min] 
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z space variable [m] 

u(t) input variables [%] 

w(t) wanted value (reference signal) [kmol.m-3, mS] 

v1-3(t) disturbances [%, K] 

y1-5(t) output variables [kmol.m-3, K, mS] 

Su,Sy control quality criteria [-] 

i step in the computation of Su and Sy [-] 

N number of steps in the computation of Su and Sy [-] 

Tf time of the simulation [s, min] 

αi position of the root [-] 

μLQ,φLQ weighting factors in LQ [-] 

δu,λu weighting sequences in GPC [-] 

vr, vc fluid velocities [m.s-1] 

fr,fc constants [m2] 

Tw temperature of the pipe wall [K] 

d1, d2, d3 diameters [m] 

x(t) general variable [-] 

hz discretization step [m]  

L length of the reactor [m]  

Nz number of parts [-] 



-26- 

 

 



-27- 

INTRODUCTION 

Chemical reactors belong to the most often equipments in the chemical and 

biochemical industry. Simulation and modelling possibilities rise with the increasing 

impact of the digital technology and especially with the computer technology which grows 

exponentially every moment. You can find intelligent control system in every field of the 

human living, not only industry. 

The goal of the work is to apply some of these methods on specific types of 

chemical reactors like Continuous Stirred Tank Reactors (CSTR) and tubular chemical 

reactors. 

Specific design of the controller is usually preceed by few very important steps. 

Not every property of the controlled system is known before we start and that is why we 

perform simulation experiments on the system. There are two main types of the simulation 

– (1) experiment on the real model and (2) computer simulation. Computer simulation is 

very often used at present as it has many advantages over an experiment on a real system, 

which is not feasible and can be dangerous, or time and money demanding. 

The first step is system model creation. This model is usually a mathematical 

model which describes the original process in the best way. Balances inside the reactor are 

usually used for mathematical model creation. Resulted set of the differential equations is 

then subjected to the static and dynamic analysis. 

The static analysis displays behaviour of the system in the system in the steady-

state. This study results in the optimal working point. On the other hand, the dynamic 

analysis provides step, frequency responses etc. which display dynamic behaviour of the 

system and they are a base for choosing an external linear model. Numerical mathematics 

is widely used in the solution of these two analyses. 

Many chemical processes have nonlinear properties. There are several methods 

how to overcome nonlinearity. One approach is choosing the External Linear Model 

(ELM). If the input variable is a step function, we can call the course of the output variable 

a “step response”. This step response is then used as a guide to the optimal ELM selection.  
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The next step after simulation is to look at the problem from the control point of 

view. Two main control strategies were used in the work – the adaptive control and the 

generalized predictive control. The adaptive control in this work is based on recursive 

identification of the ELM of the controlled plant and these parameters are then used for 

computation of the controller. The second control strategy, the predictive control, is based 

on calculation of the future values of the input (manipulated) variable which force output 

variable close to the reference signal (wanted value) and minimize control error in defined 

prediction horizon. 

The work is divided in the five main numbered chapters.  

The first chapter gives overview in the research area of the modelling, simulation, 

identification and control whereas the second chapter formulates the main goals of this 

dissertation.  

The section number three is focused on the theoretical knowledge about the 

process from the modelling through the simulation to the control of the process. The last 

sub-chapter is describes types of chemical reactors used in industry. 

The fourth part of the work shows simulation results of the steady-state, dynamic 

and control analyses for continuous stirred tank reactor and plug-flow reactor and results 

from the control analyses on the real model of the continuous stirred tank reactor. 

The last part is discussion of the obtained results and conclusion of the achieved 

goals in this work. 

Tables, figures and equations are numbered recursively within a chapter and 

literature is referred to in square brackets. 
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1 STATE OF ART 

It is known that almost all processes in the nature have a nonlinear behaviour. The 

goal of all researchers in nonlinear theory is to somehow overcome this nonlinearity.  

Typical examples of nonlinear systems are chemical processes. One of the most 

important chemical equipment types is chemical reactor. A chemical reactor is a vessel or 

pipe which is used for the production of chemicals used in chemical, biochemical, drug 

and other industries through a specific reaction inside. Reactors should be divided in 

several ways – by the chemical reaction inside the reactor [1], by the kinetics [2] and [3] 

etc. The division from the construction point of view ([4], [2]) is one of the most common. 

We can come across a batch, semi-batch reactor or a continuous stirred tank reactor 

(CSTR) or series of CSTR’s. These reactors belong to the class of tank-reactor equipment, 

while the tubular chemical reactor is a typical member of the pipe-reactor [5]. 

The starting period for the investigation of the chemical processes can be set the 

beginning of the 1940s but the real starting point of the process control theory was in the 

1970s, when the energy costs had a high importance [6] and the increasing development of 

the computer technology provided a better verification of theoretical knowledge. 

As written above, expansion of the process control theory is connected with the 

improvements in the computer field but computer programs have been mainly used in the 

last step of the simulation or control procedure. The modelling could be assigned as a 

starting point of the simulation [7], [8] and [9]. The model of the process is a simplified 

version of the real system and includes all variables and relations of the system which are 

important for the investigation [10]. The mathematical and physical models are two main 

types of models used nowadays.  

The mathematical model is a kind of abstract representation of the process which 

uses input, state or output variables, relations between these variables collected in the set 

of mathematical equations – [4], [6]. The mathematical model is usually a set of linear or 

nonlinear, normal or differential equations. A very important step in the mathematical 

model creation is the decision which quantities are constant and introduction of 
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simplifications. Processes generally, not only chemical processes, are often nonlinear and 

mathematical description of all quantities and relations inside the process can lead to a 

very intricate set of equations. Simplifications should reduce this complexity and ensure 

mathematical solvability. 

Mathematical solution of a mathematical model depends on the type of the model. 

A linear or nonlinear set of ordinary equations is the simplest example of the solution – the 

simple Gauss elimination method, Cramer’s rule, Inverse matrix or Least-squares method 

could be used for numerical solution of this set of linear equations [11], [12]. On the other 

hand, the Simple iterative method and its modifications like Newton method etc. [13] are 

usually used for nonlinear equations [11]. 

Unfortunately, most of the systems in the nature, not only in chemical industry, 

have nonlinear properties and they are described by the a of ordinary differential equations 

(ODE) for systems with lumped parameters or partial differential equations (PDE) for 

systems with distributed parameters [14].  The difficulty of finding the solution increases 

with the nonlinearity and degree of the differential equations.  A lot of numerical solution 

methods have been developed, especially for the ODE, such as Euler’s method or Taylor’s 

method [15]. Runge-Kutta’s methods are very popular because of their simplicity and easy 

programmability [16]. Although this method was developed by German mathematicians 

Carle David Tolmé Runge (1856 - 1927) and Martin Wilhelm Kutta (1867 - 1944) at the 

very beginning of the 20th century, it is still very often used in numerical mathematics for 

the solution of ODE. This method was being improved during the whole 20th century, 

which resulted in Runge-Kutta’s modifications, like the fourth order Runge-Kutta’s 

method, Adaptive Runge-Kutta methods (Runge-Kutta-Fehlberg Method) [15] etc. An 

other multistep method for numerical solution of ODE is the Predictor-Corrector method 

[17]. The solution of PDE is more complicated because of the presence of usually two 

types of derivatives – derivatives with respect to time and with respect to the space 

variable. The set of PDE should be numerically solvable for example by the Bäcklund 

transformation, Green's function, separation of variables or finite differences method [18]. 

It is clear that the solution of the PDE is very complex; one way how to overcome the 
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derivative with respect to the space variable is to replace this derivative by difference in 

time related to the time step and the set of PDE is then transformed to the set of ODE [19]. 

An indivisible part of the simulation study is steady-state analysis which discovers 

the behaviour of the system in steady-state, i.e. in the time close to infinity. 

Mathematically it means that derivatives with respect to time variable are equal to zero. 

The set of ODE is transformed to the set of linear or nonlinear equations and the set of 

PDE is now rewritten to the set of ODE with only one derivative with respect to the space 

variable [19]. The resulted steady-state characteristics show mainly linear or nonlinear 

behaviour of the system and they can be used for choosing the optimal working point. The 

optimal working point means the value of the input (manipulated) variable for which the 

steady-state value of the output variable reaches the maximum. 

Once we know the static and dynamic behaviour of the process, we can continue 

with the design of the controller. In the nearly 1940th a lot of control techniques based on 

the static and dynamic characteristics of the system were introduced – e.g. design of the 

controller based on the step response of the system or Ziegler-Nichols method, Tyreus-

Luyben [20], which results in a Proportional (usually denoted as P), Proportional-Integral 

(PI), Proportional-Derivative (PD) or Proportional-Integral-Derivative (PID) controller. A 

disadvantage of these approaches is that the resulting controller has fixed parameters and 

structure, which is not very suitable for nonlinear systems or systems with negative control 

properties like time-delay systems, non-minimum phase systems of systems with changing 

the sign of gain. 

One way how to overcome the problems with nonlinearity or the negative control 

properties in general is the use of the Adaptive control [21], [22] and [23]. As can been 

seen from the term this approach is based on the quality of real organisms which can 

change behaviour according to environmental conditions. This process is usually called 

“adaptation”.  

The beginning of adaptive control dates back to over fifty years ago, but a great 

impact of the adaptive controllers appeared after 1989 with the publishing of the book by 

Astrom [21] (this was reorganized and some new chapters were added to the second 
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edition in 1994 [22]). In literature the adaptive controller is tightly connected with the self-

tuning controller. The self-tuning technique is subset of the adaptive control. The self-

tuning controller adapts its parameters at the beginning of the control or in some period 

before the control starts and the structure is then fixed in contrast to pure adaptive 

controller which recomputes and changes parameters or structure of the controller in every 

step during control [24].  

The adaptive approach in this work is based on choosing the external linear model 

(ELM) as a mathematical representation of the originally nonlinear process whose 

parameters are identified recursively during the control. The parameters of the controller 

are recomputed recursively too, with the dependence on the identified parameters of the 

ELM. The structure of this ELM could be derived from the dynamic behaviour of the 

system and is usually represented by the transfer function. 

The transfer function of the ELM can be defined in the continuous or discrete time 

domain [20]. The continuous-time (CT) model [25] represents a system in continuous time 

which can cause computational problems because the derivatives of the input and the 

output variables used in the identification part are immeasurable. This inconvenience can 

be overcome using differential filters [26]. On the other hand, discrete models have no 

problems with measurements of the input and output variables because their values are 

measured only in defined times distanced by the sampling period. The choice of the 

sampling period can be a problem because a small sampling period means that the 

computer does not have enough time to do all computation, a big sampling period, on the 

other hand, can cause large dynamic changes inside the system which results in problems 

for the controller. 

A special type of the discrete models is Delta models (δ-models) [27], [28]. 

Although they belong to the class of discrete models, the parameters are related to the 

sampling period, and it was shown in [29] that these parameters are similar to the 

continuous ones for a small value of the sampling period. 

As written above, the parameters of the ELM are identified recursively during 

control from the values of the input and output variables. The recursive identification is 
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usually connected with the Least-squares method, which is rather old but on the other hand 

it is simple and has still sufficient results. Several modifications of the Recursive Least- 

squares (RLS) method have been developed, like RLS with exponential forgetting [30] and 

[31], directional forgetting [32], adaptive directional forgetting [33] or the method with 

modification of the covariance matrix [34].  

An inseparable step in the identification is the design of identification model. 

Identification models are divided from the error point of view into equation error models 

(ARX, ARMAX, etc.) and output error models (OE, Box-Jenkins, etc.) [30]. The auto-

regressive exogenous (ARX) model is the most common used scheme because it is simple 

and the output variable is a simple linear function of the measured data [35]. On the other 

hand, the auto-regressive moving average exogenous (ARMAX) model consists in the 

description of a prediction error and the computation of the output variable is made by 

pseudolinear regression [36] because this output variable is a nonlinear function of the 

measured data. 

The mathematical description of the process and the controller by polynomials is 

an algebraic method often used in the synthesis of the controller [37], [38]. This, so called 

polynomial synthesis, works in the ring of polynomials and is derived from the input-

output model of the system or controller. The polynomial approach has some good 

properties, such as it fullfiling basic control requirements (stability, properness) and it 

provides not only the structure of the controller but also the relations for the computing of 

the controller’s parameters. And last but not least, this method is easily programmable. 

One of the demands on the controller is that it should be tunable. The polynomial 

synthesis in this work results in solving of the Diophantine equation, or the set of equations, 

which has an optional stable polynomial on the right side of the equation and the choice of 

parameters of this polynomial affects the control response. The Pole-placement [38] (in 

some literature called the Pole-assignment method) is one of the methods used in this case. 

The placement of roots is sometimes difficult and there is no rule how to choose the right 

pole. It is good to connect the stable polynomial with the parameters of the controlled 

system or ELM, respectively for example with the spectral factorization [39]. The Linear 

Quadratic (LQ) approach is the second possible way for designing the stable polynomial 
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on the right side of the Diophantine equation [26]. The LQ is based on the minimizing of 

the cost function. 

Another possibility how to influence the quality of the control is to use different 

control configurations. The first configuration has a controller in the feedback part and is 

called a one-degree-of-freedom (1DOF) control configuration [40]. It was proofed in [41] 

that a two-degree-of-freedom configuration (2DOF), which has one part of the controller in 

the feedback and the other in the feedforward part, has better control results, especially at 

the beginning of the control, than the basic 1DOF configuration. 

The simulation results for different types of nonlinear models [26], [42] and [43] 

have shown that the adaptive controllers connected with polynomial methods can be 

applied on systems with negative control properties, such as instability, non-minimum 

phase or on systems with transport delays because they fulfill basic control requirements, 

such as stability, properness, asymptotic tracking of the reference or disturbance 

attenuation. 

The last years of the 20th century and the beginning of the 21st century are in token 

of developing “modern control methods” like Adaptive control [21], [22], Predictive 

control [44], [45], [46] and [47], Model predictive control [48], [49] and [50], Robust 

control [51] or application of neural networks and Artificial Intelligence [52]. 
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2 DISSERTATION GOALS 

The aim of this dissertation is to apply and verify some novel control methods to 

chemical reactors. Verifications are done by simulation on a mathematical model in the 

computer and some methods are then applied on a real chemical reactor. 

It is impossible to include all modern control methods so in this work I choose 

several of them which have preferably general description, are easily programmable and do 

not depend on the computation power of computer. 

 

The goals of the present work can be summarized in the following points: 

1. To perform static and dynamic analyses of different types of stirred reactors 

and tubular reactor. 

2. To prepare different modern control algorithms to control these chemical 

reactors and verify these algorithms by simulation. 

3. To verify the proposed controllers from the simulation part on a real model of 

the continuous stirred tank reactor (CSTR). 
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3 THEORETICAL FRAMEWORK 

The theoretical part is mainly focused on the description of the theoretical 

background of the modelling, simulation, static and dynamic analyses, adaptive and 

predictive control. 

3.1 Modeling and Simulation 

It is common for the industrial processes that they are considered as “black boxes” 

which means that we do not know internal structure of the system, but only input-output 

measurements are at our disposal. Simulation is one way how we can overcome this 

internal uncertainty. From the input-output measurements we can obtain properties of the 

system in the mathematical terms like differential equations, transfer functions, step or 

impulse functions etc. [20] 

 

3.1.1 Types of Systems 

It will be good to describe basic types of systems before we start with the 

modelling, identification and simulation of them.  

There are several types of systems. The first division is into the linear and 

nonlinear systems. Relations between variables inside the model are described by the linear 

functions while nonlinear models have the relations from the range of nonlinear functions.  

Systems where state variables are position independent are called systems with 

lumped parameters; unlike systems with distributed parameters where state variables are 

functions of time and space variable.  

Variables in the continuous-time systems are defined in the continuous time 

interval unlike in discrete-time systems where one of the quantities is specified in the 

discrete time. 

Deterministic systems are those whose actual output is derived from the previous 

state and the input variable while the state of the system should be defined only with some 
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probability in stochastic systems. Uncertainty of these systems is caused as an effect of the 

random signals in the output of the system.   

Next divisions are stationary (time-invariant) systems where variables do not 

depend on time unlike in nonstationary (time-variant) systems. The single-input single-

output (SISO) system has only one input and one output whereas systems with more than 

one signal on the input or output like single-input multiple-output (SIMO) systems, 

multiple-input single-output (MISO) systems and multiple-input multiple-output (MIMO) 

systems belongs to the class of multivariable systems.  

 

3.1.2 Modelling 

There are two main types of the models – physical (real) models and abstract 

models. The real model is represented by the copy of the system, usually small or similar 

to the original one. On the other hand, the mathematical model is usually used as an 

abstract model of the system. 

As is written above, modelling and simulation are the first steps in the design of 

the controller. Two approaches should be used in the modelling part. The first method 

collects measurement results of input and output variables. The resulted model is called 

input-output model and the method is named empiric approach. Disadvantage of this 

model is that it describes only relation between the input and the output variable and does 

not give any information of the system’s structure.  

Process is usually described by various types of quantities like temperature, 

pressure, flow rate, concentration etc. which describe the process from the mathematical 

point of view. These quantities are called state variables and relations between them are 

used for the second method – the analytic approach. The resulted analytic (or more 

common used ”mathematical”) model describes these inner variables, relations between 

them and we can imagine it as a set of linear, nonlinear, ordinary differential equations 

(ODE) and a set of partial differential equations (PDE). 
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The mathematical model is only abstract approximation of the real system which is  

very complex or partly misunderstood [4]. Thus models do not strictly describe all the 

properties and relations inside the system, but pick up the most important ones and 

introduce constants and simplifications. It is required that mathematical model describe 

real system in the proper way and moreover it is in the simplest one from the range of 

available models. To find compromise between these two claims is the most important part 

of modelling. 

Dynamic 
system 

Control strategy 
and design Model for 

control 

Define strategy, 
goals, information 

collecting 
Modelling 

Simulation, 
validation 

 

Figure 3.1 General modelling procedure 

Figure 3.1 shows the main stages in the modelling procedure. First we start with 

the definition of goals and requirements and general description of the system, usually 

dynamical system. 

The next step is connected with collecting all available knowledge of the system. 

This work needs deeper knowledge about the background of the system, its behaviour, 

reactions and chemical process inside of it etc. It is common that this work means the 

exchange of the experience with the industry. 

The most important relations are then put together in mathematical model which is 

then simulated by the computer. Validity of the model is checked by the comparison with 

the results of the experiments on the real model. If the results agree sufficiently we can use 

this model for mathematical simulation. It is common that convenience of the model is 

revised in predefined intervals. 

The last steps are related to choosing of the control strategy and design of the 

controller. 
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MATHEMATICAL BALANCES 

The mathematical model of the system usually comes from mathematical balances 

inside the reactor. They include kinetic equations for rates of the chemical reactions, heat 

rates, heat transfers and equations which represents property changes. The resulted model 

should be the simplest one but unfortunately it is very complex. In this case we must 

introduce assumptions which decrease complexity of the model but preserve the most 

important relations. 

Material balance  

Material balance in the steady-state can be generally described in the word form as 

 
Mass flow of 

the component 
into the system

=
Mass flow of the 
component out of 

the system 
 

However, most of the variables vary in time and steady-state balance is not 

suitable. We can introduce dynamic material balance which contains changes with respect 

to time in the form of accumulation  

Mass flow of 
the component 
into the system

Rate of 
accumalation of 

mass in the system 
= +

Mass flow of the 
component out of 

the system 
 

Some of the processes include chemical reactions. Material balance is in this case 

 
Mass flow of 

the component 
into the system

Rate of 
accumalation of 

mass in the system
= +

Mass flow of the 
component out of 

the system 

Rate of production 
of the component 

by the reacton 
-
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Heat balance 

Heat balance is usually the second type of balances used in modelling procedure. 

Temperature changes are usually caused by the reaction heat or cooling. This must be 

mentioned in case where heat changes inside the system are significant. The word form of 

this balance is 

Heat in the 
input flow +

Heat arrised 
during the 
reaction 

= +Heat in the 
output flow

Heat 
accumulated 

inside 

Heat transfered 
from or into the 

surrounds 
-

 

Mathematical description 

The nonlinear time-invariant systems with lumped parameters are generally 

described by the set: 

 
( ) ( ) ( )
( ) ( ) ( )

,

,

t t t

t t t

= ⎡ ⎤⎣ ⎦
= ⎡ ⎤⎣ ⎦

&x f x u

y g x u
 (3.1) 

where x(t) = [x1(t), x2(t),… xn(t)]T is the state vector, u(t) = [u1(t), u2(t),… um(t)]T 

denotes the input vector,  f = [f1, f2,… fn]T and g = [g1, g2,… gn]T are nonlinear vector 

functions. 

Once the mathematical model is constructed, it is important to define its conditions. 

Each state variable needs as many conditions as is the highest order of the derivative 

related to the independent variable in differential equations.  

The system described by the set (3.1) has initial condition 

 0(0) s=x x  (3.2) 
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which are obtained from the steady-state analysis described later. 

On the other hand, one part of systems with distributed parameters with ideal plug-

flow inside have the mathematical model in the form of PDE. The equation which 

describes one of the state variables could be 

 ( ) ( ) ( ) ( ) ( )
2

2

, , ,
, , ,

x z t x z t x z t
a v f x z t u z t

t z z
∂ ∂ ∂

− + = ⎡ ⎤⎣ ⎦∂ ∂ ∂
 (3.3) 

where z is space variable, t denotes time, a and v are constants and f is nonlinear 

function. In this case we need not only initial conditions but boundary conditions too, in 

this case: 

 0(0, ) ( )x t u t=  or ( , ) ( )Lx L t u t=  (3.4) 

where u0(t) and uL(t) are called boundary input variables. 

The second part with the squared derivative with respect to space variable 

( ( )2 2, /x t z z∂ ∂ ) usually deal with longitudinal diffusion, heat conduction or longitudinal 

interfusion etc. and this part is often neglected due to small values of elements of the 

constant a. 

The boundary conditions can be written as 

 0
1 1

0

( ) 0
z

x u x
z

α β
=

∂
+ − =

∂
, 2 2 ( ) 0L

z L

x u x
z

α β
=

∂
− − =

∂
 (3.5) 

where α, β  ≥ 0 are constants and u0(t), uL(t) are again boundary input variables. 

If we set α1 = α2 = 0, eq. (3.5) is called the first type of boundary condition. 

Furthermore, β1 = β2 = 0 results in the second type of boundary condition and for non-zero 

α and β we obtain the third type of boundary condition. The mixed boundary condition is 

obtained in the case where we have different types of conditions on the right and left side 

of the reactor. Boundary conditions must be chosen according to physical properties of the 

process. 
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The initial condition for both cases is 

 ( ,0) ( )sx z x z=  (3.6) 

where xs(z) comes from steady-state, i.e. for ODE where derivations are only with 

respect to space variable z and all boundary and input variables are in steady-state too. 

 

3.1.3 Steady-state Analysis 

Analyses inside the reactor are the next step after the developing of the 

mathematical model, initial and boundary conditions. There were used steady-state and 

dynamic analysis to obtain information about the type and behaviour of the system. 

Steady-state analysis results in optimal working point while the product of dynamic 

analysis could be step, frequency etc. responses. 

Steady-state analysis for stable systems involves computing values of state 

variables in time t  ∞, when changes of these variables are equal to zero. That means that 

all equations which consist of derivations with respect to zero have these derivations equal 

to zero, i.e. 

 ( ) 0
d
dt

⋅
=  (3.7) 

There are many methods for solving of this problem. If the system is linear, the set 

of differential equations can be rewritten to the set of linear equations which can be solved 

by general, well known methods like matrix-inversion, Gauss elimination etc. or with the 

use of some types of iterative methods. However, the most of the processes are nonlinear 

which leads us to the set of nonlinear equations. Despite the fact that there is a possibility 

of the analytical solution, iterative methods are used more often. 

The other possibility is the simple iterative method [6] which is often used for 

defined form of the equations. This method leads to the exact solution for appropriate 
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choice of initial iteration and for the fulfilled convergence condition. Its advantage is that it 

does not need special modifications and side calculations according to other iterative 

methods like Newton’s method etc. Although this method converges slower than Newton’s 

method, this disadvantage is unimportant nowadays, when the speed of computers is very 

high. This method will be used for solving of a steady-state. 

The simple iterative method 

Consider nonlinear system in the for of state equation similar as in Equation (3.1) 

 ( ) ( ) ( ),t t t= ⎡ ⎤⎣ ⎦x f x u&  (3.8) 

with initial condition 

 ( )0 s=x x  (3.9) 

The vector of input variables is 

 1 2, ,
Ts s s s

nx x x⎡ ⎤= ⎣ ⎦Kx  (3.10) 

Components of this vector are unknown and they could be computed by solving of 

equations of the model in steady-state: 

 ( ), 0s s= =f x u  (3.11) 

where us = [u1
s, u2

s,… um
s]T is vector of assigned (known) input variables which 

comes from basic steady-state. Unknown variables in the equation (3.11) are components 

of the state vector xs, which creates n state variables in basic steady-state. This basic 

steady-state is called working point of the system and surrounding of this point is used for 

dynamic analysis of the system (3.8). 

Computation of the initial conditions xs is for nonlinear system important not only 

for computation of the dynamics but also it is used for creating of a linearized 
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mathematical model of the process in working point. It is known that parameters of this 

model depend on values of state variables in the working point. 

Equation (3.11) can be now rewritten to  

 ( ) 0=f x  (3.12) 

for unknown values of xi for i = 1,2,…n. 

Next step in the solution is following. The equivalent set of equations to the set 

(3.12) is 

 ( )x = xϕ  (3.13) 

where φ is nonlinear vector function φ = [φ1, φ2,… φn]T and which leads to iterative 

equation in the form of 

 ( )1k k+ =x xϕ  for  k = 0,1, … (3.14) 

The iterative method leads to the exact solution only if it converges. The 

convergence condition of the iterative process (3.14) then can be formulated as follows: 

Let the vector function φ is defined in the closed convex region D ⊂  ℜn and if 

D∈x  so D∈ϕ too. Moreover, let functions φ has continuous partial differential 

derivations of all variables 1 nx x÷  in the region D, then there exists matrix 

 ( )

1 1 1

1 2

2 2 2

1 2

1 2

n

n

n n n

n

d d d
dx dx dx
d d d

d dx dx dx
d

d d d
dx dx dx

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟′ = = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

x
x
ϕϕ

L

L

M O

L

 (3.15) 
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If matrix (3.15) complete condition ( ) 1′ <xϕ  for any D∈x , there are only one 

solution D∈*x  of the equation (3.14). 

There could be of course thousands of iterations during the computation but from 

practical point of view is convenient to stop the computation in the case that difference 

between values of actual and previous iteration is sufficiently small, i.e. condition 

 ( ) ( )1k k
ssε−− <x x  (3.16) 

is fulfilled for accuracy εss > 0, value of which depends on supposed absolute 

dimension of computed variables. 

It is important to introduce following remarks in addition to the previous 

conditions:  

• This method can be used for cases where steady-state model (3.11) includes linear 

part besides nonlinear part. Linear part is necessary for creation of a equivalent set 

(3.13). The iterative equation of the heat transfer balance includes both linear part 

for heat transfer and nonlinear part computed from Arrhenius law. 

• The input iteration should be selected from the convergence region of the iterative 

process. The temperature inside of the reactor is supposed to by higher than the 

temperature of the input flow. Therefore it is convenient to set the input iteration 

equal to this temperature. 

 

3.1.4 Dynamic Analysis 

Dynamic analysis is usually the next step after the steady-state analysis. Dynamic 

analysis for systems with lumped parameters is mainly focused on the numerical solving of 

the set of ODE described as (3.8). There are a lot of methods which can be used for 

numerical solving of this problem. General division is into the two main groups – one-step 

and multi-step methods. 
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We supposed the general differential equation be in the form of (3.1) 

 ( ) ( ) ( ),t t t= ⎡ ⎤⎣ ⎦y g x u  (3.17) 

with the initial condition   

 ( )0 0y t y=  (3.18) 

which is called Cauchy Problem [30].  

Although there are a lot of methods for solution of ODE, the popular Runge-

Kutta's standard method was used in this work. This method is very often used in the 

praxis because of its simplicity. Runge-Kutta's methods belong to the class of high-order 

methods, they can be used for computation of the initial values or for the final result and 

they are easily programmable. The fourth-order Runge Kutta's method is one of the most 

used types [6] and [12]. This method uses first four parts of the Taylor's series: 

 ( ) ( ) ( )1 2 3 4
11 2 2
6

y k y k g g g g+ = + ⋅ + + +  (3.19) 

where coefficients g1-4 are computed from: 

 

( )( )

( )

( )

( )( )

1

1
2

2
3

4 3

,

,
2 2

,
2 2
,

i n n

i
i n n

i
i n n

i n i n

g h f x y x

h gg h f x y x

h gg h f x y x

g h f x h y x g

= ⋅

⎛ ⎞= ⋅ + +⎜ ⎟
⎝ ⎠
⎛ ⎞= ⋅ + +⎜ ⎟
⎝ ⎠

= ⋅ + +

 (3.20) 

The Runge-Kutta's methods are in some cases build-in functions in mathematical 

softwares. For example in MATLAB, which is used for simulation in this work, are 

Runge-Kutta's methods in functions ode23 (the second order Runge-Kutta formula) or 

ode45 (the fourth order Runge-Kutta's formula described above) [53]. One of advantages 

of these methods is that they have flexible integration step hi, which recomputes every step 
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according to the actual computation error. The standart Runge-Kutta method has a several 

modifications like Runge-Kutta-Fehlberk method, Runge-Kutta-Nyström method etc [54]. 

As it is mentioned above, systems with distributed parameters are usually 

described by the set of PDE. Direct numerical solving of the PDEs is very complex. Some 

PDE can be solved with the use of Bäcklund transformation, Green's function, separation 

of variables or some numerical methods such as finite elements. The method of finite 

differences was used in this work. This method transforms the set of PDE to the set of 

ODE. This can be done by replacing the variables with respect to the axial variable z by the 

first back or forward difference [19]: 

 ( ) ( )1

iz z z

y i y idy
dz h=

− −
≈ , for i = 1,2,... n (3.21) 

 ( ) ( )1

iz z z

y j y jdy
dz h=

+ −
≈ , for j = n-1, n-2 …, 1 (3.22) 

where i, j are indexes, n is number of pieces and hz is discretization step. 

 

3.2 Identification and Control 

Most processes in the nature, not only in chemical industry have nonlinear 

properties and the use of classical controllers with fixed parameters could result in non-

optimal control because of changing parameters of the system.  

The use of the “modern” control methods is one way how to overcome this 

problem. The adaptive and the predictive control were used as a control approaches in this 

work. 

3.2.1 Adaptive Control 

The basic idea of adaptive control is that parameters or the structure of the 

controller are adapted to parameters of the controlled plant according to the selected 
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criterion [33]. Adaptation can be done for example by the modification of the controller's 

parameters by the change of the controller’s structure or by generating an appropriate input 

signal, which is called “adaptation by the input signal”.  

In some references the adaptive system is called self-tuning system which is 

formally subset of the adaptive systems. As written in [24], an adaptive controller is a 

system with continuous (recursive) adaptation of the parameters while a self-tuning 

controller adapts parameters only at the beginning of the control and the computation 

mechanism is switched off.  

The adaptive approach in this work is based on choosing an external linear model 

(ELM) of the original nonlinear system whose parameters are recursively identified during 

the control. Parameters of the resulted continuous controller are recomputed in every step 

from the estimated parameters of the ELM.  

 

EXTERNAL LINEAR MODELS 

The main types of ELM are continuous-time (CT) models and discrete-time 

models. Both models are described in detail in the following chapters. 

Continuous-time ELM  

This approach is based on continuous-time theory described for example in [25]. 

Models are generally described in the time domain as 

 ( ) ( ) ( ) ( )a y t b u tσ σ=  (3.23) 

where a, b are polynomials of the system, y(t) is output variable, u(t) denotes input 

variable and σ is the differentiation operator. The initial conditions for Equation (3.23) are 

( ) ( ) ( )

( ) ( ) ( )
0

0

0 , 0,1,2, , for deg

0 , 0,1,2, , for deg

i i

j j

y y i n n a

u u j m m b

= = =

= = =

K

K
 (3.24)  
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and Equation (3.23) can be rewritten with the initial conditions equal to zero and 

with application of the Laplace transformation to the form: 

 1( ) ( ) ( ) ( ) ( )a s Y s b s U s o s= +  (3.25) 

where s denotes complex variable, polynomial o1 includes initial conditions and 

polynomials a(s) and b(s) are 

 
deg deg

0 0
( ) , ( )

a b
i j

i j
i j

a s a s b s b s
= =

= =∑ ∑  (3.26) 

Transfer function G(s) for the initial conditions equal to zero is: 

 ( ) ( )
( )

( )
( )

Y s b s
G s

U s a s
= =  (3.27) 

Discrete (Z–) ELM 

As already said, there is a problem with setting of the polynomial c(s) in  

Equation (3.31). One solution to this problem is to use of discrete models. These models 

have, however, one disadvantage; discrete shifting operator q in the general description 

  (3.28) 

is not equivalent to the continuous time operator [55].  

Discrete models are used in the cases where the usage of continuous ones is 

complicated or the realization is impossible. An important variable in the discrete-time 

models is sampling period Tv. The selection of the sampling period is intuitive and there is 

no general rule for this choice, but one suggestion is to take it from eigt to twelve samples 

for the active part of the step response. An active part of the step response is a time interval 

in which the output variable reaches 95% of the steady-state value. 

We can generally say that a sufficient number of samples for the description of the 

step response is a good way for selection of the root. Another limitation is of course the 
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use of hardware. We cannot take sampling period lower than sampling period of the 

counters and timers. 

The transfer function G in this case is defined as Z-transform of the output variable 

y to the input variable u 

 ( ) ( )
( )
( )

1
1 1 0

1
1 1 0

( ) m m
m m

n n
n n

b z b z b z b z bY zG z
U z a z a z a z a z a

−
−

−
−

+ + + +
= = =

+ + + +
K

K
 (3.29) 

where a(z) and b(z) are discrete polynomials and U(z) and Y(z) are Z-transform 

images of the input and output variables. 

It is more common that the polynomials are in negative powers of the complex 

variable z, which means that we divide Equation (3.29) by the highest power of z. The 

condition of the strict properness says that ( ) ( )deg dega z b z> , i.e. n m>  and equation 

(3.29) is divided by zn: 

 ( ) ( )
( )
( )

1 1 11
1 1 1 0

1 11 1
1 1 0

( ) m n m n n n
m m

n n
n n

b z b z b z b z b zY zG z
a a z a z a zU z a z

− − − − − −−
− −

− − −− −
−

+ + + +
= = =

+ + + +
K

K
 (3.30) 

This model was mentioned only for the complementarity and it is not used later in 

the practical part. 

 

ELM PARAMETERS IDENTIFICATION 

The use of the discrete model for nonlinear system can cause problems with the 

sampling period Tv. This sampling period cannot be small because of the stability and the 

big sampling period is unacceptable because we do not know what will happen with the 

system during this sample. 

The continuous-time ELM with the use of differential filters and δ-models were 

used for the identification in this work. 
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Continuous-time ELM 

Equation (3.23) means a problem from the identification point of view because of 

the derivatives of the input and output variables which are immeasurable. However, these 

derivations can be replaced by the filtered ones, yf and uf, computed from 

 
( ) ( ) ( )

( ) ( ) ( )
f

f

c u t u t

c y t y t

σ

σ

=

=
 (3.31) 

where c(σ) is stable polynomial in σ, which fulfils condition  ( ) ( )deg degc aσ σ≥ . 

Laplace transformation of Equation (3.31) is then  

 2

3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
f

f

c s U s U s o s

c s Y s Y s o s

= +

= +
 (3.32) 

where o2 and o3 are polynomials which include initial conditions of the filtered 

variables. Substitution of Equation (3.32) into Equation (3.25) results in 

 ( )( ) ( ) ( )
( )f f

b sY s U s s
a s

= + Ψ  (3.33) 

and Ψ(s) is rational function in s which contains initial variables of filtered and 

unfiltered variables. 

It is known [26] that dynamics of the filter in Equation (3.31) must be faster than 

dynamics of the controlled process. The initial choice of polynomial c(s) is connected with 

the knowledge of the system. One possibility is to choose parameters of c(s) apriory small.  

If we take the values of the filtered variables in the discrete time moment k vt k T= ⋅  

for k = 0,1,2,… where Tv is sampling period, the regression vector for deg a = n and  

deg b = m is  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1, , , , , , , ,1
Tn m

k f k f k f k f k f k f kt y t y t y t u t u t u t−⎡ ⎤= − − −⎣ ⎦ϕ K K  (3.34) 
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and the vector of parameters is 

 ( ) [ ]0 1 1 0 1, , , , , , , T
k n mt a a a b b b−=θ K K  (3.35) 

The parameters of polynomials a(s) and b(s) are estimated recursively in discrete 

time moments from equation 

 ( ) ( ) ( ) ( ) ( )n T
f k k k ky t t t t= ⋅ + Ψθ ϕ  (3.36) 

Delta (δ−) ELM 

Although the delta operator belongs to the class of discrete models with the 

operator described in Equation (3.28), it can been seen from 

 1

v

q
T

δ −
=  (3.37) 

that this operator is related to sampling period Tv and it means that δ-models are 

close to the continuous ones in d /dt.  

Now, a new complex variable in “δ” plane called “γ”, which is defined for 

example in [56] as 

 
( )
1
1v v

z
T z T

γ
β β

−
=

⋅ ⋅ + − ⋅
 (3.38) 

We can obtain an infinite number of δ−models for different values of optional 

parameter β in Equation (3.38) from the range 0 1β≤ ≤ .  

There are several commonly used δ-models [33]: 

 for β = 0: 1

v

z
T

γ −
=  forward δ-model (3.39) 
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 for β = 1: 1

v

z
z T

γ −
=

⋅
 backward δ-model (3.40) 

 for β = 0.5: 2 1
1v

z
T z

γ −
=

+
 Tustin’s δ-model (3.41) 

The forward δ-model described by Equation (3.39) is dealt with in this work. If we 

have general output function y(t), the approximation of its first derivation by the first 

difference is δy(t) and the relation between differentiation operator σ and δ-operator is [43] 

 
0

lim
vT

δ σ
→

=  (3.42) 

and the continuous model (3.23) must be rewritten to the form 

 ( ) ( ) ( ) ( )a y t b u tδ δ′ ′ ′ ′=  (3.43) 

where polynomials ( ) ( ),a bδ δ′ ′ are discrete polynomials and their coefficients are 

different from those of the CT model a(s) and b(s). Time t' is discrete time. 

Now we can introduce substitution t k n′ = −  for k n≥  and Equation (3.43) then 

will be 

 1 0
1

1 1 0

( ) ( ) ... ( ) ( )

( ) ... ( ) ( )

n m
m

n
n

y k n b u k n b u k n b u k n

a y k n a y k n a y k n

δ δ δ

δ δ−
−

′ ′ ′− = − + + − + − −

′ ′ ′− − − − − − −
 (3.44) 

Individual elements are 

 
0

( 1)( ) ( )
ji

i
i

j v

i
y k n y k n i j

jT
δ

=

⎛ ⎞−
− = − + −⎜ ⎟

⎝ ⎠
∑ , for i = 0,1,…, n (3.45) 

 
0

( 1)( ) ( )
jl

l
l

j v

l
u k n u k n l j

jT
δ

=

⎛ ⎞−
− = − + −⎜ ⎟

⎝ ⎠
∑ , for l = 0,1,…, m (3.46) 
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The individual parts in Equation (3.44) can be written as 

1 1

( ) ( ), ( ) ( ),

( 1) ( ), ( 1) ( ),

( 1) ( ) ( 1) ( ),
( ) ( ) ( ) ( )

n m

n m

y k y k n u k n m u k n

y k y k n u k n m u k n

y k n y k n u k n u k n
y k n y k n u k n u k n

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

− −

= − − + = −

− = − − + − = −

− + = − − + = −

− = − − = −

M M  (3.47) 

and the regression vector is 

[
( )

( 1) ( 1), , ( 1), ( ),

( ), 1 , , ( 1), ( )
T

k y k y k n y k n

u k m n u k m n u k n u k n

δ δ δ δ

δ δ δ δ

− = − − − − + − −

+ − + − − − + − ⎤⎦

K

K

ϕ
  (3.48) 

The vector of parameters 

 ( ) [ ]1 1 0 1 1 0, ..., , , , ,..., , T
n m mk a a a b b b bδ − −′ ′ ′ ′ ′ ′ ′=θ  (3.49) 

is then computed from the differential equation 

 ( ) ( ) ( ) ( )1Ty k k k e kδ δ δ= ⋅ − +θ ϕ  (3.50) 

where e(k) is again a general random immeasurable component. 

It was proofed for example in [29] that estimated parameters of the δ-model are 

very close to the CT ones for small values of the sampling period, Tv. 

 

ARX identification model (Auto-Regressive eXogenous) 

The identification models can be generally divided into two main groups [30] – 

equation error models (ARX, ARMAX etc.) and output error models (OE, Box-Jenkins, 

FIR etc.).  In this work is used ARX model for the identification although the difference 

between ARX and ARMAX model was verified for example in [63]. 
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If we consider general linear difference equation 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 11 1n my k a y k a y k n b u k b u k b u k m e k+ − + + − = + − + + − +K K  (3.51) 

where coefficients a1-n and b0-m are parameters of the ELM estimated from the 

identification and n = deg a, m = deg b, u(t) is a input variable and e(t) is stochastic part, 

for example the effect of immeasurable disturbances. Equation (3.51) can be rewritten as a 

relation for the estimated output variable ( )ŷ t  in each step  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 1ˆ 1 1n n my k a y k a y k n b u k b u k b u k m e k= − − − − − + + − + + − +K K  (3.52) 

and if we introduce general vector of parameters θ and data vector φ 

 
( ) ( ) ( ) ( ) ( ) ( )

1 0, , , , ,

1 , , , , 1 , ,

a b

T

n n

T

a a b b

k y k y k n u k u k u k m

⎡ ⎤= ⎣ ⎦

= ⎡− − − − − − ⎤⎣ ⎦

θ

ϕ

K K

K K
 (3.53) 

the difference equation (3.51) can be rewritten to vector form: 

( ) ( ) ( )Ty k k e k= ⋅ +θ ϕ)  (3.54) 

The ARX model is very often used because the data vector consists only of 

variables which can be directly measured and there is no need to reconstruct them. The 

deterministic part can be optional, the estimated output variable is linear function of the 

measured data and a linear regression can be used for parameter estimation [35]. 

 

Recursive Least Squares (RLS) Method and Modifications 

The RLS method is often used at adaptive control for on-line identification of the 

system's parameters. Parameters are recomputed recursively in time – if we know the 

estimated parameters in the previous step ( )ˆ 1k −θ , new estimation ( )ˆ kθ  is obtained by 

the modification of ( )ˆ 1k −θ . One big advantage of RLS methods is that they do not need 
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to store all data, which is good for the computer memory. They can be easily modified for 

e.g. changing data in time.  

The RLS method can be formally expressed by the following set of equations: 

 ( ) ( ) ( ) ( )ˆ 1Tk y k k kε = − ⋅ −ϕ θ  (3.55) 

 ( ) ( ) ( ) ( ) 1
1 1Tk k k kγ

−
⎡ ⎤= + ⋅ − ⋅⎣ ⎦Pϕ ϕ  (3.56) 

 ( ) ( ) ( ) ( )1k k k kγ= ⋅ − ⋅PL ϕ  (3.57) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1Tk k k k k k kγ= − − ⋅ − ⋅ ⋅ ⋅ −P P P Pϕ ϕ  (3.58) 

 ( ) ( ) ( ) ( )ˆ ˆ 1k k k kε= − + Lθ θ  (3.59) 

where ε is prediction error and P is covariance matrix. 

The standard RLS can be modified with the use of the forgetting factor. As shown 

in [30], covariance matrix is updated by equation 

 ( ) ( ) ( ) ( )1 1 1 Tk k k k− −= − + ⋅P P ϕ ϕ  (3.60) 

which can be generalized to 

 ( ) ( ) ( ) ( ) ( ) ( )1 1
1 21 1 1 Tk k k k k kλ λ− −= − ⋅ − + − ⋅ ⋅P P ϕ ϕ  (3.61) 

where λ1 and λ2 are factors which affect covariance matrix P. These factors are 

from the range of 10 1λ< ≤ , 20 2λ< ≤  and have an opposite effect – λ1 increases 

covariance matrix P whereas λ2 decreases it. 

Recursive relation (3.58) for computing of covariance matrix P is then modified to 

the form 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )11

2

1 11 1
11 1
1

T

T

k k k k
k k

kk k k k
k

λλ
λ

⎡ ⎤
⎢ ⎥− ⋅ ⋅ ⋅ −⎢ ⎥= − −
⎢ ⎥−−

+ ⋅ − ⋅⎢ ⎥−⎣ ⎦

P P
P P

P

ϕ ϕ

ϕ ϕ
 (3.62) 

Modifications of the RLS methods differ for different values of λ. 

A) Decreasing gain: if λ1 = λ2 = 1, the gain is decreasing and covariance matrix 

increases. This method can be used for stationary systems. 

B) Constant exponential forgetting is for λ1 < 1 and λ2 = 1. The values of 

forgetting factor λ1 are from the range <0.95; 0.99>.  Parameter λ1 influences gradual 

forgetting of the old values and the most weight is put on the last values. This relation can 

be described by criterion 

 2

1

k
k i

i
i

J λ ε−

=

= ∑  (3.63) 

This algorithm can be used for systems with changing parameters. 

C) Increasing exponential forgetting has forgetting parameters λ2 = 1 and λ1 is 

computed from  

 ( ) ( )1 0 1 01 1k kλ λ λ λ= − + −  (3.64) 

Typical values of the forgetting parameters are ( )1 00 0.95,0.99λ λ= ∈ . The value 

of this forgetting factor is asymptotically approaching to 1, which means that the old data 

is forgotten. This can be used for stationary systems because it prevents gain from very 

quick decreasing at the beginning of identification and results in quick convergence for 

estimations which are far from the optimal ones. 

D) Changing exponential forgetting has again the value of forgetting parameter    

λ2 = 1 and exponential forgetting λ1 is recomputed in every step as 

 ( ) ( ) ( )2
1 1k K k kλ γ ε= − ⋅ ⋅  (3.65) 
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where K is a very small value (e.g. 0.001).   

E) Directional forgetting. Modifications of the RLS method with exponential 

forgetting described above have one big disadvantage. If the time interval between the old 

and new information is very high, it can happen that covariance matrix P becomes 

semidefinite and the algorithm collapses. Estimation with directional forgetting [32] was 

made especially to stabilize of this problem. This algorithm forgets information only in the 

direction from which it comes. General description of this method can be formulated by 

the following equations: 

 ( ) ( ) ( ) ( )1 1Tr k k k k− = ⋅ − ⋅Pϕ ϕ  (3.66) 

 ( ) ( ) ( )
( )
1

1 1
k k

k
r k
− ⋅

=
+ −

P
L

ϕ
 (3.67) 

 ( )
( ) ( )

( ) ( )

( )

1
1

1 1
1 pro 1 0

11
1 pro 1 0

k
k r k

r kk
r k

λ
λ

β
⎧ − −

− − − >⎪ −− = ⎨
⎪ − =⎩

 (3.68) 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )1

1 1
1

1 1

Tk k k k
k k

k r kβ −

− ⋅ ⋅ ⋅ −
= − −

− + −
P P

P P
ϕ ϕ

 (3.69) 

where λ1 can be chosen similarly as in exponential forgetting. 

F) Recursive identification with directional forgetting was modified in [33] to the 

RLS adaptive directional forgetting.  

The description of this RLS method is similar to the previous case. The value of 

adaptive directional forgetting λ1 is calculated for each sampling period according to 

relation 

 ( ) ( ) ( )( ) ( )( ) ( )
( ) ( )

( )
( )

1

1

1 1 1 1
1 1 1 ln 1 1 1

1 1 1 1 1i

k k r k
k r k

r k k r k
υ η

λ ρ
η

−
⎧ ⎫⎡ ⎤− + − −⎪ ⎪⎡ ⎤− = + + + − + −⎢ ⎥⎨ ⎬⎣ ⎦ + − + − + −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (3.70) 



-60- 

where 

 
2ˆ ( )( )
( )

e kk
k

η
κ

= ;  [ ]1( ) ( ) ( ( 1) 1k k kυ λ υ= − + ;  
2

1
ˆ ( 1)( ) ( ) ( 1)

1 ( 1)
e kk k k

r k
κ λ κ

⎡ ⎤−
= − +⎢ ⎥+ −⎣ ⎦

 (3.71) 

are auxiliary variables. The starting values for this method can be ( )1 0 1λ = , 

( )0 0.001κ = , ( ) 60 10υ −= , 0.99iρ = .  

The choice of the apriory information for the identification has in some cases a big 

importance for adaptive control results because the initial estimate of the parameters must 

represent real behaviour of the system. A bad first shot can result in wrong incialization of 

the controller and non-optimal responses.   

 

POLYNOMIAL CONTROL SYSTEM SYNTHESIS 

The polynomial synthesis [37] and [38] is one of the methods used in adaptive 

control for control synthesis of the system. This method is based on the input-output model 

of the controlled system or its transfer function. It can be classified as an algebraic method 

and is based on algebraic operations in the ring of polynomials. Polynomials are usually 

described in s-plane for continuous systems, in z-plane for discrete systems and in δ-plane 

for systems which come from δ-models of both the controlled system and the controller 

too ([55] and [56]). 

One of the biggest advantages of the polynomial method compared to the 

conventional method is that it provides not only relations for computing of the controller's 

parameters but the structure of the controller too. This structure fulfils general 

requirements for control systems and input signals (reference signal and disturbance) and it 

can be used for controlling of the systems with negative properties from the control point 

of view, such as non-minimum phase systems or unstable systems. Another advantage is 

that the resulted relations are easily programmable. 
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Polynomials in the numerator and denominator of the transfer function of the 

controller result from the solution of Diophantine equations, which have so called 

characteristic polynomial of the closed loop system on the right side of the equation. The 

roots of this polynomial are then poles of the closed-loop system, which affects the quality 

of control. The method of choosing the poles is called Pole-placement or Pole-assignment 

[38]. 

The polynomial method can be used not only for the configuration with the 

feedback controller (1DOF configuration) but for configurations with the feedforward 

controller too (2DOF, 2½DOF etc.) [40]. 

Basic Control Requirements  

The basic control requirements are defined in the following items: 

A) Bounded Input-Bounded Output (BIBO) stability means that a system is BIBO 

stable if the bounded input results in a bounded output response [14]. This definition is not 

very suitable for closed-loop control systems where we examine not the only outer stability 

but also inner stability. It means that not only input and output signals must be bounded but 

signals inside the systems must be bounded too for BIBO stability of the closed-loop 

control system [57].  

B) Inner properness of the control system is fulfilled if all elements are proper, i.e. 

degrees of denominators of transfer functions are equal or grater than numerators. The 

system with transfer function  

( ) ( )
( )

b s
G s

a s
=  (3.72) 

is: 

proper if ( ) ( )deg dega s b s≥  

strictly proper if ( ) ( )deg dega s b s>  
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non-strictly proper if ( ) ( )deg dega s b s=  

C) Asymptotic tracking of the reference signal means that the control error 

approaches to zero for infinite time. The output variable then asymptotically tracks 

reference signal (wanted value), i.e.  

 ( )lim 0
t

e t
→∞

=  (3.73) 

D) Disturbance attenuation is the last control requirement. There are usually 

several disturbances which affect the control system and our goal is to suppress these 

negative influences to fulfil condition (3.73).  

 

1DOF Control System Configuration 

As already written, there are several types of control system configurations. The 

first one is configuration with one degree-of-freedom (1DOF) displayed on Figure 3.2. 

This combination has a controller only in the feedback part and control disturbance e(t) is 

assigned as an input variable to this controller. 

 

Figure 3.2 One degree-of-freedom (1DOF) control system configuration 

Block Q in Figure 3.2 represents the transfer function of the controller, G denotes 

the transfer function of the plant, w is the reference signal, e is used for the control error, v 

is the disturbance at the input to the system, u determines the input variable, and finally y is 

the output variable. 

The transfer function of the controlled system in complex s-plane can be described 

similar by to Equation (3.72). Polynomials a(s) and b(s) are commensurable polynomials 
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in complex s-plane. The realizability condition is fulfilled if the system is proper, 

i.e. ( ) ( )deg dega s b s≥ . 

The transfer function of the controller then is 

 ( ) ( )
( )

q s
Q s

p s
=  (3.74) 

where polynomials p(s) and q(s) are again commensurable polynomials, and the 

condition of properness in this case is ( ) ( )deg degp s q s≥ . 

Transfer functions of the reference signal W(s) and disturbance V(s) are 

 ( ) ( )
( )

w

w

h s
W s

f s
=  and ( ) ( )

( )
v

v

h s
V s

f s
=  (3.75) 

where the degrees of polynomials in denominators and numerators are again based 

on the condition of properness: ( ) ( )deg degw wf s h s≥ and ( ) ( )deg degv vf s h s≥ . 

The reference signal W(s) and disturbances V(s) are chosen from the range of step 

functions, which means that polynomials in denominators are w vf f s= = . 

The relation for the Laplace transform of the output variable Y(s) can be obtained 

from the transfer function of the system G(s): 

 ( ) ( )
( ) ( ) ( ) ( )Y s

G s Y s G s U s
U s

= ⇒ = ⋅  (3.76) 

where U(s) from Figure 3.2 is 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )U s Q s E s V s Q s W s Y s V s= ⋅ + = ⋅ ⎡ − ⎤ +⎣ ⎦  (3.77) 

This relation together with polynomials a(s), b(s), p(s) and q(s) instead of Laplace 

transforms G(s) and Q(s) inserted into Equation (3.76) results in 
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 ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )b s q s a s p s
Y s W s V s

a s p s b s q s a s p s b s q s
= ⋅ + ⋅

+ +
 (3.78) 

Denominators for both parts have the same form. This polynomial is called 

characteristic polynomial of the closed loop and it can be assigned in one polynomial 

 ( ) ( ) ( ) ( ) ( )a s p s b s q s d s+ =  (3.79) 

The stability of the system is fulfilled by the feedback part of the controller with 

transfer function Q(s) [38], where polynomials p(s) and q(s) are computed from 

Diophantine equation (3.79). The stability of the system is obtained for a stable polynomial 

d(s) on the right side. 

Asymptotic tracking of the reference signal is attained if polynomial p(s) in the 

denominator of Equation (3.74) includes least common divisor of polynomials fw(s) and 

fv(s). This can be obtained for polynomial p(s) rewritten to form 

 ( ) ( ) ( )p s f s p s= ⋅ %  (3.80) 

where f(s) is the least common divisor mentioned above. This polynomial is   

f(s) = fw(s) = fv(s) = s for signals from the range of step functions. 

Diophantine equation (3.79) is then 

 ( ) ( ) ( ) ( ) ( ) ( )a s f s p s b s q s d s+ =%  (3.81) 

and the transfer function of the controller is 

 ( ) ( )
( ) ( )

q s
Q s

f s p s
=

⋅
%

%
 (3.82) 

Polynomials a(s) and b(s) in Diophantine equation (3.81) are known from 

identification. Our task is to find coefficients of polynomials q(s) and ( )p s% . The method 
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of uncertain coefficients which compares coefficients of individual s-powers can be used 

for computing of parameters of polynomials ( )p s%  and q(s). 

Inner properness conditions must be fulfilled, i.e. ( ) ( )deg dega s b s≥  and 

( ) ( )deg degp s q s≥ and because 

 ( ) ( ) ( )( ) ( ) ( )( )deg dega s f s p s b s q s⋅ ⋅ ≥ ⋅%  (3.83) 

the degree of polynomial d(s) is then 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )deg deg deg deg degd s a s f s p s a s f s p s= = + +% %  (3.84) 

The number of unknown parameters in (3.81) is 

 ( ) ( )deg deg 2p s q s+ +%   (3.85) 

and the number of equations is then 

( ) ( ) ( ) ( )deg 1 deg deg deg 1d s a s f s p s+ = + + +%  (3.86) 

The number of unknown parameters must be equal to the number of equations and 

therefore 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
deg deg deg 1 deg deg 2

deg deg deg 1

a s f s p s p s q s

q s a s f s

+ + + = + + ⇒

⇒ = + −

% %
 (3.87) 

The properness condition is ( ) ( )deg degp s q s≥ , it means that 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

deg deg deg deg deg

deg deg deg deg 1

deg deg 1

p s f s p s f s p s q s

f s p s a s f s

p s a s

= = + ≥

+ ≥ + − ⇒

⇒ ≥ −

% %

%

%

 (3.88) 

 



-66- 

2DOF Control System Configuration 

The configuration with two degrees-of-freedom (2DOF) has a controller divided 

into two main parts – the feedback segment with the transfer function Q(s), which has 

output variable y(t) on the input and the feedforward segment with transfer function R(s) – 

see Figure 3.3.  

 

Figure 3.3 Two degrees-of-freedom (2DOF) control system configuration 

This part has reference signal w(t) on the input. We can say that this controller has 

two inputs (output variable y(t) and reference signal w(t)) and one output from the 

controller, u(t). 

Transfer functions of both parts are 

 ( ) ( )
( )

q s
Q s

p s
= , ( ) ( )

( )
r s

R s
p s

=  (3.89) 

where polynomials p(s), q(s) and r(s) are complex s-plane, and properness 

conditions are ( ) ( )deg degp s q s≥ and ( ) ( )deg degp s r s≥ . 

Laplace transform of the input variable U(s) is computed from Figure 3.3. 

 ( ) ( ) ( ) ( ) ( ) ( )U s R s W s Q s Y s V s= − +  (3.90) 

and if we input it similar by as in the previous case in (3.76), with some 

simplifications the relation is 
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )b s r s b s p s
Y s W s V s

a s p s b s q s a s p s b s q s
= ⋅ + ⋅

+ +
 (3.91) 

Both denominators are again the characteristic polynomial ( ) ( ) ( ) ( ) ( )d s a s p s b s q s= + . 

Stability is again fulfilled by polynomials q(s) and p(s) of the feedback part of the 

controller the parameters of which are computed from Diophantine equation (3.79). 

Asymptotic tracking is obtained by the solution of the second Diophantine equation 

 ( ) ( ) ( ) ( ) ( )wt s f s b s r s d s+ =  (3.92) 

where t(s) is only an additional polynomial which is used only for the solution of 

Equation (3.92) and not in transfer functions. 

On the other hand, disturbance attenuation is gained in the case that polynomial p(s) 

in the denominator of the Q(s) and R(s) is divisible by polynomial fv(s). We can then 

rewrite this polynomial to the form of 

 ( ) ( ) ( )vp s f s p s= ⋅ %  (3.93) 

Diophantine equation (3.79) is then 

 ( ) ( ) ( ) ( ) ( ) ( )va s f s p s b s q s d s+ =%  (3.94) 

and transfer functions of feedback and feedforward segments are  

 ( ) ( )
( ) ( )v

q s
Q s

f s p s
=

⋅
%

%
, ( ) ( )

( ) ( )v

r s
R s

f s p s
=

⋅
%

%
 (3.95) 

The degree of characteristic polynomial d(s) is computed from (3.94) as 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )deg deg deg deg degv vd s a s f s p s a s f s p s= = + +% %  (3.96) 
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The number of unknown parameters is similar to the previous case 

 ( ) ( )deg deg 2p s q s+ +%  (3.97) 

and the number of equations is 

 ( ) ( ) ( )deg deg deg 1va s f s p s+ + +%  (3.98) 

The relation for the degree of polynomial q(s) is computed from the condition that 

the number of unknown parameters must be equal to the number of equations, i.e. 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
deg deg 2 deg deg deg 1

deg deg deg 1
v

v

p s q s a s f s p s

q s a s f s

+ + = + + + ⇒

⇒ = + −

% %
 (3.99) 

The degree of polynomial ( )p s%  is computed via 

 ( ) ( )deg deg 1 dp s a s k= − +%  (3.100) 

with constant kd on the right side and and the degree of the polynomial d(s) in 

Equation (3.96) is then  

 ( ) ( ) ( )deg 2deg deg 1v dd s a s f s k= + − +  (3.101) 

The degree of polynomial d(s) from the second Diophantine equation (3.92) is 

 ( ) ( ) ( )deg deg deg wd s t s f s= +  (3.102) 

and the degree of polynomial r(s) is obtained from the comparison of the number 

of unknown parameters and number of equations: 

 
( ) ( ) ( ) ( )

( ) ( )
deg deg 1 deg deg 2

deg deg 1
w

w

t s f s t s r s

r s f s

+ + = + + ⇒

⇒ = −
 (3.103) 
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Finally, the degree of auxiliary polynomial t(s) can be computed as 

 ( ) ( ) ( ) ( )deg 2deg deg 1 degv w dt s a s f s f s k= + − − +  (3.104) 

It is clear that the degree cannot be negative, therefore we choose constant kd so 

that deg t(s) is at least zero. The value of this constant can be obtained from the condition 

of properness ( ) ( )deg degp s r s≥ : 

 
( ) ( ) ( )

( ) ( ) ( )
deg 1 deg 1 deg

deg deg deg
w v d

d w v

f s a s f s k

k f s a s f s

− ≥ − + + ⇒

⇒ ≥ − −
 (3.105) 

and if 0dk < , then 0dk = . 

 

Pole-assignment Method 

Several methods are used for designing polynomial d(s) based on the Pole-

placement or Pole-assignment method. It is usually connected with the polynomial 

synthesis and fulfils control requirements [37]. 

The control system is stable if polynomial d(s) on the right side of Diophantine 

equations (3.81) and (3.92) is stable. This condition is accomplished if the root of the 

polynomial lies in on the left side of the complex plane – see Figure 3.4. 

Polynomial d(s) can generally described as 

 ( ) ( )
( )deg

1

d s

i
i

d s s s
=

= +∏  (3.106) 

where i i is jα ω= +  are roots of the polynomial. The stability condition described 

in the previous paragraph means that αi must be less zero. There are a lot of ways and rules 

how to choose these roots. Complex conjugate pairs of roots results in periodic course of 

the output variable. On the other hand, the output variable has aperiodic course for ωi = 0. 
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We can generally say that selection of real (Re) and imaginary (Im) parts affects 

overshoots and settling time of the output variable. 

 

Figure 3.4 Stability in complex plane 

The simplest way how to choose roots of polynomial d(s) is selection of double, 

triple etc. multiple roots: 

( ) ( ) ( ) ( ) ( )/ 2 / 2
1 2; ,m m md s s d s s sα α α= + = + ⋅ + K  (3.107) 

For example, if polynomial d(s) is of the fourth degree, we can select two 

aperiodic double roots, i.e. 

 ( ) ( ) ( )2 2
1 2d s s sα α= + ⋅ +  (3.108) 

We can obtain similar roots for the sixth degree of d(s) etc. 

However, this method has one disadvantage, there is no rule how to choose roots α. 

One way how to overcome this problem is to connect choosing of polynomial d(s) with 

parameters of the controlled system. This can be done through spectral factorization [39]. 

A big advantage of this method is that it can make stable roots from every polynomial, 

even if it is unstable. 
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Polynomial d(s) can be divided into two parts – m(s) and n(s), so 

 ( ) ( ) ( )d s m s n s= ⋅  (3.109) 

where polynomial n(s) is computed from the spectral factorization of polynomial 

a(s) in the denominator of the transfer function G(s) (3.72) 

 ( ) ( ) ( ) ( )* *n s n s a s a s⋅ = ⋅  (3.110) 

and polynomial m(s) is a stable one  

 ( ) ( )deg degd n
im s s α −= +  (3.111) 

where αi > 0 are ( )deg degd n− optional  stable roots, usually called poles of the 

control system. A disadvantage of this method is that it still has an uncertainty in 

polynomial m(s).  

The third method used in this work combines spectral factorization and theory of 

the Linear Quadratic (LQ) tracking. The LQ approach is based on an optimal control 

theory and in addition to the basic control requirements, it minimize the cost function in 

the complex domain 

( ) ( ){ }2 2

0
LQ LQ LQJ e t u t dtμ ϕ

∞

= ⋅ + ⋅∫ &  (3.112) 

where φLQ > 0 and μLQ ≥ 0 are weighting coefficients, e(t) is control error and ( )u t& denotes 

difference of the input variable. Polynomial d(s) in this case is 

 ( ) ( ) ( )d s g s n s= ⋅  (3.113)  

Polynomials n(s) and g(s) are computed from spectral factorization 
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 ( )* * *

* *

LQ LQa f a f b b g g

n n a a

ϕ μ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ = ⋅

⋅ = ⋅
 (3.114) 

and for control variable u(t) and disturbance v(t) from the ring of step functions  

f(s) = s. The resulted controller is strictly proper and the degree of polynomial d(s) is 

computed via 

 ( )deg deg 2deg 1d g n a= ⋅ = +  (3.115) 

 

3.2.2 Predictive Control  

The main idea of predictive control is to calculate the control sequence from the 

actual time point minimizing the deviation of the reference signal and the output signal of 

the plant in the future horizon. The future values of the reference signal are given in 

advance or are assumed to be equal to the present one. The future values of the plant can 

be predicted from a process model. If disturbances are measurable, then their future values 

are predicted using some assumptions.  

The basic structure of the predictive control can be seen in Figure 3.5 [58].  

 

Figure 3.5 Basic structure of the predictive control system 
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The total predicted response of the system, ŷ , consists of two parts. The first part, 

free response, is the predicted behaviour of the output ( )y t j t+ based on old values of 

outputs ( )y t i t− and inputs ( )u t i t− . The second part is called forced response and 

represents the output computed from the optimization criterion. 

The sum of both components results in total prediction ( )y t j t+  for linear 

systems. The future error is then obtained by subtracting of this output from future 

reference signal ( )w t j t+ , i.e. 

( ) ( ) ( )e t j t w t j t y t j t+ = + − + , for j = 1,…N (3.116) 

The action value (input variable) is then calculated to force the output variable to 

the wanted value (reference signal). 

Generalized Predictive Control (GPC) is one of the most popular predictive 

methods based on Model Predictive Control (MPC) [44], and has been successfully used in 

praxis for different types of control problems from this time. 

The GPC has many common ideas with the ordinary predictive methods but it has 

some differences to such as the solution of the GPC controller is analytical, it can be used 

for unstable and non-minimum phase systems etc. 

 

FORMULATION OF GENERALIZED PREDICTIVE CONTROL 

The general single-input single-output (SISO) after linearization can be described 

through the discrete backshift operators z-1 as 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 11dA z y t z B z u t C z e t− − − −⋅ = ⋅ ⋅ − + ⋅  (3.117) 

where u(t) is control variable, y(t) output variable, e(t) denotes a zero mean white 

noise, and d is dead time of the system. Polynomials A(z-1), B(z-1) and C(z-1) are 
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( )
( )
( )

1 1 2
1 2

1 1 2
0 1 2

1 1 2
1 2

1

1

a

a

b

b

c

c

n
n

n
n

n
n

A z a z a z a z

B z b b z b z b z

C z c z c z c z

−− − −

−− − −

−− − −

= + + + +

= + + + +

= + + + +

K

K

K

 (3.118) 

Equation (3.117) is called the Controller Auto-Regressive Moving-Average 

(CARMA) model. This model is not suitable in most industrial processes where 

disturbances are non-stationary. In these cases, the integrated CARMA (CARIMA) model 

is more suitable 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 11d e t
A z y t z B z u t C z− − − −⋅ = ⋅ ⋅ − + ⋅

Δ
 (3.119) 

where 11 z−Δ = − . 

The GPC algorithm can be then formulated as minimization of the cost function 

 ( ) ( ) ( ) ( ) ( )
2

1

2 2

1

ˆ 1
uNN

GPC u u
j N j

J j y t j t w t j j u t jδ λ
= =

⎡ ⎤= + − + + ⎡Δ + − ⎤⎣ ⎦⎣ ⎦∑ ∑  (3.120) 

where ( )tjty +ˆ  is an optimum j-ahead prediction of the output on data up to time t, 

further, N1 and N2 denote minimum and maximum costing horizons, respectively, Nu is 

control horizon, ( )jtw +  means reference signal, Δu stands for manipulated variable and 

finally δu(j) and λu(j) denote weighting sequences. The values of these factors are for 

simplification assigned as δu = 1, and λu is constant through the whole time interval of the 

control. 
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COMPUTATION OF GENERALIZED PREDICTIVE CONTROL 

The object of predictive control can be formulated as collection of the future 

values of the input variables u(t), u(t+1), … which drive the future values of controlled 

variable y(t+j) to reference signal w(t+j) by minimizing of the cost function JGPC. 

If we multiply all parts of Equation (3.119) by element ( )1 j
jE z z−Δ ⋅ , this equation 

has form 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 11j j jA z E z y t j B z E z u t j d E z e t j− − − − −⋅ Δ ⋅ ⋅ + = ⋅ Δ ⋅ ⋅ + − − + ⋅ + (3.121) 

Now we must introduce a new Diophantine equation because of the solubility of 

Equation (3.121): 

 ( ) ( ) ( )1 1 11 j
j jE z A z z F z− − − −= Δ ⋅ ⋅ +  (3.122) 

Equation (3.121) is then 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 11 1j
j j jz F z y t j E z B z u t j d E z e t j− − − − −⎡ ⎤− + = Δ + − − + +⎣ ⎦  (3.123) 

which can be formally rewritten to the form 

 ( ) ( ) ( ) ( ) ( )1 1ˆ 1j jy t j t G z u t j d F z y t− −+ = Δ + − − +  (3.124) 

where ( ) ( ) ( )1 1 1 ,j jG z E z B z− − −=  degrees of Ej and Fj are deg 1jE j= − and 

deg j aF n= , respectively. These polynomials can be obtained through the dividing 1 by 

( )1A z−Δ  until the remaining part can be factorized as ( )1j
jz F z− − , and we can define them 

as 

 
( )
( )

1 1
,0 ,1 ,

1 1 1
,0 ,1 , 1

na
j j j j na

j
j j j j j

F z f f z f z

E z e e z e z

− − −

− − − −
−

= + + +

= + + +

K

K
 (3.125) 
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If the same technique is used for deriving of the polynomials Ej+1 and Fj+1, i.e. 1 is 

divided by ( )1A z−Δ  until the remaining part can be factorized as ( ) ( )1 1
1 ;j

jz F z− + −
+ then 

polynomials Fj+1 and Ej+1 are 

 
( )
( ) ( )

1 1
1 1,0 1,1 1,

11 1
1 1,0 1,1 1, 1

na
j j j j na

j
j j j j j

F z f f z f z

E z e e z e z

− − −
+ + + +

− −− −
+ + + + −

= + + +

= + + +

K

K
 (3.126) 

It is clear that the polynomial Ej (or Fj) from the previous step can be used for the 

derivation of polynomial Ej+1(Fj+1): 

 ( ) ( )1 1
1 1,

j
j j j jE z E z e z− − −
+ += +  (3.127) 

where 1, ,0j j je f+ = . 

Polynomial Gj+1 can be computed recursively again from equation 

 ( ) ( ) ( ) ( ) ( )1 1 1 1 1
1 1 ,0

j
j j j jG z E z B z E z f z B z− − − − − −
+ +

⎡ ⎤= ⋅ = +⎣ ⎦  (3.128) 

which means that Gj+1 come from the Gj: 

 ( ) ( ) ( )1 1 1
1 ,0

j
j j jG z G z f z B z− − − −
+ = +  (3.129) 

The first coefficient of polynomial Gj+1 is identical with the first coefficient in Gj 

and the remaining coefficients are computed from equation 

 1, , ,0j j i j j i j ig g f b+ + += + , for 0,1, , bi n= K  (3.130) 

Equation (3.117) takes into account the dead time of the system, d, and we must 

include this time into the prediction horizon, i.e. 1 1N d= + , 2N d N= +  and uN N= . 
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Now we can formulate equations for future predicted output values: 

 

( ) ( ) ( )
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 (3.131) 

which is in the vector form 

 ( ) ( ) ( ) ( )1 1 1z y t z u t− −′= + + Δ −y Gu F G  (3.132) 

where vectors y, u, G, G’(z-1) and F(z-1) are 
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The last two parts of Equation (3.132) depend only on the past values and we can 

group them into one variable, f: 

 = ⋅ + fy G u  (3.133) 

The cost function (3.120) can be now rewritten to the vector form 

 ( ) ( )T T
uJ λ= ⋅ + − ⋅ + − + ⋅ ⋅f fG u w G u w u u  (3.134) 

Where the vector of reference values is 

 ( ) ( ) ( )1 , 2 , ,
T

w t d w t d w t d N= ⎡ + + + + + + ⎤⎣ ⎦Kw  (3.135) 

and (3.134) can be rewritten to 

 0
1
2

T T
GPCJ = + + fu Hu b u  (3.136) 

where 

 

( )
( )

( ) ( )0

2

2

T
u

TT

T

λ= +

= −

= − −

f

f f f

H G G I

b w G

w w

 (3.137) 

The goal of the predictive control is to minimize cost function JGPC which means 

that we set JGPC = 0 in (3.136) which leads to control law: 

 ( ) ( )1T T
uu λ

−
= + − fG G I G w  (3.138) 
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3.3 Main Types of Chemical Reactors 

Chemical reactors are special devices used in chemical engineering for 

manufacturing different chemical products. There are two main types of chemical reactors 

– tank reactors and tubular reactors [4].  

The main variables which are observed are the volume of the reactor, reactant's 

and product's concentrations, input, inside and output temperature, pressure, concentrations 

of the components, heat capacities, densities, heat transfer coefficients etc. Some of them 

are important and must be taken into account, but some of them must be neglected or set to 

constant because of the complexity of the mathematical description.  

Tank reactors are usually stirred to ensure an efficient course of the reaction inside 

the vessel. These reactors are called stirred-tank reactors and can be divided from the 

feeding point of view into batch, semi-batch and continuous types. All stirred reactors can 

be mathematically described by a set of ODE.  

A batch reactor (Figure 3.6) is the simplest type of stirred chemical reactors.  

 

Figure 3.6 Batch reactor 

It can be characterized by a vessel of a given volume, with all reactants added at 

the same time – at the beginning of the process. The concentration of the reactant 
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decreases continuously with time. At the end of the process the reactor is emptied, cleaned 

and another batch can be filled in the same reactor. This is very simple and provides great 

flexibility of the basic equipment. However, the downtime needed for loading and cleaning 

of the reactor are the disadvantages. Batch operations are often ideal for small scale 

flexible production, high cost and low output production. 

On the other hand, for many reactions the pure batch operation is not suitable 

because of safety or selectivity reasons. In this case we can use a semi-batch system where 

one reactant is put at the reactor in the beginning and other components can be added to the 

reactor during the operation at different times (Figure 3.7). Semi-batch operation allows 

for changing of the reactant concentration in a very flexible way, and it is easier to control 

the operations. The flexibility of operation is generally similar to that of a batch reactor 

system. 

 

 

Figure 3.7 Semi-batch reactor 

Continuous Stirred Tank Reactors, CSTRs, (Figure 3.8) are often used because of 

their good control properties. Feeding and unloading can be done continuously, which can 

be easily used for control where we want to affect product properties by the feeding speed, 
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for example. One of the disadvantages, however, is limited use for different types of 

reactions.  

CSTRs are often connected parallelly or in series, which enables to utilize 

economic benefits of CSTR. The product from the first reactor is the input to the next one. 

 

 

Figure 3.8 Continuous stirred tank reactor  

An infinite number of CSTRs or infinitely small CSTRs operating in series create a 

tubular chemical reactor, which is another main type of chemical reactors. It is called in 

some literature Plug-Flow Reactor (PFR). In the tubular chemical reactor all reactants and 

products flow continuously along the length of the reactor – see Figure 3.9. It is usually 

considered with plug flow of the reactant or cooling through the reactor to lower 

complexity. The variables then depend not only on the time variable, but also on the 

dimensional variable, which results in a set of PDE. 



-82- 

 

Figure 3.9 Tubular chemical reactor 

As seen from previous figures, all types of reactors are displayed with the 

cooling/heating jacket. The use of the cooling and heating in the process depends on the 

type of reaction inside the reactor. The reaction which produces heat is called the 

exothermic reaction which needs cooling contrary to the endothermic reaction which 

needs heat in the jacket to start the reaction or to achieve better results. 

The continuous stirred tank reactor belongs to the class of the lumped-parameters 

systems. The mathematical model of CSTR can be derived from the balances inside the 

reactor. The material balance can have general form: 

 
0

0
1

, for 1,...,
j

i
r iv r i r ij r

j

d cq c q c V r V i i
d t=

= − + =∑  (3.139) 

and general heat balances of the reactant and cooling/heating liquid are 

 
0

1
( )

j
r

r r pr rv r j j r pr r r r c r r p
j

dTq c T V h r q c T A U T T V c r
dt

ρ ρ ρ
=

+ = + − +∑  (3.140) 

 ( ) c
c c pc cv r r c c c pc c c c pc

dTq c T A U T T q c T V c
dt

ρ ρ ρ+ − = +  (3.141) 

The symbols in the set (3.139) – (3.141) have following meaning: q are flow rates, 

c denotes concentrations, r is used for reaction speed, V states volume, t is time, ρ denotes 

density, cp heat capacity, T is used for temperature, h means enthalpy, Ar is cooling/heating 

surface, U represents heat transfer coefficient. Indexes (·)r and (·)c relate to the reactant and 
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cooling/heating, respectively, (·)v means input variable, (·)i denotes i-th part of the 

component and (·)j is used for number of reaction. The initial conditions for Equations 

(3.139) – (3.141) are obtained from the steady-state, i.e. 

(0) s
i ic c=  for i = 1,…, i0; (0) s

r rT T= ; (0) s
c cT T=  (3.142) 

On the other hand, typical member of the continuously distributed-parameters 

system is tubular chemical reactor. The mathematical model of this system consists of the 

set of PDE which are obtained from the material and heat balances inside in this general 

form: 
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 (3.143) 

where ± in the last equation takes into the account co-current and counter-current 

cooling/heating in the jacket (“+” is used for co-current unlike “–“ for counter-current 

cooling/heating).  

The symbol c denotes concentrations, v are fluid velocities, r is used for reaction 

speed, t is time variable, z space variable, ρ denotes density, cp heat capacity, T is used for 

temperature, h means enthalpy, Ar is cooling/heating surface, U represents heat transfer 

coefficient, d is diameter of the pipe and m means number of pipes. Indexes (·)r, (·)w and 

(·)c stands to the reactant, wall of the pipe or cooling/heating, respectively, (·)v means input 

variable, (·)i denotes i-th part of the component and (·)j is used for number of reaction. 
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The initial conditions for the model (3.143) are: 

( , 0) ( )s
i ic z c z= ,  )()0,( zTzT s

rr = ,  )()0,( zTzT s
ww = ,  )()0,( zTzT s

cc =  

and the set of PDE must have boundary contiditions, as written above, in this case: 

0(0, ) ( )i ic t c t= ,  )(),0( 0 tTtT rr = ,  )(),( tTtLT Lcc =  
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4 EXPERIMENTAL PART 

The experimental part is mainly focused on simulation and finally practical 

verification of the selected simulations and control methods mentioned in the theoretical 

part. All methods were done first simulatively on the computer by the mathematical model 

and the results were then compared with those from the real model. 

The following experimental part is focused on two mathematical models of 

chemical reactors – CSTR and tubular chemical reactors and the real model of the CSTR. 

The steps described in the previous chapter are applied to all these systems.  

4.1 Continuous Stirred Tank Reactor 

As written above, all models are divided into several parts, as it follows from the 

modelling procedure described in Chapter 3.1.2.  

4.1.1 Description of the Model 

The first model of the CSTR is schematically displayed in Figure 4.1. 

 

Figure 4.1 Continuous stirred tank reactor with cooling in the jacket 
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The reaction inside the reactor is called van der Vusse reaction and can be 

described by the following scheme [59]:  

  
1 2

32

k k

k

A B C

A D

⎯⎯→ ⎯⎯→

⎯⎯→
 (4.1) 

The mathematical description of the process is very complex and we must 

introduce some simplifications. In this case we expect that the reactant is perfectly mixed, 

all densities, heat capacities and transfer coefficients are constant throughout the reaction. 

In fact, they are not constant but they usually vary only in a small range, which led us to 

neglect this variation.  

With all these simplifications we can introduce the mathematical model which is 

based on four material and heat balances inside the reactor described in the theoretical part 

(see Chapter 3.1.2).     
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r r c r
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dc q c c k c k c
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dc q c k c k c
dt V

dT q h A UT T T T
dt V c V c

dT Q A U T T
dt m c

ρ ρ

= − − −

= − + −

= − − + −

= + −

 (4.2) 

 where cA ≥ 0, cB ≥ 0.  

Variable t in the set of ODE (4.2) and similarly in Figure 4.1 is the time, c are 

concentrations, T represents temperatures, cp is used for specific heat capacities, qr means 

volumetric flow rate of the reactant, Qc is heat removal of the cooling liquid, V are 

volumes, ρ stands for densities, Ar is the heat exchange surface and U is the heat transfer 

coefficient. Indexes (•)A and (•)B belong to compounds A and B, respectively, (•)r denotes 

the reactant mixture, (•)c cooling liquid and (•)0 are feed (inlet) values.  
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As can be clearly seen, this mathematical model of the reactor belongs to the class 

of lumped-parameter nonlinear systems [8] because it is described by a set of ODE. 

Nonlinearity can be found in reaction rates (kj), which are described via the Arrhenius law: 

 ( ) 0 exp , for 1,2,3j
j r j

r

E
k T k j

RT
−⎛ ⎞

= ⋅ =⎜ ⎟
⎝ ⎠

 (4.3) 

where k0 represent pre-exponential factors and E are activation energies.  

The reaction heat (hr) in Equation (4.2) is expressed as: 

 2
1 1 2 2 3 3r A B Ah h k c h k c h k c= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅  (4.4) 

where hi means reaction enthalpies. 

The initial conditions for the set of ODE (4.2) are 

( ) ( ) ( ) ( )0 , 0 , 0 , 0s s s s
A A B B r r c cc c c c T T T T= = = =  (4.5) 

The mathematical model of the system described by the set of ODE in Eq. (4.2) 

shows that this model has four state variables – cA(t), cB(t), Tr(t) and Tc(t). 

In this step, several input variables can be used – for example input concentration 

of compound A, cA0, input temperature of the reactant, Tr0, etc. However, the physical 

viability of these variables is greatly limited from the practical point of view. That is why 

are simulation studies mainly focused on the volumetric flow rate of the reactant qr and the 

heat removal of the cooling liquid Qc. The change of both quantities can be practically 

represented for example by the turn of the valve on the inlet pipe, or by the speed of the 

pump. 
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Fixed parameters, input and state variables 

Fixed parameters of CSTR are given in Table 4.1 [59].   

Table 4.1. Parameters of CSTR  

Name of the parameter Symbol and value of the parameter 

Volume of the reactor 

Density of the reactant 

Heat capacity of the reactant 

Weight of the coolant 

Heat capacity of the coolant 

Surface of the cooling jacket 

Heat transfer coefficient  

Pre-exponential factor for reaction 1 

Pre-exponential factor for reaction 2 

Pre-exponential factor for reaction 3 

Activation energy of reaction 1 to R 

Activation energy of reaction 2 to R 

Activation energy of reaction 3 to R 

Enthalpy of reaction 1 

Enthalpy of reaction 2 

Enthalpy of reaction 3 

Input concentration of compound A 

Input temperature of the reactant 

Vr  = 0.01 m3 

ρr = 934.2 kg.m-3 

cpr = 3.01 kJ.kg-1.K-1 

mc = 5 kg 

cpc = 2.0 kJ.kg-1.K-1 

Ar = 0.215 m2 

U  = 67.2 kJ.min-1m-2K-1 

k01 = 2.145·1010 min-1 

k02 = 2.145·1010 min-1
 

k03 = 1.5072·108 min-1.kmol-1 

E1/R  = 9758.3 K 

E2/R = 9758.3 K 

E3/R = 8560 K 

h1 = -4200 kJ.kmol-1 

h2 = 11000 kJ.kmol-1 

h3 = 41850 kJ.kmol-1 

cA0 = 5.1 kmol.m-3 

Tr0 = 387.05 K 

4.1.2 Steady-state Analysis 

The theoretical background for the steady-state analysis is examined in detail in 

Chapter 3.1.3. The steady-state analysis for stable systems involves computing the values 

of state variables in time t  ∞, when the changes of these variables are equal to zero. It 
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means that the set of ODE is solved with condition ∂(·)/∂t = 0. Now the set of ODE (4.2) 

can be rewritten to a set of nonlinear equations: 
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 (4.6) 

To solve the set (4.6) a simple iteration method was used. A low value of the 

difference between the actual the value of the quantity and value from the previous step 

was chosen as a criterion for termination of the iteration process: 

 ( ) ( ) ( ) ( )1 1r r c c ssT i T i T i T i ε− − + − − <  (4.7) 

where (i) is an index of the actual iteration, index (i – 1) is related to the previous 

iteration, and εss denotes accuracy, which was chosen in this case εss = 10-5. 

The first graphs displayed in Figure 4.2 show the course of the computed variables 

through iterations.  

0 5 10 15 20 25 30 35

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

1.00

1.02

1.04

1.06

1.08

1.10

cs A
 [k

m
ol

.m
-3
]

iteration [-]

cs
B

 c
s B
 [k

m
ol

.m
-3
]

cs
A

0 5 10 15 20 25 30 35
381

382

383

384

385

386

387

388

Ts r,T
s c [

K
]

iteration [-]

Ts
r

Ts
c

 

Figure 4.2 Course of iterations for concentrations cA
s and cB

s and temperatures Tr
s and Tc

s 
during the computation, CSTR 
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As can be clearly seen, computation leads to the solution in about thirty iterations 

and there is no need to further continue with the computation. Two steady-state analyses 

were done – for various heat removal of the cooling liquid, Qc, in the range 
1500;500 .cQ kJ min−= −  and various volumetric flow rate of the reactant, qr, for values 

3 10;0.03 .rq m min−= . The results presented in Figure 4.3 and Figure 4.4 show negative 

properties of the reactor – especially the course of steady-state values of concentrations cA
s 

and cB
s has highly nonlinear behaviour. 
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Figure 4.3 Steady-state values of concentrations cA
s and cB

s and temperatures Tr
s and Tc

s for 
various heat removal, Qc, CSTR 
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3D-plots of the steady-state value of concentration cB
s and temperature Tr

s for 

various qr and Qc are in Figure 4.5. 
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Figure 4.5 Steady-state values of the product’s concentration, cB
s, and the temperature of the 

reactant, Tr
s, for various heat removal, Qc, and volumetric flow rate, qr, CSTR 

Static analysis usually results in an optimal working point. The maximum of the 

product’s steady-state concentration, cB
s, was chosen as a criterion for choosing an optimal 

working point. Concentration cB
s has its maximum for the volumetric flow rate  

qr
s = 2.365·10-3 m3.min-1 and the heat removal Qc

s = -18.56 kJ.min-1 – see Figure 4.3 and 

Figure 4.4. 

 

4.1.3 Dynamic Analysis 

The steady-state values from the previous analysis were used as input conditions 

for the dynamics. These values for the working point defined by the volumetric flow rate 

qr
s = 2.365·10-3 m3.min-1 and the heat removal Qc

s = -18.56 kJ.min-1 are 
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Dynamic analysis was done for various step changes of the input heat removal of 

the cooling liquid, Qc, and volumetric flow rate of the reactant, qr, which are, for better 

projection, recomputed to percent via 

 ( ) ( ) ( ) ( ) [ ]100; 100 %
s s

c c r r
s s
c r

Q t Q q t q
u t u t

Q q
− −

= ⋅ = ⋅  (4.9) 

Four step changes ±10% and ±20% of both input variables – the heat removal Qc 

and the volumetric flow rate qr were done. The working point from the steady-state 

analysis was used and these step changes can be numerically described by ΔQc = 3.712  

(-20%), 1.856 (-20%), -1.856 (10%), -3.712 (20%) kJ.min-1  and Δqr = -4.73·10-4 (-20%),  

-2.365·10-4 (-20%), 2.365·10-4 (10%), 4.73·10-4 (20%) m3.min-1. 

The fourth-order Runge-Kutta’s method was used for numerical solution of the set 

of ODE (4.2). Although the used MATLAB program has different Runge-Kutta’s methods 

as build-in functions, for example ode23 (second order Runge-Kutta’s method) or more 

common by used function ode45 (The fourth-order Runge-Kutta’s method), for our 

computation the easily programmed Runge-Kutta’s method from chapter 3.1.4 was used. 

An advantage of this program is simplicity and the integration step is fixed during the 

computation, unlike MATLAB’s build-in functions which are computed more generally 

and the integration step can vary according to the actual computation error. This step-

variability could cause computation problems for more complex sets of ODE. Simulation 

time was 30 min and fixed integration steps hi = 0.1 min were used. 

Output variables y1-4  in Figure 4.6 to Figure 4.9 illustrate the difference of 

variables cA, cB, Tr and Tc from their steady state values, which are in fact initial conditions: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) [ ]

3
1 2

3 4

; ; .

; ;

s s
A A B B

s s
r r c c

y t c t c y t c t c kmol m

y t T t T y t T t T K

−⎡ ⎤= − = − ⎣ ⎦
= − = −

 (4.10) 

This simplification has only one reason – all graphs start in zero and we can easily 

estimate time constants, gain etc.  
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Figure 4.6 Dynamic analysis of outputs y1 (cA(t) – cA
s) and y2 (cB(t) – cB

s) for various step 
changes of the input heat removal, Qc, CSTR 

The first output responses to the step change of the input heat removal, Qc, for 

outputs y1 and y2, which represent the differences of concentrations cA and cB from their 

steady-state values have shown that the first output, y1, can be expressed for example by 

the second order transfer function. On the other hand, the output y2 has negative properties 

from the control point of view – non-minimum phase behaviour and changing sign of the 

gain – see Figure 4.6. 
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Figure 4.7 Dynamic analysis of outputs y3 (Tr(t) – Tr
s) and y4 (Tc(t) – Tc

s) for various step 
changes of the input heat removal, Qc, CSTR 

Outputs y3 and y4 in Figure 4.7, which represent courses of temperatures Tr and Tc 

related to their input values Tr
s and Tc

s, have shown that output y3 can be approximated by 

the second order transfer function and the output cooling temperature in the output y4 has a 

course similar to the first order transfer function.  



-94- 

0 5 10 15 20 25 30
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

y 1(t)
 [k

m
ol

.m
-3
]

t [min]

20%

10%

-10%

-20%

 
0 5 10 15 20 25 30

-0.04

-0.02

0.00

0.02

0.04

y 2(
t) 

[k
m

ol
.m

-3
]

t [min]

20%

10%

-10%

-20%

 

Figure 4.8 Dynamic analysis of outputs y1 (cA(t) – cA
s) and y2 (cB(t) – cB

s) for various step 
changes of the input volumetric flow rate, qr, CSTR 

The second dynamic study for various step changes of the volumetric flow rate of 

the reactant, qr, presented in Figure 4.8 and Figure 4.9 shows that all outputs y1 – y4 have 

negative control properties similarly to output y2 in the previous dynamic study. 
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Figure 4.9 Dynamic analysis of outputs y3 (Tr(t) – Tr
s) and y4 (Tc(t) – Tc

s) for various step 
changes of the input flow rate, qr, CSTR 

The dynamic analysis shows the response of output variables to the step change of 

the input quantity. This was mainly done for control purposes. It shows output properties 

and helps with the choice of the appropriate control strategy. 
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4.1.4 Simulation of Control 

The first control strategy used in the simulation part is Adaptive control described 

in detail in Chapter 3.2.1. 

The Adaptive control used in this work is based on an choice of the appropriate 

External Linear Model (ELM) of the originally nonlinear process parameters of which are 

estimated recursively during the control. The parameters of the controllers are recomputed 

according to the estimated parameters in every step too. The polynomial approach with the 

pole-placement method and two control configurations with one degree-of-freedom (1DOF) 

and two degrees-of-freedom (2DOF) were used for design of the controller.  

Based on the dynamic study, the step change of the heat removal of the cooling, Qc, 

was chosen as an input (control) variable u(t) and the temperature of the reactant, Tr, again 

related to its initial condition (steady-state value) was used as an output (controlled) 

variable y(t), i.e. 

 ( ) ( ) [ ] ( ) ( ) [ ]100 % ;
s

c c s
r rs

c

Q t Q
u t y t T t T K

Q
−

= ⋅ = −  (4.11) 

The output y(t) can be represented by the second order transfer function with 

relative order one: 

 ( ) ( )
( )

1 0
2

1 0

b s b s bG s
a s s a s a

+
= =

+ +
 (4.12) 

The parameters of polynomials a(s) and b(s) in (4.12) are estimated recursively 

during the control with the use of RLS method with changing exponential forgetting, 

where forgetting factor λ1 is recomputed in every step via Equation (3.65). The initial 

values are: K = 0.001 and parameters γ(0) = 0, ε(0) = 0. 

The working point and initial values for identification are shown in Table 4.2. 
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Table 4.2 Working point and parameters of the identification used for the control, CSTR 

Name of the parameter Symbol and value of the parameter 

Input concentration of compound A 

Input temperature of the reactant 

Input volumetric flow rate of the reactant 

Input heat removal of cooling 

cA0 = 5.1 kmol.m-3 

Tr0 = 387.05 K 

qr
s = 2.365·10-3 m3.min-1 

Qc
s = -18.56 kJ.min-1 

Starting vector of parameters ( ) [ ]0 0.1,0.1,0.1,0.1 T
δ =θ  

Starting covariance matrix ( )

6

6

6

6

1 10 0 0 0
0 1 10 0 0

0
0 0 1 10 0
0 0 0 1 10

⎡ ⎤⋅
⎢ ⎥⋅⎢ ⎥=
⎢ ⎥⋅
⎢ ⎥

⋅⎢ ⎥⎣ ⎦

P  

The quality of control was evaluated by the quality criteria Su and Sy computed for 

a time interval as 

 ( ) ( )( ) [ ] ( ) ( )( ) [ ]2 2

2 1

1 ;
N N

u y
i i

S u i u i S w i y i
= =

= − − − = − −∑ ∑ , for f

v

T
N

T
=  (4.13) 

where Tf is time of simulation – in this case Tf = 450 min.  

The best results will be compared in the last part of this chapter. The sampling 

period Tv = 0.3 min is common for all studies and the course of the reference signal 

(wanted value), w(t), is: 

 
( ) [ ]
( ) ( )
( )

2 1 exp( 0.1 ) for 0;150

1 for 150;300

1 for 300;450

w t t K t min

w t K t min

w t K t min

= ⋅ − − ⋅ ∈

= − ∈

= ∈

 (4.14) 

The action value (input signal) is limited due to technological reasons  

u(t) = <-75;+75> % of Qc
s. Several simulation studies were done and some of them will be 

presented in the next chapters and figures. 
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ADAPTIVE CONTROL WITH POLE-PLACEMENT METHOD 

The first adaptive controller uses spectral factorization to design a stable 

polynomial d(s) on the right side of Diophantine equations (3.81), (3.92) and (3.94). 

The controller has the 1DOF configuration which means that it has only in the 

feedback part (see Figure 3.2). The transfer function of the controller Q(s) (3.82), with the 

condition that reference signal w(t) and disturbance v(t) are chosen from the range of the 

step functions, has form 

( ) ( )
( )

q s
Q s

s p s
=

⋅
%

%
 (4.15) 

where the parameters of polynomials q(s) and ( )p s% are computed from the 

Diophantine equation  

 ( ) ( ) ( ) ( ) ( )a s s p s b s q s d s⋅ ⋅ + ⋅ =%  (4.16) 

by the method of comparison of the coefficients. 

The degrees of polynomials d(s), q(s) and ( )p s%  are then, according to (3.84), (3.87), 

(3.88) and (4.12), 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

deg deg deg 1 2 1 1 4

deg deg 2

deg deg 1 deg 2 1 1

d s a s p s

q s a s

p s a s p s

= + + = + + =

= =

≥ − ⇒ = − =

%

% %

 (4.17) 

The transfer function of the controller (4.15) is then 

( ) ( )
( ) ( )

2
2 1 0

0

q s q s q s qQ s
s p s s s p

+ +
= =

⋅ ⋅ +
%

%
 (4.18) 
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Polynomial d(s) on the right side of the Diophantine equation (3.81) can be divided 

into two polynomials: ( ) ( ) ( )d s m s n s= ⋅  (see (3.109)), where polynomial n(s) is 

computed by the spectral factorization of polynomial a(s): 

 ( ) ( ) ( ) ( )* *n s n s a s a s⋅ = ⋅  (4.19) 

The degree of polynomial n(s) is equal to ( )deg a s , i.e. 

 ( ) 2 2 2
1 0 0 0 1 1 0 0; 2 2n s s n s n n a n a n a= + + ⇒ = = + −  (4.20) 

The second part of polynomial d(s), stable polynomial m(s) was chosen as 

 ( ) ( ) ( )deg deg 2d n
i im s s sα α−= + = +  (4.21) 

which results in one double root where αi > 0. 

On the contrary, control configuration with two degrees-of-freedom – 2DOF 

(Figure 3.3) has controller divided into two parts – the feedback part with transfer function 

Q(s) and the feedforward part with transfer function R(s), which are for step functions of 

reference signal w(t) and disturbance v(t): 

 ( ) ( )
( )

q s
Q s

s p s
=

⋅
%

%
, ( ) ( )

( )
r s

R s
s p s

=
⋅

%
%

 (4.22) 

 where parameters of polynomials ( )p s% , q(s) and r(s) are computed by the method 

of comparison of the coefficients from the set of two Diophantine equations (3.94) and 

(3.92): 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
a s s p s b s q s d s

t s s b s r s d s

⋅ ⋅ + =

⋅ + =

%
 (4.23) 

where t(s) is only additional polynomial used for solution and it is not used in 

transfer functions. 
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The degrees of polynomials ( )p s% , q(s), r(s) and d(s) are computed via (3.96) to 

(3.105): 

 

( ) ( )
( ) ( )
( )
( ) ( )

( ) ( )

deg deg 2

deg deg 1 2 1 1

deg 0

deg 2deg 2 2 4

deg deg 1 4 1 3

q s a s

p s a s

r s

d s a s

t s d s

= =

= − = − =

=

= = ⋅ =

= − = − =

 (4.24) 

and transfer functions (4.22) are  

 
( ) ( )

( ) ( )

( ) ( )
( ) ( )

2
2 1 0

0

0

0

q s q s q s qQ s
s p s s s p

r s rR s
s p s s s p

+ +
= =

⋅ ⋅ +

= =
⋅ ⋅ +

%
%

%
%

 (4.25) 

The choice of the stable polynomial d(s) is similar as for 1DOF control 

configuration. Both 1DOF and 2DOF control configurations δ-ELM were used.  

The estimated output is recomputed recursively from differential equation  

 ( ) ( ) ( )1Ty k k kδ δ δ= ⋅ −θ ϕ  (4.26) 

where the vector of the parameters, θδ, and the data vector, ϕδ, are  

( ) [ ] [ ]1 0 1 0, , , ; ( 1) ( 1), ( 2), ( 1), ( 2)T Tk a a b b k y k y k u k u kδ δ δ δ δ δ′ ′ ′ ′= − = − − − − − −θ ϕ  (4.27) 

and  

 

2

( ) 2 ( 1) ( 2)( )

( 1) ( 2) ( 1) ( 2)( 1) ( 1)

( 2) ( 2) ( 2) ( 2)

v

v v

y k y k y ky k
T

y k y k u k u ky k u k
T T

y k y k u k u k

δ

δ δ

δ δ

− − + −
=

− − − − − −
− = − =

− = − − = −

 (4.28) 
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Three simulation studies were done for different values of parameter  

αi = 0.05, 0.1 and 0.4, which represent the position of the double root.  

Figure 4.10, which represents the course of the input variable, u(t), the reference 

signal, w(t), and the output variable, y(t), for the control configuration with 1DOF, clearly 

shows that the output response is quicker with increasing value of parameter αi. On the 

other hand, there can be some overshoots of the output variable and the course of the input 

variable, u(t), is not so smooth for bigger values of αi. 

 

0 100 200 300 400
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

w
(t)

, y
(t)

 [K
]

t [min]

αi = 0.05

αi = 0.1

α
i
 = 0.4

w(t)

 
0 100 200 300 400

-80

-60

-40

-20

0

20

40

60

80

αi = 0.4

αi = 0.1u(
t)[

%
]

t [min]

αi = 0.05

 

Figure 4.10 The course of  y(t), w(t) and u(t) for different position of the parameter  
αi = 0.05, 0.1 and 0.4, 1DOF, pole-placement method, δ-ELM, CSTR 

 

The course of identified parameters a’0, a’1, b’0 and b’1 in Figure 4.11 shows that 

the used recursive identification has no problem with parameter estimation during the 

control except for the very beginning, where the apriory information about the system is 

insufficient. It is desirable to include some forgetting factor in the identification because 

the estimated parameters without forgetting correspond to the average values and all input-

output samples have the same weight for estimation.  
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Figure 4.11 The course of identified parameters a’0, a’1, b’0 and b’1 during the control, 
1DOF, pole-placement method, δ-ELM, CSTR 

 

Figure 4.12 shows the results for 2DOF configuration. As can be seen, the results 

are similar as for 1DOF – the increasing value of parameter αi mainly affects overshoots 

and the speed of control. 
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Figure 4.12 The course of y(t), w(t) and u(t) for different position of the parameter  
αi = 0.05, 0.1 and 0.4, 2DOF, pole-placement method, δ-ELM, CSTR 
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The comparison of control results with 1DOF and 2DOF configuration in Figure 

4.13 shows the main advantage of the 2DOF control configuration – lower overshoots and 

smoother course of the action value, which is an important criterion too. The change of the 

action value can be represented by the valve turn and rapid changes on the valve can 

destroy it. 
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Figure 4.13 The course of  y(t), w(t) and u(t) for 1DOF and 2DOF, pole-placement 
method, αi = 0.4, δ-ELM, CSTR 

 

Table 4.3 presents the results of control from the control quality point of view 

according to Equation (4.13). The best results (in the table in bold) are in this case for the 

parameter αi = 0.4. 

Table 4.3 The control quality criteria Su, Sy for pole-placement method, δ-ELM, CSTR 

1DOF 2DOF 

 Su[-] Sy[-] Su[-] Sy[-] 

αi = 0.05

αi = 0.1 

αi = 0.4 

60457 

32151 

62933 

975.19

590.24

198.81

23878.00

352.55

1059.00

1056.20

677.99

314.62

 

As written in the theoretical part, the nominated adaptive controller can deal with 

disturbance attenuation, which is proved in Figure 4.14. The simulation was done for 
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1DOF control configuration and various values of parameter αi = 0.05, 0.1 and 0.4, the 

sampling period was Tv = 0.3 min, the simulation time 500 min with one step 

change ( ) [ ]2 1 exp( 0.1 )w t t K= ⋅ − − ⋅ . Tree types of disturbances, two in the input and one on 

the output, are injected to the system during this time: 

• v1(t) = +3% step change of the input concentration cA0 for time 150;500t min∈   

• v2(t) = -0.5 K step change of the input temperature Tr0 for time 250;500t min∈   

• v3(t) = 0.5 K step change of the output temperature Tr for time 400;500t min∈   

As can be seen from Figure 4.14, presence of the integration part in the controller 

ensures full attenuation of the disturbances on the input or output, respectively. All three 

disturbances are suppressed by the used adaptive controller with 1DOF control 

configuration. The only difference is in the speed of control and disturbance attenuation. 

The response with the lowest value of αi = 0.05 results in the slowest course of the output 

variable and the disturbance is suppressed slowly, while the biggest value αi = 0.4 

represses the influence of the disturbance faster but with a small overshoot of the output 

variable at the very beginning. 
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Figure 4.14 The course of  y(t), w(t) and u(t) for three disturbances and more values of 
the parameter αi, 1DOF, pole-placement method, δ-ELM, CSTR 
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The values of the quality indicate that the best results were reached for the αi = 0.4, 

as also clear from the previous graph. 

Table 4.4 The control quality criteria Su, Sy for pole-placement method, δ-ELM, CSTR 

 Su[-] Sy[-] 

αi = 0.05 

αi = 0.1 

αi = 0.4 

60561

32221

65938

297.98

247.82

116.03

 

 

ADAPTIVE CONTROL WITH LQ APPROACH 

The disadvantage of the pole-placement method is that it is an intuitive method and 

there is no general role for the choice of parameter αi. This disadvantage should be 

overcome, for example, by the use of Linear Quadratic (LQ).  

This method is based on minimization of the quadratic criterion JLQ in (3.112), 

which, in this concrete example, means that polynomial d(s) on the right side of 

Diophantine equations (3.81), (3.92) and (3.94) is ( ) ( ) ( )d s g s n s= ⋅ . Polynomials n(s) 

and g(s) are computed from spectral factorization (3.114) which means that the coefficients 

of the polynomials n(s) and g(s) are calculated as 

 
( )2 2 2 2

0 0 1 0 2 0 1 2 1 3 1 0 3

2 2
0 0 1 0 1 0

, 2 , 2 2 , ,

, 2 2

LQ LQ LQ LQg b g g g a b g g g a a g

n a n n a a

μ ϕ μ ϕ ϕ= = + + = + − =

= = + −
 (4.29) 

Transfer functions of the controller for both 1DOF and 2DOF control 

configurations are similar as in Equation (4.22). The degrees of the polynomials d(s), q(s), 

r(s) and ( )p s%  are 
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( ) ( ) ( )( ) ( )
( ) ( )
( ) ( )
( )

deg deg 2deg 1 2 2 1 5

deg deg 2

deg deg 1 2

deg 0

d s g s n s a s

q s a s

p s a s

r s

= ⋅ = + = ⋅ + =

= =

≥ − =

=

%
 (4.30) 

and transfer functions (4.22) are  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2
2 1 0

2
1 0

0
2

1 0

q s q s q s qQ s
s p s s s p s p

r s rR s
s p s s s p s p

+ +
= =

⋅ ⋅ + +

= =
⋅ ⋅ + +

%
%

%
%

 (4.31) 

The parameters of polynomials q(s), r(s) and ( )p s%  in (4.31) are then computed 

again by the method of parameters comparison. 

The ELM was chosen from the range of δ-models and simulations were done for 

more values of weighting factor φLQ, the second weighting factor was set to µLQ = 1; results 

are shown in the following figures. 

The course of the output variable, y(t), and the input variable u(t) for 1DOF control 

configuration is shown in Figure 4.15.  
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Figure 4.15 The course of  y(t), w(t) and u(t) for different weighting factor  
φLQ = 0.05, 0.5 and 2, 1DOF, LQ method, δ-ELM, CSTR 
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As can be seen, the speed of control is quicker with a decreasing value of 

weighting factor φLQ. Control responses have minimal overshoots at the very beginning of 

the control and there is no other overshoot for the next step changes for this concrete case. 

The course of identified parameters a’0, a’1, b’0 and b’1 in Figure 4.16 indicates 

problems at the very beginning because of initial adaptation but the identification after 50 

minutes has no computational problems. 
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Figure 4.16 The course of identified parameters a’0, a’1, b’0 and b’1 during control, 
1DOF, LQ method, δ-ELM, CSTR 

The 2DOF control configuration displayed in Figure 4.17 shows similar results as 

in the previous one. The controller has problems only for weighting factor φLQ = 0.05 at the 

beginning and there are some small overshoots after next step changes. 
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Figure 4.17 The course of  y(t), w(t) and u(t) for different weighting factor  
φLQ = 0.05, 0.5 and 2, 2DOF, LQ method, δ-ELM, CSTR 

Finally Figure 4.18 compares control results with 1DOF a 2DOF control 

configurations for φLQ = 0.5. The courses show similar results except for starting 100 min, 

where 1DOF has small problems with identification, which can be clearly seen in the 

course of input variable u(t) in the right-hand side graph. 
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Figure 4.18 The course of  y(t), w(t) and u(t) for 1DOF and 2DOF, LQ method,  
φLQ = 0.5, δ-ELM, CSTR 

 

Table 4.5 shows the values of criteria Su and Sy for different values of weighting 

factor φLQ. The best results are reached for φLQ = 0.05 (in bold). 

 



-108- 

Table 4.5 The control quality criteria Su and Sy for LQ method, δ-ELM, CSTR 

1DOF 2DOF 

 Su[-] Sy[-] Su[-] Sy[-] 

φLQ = 0.05 

φLQ = 0.5 

φLQ = 2 

20824

104220

13116

433.9

860.0

1256.6

17260

13085

21272

628.1

1318.2

1647.5

 

ADAPTIVE CONTROL WITH CONTINUOUS-TIME ELM 

The third control analysis was done for Continuous-Time (CT) ELM instead of  

δ-models. The difference equation for transfer function of the ELM (4.12) is 

 ( ) ( ) ( )2 1 1
1 0 1 0( ) ( ) ( ) ( ) ( )y t a y t a y t b u t b u t+ + = +  (4.32) 

and filtered variables uf and yf  are, according to Equation (3.31): 

 
( ) ( )

( ) ( )

2 1
1 0

2 1
1 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
f f f

f f f

y t c y t c y t y t

u t c u t c u t u t

+ + =

+ + =
 (4.33) 

where parameters c1 and c0 were chosen 1.4 and 0.49, respectively. The choice of 

these parameters was done after several simulation experiments. There is no general rule 

for the choice of these parameters, but they must be lower than parameters of the ELM. 

The identification part then solves the differential equation (4.32) in the vector 

form 

 ( ) ( ) ( ) ( )n T
f k k ky t t t= ⋅θ ϕ  (4.34) 
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where data vector, φ, and vector of parameters, θ, are: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) [ ]

1 1

0 1 0 1

, , ,

, , ,

T

k f k f k f k f k

T
k

t y t y t u t u t

t a a b b

⎡ ⎤= − −⎣ ⎦

=

ϕ

θ
 (4.35) 

and tk is discrete time moment k vt k T= ⋅  for k = 0,1,2,… and Tv as the sampling 

period. 

Control system configurations with 1DOF and 2DOF are computed similarly to 

previous cases. The stable polynomial on the right side of Diophantine equations (4.16) 

and (4.23) was designed by the pole-placement method with spectral factorization similar 

as like in Part I of this chapter. 

The simulation study for different values of parameter αi = 0.05, 0.1 and 0.4 was 

done and the results are shown in the following graphs. 

The course of output and input variables for both 1DOF and 2DOF control 

configurations in Figure 4.19 and Figure 4.21 show that the output variable, y(t), reaches 

the reference signal, w(t), faster with increasing value of parameter αi. This quick response 

results in overshoots of the output variable and rapid changes of the input variable, which 

are bad attributes of the high value of αi. 
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Figure 4.19 The course of  y(t), w(t) and u(t) for different position of parameter  
αi = 0.05, 0.1 and 0.4, 1DOF, pole-placement method,  CT ELM, CSTR 
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The recursive identification with exponential forgetting works properly from 

approximately 50 min after start, when the system has enough information about the 

system – see Figure 4.20. The course of the identified parameters a0, a1, b0 and b1 after this 

time is relatively stable. 
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Figure 4.20 The course of identified parameters a0, a1, b0 and b1 during control, 1DOF, 
pole-placement method, CT ELM, CSTR 

 

The course of the output variable for parameter αi = 0.1 has problems after the 

second time step, which may be caused by computation problems – see the blue dashed 

line in Figure 4.21. 

Table 4.6 presents the results of the simulation of control with the continuous-time 

ELM. It can be said that setting of the controller with parameter αi = 0.4 has the best 

results from the viewpoint of control quality criteria Su and Sy. 
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Figure 4.21 The course of  y(t), w(t) and u(t) for different positions of parameter  
αi = 0.05, 0.1 and 0.4, 2DOF, pole-placement method,  CT ELM, CSTR 

 

Table 4.6 The quality criteria Su and Sy for pole-placement method, CT ELM, CSTR 

1DOF 2DOF 

 Su[-] Sy[-] Su[-] Sy[-] 

αi = 0.05

αi = 0.1 

αi = 0.4 

1289.67 

10533.92 

14452.63 

1029.47

540.46

161.56

106.14

287.30

13307.10

1259.50

777.53

313.40

 

Figure 4.22 and Figure 4.23 compare control results for 1DOF and 2DOF 

configurations, the δ-ELM presented in Part I. and the continuous-time ELM from this 

section. As can be seen, the main difference is at the very beginning, where the course for 

the CT ELM has a smoother course and the changes of the input variable are not so quick. 

The differences are not very significant in this concrete example, but other simulations 

have shown benefits of CT ELM. Disadvantage of CT ELM can be found in the 

computation demanding.  
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Figure 4.22 The course of  y(t), w(t) and u(t) for δ-ELM and CT ELM, pole-placement 
method, αi = 0.4, 1DOF control configuration, CSTR 
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Figure 4.23 The course of  y(t), w(t) and u(t) for δ-ELM and CT ELM, pole-placement 
method, αi = 0.4, 2DOF control configuration, CSTR 

The values of coefficients Su and Sy Table 4.7 show better control results for the 

CT ELM, which is in accordance with the previous graphs. 

Table 4.7 The control quality criteria Su and Sy for δ− and CT ELM, αi = 0.4, CSTR 

1DOF 2DOF 

 Su[-] Sy[-] Su[-] Sy[-] 

δ−ELM 

CT ELM

62933 

14452 

198.81

161.56

1059

13307

314.62

313.40
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PREDICTIVE CONTROL 

The last simulation study on this type of chemical reactor was done for the 

Generalized Predictive Control (GPC) presented theoretically in Chapter 3.2.2. 

The goal of the GPC is minimization of the cost function JGPC represented by 

Equation (3.120). The sampling period was Tv = 0.3 min in this case, the prediction horizon 

starts at N1 = 0, ends in N2 = 49 steps ahead and the length of the manipulation horizon is 

Nu = 10 steps.  

Weighting factors δu(j) and λu(j) are constant throughout the whole prediction 

horizon, and δu = 1.  The simulation study was done for different value, of the weighting 

factor λu = 0.05, 0.5 and 2. 

The system is expected to be linear and is described by the discrete-time transfer 

function 

 ( ) ( )
( )

1
1

1

B z
G z

A z

−
−

−
=  (4.36) 

Parameters of polynomials A(z-1) and B(z-1) can be derived from the identification 

presented above. 

The continuous-time ELM G(s) from the identification 

 ( ) ( )
( )

1 0
2 2

1 0

0.0063 0.0151
1.5950 0.4856

b s b s b sG s
a s s a s a s s

+ − −
= = =

+ + + +
 (4.37) 

has, for the used sampling period Tv = 0.3 min in the discrete-time, form 

 ( )
1 2

1
1 2

0.0021 0.0010
1 1.5851 0.6197

z zG z
z z

− −
−

− −

− +
=

− +
 (4.38) 

and zero mean white noise e(t) is not take into account. 
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The control results presented in Figure 4.24 show that the course of the output 

temperature is faster with increasing value of weighting factor λu but some small 

overshoots may occur for the highest value, λu = 2. The ideal value of this factor seems to 

be the middle one, i.e. λu = 0.5.  
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Figure 4.24 The course of  y(t), w(t) and u(t) for predictive control and different  
values of λu = 0.05, 0.5 and 2, CSTR 

Table 4.8 presents the results of control from the control criterion’s point of view. 

As can be seen, value λu = 2 is proved here. 

 

Table 4.8 The control quality criteria Su and Sy for predictive control, CSTR 

 Su[-] Sy[-] 

λu = 0.05 

λu =  0.5 

λu = 2 

1865.00

507.19

160.12

204.71

338.95

675.33

 

THE BEST RESULTS OF EACH CONTROL STRATEGY 

All simulation studies were done with the same reference signal for all control 

strategies presented above, which means that the results are comparable. They are shown 
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in Figure 4.25 and Table 4.9. These results clearly show that the best result is obtained for 

the predictive control, although the difference among all strategies is not large. 
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Figure 4.25 The best results of each control strategies, CSTR 

 

Table 4.9 The control quality criteria Su and Sy for the best results, CSTR 

 Su[-] Sy[-] 

Pole-placement 1DOF, δ-ELM, αi = 0.4

Pole-placement 2DOF, δ-ELM, αi = 0.4

LQ 1DOF, φLQ = 0.05 

LQ 2DOF, φLQ = 0.05 

Pole-placement 1DOF, CT-ELM, αi = 0.4

Pole-placement 2DOF, CT-ELM, αi = 0.4

Predictive control, λu =  0.5  

62933

1059

20824

17260

25570

1755

507

198.81

314.62

433.90

628.1

93.01

172.86

338.95

 

The results presented in the table and the figure above have shown the best results 

for the predictive control from the output variable and input variable point of view too. The 

adaptive control with pole-placement method, 2DOF control configuration and CT ELM 

can be stated as the second best method and the third is in this adaptive control with pole-

placement method, 2DOF control configuration and δ-ELM.  
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4.2 Plug-Flow Reactor (PFR) 

The second simulation model is tubular chemical reactor with the ideal plug-flow 

tubular chemical reaction with a simple exothermic consecutive reaction A  B  C in the 

liquid phase and with cooling in the jacket [19]. These types of reactors are called Plug-

Flow Reactors (PFR) [4]. 

 

4.2.1 Description of the Model 

The mathematical description of all quantities and relations among them is very 

complex and we need some simplifications again. We neglect heat losses and conduction 

along the metal wall of the pipes, but heat transfer through the wall is consequential for the 

dynamic study. All densities, heat capacities and heat transfer coefficients are expected to 

be constant. 

Two types of cooling can be used in the jacket – co-current (black solid line) and 

counter-current cooling (red dashed line). The differences between them are displayed in 

Figure 4.26 and they will be investigated in static and dynamic analyses. 

 

Figure 4.26 PFR with co-current and counter-current cooling in the jacket – the main pipe 

The jacket has diameter d3 and outer diameter of each pipe is d2, while the inner 

diameter is denoted as d1 – see Figure 4.27. 
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Figure 4.27 PFR – one pipe 

The mathematical description of the system is based on material and heat balances 

inside the reactor. The mathematical model is then described by a set of five Partial 

Differential Equations (PDE): 

( )

( ) ( ) ( )

1

1 2

1

1

1 1 2 22 2
2 1

4

4

A A
r A

B B
r A B

r r r
r r w

r pr r pr

w
r w c w

w pw

c cv k c
t z

c cv k c k c
t z

T T h Uv T T
t z c d c

T d U T T d U T T
t d d c

ρ ρ

ρ

∂ ∂
+ ⋅ = − ⋅

∂ ∂
∂ ∂

+ ⋅ = ⋅ − ⋅
∂ ∂

∂ ∂ ⋅
+ ⋅ = − ⋅ −

∂ ∂ ⋅ ⋅ ⋅

∂
= ⋅ ⎡ ⋅ ⋅ − + ⋅ ⋅ − ⎤⎣ ⎦∂ − ⋅ ⋅

  (4.39) 

The last PDE for co-current cooling is 

 
( ) ( )1 2 2

2 2
3 1 2

4c c
c w c

c pc

T T n d Uv T T
t z d n d cρ

∂ ∂ ⋅ ⋅ ⋅
+ ⋅ = −

∂ ∂ − ⋅ ⋅ ⋅
 (4.40) 

and for counter-current cooling is this equation (opposite flow of the cooling 

medium) denoted as 

( ) ( )1 2 2
2 2
3 1 2

4c c
c w c

c pc

T T n d Uv T T
t z d n d cρ

∂ ∂ ⋅ ⋅ ⋅
− ⋅ = −

∂ ∂ − ⋅ ⋅ ⋅
 (4.41) 

where T is the temperature, d represents diameters, ρ are densities, cp means 

specific heat capacities, U stands for the heat transfer coefficients, m is a number of tubes 
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and L represents the length of the reactor. Index (•)r means the reaction compound, (•)w is 

for the metal wall of the pipes and (•)c for the cooling liquid. Variables vr and vc are fluid 

velocities of the reactant and cooling liquid, respectively, as 

 ; cr
r c

r c

qqv v
f f

= =  (4.42) 

where q are flow rates and f are constants  

 ( )
2

2 21
1 3 1 2;

4 4r c
df n f d n dπ π⋅

= ⋅ = − ⋅  (4.43) 

The reaction velocities, ki, in equations (4.39) and (4.41) are nonlinear functions of 

temperature computed via the Arrhenius law 

exp ,for 1,2j
j oj

r

E
k k j

R T
⎛ ⎞

= ⋅ − =⎜ ⎟⋅⎝ ⎠
 (4.44) 

where k0j represents pre-exponential factors, E means activation energies and R is 

the gas constant. hr in the third equation is the reaction heat computed as 

1 1 2 2r A Bh h k c h k c= ⋅ ⋅ + ⋅ ⋅   (4.45) 

and hj is used for reaction enthalpies. 

The mathematical model given in Equations (4.39), (4.40) and (4.41) together with 

equations (4.44) and (4.45) shows that this plant is a nonlinear system with continuously 

distributed parameters [8]. Strong nonlinearity can be found in Equation (4.44), and the 

system is with distributed parameters because of the presence of the PDE where the state 

variable is related not only to the time variable, t, but the space varibable, z, too. 

In this case the initial conditions are cA(z,0) = cA
s(z), cB(z,0) = cB

s(z), Tr(z,0) = Tr
s(z), 

Tw(z,0) = Tw
s(z) and Tc(z,0) = Tc

s(z) and boundary conditions cA(0,t) = cA0(t),  

cB(0,t) = cB0(t) = 0, Tr(0,t) = Tr0(t), Tc(0,t) = Tc0(t) for the co-current cooling and  

Tc(0,t) = Tc0(t) for the counter-current cooling.  
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Fixed parameters, input and state variables 

Fixed parameters of PFR are displayed in Table 4.10 [19].   

Table 4.10 Parameters of PFR 

Name of the parameter Symbol and value of the parameter 

Inner diameter of the pipe 

Outer diameter of the pipe 

Diameter of the jacket 

Number of pipes 

Length of the reactor 

Density of the reactant 

Density of the pipe’s wall 

Density of the cooling liquid 

Heat capacity of the reactant 

Heat capacity of the pipe’s wall 

Heat capacity of the cooling liquid 

Heat transfer coefficient: reactant-wall 

Heat transfer coefficient: wall-cooling liquid 

Pre-exponential factor for reaction 1 

Pre-exponential factor for reaction 2 

Activation energy of reaction 1 to R 

Activation energy of reaction 2 to R 

Enthalpy of reaction 1 

Enthalpy of reaction 2 

Input concentration of compound A 

Input temperature of the reactant 

Input temperature of the cooling liquid 

d1 = 0.02 m 

d2 = 0.024 m 

d3 = 1 m 

n1 = 1200 

L = 6 m 

ρr = 985 kg.m3 

ρw = 7800 kg.m3 

ρc = 998 kg.m3 

cpr = 4.05 kJ.kg-1.K-1 

cpw = 0.71 kJ.kg-1.K-1 

cpc = 4.18 kJ.kg-1.K-1 

U1 = 2.8 kJ.m-2.K-1.s-1 

U2 = 2.56 kJ.m-2.K-1.s-1 

k10 = 5.61×1016 s-1 

k20 = 1.128×1016 s-1 

E1/R = 13477 K 

E2/R = 15290 K 

h1 = 5.8×104 kJ.kmol-1 

h2 = 1.8×104 kJ.kmol-1 

cA0
s = 2.85 kmol.m-3 

Tr0
s = 323 K 

Tc0
s = 293 K 

This system has five state variables – concentrations cA(z,t), cB(z,t) and 

temperatures Tr(z,t), Tw(z,t) and Tc(z,t).  
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The choice of the input variables is theoretically quite wide – for example all 

changes of boundary conditions cA0(t), cB0(t), Tr0(t), Tc0(t) or TcL(t). However, in our case 

volumetric flow rates qr and qc were chosen as input variables because of the practical 

view again because thez can be easily controlled. 

4.2.2 Steady-state Analysis 

The difference between the systems with distributed parameters (PFR) and with 

lumped parameters (CSTR) is that the former takes into account two derivatives – with 

respect to time and with respect to axial variable. Steady-state analysis means, as in the 

previous case, solving of the set of PDE (4.39) for time t  ∞, which means that all 

derivatives with respect to time are equal to zero. But there are still derivatives with 

respect to axial variable in the set (4.39) and (4.40). 

These derivatives can be replaced from the mathematical point of view by the first 

back differences 

 ( ) ( )1
,for 1,2,

iz z z

x i x idx
dz h

i n
=

− −
≈ = K  (4.46) 

where x is a general variable, hz is an optional size of the step in axial direction. 

The defined input boundary conditions, x0, for i = 1 are equal to boundary conditions x(0). 

If the reactor is divided into Nz equivalent parts, the discretization step is 

 z
z

Lh
N

=  (4.47) 

where L denotes the length of the reactor. 

Equation (4.46) is valid only for the set of equations (4.39) and (4.40). The system 

with counter-current cooling which differs only in Equation (4.41) has the boundary 

condition defined for z = L because of the counter-current cooling in the reactor’s jacket. 

Therefore, the first forward difference must be used  
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 ( ) ( )1
, for  = ,  -1, 0

jz z z

x j x jdx
dz h

j n n
=

+ −
≈ K  (4.48) 

The set of PDE (4.39) is then transformed to a set of nonlinear equations 
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 (4.49) 

and the PDE (4.40) for co-current cooling is 

 ( )
( ) ( ) ( )

( )
2 2

1 2 2 3 1 2

2 2
1 2 2 3 1 2

4 1

4
z w c c pc c

c
z c c pc

n d h T i v d n d c T i
T i

n d h v d n d c

α ρ

α ρ

⋅ ⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅ ⋅ −
=

⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅
 (4.50) 

while for counter-current cooling from the equation (4.41) the cooling temperature, 

according to first forward difference (4.48), is 

 ( )
( ) ( ) ( )

( )
2 2

1 2 2 3 1 2

2 2
1 2 2 3 1 2

4 1

4
z w c c pc c

c
z c c pc

n d h T j v d n d c T j
T j

n d h v d n d c

α ρ

α ρ

⋅ ⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅ ⋅ +
=

⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅
 (4.51) 

The computation of reaction rates k1, k2 and reaction heat Qr from the equations 

(4.44) and (4.45) must be discretized too, i.e. 

( ) ( )
( ) ( ) ( ) ( ) ( )1 1 2 2

exp ,for 1,2j
j oj

r

r A B

E
k i k j

R T i

Q i h k i c i h k i c i

⎛ ⎞
= ⋅ − =⎜ ⎟⎜ ⎟⋅⎝ ⎠
= ⋅ ⋅ + ⋅ ⋅

 (4.52) 
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The set of nonlinear equations (4.49), (4.50) and (4.51) must be solved with the 

use of iterative methods (Chapter 3.1.3) because the reactive heat, Qr, is a nonlinear 

function of the reactive temperature, Tr, as can be seen in (4.52). The second reason for the 

use of the iterative method is that the boundary condition for the cooling liquid in Equation 

(4.51) is defined for axial variable z = L. 

In the iterative computation two cycles were used. The outer cycle is iterative and 

the inner cycle computes steady-state values in every axial span along the length of the 

reactor. The iterative computation is stopped when the sum of the differences between the 

mean temperature of the reactant and the cooling liquid in the actual step and in previous 

step is lower than accuracy ε , i.e. 

 ( ) ( ) ( ) ( )1 1r r c cT st T st T st T st ε− − + − − <  for st = 1, 2,…, Nz (4.53) 

for ε = 1·10-3, st indicates the iterative step, and the mean temperatures are 

computed via 

 ( ) ( ) ( ) ( )
1 1

1 1;
z zN N

r r c c
i iz z

T st T i T st T i
N N= =

= ⋅ = ⋅∑ ∑  (4.54) 

The first analysis was done for different volumetric flow rates of the cooling liquid 

which is used in variable vc in equations (4.49) – (4.51), see Equation (4.42).  The steady-

state behaviour was examined for the range qc
s = <0.1; 0.35> [m3.s-1] (x-axis). Only the 

results for the product’s concentration, cB
s, and the reactant’s temperature, Tr

s, are shown 

here, because of the length of the thesis. In the following 3D graphs the steady-state values 

are displayed on the z-axis, and the length of the reactor is on the y-axis.  

Figure 4.28 and Figure 4.29 display the results for the co- and counter-current 

cooling in the jacket; it can be clearly seen that counter-current cooling results in high 

nonlinearity whereas in co-current cooling the variables are much more linear.  
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Figure 4.28 Steady-state values of cB
s and Tr

s for different volumetric flow rates of the 
cooling liquid, qc, co-current cooling, PFR 
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Figure 4.29 Steady-state values of cB
s and Tr

s for different volumetric flow rates of the 
cooling liquid, qc, counter-current cooling, PFR 

 

The second steady-state analysis was done for the same variables but for different 

values of the volumetric flow rate of the reactant qr
s = <0.1; 0.35> [m3.s-1]. The results are 

shown in Figure 4.30 and Figure 4.31. The graphs indicate similar behaviour as in the 

previous analysis – counter-current cooling is much more non-linear. 
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Figure 4.30 Steady-state values of cB
s and Tr

s for different volumetric flow rated of the 
reactant, qr, co-current cooling, PFR 
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Figure 4.31 Steady-state values of cB
s and Tr

s for different volumetric flow rates of the 
reactant, qr, counter-current cooling, PFR 

 

The steady-state analysis results in the working point similarly as for the CSTR. 

The optimal working point in this case is defined by the volumetric flow rate of the 

reactant qr
s = 0.150 m3.s-1 and the volumetric flow rate of the coolant qc

s = 0.275 m3.s-1. 

These variables are later used for dynamic analysis and simulation of the control. 
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4.2.3 Dynamic Analysis 

Dynamic analysis is the next step after the steady-state analysis. It examines the 

behaviour after the step change of one of the input variables. Because the set of PDE (4.39), 

(4.40) has derivatives with the respect to axial variable z, the discretization described by 

equations (4.46) and (4.48) must be used. The set of PDE is then transformed to a set of 

ODE: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

1

2 1

1 1

1 1

1 1 2 2
2 2
2 1

1

1

4 41

4

A r r
A A

z z

B r r
B B A

z z

r rr r
r r w

z r pr z r pr r pr

w

w pw

dc i v vk i c i c i
dt h h

dc i v vk i c i c i k i c i
dt h h

dT i Q iv vT i T i T i
dt h d c h c d c

dT i d d
dt d d c

α α
ρ ρ ρ

α α
ρ

⎡ ⎤
= − + ⋅ + ⋅ −⎢ ⎥

⎣ ⎦
⎡ ⎤

= − + ⋅ + ⋅ − + ⋅⎢ ⎥
⎣ ⎦
⎡ ⎤⋅ ⋅

= − + ⋅ + ⋅ − + + ⋅⎢ ⎥
⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦

⎡ ⎤⋅ ⋅ + ⋅
⎢= −

− ⋅ ⋅⎢⎣ ⎦
( ) ( ) ( ) ( ) ( )1 1 2 2

2 2 2 2
2 1 2 1

4 4
w r c

w pw w pw

d dT i T i T i
d d c d d c

α α
ρ ρ

⋅ ⋅ ⋅ ⋅⎥ ⋅ + ⋅ + ⋅
− ⋅ ⋅ − ⋅ ⋅⎥

(4.55) 

For the co-current cooling the last equation for the cooling temperature, Tc, has the 

following form 

 ( )
( ) ( ) ( ) ( ) ( )1 2 2 1 2 2

2 2 2 2
3 1 2 3 1 2

4 41c c c
c c w

z zc pc c pc

dT i v vn d n dT i T i T i
dt h hd n d c d n d c

α α
ρ ρ

⎡ ⎤⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥= − + ⋅ + ⋅ − + ⋅
− ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦

 (4.56) 

whereas this relation for the counter-current cooling is 

 ( )
( ) ( ) ( ) ( ) ( )1 2 2 1 2 2

2 2 2 2
3 1 2 3 1 2

4 41c c c
c c w

z zc pc c pc

dT j v vn d n dT j T j T j
dt h hd n d c d n d c

α α
ρ ρ

⎡ ⎤⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥= − + ⋅ + ⋅ + + ⋅
− ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦

 (4.57) 

Again, the computation runs in two cycles. The outer cycle solves numerically the 

set of ODE (4.55), (4.56) and (4.57) with the use of Runge-Kutta’s standard method 

described in Chapter 3.1.4. The inner cycle divides the reactor into Nz equivalent pieces 

and computes dynamics in each part. 



-126- 

Stready-state values from the previous part were used as input variables to the 

dynamic analysis, as shown in previous case for CSTR and the standard Runge Kutta’s 

method of fourth degree was used for solving this set of ODE [6]. Two dynamic analyses 

were done – the first for four step changes ±20% and ±10% of the volumetric flow rate of 

the cooling liquid, Δqc
s, and the volumetric flow rate of the reactant, Δqr

s, is –0.055 (–20%), 

–0.0275 (–10%), 0.0275 (10%), 0.055 (20%) m3.s-1 for Δqc
s and –0.03 (–20%),  

–0.015 (–10%), 0.015 (10%), 0.03 (20%) m3.s-1 for Δqr
s.  

These input variables should be mathematically described as 

 ( ) ( ) ( ) ( ) [ ]100; 100 %
s s

c c r r
s s
c r

q t q q t q
u t u t

q q
− −

= ⋅ = ⋅  (4.58) 

Output variables y1 and y2 in the following figures illustrate the difference between 

the actual values of the product’s concentration cB, the reactive temperature, Tr, at the end 

of the reactor (z = L) and their steady-state values cB
s and Tr

s. 

 ( ) ( ) ( ) ( ) ( ) ( ) [ ]3
1 2, . ; ,s s

B B r ry t c t L c L kmol m y t T t L T L K−⎡ ⎤= − = −⎣ ⎦  (4.59) 

Simulation analyses were done again for co-current and counter-current cooling. 

Figure 4.32 and Figure 4.33 show dynamic responses for various step changes of 

input volumetric flow rates qc
s and qr

s with co-current cooling in the jacket.  
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Figure 4.32 Output responses of outputs y1(cB) and y2(Tr) for various step changes of the 
volumetric flow rate of cooling liquid, Δqc

s, co-current cooling, PFR 
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These output variables can be described by the second order transfer function, 

except for y1 which represents the output concentration, cB, for the step change of the 

volumetric flow rate on the input. This variable has a very nonlinear course and it can 

mean substantial problems in control. 
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Figure 4.33 Output responses of outputs y1(cB) and y2(Tr) for various step changes of the 
volumetric flow rate of the reactant, Δqr

s, co-current cooling, PFR 

 

Dynamic analysis for the counter-current cooling presented in Figure 4.34 and 

Figure 4.35 has all negative properties from the control point of view, such as non-

minimum phase behaviour (output y1) and time delay. 
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Figure 4.34 Output responses of outputs y1(cB) and y2(Tr) for various step changes of the 
volumetric flow rate of the cooling liquid, Δqc

s, counter-current cooling, PFR 
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Figure 4.35 Output responses of outputs y1(cB) and y2(Tr) for various step changes of the 
volumetric flow rate of the reactant, Δqr

s, counter-current cooling, PFR 

 

The last dynamic analysis compares co-current and counter-current cooling for the 

same step changes of the input variables. Although the properties of the counter-current 

system are not very good for control, it is often used because this type of cooling has a 

better cooling effect. This can bee clearly seen in Figure 4.36 and Figure 4.37 – with the 

same step change of volumetric flow rates Δqr
s and Δqc

s, the stable value of product’s 

temperature Tr (output y2) in counter-current is doubled compared to co-current 

configuration. Output concentration y1 has an interesting course too – non-minimum phase 

behaviour and the changing sign of gain. 
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Figure 4.36 Comparison of co-current and counter-current cooling for outputs y1(cB) 
and y2(Tr), step change of the volumetric flow rate of the reactant Δqr

s = -20%, PFR 
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Figure 4.37 Comparison of co-current and counter-current cooling for outputs y1(cB) 
and y2(Tr), step change of the volumetric flow rate of the cooling Δqc

s = -20%, PFR 

 

4.2.4 Simulation of Control 

This chapter will present only some of the simulation results of the control of the 

PFR because of the space. The goal is to show that control strategies used for the control of 

the CSTR in the previous case can be implemented to other types of chemical reactors. 

The change of the volumetric flow rate of the reactant, qc
s, was used as a control 

(input) variable and the output temperature of the reactant, Tr, related to its steady-state 

value was used as a controlled (output) variable 

 ( ) ( ) [ ] ( ) ( ) [ ]100 % ;
s

c c s
r rs

c

q t q
u t y t T t T K

q
−

= ⋅ = −  (4.60) 

The same second-order transfer function with relative order one, similar to the 

previous case 

 ( ) ( )
( )

1 0
2

1 0

b s b s bG s
a s s a s a

+
= =

+ +
 (4.61) 

was used as ELM according to the dynamic analysis from the previous chapter and 

the RLS method with changing exponential forgetting was used for parameter estimation, 

the same as for CSTR model in Chapter 4.1.4. 
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The working point and initial values for identification for the simulation of the 

control are shown in Table 4.11. 

Table 4.11 Working point and parameters of the identification used for the control, PFR 

Name of the parameter Symbol and value of the parameter 

Input concentration of compound A 

Input temperature of the reactant 

Input temperature of the coolant 

Input volumetric flow rate of the reactant 

Input volumetric flow rate of the coolant 

cA0 = 2.85 kmol.m-3 

Tr0 = 323 K 

Tc0 = 293 K 

qr
s = 0.15 m3.s-1 

qc
s = 0.275 m3.s-1 

Starting vector of parameters ( ) [ ]0 0.1,0.1,0.1,0.1 T
δ =θ  

Starting covariance matrix ( )

6

6

6

6

1 10 0 0 0
0 1 10 0 0

0
0 0 1 10 0
0 0 0 1 10

⎡ ⎤⋅
⎢ ⎥⋅⎢ ⎥=
⎢ ⎥⋅
⎢ ⎥

⋅⎢ ⎥⎣ ⎦

P  

 

The quality of control was evaluated the quality criteria Su and Sy described in 

Equation (4.13). 

To be able to compare the results for all control strategies (shown at the end of this 

chapter), the time of the simulation, Tf, was 6000 s, the sampling period Tv = 1.5 s, the 

input variable was limited to u(t) = <-80;+80> % of qc
s and three step changes were done 

during this time: 

 
( ) [ ]
( ) ( )
( )

1 1 exp( 0.03 ) for 0;2000

0.5 for 2000;4000

2 for 4000;6000

w t t K t s

w t K t s

w t K t s

= ⋅ − − ⋅ ∈

= − ∈

= ∈

 (4.62) 
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ADAPTIVE CONTROL WITH POLE-ASSIGNMENT METHOD 

As written above, the same ELM (4.12) was used as the representation of a 

nonlinear system which means that the controller has the same structure and the parameters 

of the controller are computed similarly as for CSTR in the previous case. 

The transfer function of the controller with 1DOF control configuration is given by 

Equation (4.18), and parameters of polynomials q(s) and ( )p s%  are computed from the 

Diophantine equation(4.16). Stable polynomial d(s) is designed via pole-placement method 

connected with the spectral factorization, i.e. d(s) = n(s)·m(s). This method is described in 

the previous case. 

The ELM is from the range of δ-models, which means that the vector of the 

parameters, θδ, and the data vector, ϕδ, are  

( ) [ ]
[ ]

1 0 1 0, , ,

( 1) ( 1), ( 2), ( 1), ( 2)

T

T

k a a b b

k y k y k u k u k

δ

δ δ δ δ δ

′ ′ ′ ′=

− = − − − − − −

θ

ϕ
 (4.63) 

The vector of parameters, θδ, is estimated recursively during control with the help 

of any RLS method with the initial values from Table 4.2. 

The simulation study is done for different values of parameter αi = 0.01, 0.02 and 

0.03. The results presented in Figure 4.38 show that the proposed adaptive controller has a 

problem with control only at the very beginning of control, where it does not have enough 

information about the system. Once the parameters are adapted sufficiently, the control 

response has good results. The increasing value of parameter αi affects mainly the speed of 

response, the overshoots are comparably high. Although the input variable, u(t), for the 

highest value αi = 0.03 has not an ideal course (with a lot of shocking changes), the 

controller with this setting has the best course of the output variable. The values of criteria 

Su and Sy are displayed in the Table 4.12.  
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Figure 4.38 The course of  y(t), w(t) and u(t) for different position of the parameter  
αi = 0.01, 0.02 and 0.03, 1DOF, pole-placement method, δ-ELM, PFR 

The graphs in Figure 4.39 show the results of the recursive identification during 

simulation. It can be clearly seen that the used identification has no substantial problem 

with the adaptation, except at the beginning of the control. The course of identified 

parameter b’0 shows that this parameter is very small and is not changing during the 

control.  
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Figure 4.39 The course of identified parameters a’0, a’1, b’0 and b’1 during the control, 
1DOF, pole-placement method, δ-ELM, PFR 
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Table 4.12 The control quality criteria Su, Sy for pole-placement method, δ-ELM, PFR 

 Su[-] Sy[-] 

αi = 0.01 

αi = 0.02 

αi = 0.03 

70789.83

7555.19

13861.81

1141.70

568.15

425.01

 

The effect of disturbances is displayed in Figure 4.40. The simulation time in this 

case is 10 000 s and the value of criterion αi is 0.008. Three disturbances are injected to the 

system: 

• v1(t) = +1.5% step change of the input concentration cA0 for time 3000;10000t s∈   

• v2(t) = 0.25 K step change of the input temperature Tr0 for time 5000;10000t s∈   

• v3(t) = -0.2 K step change of the output temperature Tr for time 7000;10000t s∈   

The course of the output variable shows that the proposed controller has no 

problem to deal with these three disturbances – see Figure 4.40. The values of control 

quality criteria are Su = 30382.23 and Sy = 284.03. 
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Figure 4.40 The course of  y(t), w(t) and u(t) for three disturbances, αi = 0.008, 1DOF, 
pole-placement method, δ-ELM, PFR 
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ADAPTIVE CONTROL WITH LQ APPROACH 

The second control analysis was done for the adaptive controller based on LQ 

approach, similarly to CSTR. The parameters of stable polynomial d(s) on the right side of 

the Diophantine equation (4.16) are computed by minimizing of the cost function (3.112). 

The control simulation is done for three different values of weighting factor φLQ = 0.005, 

0.01 and 0.02, and the second weighting factor is µLQ = 1 for all simulations. 

The output variable y(t) in Figure 4.41 has similar courses as for adaptive control 

with pole-placement method presented in the previous chapter. The increasing value of 

weighting factor φLQ results in bigger overshoots and slower course of the output variable. 
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Figure 4.41 The course of  y(t), w(t) and u(t) for different weighting factor  
φLQ = 0.005, 0.01 and 0.02, 1DOF, LQ method, δ-ELM, PFR 

The RLS with a changing forgetting factor has no bigger problems with on-line 

identification of the process – see Figure 4.42. 

The values of criteria Su and Sy shown in Table 4.13 indicate similar control results 

for all three simulation studies. The best results can be seen for the controller with 

weighting factor φLQ = 0.005 for both criteria, Su and Sy. 
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Figure 4.42 The course of identified parameters a’0, a’1, b’0 and b’1 during the control, 
1DOF, LQ method, δ-ELM, PFR 

Table 4.13 The control quality criteria Su, Sy for LQ method, δ-ELM, PFR 

 Su[-] Sy[-] 

φLQ = 0.005 

φLQ = 0.01 

φLQ = 0.02 

118631

120298

119321

405.03

504.75

646.08

 

PREDICTIVE CONTROL 

Similar generalized predictive control as for CSTR was used in the last control 

simulation study. The sampling period in this case was Tv = 0.9 s, the parameters of the 

prediction horizon N1 = 0, N2 = 50 and Nu = 10 steps. Weighting factors were again 

constant during the control. The first factor, δu = 1, is the same for all and the second 

differs for particular simulation studies – λu = 0.5, 1 and 2. 
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The discrete transfer function, G(z), obtained from the preidentification has form 

 ( )
6 1 5 2

1
1 2

9.2314 10 3.1421 10
1 1.9772 0.9773

z zG z
z z

− − − −
−

− −

⋅ − ⋅
=

− +
 (4.64) 

The simulation results presented in Figure 4.43 show that the course of the output 

variable is quicker for the lower value of parameter λu – see the course for λu = 0.5.  
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Figure 4.43 The course of  y(t), w(t) and u(t) for predictive control and different  
values of λu = 0.5, 1 and 2, PFR 

 

This contention is supported by the values of quality criteria Sy in Table 4.14, 

which is the lowest for λu = 0.5. On the other hand, the bigger value of this criterion gives 

better results from the input variable point of view, which is indicated by the Su-value in 

Table 4.14. 

 

Table 4.14 The control quality criteria Su, Sy for predictive control, PFR 

 Su[-] Sy[-] 

λu = 0.5 

λu = 1 

λu = 2 

151.80

51.00

18.81

633.81

759.63

980.26
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THE BEST RESULTS OF EACH CONTROL STRATEGY 

Similarly as for the previous simulation model, the best results from each control 

strategy are compared in Figure 4.44 and Table 4.15. It can be said that the predictive 

control approaches to the reference signal in the best way except for the second step 

change from 1 K to -0.5 K. 
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Figure 4.44 The the best results of each control strategy, PFR 

 

Table 4.15 The control quality criteria Su and Sy for the best results, PFR 

 Su[-] Sy[-] 

Pole-placement 1DOF, δ-ELM, αi = 0.03

LQ 1DOF, φLQ = 0.005 

Predictive control, λu =  0.5  

13861

118631

1251

425

405

634

 

The best results from the criterion Su and Sy point of view has again predive control, 

especially if the input variable, u(t), has significant importance. On the other hand, the 

adaptive controller with LQ approach has the best course of the output variable y(t). 
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4.3 Real Model of CSTR 

The simulation experiments are not fully credible if they are not verified by 

experiments on a real model. Thus, the proposed controllers from the previous parts were 

verified on a multifunctional process control teaching system – The Armfield PCT 40 [60]. 

This device is designed especially for teaching of a wide range of technological and 

chemical processes, such as temperature control in heat exchangers, flow control, level 

control in water tanks, pressure control and finally conductivity and pH control in 

additional PCT 41 and 42 units [61] and [62], which is CSTR. The schematic 

representation of the model is displayed in Figure 4.45.   

 

Figure 4.45 Multifunctional Process Control Teaching System PCT40 with additional 

CSTR (PCT41 and 42) 

PCT40 unit consists of two process vessels, several pumps, sensors and connection 

to the computer. Additional PCT 41 and 42 units represent a chemical reactor with a stirrer 

inside and a cooling/heating lid.  
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Figure 4.46 PCT41 and PCT 42 – Process Vessel Accessory (CSTR) 

Water can be injected inside the reactor via a normally closed solenoid valve 

(SOL1) or by a Proportional Solenoid Valve (PSV). The third option how to feed water 

inside the system is with the use of one of peristaltic pumps, A or B, and the second pump 

could be used for reactant feeding. This option was used in the following studies. Used 

pumps and solenoids are shown in Figure 4.47. 

 
 

Figure 4.47 Solenoid valve SOL1, proportional solenoid valve PSV and peristaltic 
pumps A, B 
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The technological parameters of the reactor are shown in the following table. 

Table 4.16 Technological parameters of CSTR 

Parameter Range 

Vessel diameter 

Maximum vessel depth 

Maximum operation volume 

Minimum vessel depth 

Minimum operation volume 

0.153 m 

0.108 m 

2 l 

0.054 m 

1 l 

 

Two types of connection are at the disposal (see Figure 4.48). The first connection 

with Universal Serial Bus (USB) is included in the standard packing. This connection uses 

special software, ArmSoft, which is also included in the package. 

  

Figure 4.48 USB and 60-way I/O connectors 

The view of the main window is in Figure 4.49. The system includes a lot of pre-

defined exercises or possibilities to create one’s own project work. The computer can 

communicate with all sensors in real-time via USB cable and the software has 

implemented basic PID controller with adjustable parameters.  
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Figure 4.49 ArmSoft simulation system 

 

A disadvantage of this system is that there is no possibility to implement other 

control strategies programmed in Matlab, C++ etc. This disadvantage can be overcome 

with the second type of connection via a 60-way I/O connector or 50-way I/O connector to 

a technological PCI cart in the computer. The technological card used in this case is 

MF624 multifunction I/O card from Humusoft. This card has 8 inputs and 8 outputs, which 

is sufficient if we operate only one control exercise at a time. The whole system provides 9 

inputs and 17 outputs if all exercises work at in the same time. That is why we use two 

MF624 cards. 

The connection to PC via MF624 cards makes all control exercises fully 

programmable with the use of Matlab’s Real-time toolbox and Simulink (Figure 4.50), or 

from the Matlab’s command window.  
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Figure 4.50 Basic Simulink scheme 

All measurements and control signals in the work were made from Matlab’s 

command window via commands rtin and rtout. 

 

4.3.1 Description of the Chemical Process 

The producer of PCT40 recommends dilution of potassium bicarbonate (KHCO3) 

in water. This chemical is non-toxic and the conductivity control could be carried out in 

safe conditions of temperature and pressure. However, in our case potassium bicarbonate 

was replaced by ordinary sodium chloride (NaCl). The main reason of this substitution was 

the cost of experiment – twenty liters of 20% solution of potassium bicarbonate is made 

from 4.5 kg of dry KHCO3, which costs about 1350 Czech crowns, and the same amount of 

NaCl costs 18 Czech crowns, which is 75 times less than KHCO3. This substitution was 

made with the agreement of Armfield, the producer of the PCT40. 

Thus, the chemical used in the experiments was 5% solution of NaCl, which means 

that 20 litres of the chemical consists of 1 kg dry NaCl solved in 19.5 litres of water. The 
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conductivity of this solution is about 60 mS, which is relatively high and suitable for basic 

experiments. The conductivity, which will be controlled, changes with the degree of sality. 

Other conditions which are common for all measurements are: 

• The chemical and water are fed in the reactor by peristaltic pumps viewed in Figure 

4.43. Volumetric flow rates of these pumps could be theoretically set in the range 

0÷100 %; however, setting lower than 20% results in very small revolutions of the 

rotor and the produced force is not high enough to transport the fluid from the barrel. 

The range set into the input recomputed to the volumetric flow rate is shown in 

Table 4.17. 

Table 4.17 Speed of pumps A and B in % recomputed to the flow rate in l.min-1. 

Range set at the 
input to pumps A 

and B 

Flow rate of 
pump A[l.min-1] 

Flow rate of 
pump B [l.min-1] 

100% 
75% 
50% 
30% 

1.12 
0.80 
0.48 
0.22 

1.11 
0.80 
0.51 
0.26 

 

• Although the system could be understood as multi-input (input flow rate of water 

and 5% salt solution) single-output (conductivity), only flow rate of water was used 

as a manipulated (input) variable. The flow rate of the chemical for all 

measurements is set to 30% (0.26 l.min-1).  

• The overflow inside the reactor is in the minimum position, which means that the 

volume of the reactor is minimal, i.e. 1 liter. This setting is done because of minimal 

cost of the experiment. 

• The reactor is cleaned and fed with clean water before each experiment to ensure the 

same starting conditions. It means that at the beginning the conductivity of the bulk 

chemical is close to zero. 
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• It is expected that the system belongs to the class of lumped parameters systems 

which, means that the state variable (in our case the conductivity) depends only on 

the time variable. This condition is fulfilled with the stirrer switched on during 

measurements. The stirrer has only two states – on/off and the revolutions are not 

adjustable.   

• Even though the reactor has a heating/cooling coil, this equipment is not used in the 

experiments. 

• The used clean water is ordinary cold water from the standard water distribution. 

4.3.2 Static and Dynamic Analyses 

The static study displays steady-state values of the conductivity. It can be said that 

the system has mostly linear behaviour for the input variable u = 30÷70 %, which is 

represented by the volumetric flow rate of clean water through peristaltic pump A. As can 

be seen in Figure 4.51, the static behaviour for interval u = 70÷100 % has nonlinear 

behaviour. The flow rate lower than 30% was not taken into the examination because the 

revolvations of the pump is too low – see the remarks above. 

Dynamic analysis was done for six step changes of volumetric flow rate –  

Δu = 30%, 40%, 55%, 70%, 85% and 100%. The time of the measurement is 720 s (12 min) 

and the sampling period for the values retrieval is Tv = 1 s. The results are in Figure 4.51. 
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Figure 4.51 Static and dynamic analyses for the real model 
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Even though all responses can be described by first order transfer functions, the 

external linear model of this process, which is used in the control analysis, is of the second 

order with relative order one, i.e. 

 ( ) ( )
( )

1 0
2

1 0

b s b s bG s
a s s a s a

+
= =

+ +
 (4.65) 

4.3.3 Control Analysis 

Three control studies were done on this system –adaptive control with pole-

placement, adaptive control with LQ and generalized predictive control (GPC).  

As the results must be comparable, the same conditions were used for all 

measurements: sampling period Tv = 1 s, final time is Tf = 720 s (12 min) and three step 

changes of reference signal w(t) during the control: 

 
( ) [ ]
( ) ( )
( )

15 1 exp( 0.1 ) for 0;360

18 for 360;540

14 for 540;720

w t t mS t s

w t mS t s

w t mS t s

= ⋅ − − ⋅ ∈

= ∈

= ∈

 (4.66) 

The output variable y(t) is the conductivity of the chemical in mS and the input 

variable u(t) is the flow rate of clean water through pump A in %. The quality of the 

control is evaluated by the control quality criteria, Su and Sy described in (4.13). 

 

ADAPTIVE CONTROL WITH POLE-ASSIGNMENT METHOD 

The adaptive control is similar as in simulation experiments – the parameters of the 

system are estimated recursively during the control and recomputed in each step to the 

parameters of the controller. Delta models were used in ELM for adaptive control and 

recursive identification with changing exponential forgetting were used in the parameter 

estimation. The starting values for the identification are:  

• vector of parameters ( ) [ ]0 1.4425, 0.0141, 0.0090, 0.0033 T
δ = − − −θ   
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• covariance matrix ( )

6

6

6

6

1 10 0 0 0
0 1 10 0 0

0
0 0 1 10 0
0 0 0 1 10

⎡ ⎤⋅
⎢ ⎥⋅⎢ ⎥=
⎢ ⎥⋅
⎢ ⎥

⋅⎢ ⎥⎣ ⎦

P  

• constant K = 0.001 and parameters γ(0) = 0, ε(0) = 0 

The experiments have shown that the control results are much better if we impose 

starting values of the vector of parameters θδ(0) =  [1.4425, -0.0141, -0.0090,  

-0.0033]T than for arbitrary values. The values of this vector are taken from previous 

experiments. They could vary for each experiment but recursive identification would 

recompute these parameters to correct ones after some time. The second finding which 

follows from practical experiments is that it was good to force this vector for some time at 

the beginning, in our case for 50 s. It means that identification runs from the beginning, but 

the estimated parameters are taken into account from the time of 20 s to the end of control. 

The parameters from time 0-50 s are same as in θδ(0). The results of control are then much 

better and smoother on the contrary the controller without this condition ends with 

unacceptable results for some cases. 

The transfer function of the controller for the 1DOF configuration in this case is 

( ) ( )
( ) ( )

2
2 1 0

0

q s q s q s qQ s
s p s s s p

+ +
= =

⋅ ⋅ +
%

%
 (4.67) 

where the parameters of polynomials ( )p s%  and q(s) are computed similarly as in 

the previous cases. The results for different values of αi = 0.08, 0.1 and 0.3 presented in 

Figure 4.10 show that increasing value of αi results in a quick output response but the input 

variable, u(t), has a smoother course for smaller values of αi which is considered for the 

pumps. 
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Figure 4.52 The course of  y(t), w(t) and u(t) for different positions of parameter  
αi = 0.08, 0.1 and 0.3, 1DOF, pole-placement method, δ-ELM, real model 

The courses of the identified parameters in Figure 4.53 show that the used 

identifying method has no problems with recursive estimation of unknown parameters a’0, 

a’1, b’0 and b’1 during whole measurement, and the estimation is relatively smooth after 

100 s. 
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Figure 4.53 The course of identified parameters a’0, a’1, b’0 and b’1 during control, 
1DOF, pole-placement method, δ-ELM, real model 
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The best control response according to quality criteria Su and Sy is found for  

αi = 0.08, as can be seen in Table 4.18. 

Table 4.18 The control quality crit., Su, Sy for pole-placement method, δ-ELM, real model 

 Su[-] Sy[-] 

αi = 0.08 

αi = 0.1 

αi = 0.3 

3524.8

6228.4

78275.0

5418.0

5681.3

5055.4

 
 

ADAPTIVE CONTROL WITH LQ APPROACH 

The second controller was designed with the use of the LQ approach. Both 1DOF 

and 2DOF control configurations were used. The system is described by a second order 

transfer function (4.12); it means that the controllers are similar as in simulation Chapters 

4.1.4 and 4.2.4. Transfer functions of the controllers are then  

( ) ( ) ( ) ( )
2

2 1 0 0
2 2

1 0 1 0

,q s q s q rQ s R s
s s p s p s s p s p

+ +
= =

⋅ + + ⋅ + +
% %  (4.68) 

The initial parameters for identification are the same as in the previous case and 

the identification is switched off during the initial 50 s again.  

As written above, the LQ method is based on minimizing of the cost function, 

Equation (3.112), three studies for different weighting factor φLQ = 0.001, 0.005 and 0.01 

were done. The results are shown in Figure 4.54 and Figure 4.55.  
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Figure 4.54 The course of  y(t), w(t) and u(t) for different positions of parameter  
φLQ = 0.001, 0.005 and 0.01, 1DOF, LQ method, δ-ELM, real model 

 

As can be seen, the main advantage of the 2DOF configuration is that the 

controller can work properly from the beginning and not only after the second step change 

from 14 to 18 mS – see Figure 4.13. The value of the second weighting factor, µLQ = 1, is 

fixed for all studies. Again, the recursive identification has no problems with estimation. 
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Figure 4.55 The course of  y(t), w(t) and u(t) for different positions of parameter  
φLQ = 0.001, 0.005 and 0.01, 2DOF, LQ method, δ-ELM, real model 

The best setting of the controller is shown for φLQ = 0.005, which results in the 

smallest values of criteria Su and Sy – see Table 4.19. Both configurations are compared in 

Figure 4.56. 
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Figure 4.56 The course of  y(t), w(t) and u(t) for 1DOF and 2DOF, LQ method,  
φLQ = 0.005, δ-ELM, real model 

Table 4.19 The control quality criteria Su, Sy for LQ method, δ-ELM, real model 

1DOF 2DOF 

 Su[-] Sy[-] Su[-] Sy[-] 

φLQ = 0.001 

φLQ = 0.005 

φLQ = 0.01 

83804

34463

19042

7018.5

6295.4

7386.0

94095

35760

44833

5843.6

5980.4

6876.0

 

PREDICTIVE CONTROL 

The last control study uses Generalized Predictive Control (GPC). GPC technique 

does not use recursive identification, all we need is discrete transfer function G(z-1): 

( )
3 1 4 2

1
1 2

1.2368 10 8.4440 10
1 0.4892 0.5208

z zG z
z z

− − − −
−

− −

− ⋅ − ⋅
=

− −
 (4.69)  

This transfer function was obtained as a result of discrete identification from 

previous control studies. The sampling period is again Tv = 1 s, the prediction horizon 

starts at N1 = 0, ends in N2 = 49 steps ahead, the length of the manipulation horizon is  

Nu = 10 steps and the first weighting factor is δu = 1.  



-151- 

0 100 200 300 400 500 600 700
0
2
4
6
8

10
12
14
16
18
20

w
(t)

, y
(t)

 [K
]

t [s]

w(t)

λu=0.1

λu=0.05

λu=1

 
0 100 200 300 400 500 600 700

0

20

40

60

80

100

u(
t)[

%
]

t [s]

λu=1

λu=0.1

λu=0.05

 

Figure 4.57 The course of  y(t), w(t) and u(t) for predictive control and different  
values of λu = 0.05, 0.1 and 1, real model 

The control analyses for different weighting factor λu = 0.05, 0.1 and 1 are shown 

in Figure 4.57. Increasing value of λu results in a slower control response but smoother 

course of the manipulated variable u(t), which is confirmed by the smallest value of quality 

criterion Su for λu = 1 in Table 4.20. 

Table 4.20 The control quality criteria Su, Sy for predictive control, real model 

 Su[-] Sy[-] 

λu = 0.05 

λu = 0.1  

λu = 1 

98784

73756

17360

2838.2

3229.2

3345.2

 

THE BEST RESULTS OF EACH CONTROL STRATEGY 

All simulation studies were done for the same initial conditions, the same sampling 

period and the same step changes, which mean that we can now compare the best control 

responses of all control strategies. The results are shown in Figure 4.58 and Table 4.21. 

The best controllers from the controlled output y(t) point of view are adaptive controller 

with LQ method and 2DOF configuration and GPC controller. On the other hand, the best 
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controller from the practical point of view, where also changes of the input variable u(t) 

are important, is the adaptive controller with pole-placement method. 
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Figure 4.58 Comparison of the best control responses for Pole-placement method, LQ 
method and GPC 

 

Table 4.21 The control quality criteria Su, Sy for the best results in each control strategy 

 Su[-] Sy[-] 

Pole-placement, αi = 0.1 

LQ 1DOF, φLQ = 0.005 

LQ 2DOF, φLQ = 0.005 

GPC, λu = 1 

6228

34463

35760

17360

5681.3

6295.4

5980.4

3345.2
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CONCLUSIONS AND DISCUSSIONS 

The main objective of this work was to show the process from simulation of 

steady-state and dynamic analysis of different types of chemical reactors to simulation of 

control and verification on a real model. The chemical reactors are typical representatives 

of nonlinear processes, which makes them uneasy to control. However, adaptive and 

predictive control methods used for controlling have good control results although all 

models have negative control properties such as nonlinearity, time delay, non-minimum 

phase behaviour or changing sign of gain. 

The controlled systems are first subjected to simulation analyses so that the 

behaviour of the system is obtained before designing the controller. The methods used for 

simulation in this work are mathematical modelling, steady-state and dynamic analyses. 

All these simulations were done in mathematical software Matlab. Although this software 

has build-in functions for computing the set of Ordinary Differencial Equations (functions 

ode23, ode45, ode113 etc.), ODE are solved in this work with the help of Runge-

Kutta’s standard method programmed via equations (3.19) and (3.20) in the Chapter 3.1.4. 

The reason for the use of our own subfunctions is that functions ode23, ode45 etc. have 

a variable integration step which is recomputed in according to the actual computation 

error and this recomputation could sometimes result in inappropriate results. On the other 

hand, standard Runge-Kutta’s method has a fixed step, which should overcome this 

disadvantage. The second disadvantage of the use of functions ode23 and ode45 is the 

computation time, which is a bit longer than with the use of our own subfunction.  

Simulation results will then present the behaviour of the system, which can help 

with the choice of the optimal working point, control strategy and design of the controller. 

Both control strategies, adaptive and predictive Control, were first verified simulatively 

and then on a real model of the CSTR.  

A problem with the used Adaptive approach, which is based on the recursive 

identification of the External Linear Model of the originally nonlinear system, can be 

found at the beginning of control. The controller has not enough amount of information 

about the controlled system, and this results in inappropriate control responses and 



-154- 

overshoots, or, in the worst case, the controller does not work. However, the control 

response after the second and higher step change is usually much better. 

One way how to overcome this problem is a use of the proportional controller for 

some initial time, e.g. for initial 15 steps. The input and the output have then a smooth 

course and the controller is fed by the initial data which reflects the behaviour of the 

system. The adaptive controller is switched on after these 15 steps and the controller works 

much more properly than without this improvement. This method was used in practical 

part. 

The second option how to minimize the bad behaviour of the controller at the 

beginning is to use an exponential function for the first step change of the wanted value 

instead of the clean step change from the first value (usually from 0) to the second value. 

The reference signal then starts from zero and approaches to the final value more slowly 

than the clear step change.  

Both methods were used in the simulation experiments but the measurements on 

the real model have shown that these methods cannot be used in every case. Nonlinearity 

and uncertainty of the controlled system cause inappropriate responses. The way of the 

attenuation of this goes through identified parameters from some previous measurements 

which are forced as a result from the recursive identification for some initial time. The 

identification runs from the beginning but the estimated parameters in initial 50 seconds 

are replaced by the parameters from a previous identification. The newly estimated 

parameters are used for the computation after this initial time. This improvement of the 

control algorithm results in stable control response because the controller does not work or 

works with poor results without this improvement. The use of parameters from previous 

measurements could evoke questions: Why can we use these parameters for actual 

measurements? What will happen if we do not have the same conditions as in the previous 

case? Actually, the answers to these questions are not critical for the results because the 

recursive identification runs independently to this intervention; moreover, this 

improvement the helps controller to achieve identified parameters more quickly. Different 

properties of the chemical could result in different parameters of ELM but the parameters 

taken from the previous studies are much closer to these parameters than arbitrary ones. 
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Interesting results in the pole-placement method are obtained with the use of 

spectral factorization. The parameters of the ELM could sometimes indicate unstable roots 

and if we choose these parameters as a part of the optional polynomial d(s) on the right 

side of the Diophantine equations, the resulted controller is unstable too. The spectral 

factorization takes for designing of polynomial d(s) only stable pairs of the roots and the 

problem with unstable controller is thus solved. 

It is usually required that the controller must be tuned somehow. The optional 

tuning parameter in the pole-placement method with spectral factorization is position of 

the pole (root) αi. The increasing value of this parameter result in quicker responses but 

overshoots of the output variable, as it is shown in the practical part. On the other hand, 

LQ technique has two tuning parameters, weighting factors μLQ and φLQ, and the control 

response depends on the ratio between these parameters. There are two cases which 

indicates what is important on the control process – (1) the course of the output variable y(t) 

(φLQ rises with relation to the fixed μLQ) or (2) the course of the input variable u(t) (φLQ 

decreases with relation to the fixed μLQ). 

The use of different identification methods do not have different results – the 

results are in this case the same for all modifications of the Recursive least squares method 

with exponential or directional forgetting. Little worse results are obtained for the 

exponential forgetting with constant exponential forgetting but only in some cases. 

The last modification of the controller is the use of different control configuration 

with the one degree-of-freedom (1DOF) and two degrees-of-freedom (2DOF). The 

simulation results and measurements on the real model have shown in some cases that 

2DOF control configuration has better control results at the beginning of the control 

especially after the first step change when the output response from the controller with 

1DOF results in overshoots while 2DOF controller has much smoother course without 

overshoots. 

Proposed adaptive controllers have good results of the control and fulfilled basic 

control requirements such as the stability, the reference signal tracking and disturbance 

attenuation. 
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The best control results for all models are obtained for predictive control. The used 

generalized predictive control needs only two pieces of information at the beginning of 

control – the discrete-time transfer function, G(z), of the system and weighting sequences 

δu and λu. The transfer function was obtained from some of the previous identifications. 

The predictive controller could be refined by an adaptive part where the parameters of the 

transfer function are identified recursively, similarly to the adaptive controller. This 

approach in our case does not result in better output responses but it can help with 

controlling of other (more complex) types of systems. The predictive control could be 

tuned by the choice of the ratio between parameters δu and λu similarly as for LQ control – 

more important is the course of the output variable y(t) (λu rises with relation to the fixed 

δu) or the course of the input variable u(t) (λu decreases with relation to the fixed δu). 

 

 

 

 

 

The three main goals stated at the beginning of this thesis are fulfilled in 3 chapters 

in the following way. 

 

1. To perform static and dynamic analyses of different types of stirred reactors and 

tubular reactor. 

The experimental part of the thesis is focused on simulation of the static and 

dynamic behaviour of (1) the CSTR with the so called Van der Vusse reaction A B C, 

2A D described by a set of four ODE, (2) the tubular chemical reactor with consecutive 

exothermic reaction A B C which mathematical model consists of a set of five partial 

differential equations and (3) measurement of the static and dynamic analysis on the real 

model of the CSTR. This goal has been reached. 
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2. To prepare different modern control algorithms to control these chemical 

reactors and verify these algorithms by simulation. 

The theoretical part describes the process for constructing two types of control 

strategies – (1) adaptive control and (2) predictive control. The used adaptive approach is 

based on the choice of the ELM of the originally nonlinear process parameters of which 

are estimated recursively, and these parameters are then used for computation of the 

controller’s parameters. Two control schemes were used in controller configuration – a 

scheme with one degree-of-freedom (1DOF) and two degrees-of-freedom (2DOF). The 

predictive control is based on Generalized Predictive Control, where the sequence of inputs 

to the controlled system is computed by minimizing of the cost function based on the sum 

of the control error and input variable. Both control techniques were verified on two types 

of chemical reactors – CSTR and tubular reactor described in the previous point. 

Simulations were performed for different values of the adjustable parameters of controller, 

position of root αi in pole-placement method, weighting factor φLQ in LQ control or 

weighting factor λu in generalized predictive control, which shows the effect of this 

parameter to the output response from the controlled system. This point seems to be 

fullfiled too. 

 

3. To verify the proposed controllers from the simulation part on a real model of 

the continuous stirred tank reactor (CSTR) 

The last goal is connected with the verification of results from simulations to the 

measurements on the real model. Both adaptive and predictive approaches were used for 

controlling of the reactant’s conductivity in the real model of CSTR. The presented output 

responses have shown that adaptive and predictive controllers constructed in the simulation 

part for different systems can be applied (with some additional measurements and settings) 

for this reactor, which makes them applicable for other systems. This could be considered 

the main result of the thesis. 
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Czech – mother tongue 

English – active (writing, reading, speaking, listening) 

German – passive 

Grant participation: 

2006 – present: The sixth EU framework research project IST-027168 Innovative, 

inclusive, interactive & intercultural learning campus (iCamp) – co-participant. 

2005 – present: Grant No. 102/05/0271: Predictive Control Methods: Algorithms and 

Implementations 

2003 – 2006: Doctoral grant No. 102/03/H116: TALENT: Coordinated Education of 

Students in Doctoral Degree Programmes Focused on Control Engineering and 

Robotics – co-participant. 
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Other related activities: 

2004 – 2006: Member of the election committee for Academic senate of Tomas Bata 

University 

2007: Chair of the election committee for Academic senate of Tomas Bata University 

 

 


